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a b s t r a c t 

Objectives The first COVID-19 pandemic waves in many low-income countries appeared milder than ini- 

tially forecasted. We conducted a country-level ecological study to describe patterns in key SARS-CoV-2 

outcomes by country and region and explore associations with potential explanatory factors, including 

population age structure and prior exposure to endemic parasitic infections. 

Methods We collected publicly available data and compared them using standardisation techniques. 

We then explored the association between exposures and outcomes using random forest and linear re- 

gression. We adjusted for potential confounders and plausible effect modifications. 

Results While mean time-varying reproduction number was highest in the European and Americas 

regions, median age of death was lower in the Africa region, with a broadly similar case-fatality ratio. 

Population age was strongly associated with mean ( β= 0.01, 95% CI, 0.005, 0.011) and median age of 

cases ( β= -0.40, 95% CI, -0.53, -0.26) and deaths ( β= 0.40, 95% CI, 0.17, 0.62). 

Conclusions Population age seems an important country-level factor explaining both transmissibility 

and age distribution of observed cases and deaths. Endemic infections seem unlikely, from this analysis, 

to be key drivers of the variation in observed epidemic trends. Our study was limited by the availability 

of outcome data and its causally uncertain ecological design. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Since the end of 2019, the COVID-19 pandemic, caused by the 

ovel coronavirus SARS-CoV-2, has spread rapidly worldwide, re- 

ulting in considerable morbidity and mortality ( Max et al., 2020 ). 

evertheless, it has affected countries differently, with marked ge- 

graphical disparities in the observed burden of cases and deaths. 

hile the North American continent bears the highest burden 

f cases and fatalities to date, African countries seem relatively 

pared; by September 27, 2021 , they made up 2.6% of cases glob- 

lly and 3.1% of the death toll despite accounting for 14% of the 

lobal population ( WHO, 2020 ). Indeed, the first pandemic waves 

n many low-income countries (LICs) appeared milder than initially 
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orecasted ( Koum Besson et al., 2020 ; Makoni, 2020 ; Pearson et al.,

020 ; Truelove et al., 2020 ; Walker et al., 2020 ). 

Many hypotheses have been put forward to explain those dif- 

erences. At the health system and public health level, weaker 

ealth systems with inequities in access and limited testing capac- 

ty may have under-ascertained cases and deaths ( Watson et al., 

020 ). The forewarning from health systems that were quickly 

verwhelmed in China and Europe may have led to earlier intro- 

uction and increased stringency in SARS-CoV-2 control measures 

n some LICs, and thus partial suppression of community transmis- 

ion ( Massinga Loembé et al., 2020 ; Mbow et al., 2020 ). 

In terms of population structures, in LICs a younger population 

ge structure could have had implications for transmission as well 

s lowering the infection fatality ratio due to a smaller propor- 

ion of older individuals who are most vulnerable to severe dis- 

ase ( Davies et al., 2020 ; Ludvigsson, 2020 ; Nguimkeu and Tadad- 

eu, 2020 ). Furthermore, younger populations have a lower preva- 

ence of comorbidities that increase the risk of death from COVID- 
iety for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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Figure 1. Proposed causal framework of factors determining SARS-CoV-2 transmissibility and COVID-19 disease outcomes 

Pink boxes = outcome variables; blue boxes = exposures of interest; green boxes = covariates for which we obtained data; grey boxes = covariates and intermediate outcome 

variables for which we did not obtain data. Dotted lines represent hypotheses explored in this study. 
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9 ( Clark et al., 2020 ). In addition, population density and house- 

old size are typical drivers of person-to-person disease transmis- 

ion ( Campbell et al., 2014 ; Weiss and McMichael, 2004 ). 

It has also been postulated that greater lifetime exposure since 

hildhood to common infections in LIC populations may confer 

ome immune protection from SARS-CoV-2 through a more diverse 

nd competitive microbiome, more effective non-specific immune 

esponse and decreased likelihood of the cytokine storm seen in 

evere disease ( Kumar and Chander, 2020 ; Mbow et al., 2020 ). Par-

sites such as Plasmodium spp. and soil-transmitted helminths have 

mmunomodulatory effects ( Hays et al., 2020 ; Ssebambulidde et al., 

020 ). Access to improved water and sanitation may be distally as- 

ociated with exposure to parasites. 

There is little evidence for the relative influence of these hy- 

othesised factors on the observed heterogeneity in global epi- 

emic trends. In Figure 1 , we propose a causal framework for un- 

erstanding the relationship between these potential explanatory 

actors and the outcomes of transmissibility, the age distribution 

f cases and deaths, and case-fatality at the population level. 

We conducted a country-level ecological study to describe pat- 

erns in key SARS-CoV-2 outcomes by country and region and ex- 

lore associations of these outcomes with potential explanatory 

actors. 

ethods 

tudy population and period 

We considered data available from March to October 2020 from 

93 United Nations member states plus the State of Palestine, Holy 

ee and Hong Kong Special Administrative Region. Dependent ter- 

itories and other entities were excluded due to inconsistencies in 

eporting. 

ndependent variables 

We sought publicly available data on indicators representing 

he domains in the causal framework (e.g., the Human Develop- 

ent Index was used to represent the development level; domains 

or which we could not identify suitable indicators are coloured 
211 
n grey in Figure 1 ). Information on the indicators used and data 

ources are summarised in Table 1 and Supplementary File 1. 

utcome variables 

ransmissibility 

We sourced time-varying reproduction numbers by country, 

s estimated on a real-time basis ( Imperial College 2020 ). These 

stimates are informed by the dynamics of observed COVID-19 

eaths rather than cases, which are less likely to be detected and 

ore susceptible to fluctuations in ascertainment over time due to 

hanges in testing regimens. We averaged estimates over our anal- 

sis period (March–October), commencing from the day when 50 

umulative deaths were reported to ensure that averages were not 

verly influenced by the prior distribution before use to inform the 

ayesian framework for estimation (itself highly dependent on ob- 

ervations during the first days and weeks of observed transmis- 

ion). 

ge of observed cases and deaths 

We conducted a systematic search of national COVID-19 web- 

ites (e.g., Ministry of Health dashboards) or regional surveillance 

eports for overall and age-stratified COVID-19 case and death data. 

ge-specific data on cases were available from 61 countries and 

ge-specific data on deaths from 39 countries; 35 countries re- 

orted both values. For each country, we present a “standardised 

edian age” indicator interpretable as the median age of cases or 

eaths if the country’s observed age-specific cumulative incidence 

r death rates were applied to the world’s population age structure 

 World Population Prospects 2019; United Nations 2019 ). Further 

etail can be found in Supplementary File 1. 

ase-fatality ratio 

After omitting countries with < 50 total observed cases, we 

omputed a crude case-fatality ratio (CFR) for each country by di- 

iding observed deaths by cases. For countries with available age- 

pecific data, we computed: (i) an age-standardised CFR, derived as 

bove by applying countries’ age-specific crude CFRs to the world’s 

opulation structure; and (ii) an incidence-standardised CFR, de- 

ived by applying each country’s age-specific CFRs to the observed 
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Table 1 

Summary of included variables, indicators and sources of data. 

Variable measured Indicator Year 

Countries 

included Data source 

Outcome variables 

Transmissibility of SARS-Cov-2 Average reproduction number estimates over 

the study time period, from the day when 50 

cumulative deaths were reported 

2020 153 Imperial College COVID-19 LMIC Reports 

( Imperial College, 2020 ) 

Clinical profile of cases Standardised median age of cases 2020 61 NA ∗

Clinical profile of deaths Standardised median age of deaths 2020 39 NA ∗

Severity of COVID-19 epidemic Observed case fatality ratio (CFR): 

- Crude CFR 

- Age-standardised CFR 

- Incidence standardised CFR 

2020 

169 

31 

31 

NA ∗

Independent variables 

Prior exposure to infections: malaria The age-standardised mean predicted parasite 

prevalence rate for Plasmodium falciparum 

malaria for children 2-10 years old 

2017 176 The Malaria Atlas Project database 

( Weiss et al., 2019 ) 

Prior exposure to infections: malaria The age-standardised mean predicted all-age 

parasite prevalence rate for Plasmodium vivax 

malaria 

2017 163 The Malaria Atlas Project database 

( Battle et al., 2019 ) 

Prior exposure to infections: other 

parasites 

All-age point prevalence of infection with: 

- soil-transmitted helminths 

- schistosomiasis 

- lymphatic filariasis 

2017 186 Global Burden of Disease Study 

( Global Burden of Disease Collaborative 

Network, 2018 ) 

Country age structure Median age (in years) of the population 2020 185 (United Nations 2019 ; World Population 

Prospects 2019 ) 

Country level of development Human development index 2018 188 United Nations Development Programme 

database ( United Nations Development 

Programme, 2019 ) 

Population density Population density, as the number of persons 

per square kilometre 

2020 196 United Nations World Population 

Prospects ( World Population Prospects 

2019, 2019 ) 

Variable measured Indicator Year 

Countries 

included Data source 

Independent variables 

Household size The average number of usual residents 

(household members) per household 

- 149 United Nations Database on Household 

Size and Composition (United Nations 

2019) 

Access to WASH infrastructures The proportion of people using safely 

managed sanitation services, as a percentage 

of population 

2017 88 World Bank World Development Indicator 

database ( The World Bank, 2017 ) 

Stringency of COVID-19 control 

measures 

Average score for stringency index from 

01/01/2020 to 09/09/2020 

2020 169 Oxford COVID-19 Government Response 

Tracker ( Thomas et al., 2020 ) 

Performance of COVID-19 testing Average score for testing policy indicator from 

01/01/2020 to 09/09/2020 

2020 169 Oxford COVID-19 Government Response 

Tracker ( Thomas et al., 2020 ) 

Performance of COVID-19 testing Testing rate over the study time period 2020 120 NA ∗

Adherence to COVID-19 control 

measures (change in mobility) 

The percentage net change in mobility across 

four categories (1- Retail & Recreation, 2- 

Grocery & Pharmacy, 3- Transit stations, 4- 

Workplaces). Average calculated over the 

period from 15/02/2020 to 09/10/2020 

2020 130 Google Community Mobility Reports 

( Google 2021 ) 

Prevalence of comorbidities Age-standardised percentage of country 

populations at increased risk of severe 

COVID-19, defined as those with at least one 

underlying condition listed as “at increased 

risk” in guidelines from WHO and public 

health agencies in the United Kingdom and 

United States 

2020 183 Clark et al. ( Clark et al., 2020 ) 

∗ Data not from a single source. Description of how these data were obtained is found in the Supplementary File 1.Abbreviations: SARS-CoV-2 = severe acute respiratory 

syndrome coronavirus 2; WASH = water, sanitation and hygiene; NA = not applicable; UN = United Nations 
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ge-specific caseload in South Korea, selected as a reference due to 

his country’s reportedly high coverage of case detection (i.e., rela- 

ively low selection bias affecting the profile of observed cases) and 

tandard of care ( Report on the epidemiological features of coro- 

avirus disease 2019 covid-19 outbreak in the republic of Korea 

rom January 19 to March 2, 2020, 2020 ). The chosen standardi- 

ation method aims to (i) account for age differences in infection- 

atality ratios while (ii) reducing bias due to incomplete testing; 

either, however, accounts for the effect of age structure on inci- 

ence or entirely removes confounding. 
t

212 
tatistical analyses 

We present two approaches for exploring the associations of 

ypothesised exposures with each of the above outcomes, while 

djusting for potential confounders and accounting for plausible 

ffect modifications chosen a priori for each outcome. For mean 

ime-varying reproduction number (mean Rt) and crude CFR, we 

arried out a global analysis and an Africa-specific analysis (data 

ere too sparse for other outcomes to perform region-specific 

nalyses). All analyses were conducted on R software ( R Founda- 

ion for Statistical Computing 2020 ). 
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andom forest regression 

Random forest (RF) regression is a machine-learning approach 

hat may be used to efficiently explore the importance of predic- 

or variables, and possible effect modifications, for a given out- 

ome. RF imposes minimal statistical assumptions on data and 

opes well with collinearity ( Breiman, 2001 ). It consists of gen- 

rating a large number of regression trees (i.e., partitions of the 

ndependent variables, in varying order, with each variable gen- 

rating a node or ‘split’) and averaging over these based on their 

ccuracy in predicting the outcomes. We implemented two RF ap- 

roaches for each outcome, using the randomForest R package, 

ith 10 0 0 trees grown: (i) using non-missing independent vari- 

ble data only; (ii) imputing missing independent variable data 

hrough the rfImpute proximity method ( Breiman, 2003 ) (only 

ariables with at least 60% completeness were subjected to im- 

utation; remaining variables were excluded altogether). As the 

wo approaches yielded similar results, for brevity, we only present 

he latter. We then computed various metrics of variable impor- 

ance, among which we present, and consider most informative: 

he mean minimal depth (MMD: a low value indicates that the 

ariable is generally close to the root of the grown trees, i.e., a 

arge proportion of the data are meaningfully partitioned on the 

asis of this variable); the mean squared error (MSE) increase (i.e., 

y how much model error increases if the variable is omitted); and 

he number of trees (out of 10 0 0) in which the variable is the first

ode based on which the data are split (the higher, the more fun- 

amental the variable may be). 

inear regression 

As each outcome was continuous and not structured hier- 

rchically, we applied ordinary least-squares fixed-effects lin- 

ar models (LM) to explore associations guided by our a priori 

ausal framework. We imputed missing data for the independent 

ariables using the mice package ( van Buuren and Groothuis- 

udshoorn, 2011 ); as with the RF models, only variables with at 

east 60% completeness were subjected to imputation; variables 

ere otherwise excluded. For each outcome, we first observed 

ollinearity among independent variables through scatterplots and 

earson correlation coefficients (see Supplementary File 2). We 

creened potential confounding variables through univariate anal- 

sis (retaining variables with a P- value < 0.20). We fitted models 

hrough stepwise backward variable selection, retaining variables 

hat improved goodness of fit (adjusted and F-statistic P -value test- 

ng whether the model fits data better than the null model) or 

nfluenced the effect of potential exposures on the outcomes. We 

ried alternative collinear variables and tested plausible two-way 

nteractions. We verified model assumptions, including normal- 

ty and the homoscedasticity of residuals. For each outcome, we 

resent two models: one with all exposures retained (Supplemen- 

ary File 3); and a “reduced” model with only significant ( P < 0.05) 

nd/or model-influential exposures retained ( Table 2 ). 

esults 

bserved country patterns 

Figure 2 summarises trends in each of the outcomes by World 

ealth Organisation (WHO) region, as available. Mean reproduc- 

ion number was highest in the European regional office (EURO) 

nd Pan American health organisation (PAHO) regions (range 0.92 

o 1.77 and 0.73 to 1.73, respectively) and lowest in the African 

egional office (AFRO) region (0.96 to 1.45). Even when standard- 

sed for differences in age structure, the median age of observed 

ases was higher in the AFRO and Eastern Mediterranean regional 

ffice (EMRO) regions. In contrast, ascertained deaths occurred at 
213 
ounger ages in those regions compared with EURO and West- 

rn Pacific regional office (WPRO) regions. While the crude CFR 

id not vary widely across regions, higher CFR was found in the 

MRO, AFRO, and PAHO regions when CFR was standardised for 

ge and incidence. Figure 3 compares the age-standardised median 

ge of cases and deaths for each country. Countries in the EURO 

nd PAHO regions are clustered in the upper left quadrant (i.e., me- 

ian age of cases < 40, median age of deaths > 70). Most countries 

n the AFRO region are clustered in the lower right quadrants (i.e., 

edian age of cases > 40, median age of death < 70). Supplemen- 

ary Files 1 and 2 provide data completeness for each outcome, 

esults by country and graphical explorations of the correlation be- 

ween independent variables and outcomes. 

tatistical associations 

Table 2 summarises key results from the two multivariate re- 

ression models (RF and the LM reduced version) of imputed 

redictors for mean , age-standardised median age of observed 

ases and deaths, and age-standardised CFR. Models for crude and 

ncidence-standardised CFR were excluded as their fit was poor. 

upplementary File 3 presents detailed results (all exposures fit- 

ed) for each outcome globally and transmissibility and crude CFR 

or the AFRO region. 

In the RF model for mean, mean household size, prevalence 

f filariasis and median population age were the three most im- 

ortant variables when considering the different metrics of impor- 

ance. Mean mobility change, population density and prevalence of 

lasmodium falciparum were also important. Testing rate and test- 

ng policy were effect modifiers for the association between me- 

ian population age and mean. In the LM model, filariasis preva- 

ence, median population age, mean stringency of COVID-19 con- 

rol measures and population density showed significant associa- 

ions ( P < 0.05). The association with P. falciparum prevalence was 

on-significant in the reduced model. When considering only the 

FRO region, population age, population density and mean strin- 

ency did not remain important, but the importance of prevalence 

f filariasis increased in the RF model and remained significantly 

ssociated in the reduced LM model ( P < 0.001). 

In the RF models for median age of observed cases and deaths, 

edian population age was the most important variable along 

ith proportion at increased COVID-19 risk, testing rate and preva- 

ence of helminths. Mobility change was also important for median 

ge of observed cases, whereas stringency index was important for 

edian age of observed deaths. Mean mobility change, mean strin- 

ency index and proportion at increased risk were effect modifiers. 

n the LM model, median population age was positively associated 

ith median age of cases ( P < 0.0 0 01) and negatively associated 

ith median age of deaths ( P < 0.01). The prevalence of helminths 

as not significantly associated with either outcome. 

Lastly, RF suggested that median population age was also an 

mportant predictor of age-standardised CFR, but this was not 

orne out in the LM. Both models had a poor fit. 

iscussion 

We aimed to identify factors at national level which may ex- 

lain the global heterogeneity of SARS-CoV-2 epidemics. We found 

hat median population age may explain variability in transmis- 

ibility and the age of observed cases and deaths, with a signif- 

cant association remaining even after age-standardisation. Poten- 

ial associations between endemic infections and COVID-19 appear 

nlikely, based on this analysis, to be key drivers in the variation 

n observed COVID-19 trends. However, the association with filar- 

asis prevalence at global and AFRO levels is intriguing. The ob- 

erved age distribution amongst reported cases and deaths (after 
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Table 2 

Summary of key associations between independent variables and the outcomes. Exposures of interest are in italics. 

Most important variables 

Random forest regression Multivariate linear regression (reduced model) 

MMD MSE increase Times a root Coef. 95% CI p-value 

Outcome: mean time-varying reproductive number (Rt) 

Median population age (years) 2.824 0.0056 62 0.0080 0.0049 to 0.0112 < 0.0001 

Prevalence of lymphatic filariasis (%) 2.564 0.0046 131 -1.9168 -3.1422 to -0.6915 0.0024 

Prevalence of P. falciparum (%) 3.122 0.0029 66 - - - 

Mean household size (persons) 2.202 0.0093 118 - - - 

Mean mobility change (%) 2.358 0.0025 32 - - - 

Population density (persons per square kilometre) 2.996 0.0015 2 -0.000036 -0.000060 to 

-0.000012 

0.0041 

Mean stringency index (score) 3.472 0.0013 0 0.0023 0.0003 to 0.0043 0.0228 

Main effect modifications MMD Occurrences Coef. % 95% CI p-value 

Median population age x testing policy 2.195 323 - - - 

Median population age x testing rate 3.130 226 - - - 

(Adjusted) a R-squared (F-test; p-value) 0.38 0.31 ( F = 16.88; p < 0.0001) 

Outcome: age-standardised median age of observed cases 

Median population age (years) 2.144 6.2533 106 -0.3961 -0.5276 to -0.2645 < 0.0001 

Prevalence of STH (%) 3.179 2.2431 80 - - - 

Mean mobility change (%) 2.537 1.4986 28 - - - 

-29 to -20 - - - 1.6983 -0.9826 to 4.3793 0.2097 

-19 to -10 - - - 0.7165 -1.9888 to 3.4218 0.5978 

-10 or less - - - 4.0711 0.8766 to 7.2657 0.0134 

Mean testing rate per population (per 1,000) 2.434 2.0958 76 - - - 

Population at increased risk (%) 2.169 4.0191 85 - - - 

Main effect modifications MMD Occurrences Coef. % 95% CI p-value 

Median population age x mean mobility change 2.210 206 - - - 

Median population age x mean stringency index 1.980 201 - - - 

Median population age x proportion at increased 

risk 

1.376 251 - - - 

(Adjusted) a R-squared (F-test; p-value) 0.25 0.44 ( F = 12.58; p < 0.0001) 

Outcome: age-standardised median age of observed deaths 

Median population age (years) 1.768 9.8945 119 0.3974 0.1702 to 0.6245 0.0011 

Prevalence of STH (%) 3.208 5.5241 87 - - - 

Mean stringency index (score) 1.848 8.9399 92 -0.2044 -0.3579 to -0.0509 0.0105 

Mean testing rate per population (per 1,000) 1.946 6.0048 71 - - - 

Population at increased risk (%) 1.727 6.5484 68 -0.4517 -0.8482 to -0.0553 0.0267 

Main effect modifications MMD Occurrences Coef. % 95% CI P-value 

Median population age x mean mobility change 2.005 105 - - - 

Median population age x mean stringency index 1.496 171 - - - 

Median population age x proportion at increased 

risk 

1.923 162 - - - 

(Adjusted) a R-squared (F-test; p-value) 0.63 0.65 ( F = 24.53; p < 0.0001) 

Outcome: age-standardised CFR 

Median population age (years) 1.851 0,0000 105 - - - 

Population at increased risk (%) 2.403 0.0000 68 0.0814 0.0159 to 0.1470 0.0167 

Main effect modifications MMD Occurrences Coef. % 95% CI P-value 

Median population age x mean stringency index 0.930 128 - - - 

Median population age x proportion at increased 

risk 

- - -0.0019 -0.0041 to 0.0002 0.0787 

(Adjusted) a R-squared (F-test; p-value) -0.21 0.19 ( F = 4.63 p < 0.05) 

a for LM only.Abbreviations: CFR = case fatality ratio; Coef. = coefficient; MMD = mean minimal depth; P. falciparum = Plasmodium falciparum; STH = soil-transmitted 

helminths; yo = years old 
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ge-standardisation) suggests key differences in surveillance and 

esting capacity between countries and regions, affecting the rep- 

esentativeness of reported cases and deaths. 

opulation age structure 

While we emphasise caution over causal inference due to hid- 

en confounding and incomplete data, we find that population 

ge structure presents a consistent association suggesting that 

ts full impact on country-specific epidemics warrants further re- 

earch. Similar to what has been observed with severe acute res- 

iratory syndrome (SARS) and Middle East Respiratory Syndrome 

oronaviruses ( Zimmermann and Curtis, 2020 ), most studies of 

OVID-19 suggest that children are less susceptible to infection 

nd less infectious ( Madewell et al., 2020 ; Maltezou et al., 2021 ;

iner et al., 2020 ). Our findings show that this may also play out 

t the population level such that countries with a younger pop- 

lation age structure have a smaller susceptible population, less 
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ransmission and milder epidemics, reflecting observed epidemic 

rends in Sub-Saharan Africa. However, epidemiological studies on 

he role of children have often relied on passive case detection 

nd thus are likely to miss the majority of pauci- or asymptomatic 

ases in these age groups ( Flasche and Edmunds, 2020 ). Evidence 

egarding transmission from asymptomatic individuals is contra- 

ictory. Some studies suggest that asymptomatic individuals ac- 

ount for a significant share of all transmission ( Johansson et al., 

021 ; Ravindra et al., 2020 ), whereas others found that the sec- 

ndary household attack rate from asymptomatic index cases was 

ess than 1% and that COVID-19 spread is mainly driven by symp- 

omatic individuals ( Cao et al., 2020 ; Madewell et al., 2020 ). In ad-

ition, outbreaks among children and adolescents have been im- 

ortant in introducing transmission into households in the United 

ingdom ( Children’s Task and Finish Group, 2020 ). Although re- 

uted by some ( ECDC, 2020 ; Ludvigsson, 2020 ), the role of sec- 

ndary school-aged children (age 11–18 years) is considered an im- 

ortant driver of transmission ( Flasche and Edmunds, 2020 ). Het- 
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Figure 2. Analysis outcomes, by World Health Organization region. All boxplots indicate the median and inter-quartile range (boxes), 95% percentile intervals (whiskers) and 

outliers (dots). CFR = case-fatality ratio. 

AFRO = African regional office; EMRO = Eastern Mediterranean regional office; EURO = European regional office; PAHO = Pan American health organisation; SEARO = South-East 

Asia regional office; WPRO = Western Pacific regional office 
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rogeneity in social contact patterns across age and locations may 

lso influence the role population age structure plays in the trans- 

ission of SARS-CoV-2 ( Mossong et al., 2008 ; Prem et al., 2017 ). In

ur AFRO-specific analysis, population age structure did not remain 

redictive of transmission, and testing variables were less impor- 

ant, likely reflecting increased homogeneity in age structure and 

ower testing capacity across African countries, reducing our abil- 

ty to detect significant associations. 
f
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Older population age structure was associated with a lower me- 

ian age of cases, after standardising for age and adjusting for con- 

ounding, contradicting what is known about age-dependent risk 

f symptomatic COVID-19. Control measures or behaviour change 

trategies targeting older people in countries with younger popu- 

ations may explain this observation. Neither stringency index nor 

hange in mobility are disaggregated by age. Alternatively, lower- 

ncome countries might have prioritised older and at-risk people 

or testing, or reserved testing for travellers, due to lower testing 
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Figure 3. Scatter plot diagram of the age-standardised median age of deaths and cases (in years) for 35 countries for which both could be computed. 
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apacity. Similar patterns were observed in higher-income coun- 

ries earlier in the pandemic when testing was not widely used 

nd focussed on diagnosing severe infections and infections in key 

orkers to assist with quarantine effort s ( United Kingdom Depart- 

ent of Health and Social Care 2021 ). Testing rate and policy ap- 

ear to modify the effect of age, supporting this explanation. How- 

ver, age structure retained its importance after including these ef- 

ect modifications. 

Conversely, countries with older populations had a higher me- 

ian age of observed deaths from COVID-19, even after age- 

tandardisation. As these same countries have younger cases over- 

ll, these findings may reflect better clinical care in countries with 

lder populations so that younger people are more likely to sur- 

ive severe disease. Moreover, outbreaks in long-term care settings 

ave accounted for a large proportion of deaths in high-income 

ountries and disproportionately affected older people ( Comas- 

errera et al., 2021 ). Notably, increasing prevalence of comorbidi- 

ies was associated with younger age-standardised age of death, 

hich may reflect a comparatively higher prevalence of diabetes, 

ardiovascular disease and other chronic conditions occurring at a 

ounger age due to life-course risk factors. 

rior exposure to endemic infections 

For transmissibility, prevalence of filariasis ranked highly in the 

F model and showed a strong negative association in the LM 

odel. Country prevalence of filariasis may actually be a proxy 

easure for an unknown factor. An alternative, albeit tenuous, ex- 

lanation relates to the fact that individuals with prior microfilar- 

al infection appear to have a lower proinflammatory response in- 

uced by Th1-type cytokines ( Sahu et al., 2008 ). In SARS-CoV-2 in- 

ections, the immunological response involving T-cells seems to be 

kewed towards these Th1 cells, especially in patients with severe 

isease ( Poland et al., 2020 ). Therefore, prior exposure to filariasis 

ay reduce the probability of individuals infected by SARS-CoV-2 

ecoming symptomatic, which may lower their infectiousness and 

hus population-level transmissibility. 
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Prevalence of P. falciparum was also a variable of moderate im- 

ortance in predicting transmissibility in the RF model. However, 

he association was not significant in the reduced LM model. Al- 

hough results from the RF model do not indicate a direction of as- 

ociation, one hypothesis that emerged from the literature was that 

xposure to malaria triggers the production of poly-specific anti- 

odies capable of interacting with multiple antigens, which may 

onfer some protection against SARS-CoV-2 infection ( Panda et al., 

020 ). 

It is plausible that comparison at national level is insuffi- 

iently granular to detect any potential effect of endemic infec- 

ions. Within-country variations in non-specific immunity are not 

eflected in our analysis, and sub-national data were not available 

or most countries. Finally, we emphasize that these ecological as- 

ociations between filariasis and P. falciparum are useful for gen- 

rating hypotheses for future research but by themselves do not 

rovide a basis for causal inference. 

ase-fatality 

Our descriptive analysis does not indicate a relatively lower 

FR in the AFRO region, contradicting any narrative that the virus 

s less lethal in this region. The low number of country obser- 

ations for the age- and incidence-standardised CFR models is a 

imitation, and findings related to CFR are likely subject to con- 

ounding by poor case ascertainment. Generally, the CFR models 

t poorly. The impact of a large number of undiagnosed cases on 

he CFR, and the limitations of its use in an ongoing epidemic, 

re well-known ( Ritchie and Roser, 2021 ). CFR is a dynamic value 

hat changes according to disease incidence (i.e., high incidence 

ould lead to more severe cases, a larger hospital burden, and re- 

uced capacity for life-saving care). In addition, studies suggest 

hat the provision of early ambulatory treatment of COVID-19 can 

ubstantially reduce hospitalization and death, and hence might 

e an important determinant of survival ( McCullough et al., 2020 ; 

rocter et al. 2021 ). We had no country-level information on pre- 

ospital and hospital treatments, which could have affected case 

atality statistics. While it is logical that population age is an im- 
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ortant determining factor, we cannot conclude this on the basis 

f our results. 

imitations 

An important limitation of this study is the incomplete ascer- 

ainment of cases and deaths due to surveillance quality, test- 

ng capacity, and cause-of-death ascertainment, which is likely to 

e highly variable among countries. We could not adjust for all 

onfounders. To ensure coherence with the WHO’s compilation of 

lobal COVID-19 data, we relied on publicly-available COVID-19 

urveillance data available on national websites without favouring 

ther sources. Data quality is a critical limitation that comprises in- 

onsistent testing information, inconsistent reporting of cases and 

eaths, and missing data over time, making interpretation of data 

uality difficult without substantial investigation in data collection 

ractices and biases for each country. In addition, due to COVID-19 

ases and death statistics being a crucial input for evaluating gov- 

rnmental pandemic responses, this information is politically sen- 

itive and may thus lead to political influences over how COVID-19 

eporting occurs. 

We attempted to control for confounding at the aggregate level 

ith respect to testing. We controlled for testing performance by 

djusting for the population testing rate and testing policy but ac- 

nowledge that these measures are themselves subject to bias. Low 

evels of testing in low-income countries persist and may mask 

he true epidemic scale and lead to under-ascertainment of deaths 

 Watson et al., 2020 , n.d.). Furthermore, available testing data may 

verrepresent older and sicker patients. Testing data disaggregated 

y age, sex, socioeconomic status and geographic location were 

ot widely available, so it is not possible to estimate the extent 

o which case ascertainment reflects bias. We note that countries 

ith lower human development index (HDI) and economic indi- 

ators generally have a higher prevalence of endemic infections. 

ountries within WHO regions may also be heterogeneous in terms 

f health indicators ( WHO, 2021 ) and the wider public health and 

ocio-economic context. 

Our study is based on a causal framework describing an evolv- 

ng and incompletely understood pandemic and reflects the scien- 

ific understanding at this time. Our conceptual model may not 

onsider all factors that influence SARS-CoV-2 and residual con- 

ounding due to these unknown factors may exist. 

In general, ecological studies generate hypotheses but do not 

rovide a basis for causal inference. For example, stringency of 

ontrol measures appears to be associated with a higher mean; 

owever, this may reflect reverse causality whereby countries with 

igh observed transmission would have maintained strict measures 

or longer. 

We averaged values for those variables that change over time, 

hich may obscure the temporal relationships between them and 

eans we cannot draw conclusions about variations in epidemic 

rends over time. A longitudinal study based on the same variables 

ould be a useful next step. 

Lastly, for many independent variables, our data are de- 

ived from modelled estimates (e.g., prevalence of soil-transmitted 

elminths) based on limited national-level data and therefore may 

ot reflect the true measure. Unsystematic error in explanatory 

ata would have biased coefficients towards the null and thus 

asked potential associations. 

onclusions and further work 

Population age structure appears to be an important factor as- 

ociated with the transmissibility of SARS-CoV-2 and age distribu- 

ion of COVID-19 cases and deaths at the national level, even af- 

er such outcomes are age-standardised. Our findings do not con- 
217 
lusively support an effect of exposure to endemic parasitic in- 

ections on either transmissibility or age distribution of cases and 

eaths. Research at subnational or individual country level should 

e conducted to investigate these hypotheses further. Where pos- 

ible, analysis considering the sociodemographic characteristics of 

hose tested will be useful in understanding the general role of 

ifelong exposures to infection in the observed patterns of dis- 

ase. Further, studying social contact patterns in a broader range 

f countries and the role of urbanization could provide useful in- 

ights. This work may be important not only for SARS-CoV-2 but 

ould also inform preparedness and response to future pandemic 

hreats. 
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