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Recent advances in bacterial whole-genome sequencing have resulted in a comprehensive

catalog of antibiotic resistance genomic signatures in Mycobacterium tuberculosis. With a view

to pre-empt the emergence of resistance, we hypothesized that pre-existing polymorphisms

in susceptible genotypes (pre-resistance mutations) could increase the risk of becoming

resistant in the future. We sequenced whole genomes from 3135 isolates sampled over a 17-

year period. After reconstructing ancestral genomes on time-calibrated phylogenetic trees,

we developed and applied a genome-wide survival analysis to determine the hazard of

resistance acquisition. We demonstrate that M. tuberculosis lineage 2 has a higher risk of

acquiring resistance than lineage 4, and estimate a higher hazard of rifampicin resistance

evolution following isoniazid mono-resistance. Furthermore, we describe loci and genomic

polymorphisms associated with a higher risk of resistance acquisition. Identifying markers of

future antibiotic resistance could enable targeted therapy to prevent resistance emergence in

M. tuberculosis and other pathogens.
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M ycobacterium tuberculosis is estimated to have killed 1
billion people over the last 200 years1 and remains one
of the world’s most deadly pathogens2. Drug resistance

in bacteria, particularly the Enterobacteriaceae andMycobacterium
tuberculosis, imposes an unsustainable burden on health programs
worldwide with some strains so extensively resistant that they are
untreatable with existing antibiotic therapy3. Although recent
advances in bacterial whole-genome sequencing have significantly
improved the identification of drug resistance4, post hoc approa-
ches to diagnosis miss the opportunity to preempt the emergence
of drug resistance and implement preventive measures prior to the
acquisition and spread of antibiotic resistant disease.

An increased risk of drug resistance emergence is often attributed
to inadequate implementation of control measures5, but bacterial
factors have also been proposed as potential contributors to drug
resistance6. Evidence of differential drug resistance acquisition at
the M. tuberculosis sublineage level is conflicting. Epidemiological
and in vitro studies have suggested that the Beijing family,
belonging to lineage 2, is hyper-mutable7 with a propensity to
develop resistance at a higher frequency than other lineages8–11,
while others cite evidence to the contrary12,13. Pre-existing resis-
tance to one antibiotic (mono-resistance) is another factor that may
influence the acquisition of multidrug-resistance14. Mono-
resistance to isoniazid or rifampicin has been associated with
increased rates of multidrug-resistance acquisition15,16, but the
relative risk of either remains unclear. Similarly, phylogenetic ana-
lyses suggest a stepwise progression towards multidrug-resistance,
where mutations conferring isoniazid resistance tend to precede
those linked to rifampicin resistance17–20.

Phylogenetic trees have been increasingly used to study
pathogen dynamics and evolutionary processes of a wide range of
phenotypes of epidemiological interest, including virulence and
drug resistance acquisition21,22. A necessary focus on improving
the molecular diagnosis of drug resistance has led to the gen-
eration of large strain collections of drug resistant pathogens.
However, unrepresentative samples of this kind enriched for
drug-resistant isolates limit the ability to characterize the evolu-
tion and dynamics of drug resistance from a diverse background
of ancestral susceptible strains. Inadequate sampling without
comprehensive population level coverage or sufficient temporal
span compounds this problem, while the monomorphic nature of
the M. tuberculosis genome makes constructing time-calibrated
phylogenetic trees particularly challenging. As a consequence, a
single mutation rate is often applied to the data, but this
assumption inappropriately forces lineages and sub-lineages to
conform to the same global mutation rate, thus limiting the
inferences that can be made from the data.

Overcoming these issues, we present findings from samples
collected over a 17-year time span with population level coverage
in the hyperendemic suburbs of Lima, Peru. We apply a genome-
wide survival analysis to a time-calibrated phylogeny of 3135 M.
tuberculosis strains, and show the existence of pre-resistance
mutations among drug susceptible genotypes that increase the
risk of future drug resistance emergence in M. tuberculosis. We
demonstrate significant differences in the acquisition of drug
resistance between lineages, on mono-resistant backgrounds, and
at the level of nucleotide polymorphisms. Our findings were then
tested and replicated in an independent publicly available data set
of 1027 whole genomes collected in Samara, Russia, and in a
collection of 1573 isolates from multiple countries to demonstrate
that they can be globally generalized.

Results
Population structure, genomic analysis, and patient demo-
graphics. A total of 3432 M. tuberculosis genomes from Lima

(Peru) were analyzed, of which 3135 passed genomic quality fil-
ters. Of this, 2037 were part of a population level study carried
out in 2009 where sputum samples were taken from all patients
presenting tuberculosis symptoms in the Lima areas of Callao and
Lima South23 (Supplementary Data File 1). Comparison of drug
resistance prevalence between the population level sampling using
molecular genotyping and reports of epidemiological data in
Peru2 are consistent: 1.5% (32/2037) of samples were rifampicin
mono-resistant; 5% were isoniazid mono-resistant (105/2037),
and 13% were multidrug-resistant (251/2037) (Supplementary
Table 1). The remaining samples were collected from cohort
studies covering a 17-year period of research in the regions of
Lima and Callao in order to achieve a sufficient temporal span in
our sampling window (Supplementary Fig. 1). Both lineage 2 and
lineage 4 had a similar distribution of sampling dates (Supple-
mentary Fig. 2).

The isolates were first aligned to the reference genome H37Rv,
then lineages and sublineages were assigned using clade specific
SNPs24. Lineage 4 (L4, Euro-American) consisted of 2807 samples,
while lineage 2 (L2, Beijing) had 327 isolates (Table 1). There was a
single representative of lineage 1 (Indo-Oceanic), which was used to
root the phylogenetic tree. The remaining samples from the data
set, which included 5 M. caprae isolates, were not used in the
downstream analysis. Lineage 4 had the highest diversity,
comprising 1235 isolates from lineage 4.3 (LAM), 935 from lineage
4.1.2.1 (Haarlem), 271 from lineage 4.1.1 (X-Type), and 312 from
lineages denoted as Type T, which encompasses lineages 4.5, 4.7, 4.8
and 4.9. Other minor sublineages included lineage 4.2.2 (TUR) and
lineage 4.4. All isolates from Lineage 2 were part of the Beijing
sublineage (lineage 2.2), mainly from the sublineage 2.2.1 or
Modern Beijing, and with only one representative of the sublineage
2.2.2 or Asia Ancestral25 (Table 1).

The alignment of the isolates to the reference genome resulted
in 64,586 SNPs, of which 18,022 were singletons (28%). Most
SNPs were not widely distributed across the population, and only
8088 variants had a frequency in the dataset higher than 1%. A
total of 59,789 SNPs (16,934 singletons, 28%) were identified for
lineage 4, and 4821 SNPs (1370 singletons, 28%) for lineage 2. We
applied the same analysis to a publicly available data set of 1027
isolates from Samara, Russia, as a validation set where, unlike the

Table 1 Population structure.

Clade name Number

Lineage 1 Indo-Oceanic 1
Lineage 2 East-Asian 327
Lineage 2.2.1 Beijing 319
Lineage 2.2.1.1 Beijing 7
Lineage 2.2.2 Beijing 1
Lineage 4 Euro-American 2807
Lineage 4.1.1 X Type 271
Lineage 4.1.2.1 Haarlem 935
Lineage 4.2.2 TUR 3
Lineage 4.3.1 LAM 5
Lineage 4.3.2 LAM3 328
Lineage 4.3.3 LAM9 676
Lineage 4.3.4 LAM11 226
Lineage 4.4 - 51
Lineage 4.5 T Type 4
Lineage 4.7 T Type 31
Lineage 4.8 T Type 86
Lineage 4.9 T Type 12
Lineage 41 T Type 179

Lineages and sublineages defined using clade specific SNPs24.
1Clade name assigned phylogenetically.
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Peruvian dataset, lineage 2 constitutes the main lineage. We
identified a total of 28,414 SNPs, consistent with previous
publications of this data19.

Patient demographic metadata was available for 2220 samples,
of which 88% were smear positive, 27% were previously treated
for tuberculosis, and 2.8% were HIV positive, consistent with
previous population level estimates in Peru26. The median age
was 28 years (IQR 21–41). In our cohort, 86% of lineage 2 and
89% of lineage 4 were smear positive.

Phylogenetic analysis and drug resistance emergence. The
maximum likelihood phylogeny constructed using these align-
ments grouped the isolates by lineage similarly to previously
published global data sets24 (Fig. 1a, Supplementary Fig. 3). To
study the temporal dynamics of drug resistance acquisition at the
population level, the maximum likelihood phylogeny was time-
calibrated using the sampling dates of the isolates, which exten-
ded from 1999 to 2016. Dated phylogenies were built separately
for lineage 2 and lineage 4 in order to avoid the confounding
effect of the temporal and population structures27. Before time
calibration of the phylogeny, we tested the adequacy of the
temporal correlation of evolutionary change to reliably infer
the model parameters. First, a root-to-tip linear regression of the
number of substitutions from the root and the sampling times
was fitted to confirm a positive association between time and

evolutionary change. As uneven sampling may bias the root-to-
tip regression28, a date-randomization test was additionally per-
formed using the full Bayesian model implemented in
BactDating29 with the original dataset and 100 randomizations
where the sampling times were permuted, representing the
expectations of the model parameters in the absence of temporal
signal. The substitution rate estimated for the original dataset and
for the 100 randomizations was compared to verify a lack of
overlap between the 95% credible intervals. Both lineage 4 and
lineage 2 datasets showed a clear temporal signal (Supplementary
Fig. 4), and thus model parameters could be confidently inferred
from the data30,31. We used the relaxed clock model implemented
in BactDating29, allowing the mutation rate to vary in each
branch independently. We ran the MCMC until convergence of
the chains was achieved, with an effective sample size (ESS) of at
least 100 (Supplementary Fig. 5). The estimated rate for lineage 2
was 0.45 substitutions per genome per year (0.32–0.57 95% CI),
while lineage 4 had a clock rate of 0.299 (0.25–0.36 95% CI)
(Fig. 1b). The estimates of the molecular clock for both lineages
were consistent with previous reports32. The most common
recent ancestor (tMRCA) for our samples was placed at 565 CE
(263;826 95% CI) for lineage 4 (Fig. 1c), while lineage 2 had a
tMRCA in 1325 CE (1070;1499 95% CI) (Fig. 1d).

Drug resistance was inferred for all isolates at the tips of the
phylogenetic tree using well-established drug resistance associated
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Fig. 1 Phylogenetic analysis of 3134 Mycobacterium tuberculosis isolates from Lima, Peru. Colors represent different lineages and sublineages.
a Maximum likelihood phylogeny. Scale in number of substitutions per genome. b Violin plots showing the posterior density distribution of the inferred
substitution rate in substitutions per genome per year derived by sampling from 107 MCMC iterations. The substitution rate was estimated separately for
lineage 4 (blue) and lineage 2 (red). Box plots inside the violin indicate the median value of the distribution (black horizontal line) and the interquartile
range. Whiskers denote 1.5x the interquartile range, while outliers are plotted as individual points. c Time-calibrated phylogeny of lineage 4. d Time-
calibrated phylogeny of lineage 2.
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SNPs33. In addition to molecular typing of drug resistance, all
isolates included in the analysis had Drug Susceptibility Testing
(DST) performed either by MODS or by the proportional method
in agar. DST and molecular typing showed consistent results for
96% of the samples for rifampicin resistance and 92% for
isoniazid resistance. The time of emergence of drug resistant
mutations was inferred by reconstructing the ancestral sequences
of the internal nodes in the phylogenetic tree. The time of
emergence of a specific antibiotic resistance mutation was
approximated to the inferred year of the internal node where
such mutation first appeared. The phylogenetic estimates of the
emergence of drug resistance conferring mutations in lineage 4
occurred around the time of the known introductions of the
corresponding drug. In contrast the emergence of drug resistance
in lineage 2 was observed to have arisen many years after
the introduction of antituberculous drugs. This is consistent with
the geographic spread of lineage 4 in Europe together with early
widespread use of drugs in this region (Table 2, Fig. 2). For both
lineage 2 and lineage 4, the earliest inferred occurrence of
resistance was to isoniazid, by the Ser315Thr mutation in the
gene KatG, around 1957 (1928;1978 95% CI) for lineage 2, and
1942 (1913;1960 95% CI) for lineage 4, in line with the reported
wide introduction of isoniazid in 195234. The rifamycins were

first isolated in 195734, and we estimate the date for the first
acquisition of resistance to rifampicin due to the rpoB mutation
Ser450Leu to have emerged around 1951 (1931;1971 95% CI) for
lineage 4 and 1974 (1953;1988 95% CI) for lineage 2. None of the
drug resistant nodes reverted to susceptible along the branches of
the two phylogenetic trees.

The emergence of compensatory mutations. It has been shown
that secondary mutations arising after the acquisition of drug
resistance may alleviate the fitness cost associated to antibiotic
resistance mutations35, but little is known about their temporal
dynamics. Data on M. tuberculosis drug resistance compensatory
mechanisms is mainly limited to isoniazid and rifampicin
resistance36,37. Non-synonymous mutations in the gene rpoC
have been suggested as secondary compensatory mutations for
rifampicin associated mutations in the rpoB gene37. A total of
34% (258/755) of lineage 4 isolates harboring rpoB mutations also
had rpoC non-synonymous polymorphisms; for lineage 2, 38%
(33/87) of isolates with rpoB mutations carried rpoC poly-
morphisms. No significant differences were observed between
lineages in a logistic regression model (OR= 0.85, 95% CI
0.54–1.35, p-value = 0.49). Overall, 62% of rifampicin resistant
isolates carried Ser450Leu rpoB mutations (525/842). Rifampicin
resistant isolates harboring Ser450Leu rpoB mutations had a
higher probability of carrying mutations in the rpoC gene (52%,
272/525) than isolates with other rpoB mutations (6%, 19/317) in
a logistic regression model (OR= 16.86, 95% CI 10.55–28.50, p-
value = 4 × 10−29). Only 3% (9/291) of the isolates carried two
non-synonymous mutations in the rpoC gene, while the rest had
only one.

To understand the emergence of rpoC non-synonymous
mutations, we scanned the phylogenetic branches of rifampicin
resistant isolates from the root to the tip, using the inferred
sequences of the ancestral nodes to determine the time of
emergence of rpoC non-synonymous mutations. The analysis
was repeated in 100 bootstrap phylogenies to infer confidence
values around our estimates. In both lineage 2 and lineage 4,
the emergence of rpoC non-synonymous mutations occurred
immediately after or at the same time as the emergence of
rifampicin resistance, and continued steadily over time (Fig. 3).
For lineage 2, there was not a single emergence of rpoC mutations
occurring prior to the rifampicin resistance conferring mutations.
In the case of lineage 4, two rpoC mutations emerged before
rifampicin resistance: c.765150 G > A and c.765590 C > A. Both
mutations appeared once independently in the entire phylogeny.
The mutation c.765150 G > A emerged in our dataset around the
year 936 CE (727;1110 95% CI), in the MRCA of the clades
X-type and Haarlem, all of which present the c.765150 G > A
mutation (1206/2807 isolates). For c.765590 C > A, the estimated

Table 2 First emergence of drug resistance conferring mutations in Lima, Peru.

Drug Lineage Gene Year Mutation

RIF Lineage 4 rpoB 1951.7 [1931.7–1970.7] p.Ser450Leu
Lineage 2 rpoB 1974.4 [1953.2–1986.8] p.Ser450Leu

INH Lineage 4 KatG 1941.6 [1913.6–1959.7] p.Ser315Thr
Lineage 2 KatG 1957.5 [1928.3–1977.4] p.Ser315Thr

ETH Lineage 4 embB 1973.7 [1967.8–1980.8] p.Gly406Ala
Lineage 2 embB 1983.1 [1967.0–1994.1] p.Met306Val

PZA Lineage 4 pncA 1962.4 [1942.6–1972.2] p.His51Arg
Lineage 2 pncA 2002.1 [1997.0–2005.5] c.-11A>C

STR Lineage 4 rpsL 1974.5 [1955.9–1986.2] p.Lys43Arg
Lineage 2 rpsL 1958.1 [1934.6–1975.1] p.Lys43Arg

Emergence of drug resistance conferring mutations for the 5 antibiotics historically used as first line drugs for the treatment of tuberculosis. RIF rifampicin, INH isoniazid, ETH ethambutol, PZA
pyrazinamide, STR streptomycin. Year presented as a point estimate with the highest posterior density interval.

Tree estimation of TB drug resistance emergence
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Fig. 2 Inferred posterior density distribution of the earliest occurrence of
resistance to first line antituberculous drugs. Posterior density
distribution inferred using a time-calibrated phylogeny for both lineage 4
and lineage 2. Arrows represent the approximate time of antibiotic
introduction.
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year of emergence was around 1867 CE (1813;1907 95% CI), and
all the tips harboring the mutation belonged to a cluster of
isolates part of the LAM11 sublineage (33/2807 isolates). Given
that both mutations showed a clear phylogenetic structure and
emerged independently only once in our dataset, they were
considered phylogenetic mutations and were removed from the
final analysis. The emergence of non-synonymous mutations in
the rpoC gene was similar for isolates carrying the Ser450Leu
rpoB mutation and for those isolates with other rpoB mutations
(Supplementary Fig. 6).

Phylogeographic history of Mycobacterium tuberculosis in
Peru. To estimate the year of M. tuberculosis introductions to
Peru, we subsampled the Peruvian isolates and analyzed them
alongside global representatives of both lineage 2 and lineage 4
for which both collection date and geographic origin were known
(Supplementary Data File 2). The phylogenies were time-
calibrated using a relaxed clock model as implemented in
BactDating29, and MCMC convergence was assessed using the
traces of the model parameters (Supplementary Fig. 7).

The phylogeographic history was inferred by reconstructing
the ancestral states by maximum likelihood. The geographical
origin of the isolates was treated as a discrete character, and we
assumed that the time of introduction occurred at the first
Peruvian node of each clade.

Two early introductions of lineage 2 from China in 1880
(1856;1905 95% CI) and 1906 (1881;1929 95% CI) accounted for
84% of the Peruvian dataset (275/327 isolates), and 77% (90/117)
of the drug resistance isolates as well as 77% (20/26) of the
independent resistance evolutionary events (Fig. 4a). Later
introductions to Peru from China occurred between 1981
(1969;1989 95% CI) and 2004 (1999;2007 95% CI), with one
introduction in 1986 (1974;1994 95% CI) from South Asia
representing 6 isolates, one of which is drug resistant.

Lineage 4 was inferred to have been introduced in Peru several
times over the years, mainly from Europe and Brazil (Fig. 4b).
Lineage 4.3 (LAM) represents the first and main introduction
from Brazil around 1512 (1383;1598 95% CI), shortly after the
well documented arrival of the Europeans to the continent.
Subsequent smaller introductions from Europe and Brazil around
1644 (1545;1713 95% CI) and 1743 (1671;1796 95% CI) shaped

the LAM and T type lineages. We inferred that most of L4.1.2.1,
part of the Haarlem sublineage, likely evolved from two
introductions from Europe around 1693 (1614;1749 95% CI)
and 1834 (1781;1869 95% CI). The most likely introductions of
the X type clade (L4.1.1) occurred from Brazil in 1692 (1597;1754
95% CI) and South Africa for L4.1.1.3 in 1706 (1615;1773
95% CI).

Between lineage differences in drug resistance acquisition. The
risk of acquiring drug resistance was calculated as the Cox Pro-
portional Hazard Ratio (HR) using the time between sensitive
internal nodes and the first drug resistant node in the time-
calibrated phylogenetic trees. The Kaplan–Meier curves showed
that lineage 2 had a higher probability of acquiring drug resis-
tance than lineage 4 (Log-rank test p-value = 1.2 × 10−9; Fig. 5a).
The estimated hazard ratio of drug resistance acquisition for
lineage 2 was estimated to be 3.36 when compared to lineage 4
(HR 3.36, 95% CI 2.10–5.38, Likelihood ratio test p-value =
4.25 × 10−7). A similar trend was observed in the Samara dataset
(HR 4.82, 95% CI 3.74–6.21, Likelihood ratio test p-value =
6.8 × 10−34; Kaplan–Meier curve Log-rank test p-value =
1 × 10−39; Fig. 5b). The risk of drug resistance acquisition was
also higher in lineage 2 when compared to all sublineages of
lineage 4 in the Peruvian dataset, using LAM3 as a reference
(lineage 2 HR 3.32, 95% CI 1.84–6.28, Likelihood ratio test p-
value = 1.9 × 10−4, all other p-values > 0.2; Kaplan–Meier curve
Log-rank test p-value = 6.9 × 10−8; Fig. 5c). To assess the ade-
quacy of our data to the proportional hazard assumption, we
calculated the relationship between the Schoenfeld residuals
against time. In all cases, a non-significant association between
the Schoenfeld residuals and time supported the use of the pro-
portional hazards model (Supplementary Fig. 8).

In order to evaluate the robustness of our maximum likelihood
phylogeny, we repeated both the dating and the survival analysis
on 100 phylogenetic bootstrap replicates. In both lineage 2 and
lineage 4, the Cox Proportional Hazard ratio was not significantly
different between the maximum likelihood phylogeny and the
bootstrap replicates (Supplementary Fig. 9a, b). Additionally, the
Kaplan-Meier curve of the 100 replicates was similar to that of the
maximum likelihood tree (Supplementary Fig. 9c, d).
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Fig. 3 Dynamics of non-synonymous mutations in rpoC. a, b Cumulative number of non-synonymous mutations in rpoC over time. The x-axis represents
the years since the inferred time of rifampcin resistance (time 0). Dark blue line shows the cumulative number of mutations for the ML tree, while the 95%
confidence interval (shaded area) is inferred by repeating the analysis in 100 bootstrap phylogenies. The analysis was performed separately for a lineage 2
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Both phylogenetic trees were subsampled to include only the
isolates from the 2009 population level study to prevent any
biases due to inclusion of datasets enriched for drug resistance
isolates (Supplementary Table 1). The results were congruent
with those obtained with the entire dataset. Lineage 2 was
characterized by a higher risk of drug resistance acquisition when
compared to lineage 4 (HR 4.84, 95% CI 2.78–8.45, Likelihood
ratio test p-value = 2.7 × 10−8; Kaplan-Meier curve Log-rank test
p-value = 7.9 × 10−10; Supplementary Fig. 10a). Moreover,
lineage 2 also had a higher hazard ratio than any sublineage of
lineage 4 (lineage 2 HR 5.1, 95% CI 2.17–11.9, Likelihood ratio
test p-value = 1.8 × 10−4, all other p-values > 0.2; Kaplan-Meier
curve Log-rank test p-value = 3.02 × 10−7; Supplementary
Fig. 10b).

Several confounders may also explain the differential rate of
drug resistance acquisition between lineages (Supplementary
Fig. 11). We found no significant association between M.
tuberculosis sublineages and HIV (Supplementary Fig. 11a) and
smear positivity (Supplementary Fig. 11b) in a logistic regression
model (n= 2133, all p-values > 0.1). It has been previously shown
that prison conditions increase and amplify drug-resistance
tuberculosis in Peru38,39. Our study population showed a higher
proportion of prison infection in lineage 2 (5.8%, 12/206 patients)
when compared to lineage 4 (1.4%, 28/2011 patients, Supple-
mentary Fig. 11c), and a higher risk of lineage 2 infection within
the prison population (n= 2217, OR= 4.4, 95% CI 2.1–8.5,
p < 0.001). This finding did not explain the higher rate of drug
resistance acquisition in lineage 2, since all the lineage 2 samples
taken from prisoners belonged to the same cluster and none of
them harbored drug resistance conferring mutations. Since
previous treatment with antituberculous drugs has been asso-
ciated to an increased risk of acquiring drug resistance38, we
tested the association between previous treatment and the
different sublineages of our cohort. Previous treatment history
was available for 2236 samples contained metadata regarding
previous treatment of tuberculosis. We found no significant
association between M. tuberculosis sublineages and previous
treatment with antituberculous drugs in a logistic regression
model (n= 2236, all p-values > 0.1), suggesting that the between
lineage differences in drug resistance acquisition observed in the
survival analysis are not confounded by a differential distribution

of antibiotics between sublineages (Supplementary Fig. 11d).
Behavioral patterns may also affect the dynamics of drug
resistance acquisition and transmission. Patient sex (Supplemen-
tary Fig. 11e) was not significantly associated with any of the M.
tuberculosis sublineages (n= 2205, p-value = 0.3). The mean age
for patients with lineage 4 infection was 33.3 (22–41 IQR), while
the mean age for patients with lineage 2 was 30.4 (21–36 IQR).
Although the distribution of patient age was similar between the
two lineages (Supplementary Fig. 11f), lineage 4 showed an
incident rate of age 1.09 higher than lineage 2 in a quasi-Poisson
model (lineage 4 estimate = 0.09, standard error = 0.02,
p= 0.001). On the other hand, age was not significantly
associated with a higher risk of drug resistance acquisition in a
logistic model (OR 0.999, 95%CI 0.994–1.003, p= 0.69).

The risk of developing MDR TB from isoniazid mono-
resistance. To determine the effect of mono-resistance on the
acquisition of further multidrug-resistance, the hazard ratio of
acquiring rifampicin resistance was calculated for isoniazid
mono-resistant ancestral genotypes versus susceptible ancestral
strains. Genotypes with an isoniazid mono-resistant background
had 15 times the hazard of developing rifampicin resistance
tuberculosis relative to wild type susceptible strains (HR 15.12,
95% CI 10.54–21.69, Likelihood ratio test p-value < 10−15;
Kaplan–Meier curve Log-rank test p-value = 2, 7 × 10−63;
Fig. 6a). A larger hazard ratio was obtained in the Samara dataset
(HR 37.28, 95% CI 18.81–73.88, Likelihood ratio test p-value =
3.4 × 10−25; Kaplan–Meier curve p-value = 4.6 × 10−63; Fig. 6b),
although the low prevalence of mono-resistance clades in the
Samara set may bias this estimate.

Multidrug-resistance was preceded by rifampicin mono-
resistance only one time in the phylogenetic tree. Due to the
infrequent occurrence of rifampicin mono-resistance prior to
multidrug-resistance emergence, the risk of developing
multidrug-resistance from a rifampicin mono-resistance back-
ground could not be reliably estimated.

Genomic signatures of drug resistance acquisition. Genome-
wide survival analysis was performed using a Cox Proportional
Hazard regression model to identify genetic variants in phylogenetic
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Fig. 4 Phylogeographic analysis of Mycobacterium tuberculosis introductions to Peru. a, b Inferred introductions of Mycobacterium tuberculosis in Peru.
The top part shows a time-calibrated phylogeny, with inferred introductions to Peru highlighted in the nodes with colors representing the country from
which the clade was introduced. Peruvian clades are shown in blue. The bottom part shows the estimated year of introduction. The analysis was done
separately for a lineage 2 and b lineage 4. For visual representation purposes, only the year of introduction of clades with more than 10 tips are shown for
lineage 4.
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nodes inferred to be drug susceptible but associated with a higher
risk of progression towards drug resistance. Resistant nodes were
defined as those inferred to be resistant to any antibiotic in order to
identify common pathways of increased risk of acquiring resistance
regardless of the specific antibiotic. The association analysis was
performed in lineage 4 and lineage 2 separately, and we further
corrected for population structure using a kinship matrix, which
reduced the genomic inflation factor (λ) to 1.16 (Supplementary
Fig. 12).

Six variants in drug susceptible ancestral genotypes were
associated with a higher risk of acquiring drug resistance in
lineage 4 after population and multiple testing correction, three of
which were in previously annotated genes (Fig. 7a). The variant
with the lowest p-value corresponded to a 9 bp deletion at

location 2,604,157 in the locus lppP, which encodes a lipoprotein
and has been predicted to be required for growth in
macrophages40. This deletion had a frequency of 1.7% in the
population, and it evolved 12 times independently along the
phylogenetic tree. Genotypes with this variant had a hazard ratio
7.36 times greater than those with an intact lppP (Fig. 7b, HR 7.36
95% CI 3.85–14.04, p-value = 7.46 × 10−10). We replicated our
findings in a global data set of 1573 L4 isolates (Supplementary
Data File 3), which was relatively enriched for drug resistance
(55% of samples were resistant to any drug). The lppP deletion
had a frequency of 9% and inferred susceptible genotypes with
the deletion had a hazard ratio 3.6 times greater than those
without it (HR 3.6, 95% CI 1.9–6.9, p-value = 8.7 × 10−5). Two
synonymous polymorphisms at esx genes were found to be

Fig. 5 Hazard ratio and Kaplan–Meier curve for different sublineages of Mycobacterium tuberculosis. a–c Top: Hazard ratio (HR). Points and error bars
represent the HR estimate and the 95% CI, respectively. The p-value for the HR was calculated using the likelihood ratio test. Bottom: Kaplan–Meier curve
and numbers at risk. Y-axis represents the probability of remaining susceptible to any antibiotic, while the X-axis shows the time in years or the distance in
branch length. Shaded areas show the 95% CI. Kaplan–Meier curves were compared and p-values were derived using the log-rank test. a Depicts the HR of
lineage 2 compared to lineage 4 in the Peruvian dataset (HR 3.36, 95% CI 2.10–5.38, Likelihood ratio test p-value = 4.25 × 10−7) and the different
Kaplan–Meier curve for lineage 2 and lineage 4 (Log-rank test p-value = 1.2 × 10−9). b Same metrics for the Samara dataset (HR 4.82, 95% CI 3.74–6.21,
Likelihood ratio test p-value = 6.8 × 10−34; Kaplan–Meier curve Log-rank test p-value = 1 × 10−39). c Shows HR between lineage 2 and the different
sublineages of lineage 4 found in the Peruvian dataset (LAM9, LAM3, LAM11, Haarlem, X type and T type), using LAM3 as a reference (lineage 2 HR 3.32,
95% CI 1.84–6.28, Likelihood ratio test p-value = 1.9 × 10−4, all other p-values > 0.2; Kaplan–Meier curve Log-rank test p-value = 6.9 × 10−8). Statistical
significance of the hazard ratio differences presented next to the CI bars (*p < 0.05; **p < 0.01; ***p < 0.001).
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associated with a higher risk of acquiring drug resistance in
inferred drug susceptible genotypes. The esx gene family encodes
protein secretion systems described to be critical for growth,
pathogenesis, and mycobacterial–host interactions41. The two
polymorphisms were detected in the gene esxL at position
1,341,044 with a hazard ratio of 3.2 (HR 3.2 95% CI 1.91–5.37, p-
value = 1.01 × 10−6), and at position 2,626,011 in the gene esxO
(HR 11.12, 95% CI 5.50–22.5 p-value = 1.52 × 10−5) with a
frequency in the population of 17 and 5%, respectively. In the L4
global dataset, the esxL SNP had a frequency of 19.5% while the
esxO polymorphism was present in 10% of the isolates. Inferred
susceptible genotypes in the global data set carrying the mutation
in esxO had a risk of acquiring drug resistance 3.1 times higher

than those with the reference genotype (HR 3.1, 95% CI 1.3–7.3,
p-value = 0.009), while those carrying the mutation in esxL had a
risk 1.4 higher, although differences where not statistically
significant (HR 1.4, 95% CI 0.7–3.0, p-value = 0.3). Visual
inspection of the short-read alignments around the described
genes was undertaken to confirm high quality alignments over
these regions (Supplementary Fig. 13).

For the gene-based GWAS, non-synonymous variants were
aggregated for each locus and a binary matrix was created
reflecting whether internal nodes and tips contained at least one
non-synonymous polymorphism for each gene. After population
and Bonferroni multiple testing correction, a total of 35 variants
had a p-value lower than the significance threshold of 4.38 × 10−5

Fig. 6 Hazard ratio and Kaplan–Meier curve for rifampicin acquisition. a, b Top: Hazard ratio (HR). Points and error bars represent the HR estimate and
the 95% CI, respectively. The p-value for the HR was calculated using the likelihood ratio test. Bottom: Kaplan–Meier curve and numbers at risk. Y-axis
represents the probability of remaining susceptible to rifampicin, while the X-axis shows the time in years or the distance in branch length. Shaded areas
show the 95% confidence interval. P-values for the Kaplan–Meier curves were calculated using the log-rank test. a Depicts the risk of acquiring rifampicin
resistance from an already isoniazid mono-resistant background compared to a drug susceptible one (HR 15.12, 95% CI 10.54–21.69, Likelihood ratio test
p-value = 1.3 × 10−40) and the Kaplan–Meier curves for the different backgrounds (Log-rank test p-value = 2.7 × 10−63). b Same metrics for the Samara
dataset (HR 37.28, 95% CI 18.81–73.88, Likelihood ratio test p-value = 3.4 × 10−25; Kaplan–Meier curve p-value = 4.6 × 10−63). Statistical significance of
the hazard ratio differences presented next to the CI bars (*p < 0.05; **p < 0.01; ***p < 0.001).
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(Table 3). Functional annotations curated in the Mycobrowser42

showed that most genes were related to metabolism and cellular
respiration (frdB, cyp135A1, Rv3113, hemE, pyrG, galK, icd1,
Rv1096, fum, galE2, Rv1751, Rv3712, asnB) as well as cell wall
processes (kdpA, lppP, cfp2, lytB1, mmpL1, Rv1417, lgt, Rv0226c,
caeA, murF, pstB).

No significant associations were identified for lineage 2 after
correcting for population structure, possibly due to the lower
diversity of lineage 2 and the strong lineage effect on the
phenotype. The analysis could not be replicated in the Samara
dataset as the Samara dataset was significantly smaller and hence
lacked sufficient statistical power.

Discussion
This study represents the largest population level genomic ana-
lysis of Mycobacterium tuberculosis to date. Our 17-year sampling
time frame provided a unique opportunity to study drug resis-
tance acquisition dynamics and evolution. To our knowledge this
is the first description and evaluation of pathogen pre-resistance
(pre-existing polymorphisms that predispose to the acquisition of
future drug resistance).

Using an ancestral state genome-wide survival analysis to move
in time through the phylogenetic tree, we show that M. tuber-
culosis is predisposed to acquire drug resistance mutations at the
lineage level, after mono-resistance, and at the level of nucleotide

polymorphisms. Identifying pathogen genetic factors that pre-
dispose strains to evolve drug resistance could help prevent the
acquisition and spread of resistance as well as treatment failure by
expanding treatments to those strains most likely to become
resistant in the future.

Previous studies of acquired drug resistance at the sublineage
level in M. tuberculosis have led to contradictory outcomes, with
small sample sizes in fluctuation assays7,12 or using amalgamated
sub-population level samples. Here we demonstrate that lineage 2
acquired resistance to antibiotics more rapidly than lineage 4. There
were no significant differences observed in drug resistance acqui-
sition between the sub-lineages of the most diverse lineage 4. Even
though lineage 2 showed an increased risk in drug-resistance
acquisition, lineage 4 evolved resistance earlier than lineage 2 for
almost all drugs analyzed, with the exception of streptomycin. This
may be explained by the Euro-American distribution of lineage 4
and the earlier widespread implementation of antibiotics in these
regions. Our analysis also suggests that the acquisition dynamic of
compensatory mutations was similar for both lineage 2 and lineage
4. After rifampicin resistance associated mutations evolve in a clade,
non-synonymous mutations in rpoC start to occur and steadily
accumulate over time. Thus, pre-resistance mutations emerge
independently of compensatory mutations.

The identification and control of mono-resistant strains is a
key component of tuberculosis public health infection prevention
and control efforts. Mono-resistance is associated with worse

Table 3 Gene-based association analysis.

Gene Name Rv Number HR SE P-value1 Frequency Functional category2

Rv2510c Rv2510c 16.74 0.4 1.79 × 10−14 0.01 Unknown
yrbE2A Rv0587 4.77 0.39 2.43 × 10−12 0.01 Virulence, detoxification, adaptation
kdpA Rv1029 1.46 0.81 3.56 × 10−10 0.42 Cell wall and cell processes
lppP Rv2330c 7.14 0.45 4.44 × 10−10 0.02 Cell wall and cell processes
cfp2 Rv2376c 1.97 1.04 8.4 × 10−09 0.03 Cell wall and cell processes
lytB1 Rv3382c 5.2 0.45 3.05 × 10−08 0.01 Cell wall and cell processes
frdB Rv1553 1.62 0.64 3.54 × 10−08 0.42 Metabolism and respiration
mmpL1 Rv0402c 1.6 0.38 1.07 × 10−07 0.06 Cell wall and cell processes
fadD5 Rv0166 2.27 0.47 1.57 × 10−07 0.05 Lipid metabolism
cyp135A1 Rv0327c 2.07 0.4 2.03 × 10−07 0.04 Metabolism and respiration
Rv1897c Rv1897c 1.18 0.72 2.55 × 10−07 0.16 Unknown
Rv3113 Rv3113 1.69 0.72 2.55 × 10−07 0.52 Metabolism and respiration
gpdA2 Rv2982c 0.9 0.69 2.99 × 10−07 0.05 Lipid metabolism
Rv0579 Rv0579 1.33 0.53 6.7 × 10−07 0.02 Unknown
Rv1417 Rv1417 0.83 0.72 9.51 × 10−07 0.16 Cell wall and cell processes
recD Rv0629c 2.63 0.37 1 × 10−06 0.03 Information pathways
Rv3903c Rv3903c 1.14 0.28 1.05 × 10−06 0.19 Unknown
hemE Rv2678c 1.28 0.55 2.18 × 10−06 0.02 Metabolism and respiration
lgt Rv1614 0.83 0.64 2.25 × 10−06 0.17 Cell wall and cell processes
pyrG Rv1699 4.1 0.32 3.15 × 10−06 0.04 Metabolism and respiration
galK Rv0620 0.87 0.72 4.73 × 10−06 0.16 Metabolism and respiration
Rv2915c Rv2915c 4.8 0.36 7.24 × 10−06 0.02 Unknown
Rv0226c Rv0226c 2.87 0.41 7.73 × 10−06 0.03 Cell wall and cell processes
Rv0021c Rv0021c 1.04 0.62 8.6 × 10−06 0.06 Unknown
caeA Rv2224c 0.92 1.05 8.69 × 10−06 0.02 Cell wall and cell processes
Rv1501 Rv1501 2.26 0.53 1.09 × 10−05 0.08 Unknown
icd1 Rv3339c 4.42 0.53 1.14 × 10−05 0.04 Metabolism and respiration
Rv1096 Rv1096 3.05 0.64 1.38 × 10−05 0.02 Metabolism and respiration
fum Rv1098c 0.9 0.48 1.56 × 10−05 0.05 Metabolism and respiration
galE2 Rv0501 2.84 0.51 1.66 × 10−05 0.01 Metabolism and respiration
Rv1751 Rv1751 4.43 0.42 1.67 × 10−05 0.02 Metabolism and respiration
murF Rv2157c 2.38 0.54 2.78 × 10−05 0.03 Cell wall and cell processes
Rv3712 Rv3712 0.93 0.58 3 × 10−05 0.05 Metabolism and respiration
asnB Rv2201 3.62 0.48 3.14 × 10−05 0.02 Metabolism and respiration
pstB Rv0933 1.49 0.52 4.19 × 10−05 0.07 Cell wall and cell processes

1P-values derived from the Likelihood ratio test. 2Annotations extracted from the Mycobrowser42.
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clinical outcomes43 and an increased probability of progressing to
multidrug-resistance15. At the population level, our study quan-
tifies this risk and shows that isoniazid mono-resistant strains
have at least 15 times the hazard of developing multidrug-
resistance relative to wild type susceptible strains. Despite the use
of new therapeutics, multi-drug resistant tuberculosis continues
to require polypharmacy with increased toxicity and longer
treatment duration2. Globally, molecular rapid drug resistance
surveillance is focused primarily on rifampicin, with the widely
implemented GeneXpert MTB/RIF PCR based assay unable to
detect isoniazid mono-resistance. Although Drug Susceptibility
Testing (DST) is the current gold standard for identification of
drug resistance isolates and can detect isoniazid mono-resistance,
known diagnostic delays associated with it may limit its use in
reducing mono-resistance amplification44,45. Inadequate diag-
nosis of isoniazid mono-resistance will inevitably lead to inap-
propriate treatment and could fuel rapid evolution of multidrug-
resistance, thus posing a significant threat to tuberculosis control.

We also identified loci associated with higher risk of future
drug resistance acquisition. To remain polymorphic, these var-
iants must be under balancing selection and only be positively
selected once exposed to drug therapy. Rather than causing
resistance directly, these variants could promote resistance
acquisition by compensating for the fitness costs of resistance
in vivo35 or by increasing drug tolerance46.

At the gene level, most non-synonymous mutations associated
with pre-resistance genotypes were located in genes related to cell
wall processes and metabolism. Functional studies and pro-
spective clinical trials are warranted to confirm their association
with future drug resistance acquisition.

The variant with the lowest p-value corresponded to a 9 bp
deletion in the gene lppP present at a frequency of 1.7% in the
population and arose 12 times independently. Deletions in lipo-
proteins have been well characterized in the past47, and lppP has
been predicted to be required for growth in macrophages40.
Lipoproteins can act as antigenic proteins47, and thus deletions in
the genes encoding them may alter the interaction between the
bacilli and the macrophages, potentially conferring a selective
advantage in the presence of drug and increasing the probability
of acquiring drug resistance. This variant was also present in a
global dataset for L4 at a frequency of 9%, which could be
explained by the higher prevalence of drug resistance isolates in
most publicly available data sets.

Two additional synonymous variants were identified in the
genes esxL and esxO, which encode the ESAT-6-like proteins esxL
and esxO. These genes are part of a family of genes that encode
immunogenic secreted proteins that play a role in mycobacterial
growth, pathogenesis, and host-pathogen interactions41. More-
over, esxO has been associated with pathogenesis by inducing
autophagy in infected macrophages48. Synonymous homoplastic
variants in esx genes have been previously identified23, but their
phenotypic effects are still unclear.

This study benefited from an unbiased population level cov-
erage of both drug resistant and drug susceptible strains that
enabled us to reliably correct for the founder effect and control
for the influence of pre-existing population diversity. The large
sampling size and time frame—a consequence of 17-years of
continued research in the same location—allowed us to generate
time-calibrated phylogenies without imposing a global mutation
rate. This was a pre-requisite for the downstream analyses and
our GWAS survival analysis approach. We were also able to
replicate our sublineage and mono-resistance dependent hazards
of acquired resistance in the smaller Samara dataset. However, the
time scale and size of this publicly available data was insufficient
to allow us to confirm the effect of the lppP deletion in a second
independent dataset.

Although our phylogenetic analysis reveals trends of drug
resistance acquisition over evolutionary time, prospective cohort
studies are required to determine the effect of these mutations at
the individual patient and household level. Non-bacterial factors
are unlikely to influence our findings, since they would have
to have been disproportionately and consistently associated to
a specific lineage over long periods of time. Nevertheless, we
explored the influence of confounding variables on our dataset.
There was no difference observed in the proportion of patients
receiving previous antituberculous treatment between the two
lineages. This makes our findings unlikely to be influenced by
differential exposure to drugs among lineages. There was no
difference in sputum smear grade between lineages, suggesting
that our findings are not a consequence of increased pathogeni-
city of lineage 2 in comparison to lineage 4. Moreover, other
factors that may affect the rates of drug resistance acquisition
such as HIV status, sex, or imprisonment, did not show differ-
ences between lineages. Even though the age of patients with
lineage 4 infection was significantly higher than that of patients
with lineage 2, the difference was small. Additionally, patient
age was not associated to a higher incidence of drug resistance,
and therefore it is unlikely that age differences explain the higher
risk of acquiring antibiotic resistance of lineage 2. Differential
healthcare systems influence the acquisition and transmission of
drug resistance tuberculosis, and thus importation events to
Peru of resistant strains from specific lineages could have affected
the dynamics of drug resistance acquisition. We showed that
lineage 2 in Peru is characterized by two importations around
1900 CE, which is consistent with major immigration events of
laborers from China to Peru at the end of the 19th century to
work in the railroads, guano mines, and cotton and sugarcane
plantations49,50. Conversely, the majority of lineage 4 clades were
imported from Europe and Brazil between the 16th and 18th
centuries, compatible with European colonial expansion51.
Therefore, significant immigration to Peru occurred well before
the advent of antibiotics, which limits the influence of imported
drug resistant strains. Moreover, the majority of introductions
occurring in recent times were of drug susceptible clades.
Nevertheless, it is possible that some resistance events may have
arisen as a result of importation of resistant strains from countries
with different drug selection pressures.

In summary, this population wide 17 year-long epidemiological
study ofM. tuberculosis genetics provides the first description and
evaluation of pre-resistant polymorphisms in susceptible geno-
types that predispose to the acquisition of future drug resistance.
Prediction of future drug resistance in susceptible pathogens
together with targeted expanded therapy has the potential to
prevent drug resistance emergence in M. tuberculosis and other
pathogens. Prospective cohort studies of participants with and
without these polymorphisms should be undertaken to inform
clinical trials of personalized pathogen genomic therapy. This
ancestral state genome-wide survival analysis could also be
employed to predict and prevent the emergence of resistance or
indeed any important trait of interest in other organisms.

Methods
Ethics approval. Ethical approval for sample collection and processing was
obtained from the Institutional Review Board of Universidad Peruana Cayetano
Heredia and the Peruvian Ministry of Health for all individual studies from which
this data was derived38.

Study design and sample selection. Samples were selected from previous projects
taking place across the region of Lima. The first project consisted of a population
level study carried out between 2008 and 2010 as part of the population level
implementation of Microscopic Observation Drug Susceptibility (MODS)
testing52,53. A total of 2139 unselected patients of tuberculosis were collected
(Supplementary Data File 1). Of these patients, 284 were analyzed in previous
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studies (PRJEB5280)23, while 1855 were processed as part of this project
(PRJEB39837).

A second set of 213 MDR-TB samples was obtained from a 3-year long
household follow-up study conducted between 2010–201338, of which 185
randomly selected samples underwent whole-genome sequencing (PRJEB5280)23.

Additionally, 42 unpublished whole-genome sequences of samples collected
from 1999 to 2007 in different regions of Lima were added to the study
(PRJEB47846), as well as 575 samples that were collected between 2003 and 2013 as
part of the CRyPTIC Consortium (PRJEB32234)54, and 489 samples from the
TANDEM Consortium (PRJEB23245)55 taken between 2014 and 2016.

All samples without collection date, as well as reference clinical samples, were
excluded from the final list. Drug Susceptibility Testing (DST) was performed
either by MODS53 or by the proportions method on agar56.

To replicate our findings, all the analyses were repeated in a publicly available
independent dataset of 1027 isolates from Samara, Russia (PRJEB2138), as the
sampling was also representative of the population19. We also included a global
data set of 1573 publicly available lineage 4 samples relatively enriched for drug
resistance (Supplementary Data File 3).

Whole-genome sequence analysis. Quality analysis of the raw reads was per-
formed using FastQC57. A de-novo assembly of the short reads was done with
SPAdes genome assembler v3.14.058 across kmers of size 21, 33, 45, 55, 65, 75, 81,
101, 111, and 121. The resulting assembly contigs were mapped to the well
annotated H37Rv reference genome (Gene bank: AL123456) using minimap259

with the asm20 option. Single nucleotide polymorphisms (SNPs) and small
insertions and deletions (indels) were identified with BCFtools mpileup and
BCFtools call v1.960 using the multiallelic calling algorithm, keeping the infor-
mation about every single site in the genome in a VCF file. Lastly, indels were left-
aligned and normalized using BCFtools norm. A consensus sequence was created
from the VCF file. In order to determine the quality of the variants, the raw reads
were mapped against the resulting consensus sequence using the mem algorithm
implemented in BWA v0.7.1761, after which the alignments were sorted using
SAMtools v1.962 and filtered for possible PCR and optical duplicates using Picard
v2.19.063. Local realignment around indels was performed using the GATK v3.8-1-
0 ‘IndelRealigner’ module64. The mean coverage for each sample was calculated as
the number of mapped bases (excluding soft-clipped bases) divided by the genome
size. Samples with a mean coverage lower than 15x were excluded from subsequent
analysis. SNPs and indels were detected as described in the previous step.

Variants that did not meet the quality criteria were filtered using a combination
of BCFtools filter and custom scripts in Python v3.7.3 with the following cutoffs:
minimum Phred-scaled quality score (QUAL) of 20; minimum mapping quality
(MQ) of 20; minimum genotype quality (QG) of 20; minimum read position bias
(RPB), mapping quality bias (MQB), and strand bias (SP) of 0.001; minimum
depth (DP) of 10 and a maximum of 5 times the mean coverage; minimum of reads
supporting the alternate allele (AD) of 75% of the total depth in that position, with
no less than two reads in the forward (ADF) and the reverse (ADR) strands.
Additionally, SNPs within 2 bp of an indel and indels within 3 bp of another indel
were removed, as both situations can be indicative of mapping artifacts. Positions
that did not meet the quality criteria were annotated using the IUPAC ambiguity
codes65. Samples with more than 25 high quality heterozygous calls were removed
to avoid the inclusion of putative mixed infections. Variants that overlapped 100 bp
intervals around known hypervariable regions, such repetitive elements and
transposases66, were removed from the analysis as this may affect the reliability of
the alignment. Similarly, recombinant regions in genes coding for proline-
glutamate (PE) or proline-proline-glutamate (PPE)67, and SNPs implicated in drug
resistance33 were excluded in order to minimize homoplasies that could disrupt the
tree topology. The resulting sequences were concatenated to generate a multiple
sequence alignment. Sites with a proportion of ambiguous bases higher than 10%
were excluded from the analysis. Last, samples with a proportion of ambiguous
sites in the alignment higher than 5% were excluded.

The functional consequence of variants was assessed using the Variant Effect
predictor (VEP) v104.368

Phylogenetic analyses. All the phylogenetic analyses were performed based on the
alignment containing both lineage 4 and lineage 2 samples, as well as separately for
each lineage.

A maximum likelihood phylogeny was inferred using RAxML-NG69 with the
GTR model, 20 starting trees (10 random and 10 parsimony), 100 bootstrap
replicates, and a minimum branch length of 10−9. A Lineage 2 sample randomly
selected from our dataset was selected as an outgroup for the Lineage 4 phylogeny.
Likewise, a random Lineage 4 isolate was used as a root for the Lineage 2
phylogeny. The tree containing both lineage 4 and lineage 2 samples was rooted
using a lineage 1 isolate.

In order to construct a time-calibrated phylogeny, we tested whether there was a
detectable amount of evolutionary change between samples collected at different
times30,31. This was done in lineage 4 and lineage 2 separately in order to avoid
population structure confounding in the temporal signal27. Two different tests of
the temporal signal were applied: the root-to-tip regression method and the date-
randomization test28. For the former, BactDating29 was used to perform a linear

regression between the collection dates and their root-to-tip genetic distance in the
maximum likelihood tree. Additionally, we carried out a date-randomization test,
where evolutionary rates estimated by BactDating29 were compared between the
observed data set and 100 data sets obtained by permutation of sampling dates70.

BactDating29 was used to time-calibrate the tree using the mixed model for 107

iterations to achieve both convergence of the MCMC chains and an effective
sample size of at least 100.

The phylogenetic global context of the Peruvian isolates was investigated by
subsampling the phylogenies and repeating the analysis alongside publicly available
isolates representative of the global diversity of M. tuberculosis (Supplementary
Data File 2). To subsample the phylogenies, first a random sample was selected
from each phylogenetic cluster with a branch length lower than 1 SNPs per
genome. The phylogeny was then divided into clusters of samples 50 SNPs apart,
and a maximum of 20 samples for lineage 2 and 5 samples for lineage 4 were
randomly selected for each cluster, unless it consisted of only 1 sample, in which
case it was ignored. The phylogeny with the Peruvian subsamples and the global
representatives was inferred separately for lineage 2 and for lineage 4 as
described above.

The subsequent phylogenetic analysis was performed using the R package ape71.
Marginal reconstruction of the ancestral sequences was carried out by maximum
likelihood as implemented in Phangorn72, including gaps and ambiguity codes to
reflect prior probabilities of character states65.

Time-to-event analysis. Time-to-event analysis was performed on the tree using
the R package Survival73. The time was measured for all pairs of nodes as the
distance between the older and the younger node in the time-calibrated phylogeny.
An observation was defined as censored if both nodes were drug sensitive. On the
other hand, an event occurred if the older node was drug sensitive and the younger
node was drug resistant. Only the first acquisition of resistance was considered.
Observations taking place before 1940 were discarded. The Kaplan-Meier survival
curve and the Cox proportional hazard ratio were calculated. The Kaplan-Meier
curves for different groups were compared using the log-rank test, where the null
hypothesis is that there is no difference in survival between the different groups.
Differences in the hazard ratio were tested using the likelihood ratio test. The entire
pipeline was repeated for 100 phylogenetic bootstrap replicates.

Genome-wide association of predisposition to drug resistance. Missing base
calls at the tips were imputed by maximum likelihood using the re-rooting
method74 and the IUPAC ambiguous codes to reflect tip state prior probabilities. In
short, for each tip the phylogeny was re-rooted at that tip and the marginal
probabilities for the missing bases were calculated for that node using the R
package phytools75. Association analysis was performed at the gene and SNP level
using the variant sites alignment for the tips of the phylogenetic tree, as well as the
reconstructed sequences of the internal nodes. The phenotype was defined as
leading to resistance in the phylogenetic tree, and thus only drug susceptible nodes
that immediately preceded the first resistant node of each branch were considered.
For the gene level analysis, non-synonymous variants were aggregated, excluding
lineage specific SNPs. Loci with a frequency of non-synonymous variants in the
dataset lower than 1% were not considered in the analysis. At the SNP-level,
variants with a frequency in the population (tips of the tree) lower than 1% were
excluded. Furthermore, only those variants that were polymorphic at the node level
were used. Genome-wide association was performed using the Cox proportional
hazard model and the time between nodes. In order to correct for population
structure, a genetic distance matrix was calculated using SNPs with a frequency in
the population higher than 5%, and the eigenvectors were used as covariates in the
Cox regression model. The genomic inflation factor (λ) was calculated as the ratio
of the median of the empirically observed χ2 to the median of the expected χ2. The
p-values were corrected for multiple testing using a Bonferroni correction. Func-
tional annotation of the genomic variants was assessed using Mycobrowser42.
Alignments were visually inspected for a random selection of samples using the
Integrative genomics viewer (IGV)76 and the R software package Gviz77.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw sequencing data are available with accession numbers listed in the Methods
section. Samples sequenced as part of this study have been submitted to the European
Nucleotide Archive under accessions PRJEB39837 and PRJEB47846.

Publicly available datasets used in this study include PRJEB5280, PRJEB32234,
PRJEB23245, and PRJEB2138.

All other publicly available datasets are listed in Supplementary Data File 2 and
Supplementary Data File 3.

Code availability
All custom code used in this article can be accessed at https://github.com/arturotorreso/
mtb_pre-resistance.git.
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