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Quantifying previous SARS-CoV-2 infection
through mixture modelling of antibody levels
C. Bottomley 1,2✉, M. Otiende2,3, S. Uyoga 3, K. Gallagher2,3, E. W. Kagucia 3, A. O. Etyang3, D. Mugo3,

J. Gitonga3, H. Karanja3, J. Nyagwange3, I. M. O. Adetifa 2,3, A. Agweyu3,4, D. J. Nokes 3,5,

G. M. Warimwe3,4 & J. A. G. Scott 2,3,4

As countries decide on vaccination strategies and how to ease movement restrictions,

estimating the proportion of the population previously infected with SARS-CoV-2 is impor-

tant for predicting the future burden of COVID-19. This proportion is usually estimated from

serosurvey data in two steps: first the proportion above a threshold antibody level is cal-

culated, then the crude estimate is adjusted using external estimates of sensitivity and

specificity. A drawback of this approach is that the PCR-confirmed cases used to estimate the

sensitivity of the threshold may not be representative of cases in the wider population—e.g.,

they may be more recently infected and more severely symptomatic. Mixture modelling

offers an alternative approach that does not require external data from PCR-confirmed cases.

Here we illustrate the bias in the standard threshold-based approach by comparing both

approaches using data from several Kenyan serosurveys. We show that the mixture model

analysis produces estimates of previous infection that are often substantially higher than the

standard threshold analysis.
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Establishing the amount of previous infection with SARS-
CoV-2 is key to predicting the future impact of the virus.
The evidence to date suggests that reinfection is uncommon,

at least in the short term, and associated with mild disease1,2.
Therefore, knowing how many people have previously been
infected can help to establish to what extent a population is
protected by natural infection.

The proportion previously infected is usually estimated from
serological surveys (i.e. data on antibody levels). The conventional
analysis of these data involves estimating the proportion above an
arbitrary threshold and adjusting for the sensitivity and specificity
at that threshold3,4. However, sensitivity is usually estimated
using samples from PCR-positive cases who are symptomatic and
have been recently infected. Since these samples typically have
higher antibody levels than samples from the general population
of previously infected individuals, including those with asymp-
tomatic infection, this may lead to the overestimation of sensi-
tivity and underestimation of the proportion previously infected5.
Bias of this kind, that is bias that arises because sensitivity (or
specificity) is estimated in a non-representative sample, is often
referred to as spectrum bias. Mixture models offer an alternative
approach to the analysis of serological data that does not involve
specifying a threshold and is therefore not vulnerable to spectrum
bias6,7.

In this paper, we use data on antibody concentrations—optical
density (OD) ratios measured by ELISA—from several Kenyan
SARS-CoV-2 serosurveys to compare the standard threshold-
based analysis with a mixture modelling approach.

In the mixture model, we assume the observed distribution of
antibody levels is a mixture of two unobserved distributions—the
distribution in individuals who have experienced previous
infection and the distribution in those who have not. The model
is therefore characterised by the two component distributions and
the proportion in each component. For the uninfected compo-
nent we specify that log antibody concentrations follow a normal
distribution, and for the infected component we specify they
follow a skew normal distribution7. To fit the model, we fix the
variance of the uninfected component at a value estimated from
pre-COVID-19 samples, and estimate the remaining parameters
using a Markov chain Monte Carlo algorithm. We show that this
mixture modelling approach generally produces higher estimates
of the proportion previously infected than the standard threshold
analysis.

Results
We found that the positive (previously infected) and negative
(previously uninfected) distributions estimated from the mixture
model did not segregate as clearly as expected based on the dis-
tributions observed in pre-COVID-19 and PCR-positive samples
(Figs. 1 and 2, Supplementary Table 1). In most surveys, this was
because the positive distribution was shifted to the left relative to
the distribution in PCR-positive samples, i.e. the mean was lower
than in the PCR-positive samples (mean log2 OD ratios = 3.07).
In contrast, the mean of the negative distribution was usually
similar to the mean observed in the pre-COVID-19 samples
(mean log2 OD ratios=−0.17). However, there was some var-
iation by region, and in the surveys done in truck drivers the
means were higher, while in the surveys done in pregnant women
they were lower. In most surveys, the skew parameter of the
positive distribution was close to zero, and the scale parameter,
which determines the spread of the positive distribution, was
similar to the standard deviation in PCR-confirmed cases (SD
log2 OD ratios =1.32).

Because the mixture model predicted lower antibody levels in
previously infected individuals than was observed in the

PCR-positive samples, the sensitivity of the threshold (i.e. the
proportion of OD ratios >2 in the positive component) was
generally lower than assumed in the standard threshold-based
analysis; consequently the mixture model analysis produced
higher estimates of the proportion previously infected than the
threshold analysis (Fig. 3, Supplementary Fig. 1 and Supple-
mentary Table 2). Across all surveys the mean sensitivity was 65%
(cf. 93% sensitivity measured in the validation sample and
assumed in the threshold analysis), and the estimated proportion
previously infected was on average 1.44-fold higher than in the
threshold analysis.

In general, the 95% credible intervals associated with the esti-
mated proportions were wider in the mixture model analysis,
with the largest differences occurring when there was strong
overlap between the component distributions. For example, the
three surveys of truck drivers (in Busia, Magarini and Malaba)
produced the widest confidence intervals; they were also the
surveys with the greatest overlap between the distributions.

To assess the robustness of our results, we fitted an alternative
model where log antibody levels follow a two-component mixture
distribution in previously infected individuals and a normal dis-
tribution in previously uninfected individuals, as in the original
model. The two positive components do not have a clear biolo-
gical interpretation, nevertheless we might imagine that recent/
symptomatic infections predominate in the high-antibody-level
component and older/asymptomatic infections predominate in
the low-antibody-level component. The predicted distributions
and estimates of the proportion positive from this alternative
model were similar to those from the original skew normal model
suggesting that the results are not sensitive to the distribution
assumed for the positive component (Supplementary Fig. 2,
Supplementary Fig. 3).

We further tested the mixture model in three simulated data
scenarios (Supplementary Table 3). In scenario 1, the test data
were generated by combining the PCR-positive and pre-COVID-
19 samples. In scenarios 2 and 3 either the positive (scenario 2) or
negative component (scenario 3) was simulated from a mixture of
two normal distributions and the other component was simulated
from a single normal distribution.

In keeping with the results of the previous sensitivity analysis,
the mixture model performed well in scenarios 1 and 2: in both
cases the estimated proportion positive was close to the expected
value (scenario 1: 15% vs 14%; scenario 2: 19% vs 20%). By
contrast, in scenario 3— where a mixture was used for the
negative component—the mixture model estimate was severely
biased (estimated= 36%, expected = 20%). This bias arises
because the variance for the negative component is fixed to be
equal to the variance estimated from pre-COVID-19 samples
(this is one of the constraints used to fit the model). Conse-
quently, variation that should be attributed to the negative
component is instead attributed to the positive component
thereby overestimating the proportion positive.

The findings from scenario 3 suggest that combining data
across different populations may lead to the overestimation of
previous infection. To test this hypothesis, we conducted a
Kenya-wide analysis by combing the blood donor data and fitting
the mixture model to these combined data. Our expectation was
that the proportion previously infected would be overestimated in
this analysis because of the variation in background antibody
levels observed in the region-specific analyses (Supplementary
Table 1). Specifically, we hypothesised that the estimate from the
analysis of the combined data would be greater than average of
the region-specific estimates, after weighting by the number of
samples collected in each region. Consistent with this prediction,
the estimate from the combined analysis was 44.3% whereas the
average of region-specific analyses was only 18.9%. In fact, the
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estimate from the combined analysis was greater than any of the
region-specific estimates.

Discussion
The mixture model analysis suggests that antibody levels are
higher in samples from recent PCR-confirmed cases than in
samples from previously infected serosurvey participants. Because
of this, threshold-based estimates—which rely on having an
accurate sensitivity estimate—underestimate previous infection.

There are two potential explanations for the higher antibody
levels in recent PCR-confirmed cases. First, PCR-confirmed cases
are more likely to be symptomatic, and symptoms such as cough,
fever, and severe disease (hospitalisation) are positively associated
with higher antibody levels8–12. Second, PCR testing is usually
done soon after infection when antibody levels are high. In the
PCR-positive samples used in our study, for example, the median
time between symptom onset and blood sample collection was
21 days, which may have been ideal to capture the peak antibody
response. By contrast, many survey participants will have been
infected several months earlier and their antibody levels may have
waned in the meantime. Antibody waning has been reported in a
number of studies8–11,13,14, and those that have specifically
accounted for waning by assuming a constant rate of serorever-
sion—rather than by accounting for spectrum bias more generally
as we have done—have predicted a significant impact on ser-
oprevalence estimates10,15,16. In general, waning is greatest for
anti-nucleocapsid antibodies, but it can also be significant for
anti-spike protein antibodies. For example, in one study involving
milder cases of infection the half-life of anti-spike antibodies was
estimated to be just 73 days17.

The mixture model results suggest variability in the back-
ground levels of anti-spike IgG between different populations. In
addition to variation by region, we observed higher IgG levels in
truck drivers and lower levels in pregnant women. This variation
will bias the standard threshold analysis. For example, in a
population with low background IgG levels, as observed in
pregnant women, the specificity estimate will be too low, and the
sensitivity estimate too high. The variation will also bias mixture
model analyses if data are combined across different populations,
as exemplified by the Kenya-wide analysis of blood donor data.

The reasons for the variation in baseline IgG levels are
unclear. It could simply reflect temporal variation in the
laboratory procedures, though the negative control should guard
against this bias. Alternatively, it could be related to differences
between populations in exposure to infection and possibly also
infective dose. Several studies of pre-COVID-19 antibody levels
have reported variation between populations, with antibody
levels generally being higher in African populations than non-
African populations18,19. Furthermore, anti-SARS-CoV-2 anti-
bodies are known to cross-react with antibodies against other
coronaviruses20, and possibly also antibodies against dengue21

and malaria22, though the latter finding was not confirmed in a
more recent study23. For pregnant women, it is possible that low
antibody levels are a feature of immune environment in
pregnancy24.

The major limitation of the mixture modelling approach is that
it is sensitive to the variance assumed for the uninfected popu-
lation. Ideally the variance estimate should come from the
population being surveyed, but in practice it will often be
necessary to use an estimate from a different population. For
example, we used pre-COVID-19 samples from blood donors in
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Fig. 1 Distribution of anti-spike IgG antibodies in PCR-positive samples and pre-COVID-19 samples. The dotted line indicates the threshold (OD ratio >
2) used to define seropositivity.
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the Coast region to estimate the variance, but then used this
estimate to analyse data from other regions and from other
subgroups such as pregnant women. Another limitation of the
mixture modelling approach is that it is necessary to assume
models for the component distributions. In our analysis, we
assumed log antibody concentrations follow a normal distribution
in previously uninfected individuals and a skew normal in pre-
viously infected individuals. However, we believe these distribu-
tional assumptions are not a major concern. The data from pre-
COVID-19 samples suggests that log antibody levels in indivi-
duals who have not been infected are approximately normally
distributed. And although we were unable to determine the dis-
tribution in previously infected individuals, the sensitivity ana-
lysis involving an alternative model and the analysis of simulated
data both suggest that our estimates are robust to misspecification
of this distribution. Finally, we note that our analysis was limited
to Kenyan serosurveys; in the future it will be important to
explore using mixture models to analyse surveys that have been
done elsewhere.

We have shown that the threshold analysis produces estimates
of the proportion previously infected that are likely to be biased
downwards. While overestimating this proportion can lead to
complacency in the assessment of future COVID-19 waves,
underestimating it can also have serious adverse consequences if
it prolongs social restrictions unnecessarily. This is particularly
relevant in low-and-middle-income countries where resumption
of educational, social and economic activities is unlikely to be
brought about by rapid dissemination of COVID-19 vaccines.
Here we provide an alternative to the standard threshold analysis
that does not require specific adjustments for waning and allows
for differences between populations in background antibody
levels. The approach makes assumptions about variation in
background antibody levels that need to be validated locally, but
until we have a better understanding of the spectrum of antibody
concentrations by symptom severity, or due to waning, it will
probably be more accurate than the standard threshold analysis.

Methods
Data sources. The blood samples were collected in studies of Kenyan blood
donors4,25, healthcare workers26, truck drivers/assistants27 and pregnant women28.
Most surveys were done shortly before or during the early stages of the second
wave of the epidemic in Kenya (Supplementary Fig. 4). The protocols for these
studies were approved by the Scientific and Ethics Review Unit (SERU) of the
Kenya Medical Research Institute. The blood donors and health care workers
provided written informed consent, and the truck drivers provided verbal consent.
Surveillance of antenatal care attendees was conducted at the request of the Kenya
Ministry of Health and consent was obtained from participating health facilities
and the respective Counties. The surveillance involved analysis of anonymised
residual blood volumes of samples collected in antenatal care clinics. Approval to
publish the results of the antenatal care surveillance was explicitly requested from
and granted by Kenyatta National Hospital, University of Nairobi Ethics Review
Committee (Protocol P327/06/2020) and the Kilifi County health management
rapid response team and SERU.

Enzyme-linked immunosorbent assay (ELISA). Across all serosurveys, the
samples were tested for anti-SARS-CoV-2 IgG antibodies using an adaptation of
the Krammer ELISA for whole length spike antigen29. Ratios of optical densities
(OD) relative to a negative control were used to quantify the antibody con-
centrations. The assay was originally validated using 910 pre-COVID-19 serum
samples collected in 2018, all of which were collected from adults and children
from the Coast region of the country, and samples from 174 PCR-positive Kenyan
adults, which were collected from patients admitted to Kenyatta National Hospital
in Nairobi and their contacts (14 pre-symptomatic, 55 symptomatic, 92 asymp-
tomatic and 13 unknown). For the samples obtained from PCR-positive indivi-
duals, the median time between the PCR test and blood sample collection was
21 days (IQR: 15, 34). The validation was based on a threshold OD ratio of 2, and
yielded sensitivity and specificity estimates of 92.7% and 99.0% respectively. In a
WHO-sponsored international standardisation study, the performance of the assay
was found to be consistent with that of other assays30.

Statistical analysis. Both the threshold-based analysis and the mixture model
analysis were done using the Rstan package (version 2.21.2) in R version 4.0.431,32.

Sensitivity and specificity adjusted threshold analysis. We incorporated
information on the sensitivity and specificity of the threshold by simultaneously
modelling the serosurvey data and validation data. Specifically, we modelled counts
of (i) the number, y; of survey samples above the threshold OD ratio, (ii) the
number, x, of PCR-positive samples above the threshold and (iii) the number, z; of
pre-COVID-19 samples below the threshold. In the model, the observed propor-
tion of survey samples above the threshold, pobs , is a function of the proportion
previously infected, p, and the sensitivity and specificity of the threshold.

Model:

y � Binomialðpobs;NÞ

x � Binomialðse;N seÞ

z � Binomialðsp;NspÞ

pobs ¼ se ´ pþ 1� sp
� �

´ 1� p
� �

:

Priors:

p � Uniformð0; 1Þ

se � Uniformð0; 1Þ

sp � Uniformð0; 1Þ:

Mixture model. We fitted a two-component mixture model where individuals are
classified according to whether or not they have experienced SARS-CoV-2 infec-
tion. We assumed that log2 OD ratios follow a skew normal among previously
infected individuals (parameters: location = ξ, scale = ω and skew = α) and a
normal distribution among previously uninfected individuals (parameters: mean =
θ, standard deviation = ν).

Model:

1� p
� �

´Normalðθ; νÞ þ p ´ SkewNormalðξ;ω; αÞ;
where p = proportion previously infected.

To make it easier to interpret the model parameters, we reparameterised the
model in terms of the difference, δ, between the means of the two distributions:

ξ ¼ θ þ δ � ω
ffiffiffiffiffiffiffiffi
2=π

p α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p :

Since mixture models can be difficult to fit when there is overlap of the
component distributions, we used several constraints to facilitate parameter
estimation. First, we fixed the standard deviation in the uninfected, ν; to be equal to
the standard deviation in the pre-COVID-19 samples. Second, we used an
informative prior for δ to constrain the difference in means—the prior puts 5%
probability on the difference exceeding the difference between the mean in
symptomatic PCR-positive cases (mean log2 OD ratios = 3.43) and the mean in
pre-COVID-19 samples (mean log2 OD ratios = −0.17). The prior for δ was also
designed to avoid label switching by ensuring δ > 0: Finally, we used an informative
prior for α to rule out strong skew in either direction.

Priors:

θ � Normalð0; 10Þ

δ � Normalþð0; 1:83Þ

lnω � Normalð0; 10Þ

α � Normalð0; 1Þ

p � Uniformð0; 1Þ:
In addition to estimating the model parameters, we estimated the sensitivity and

specificity at various threshold values. The sensitivity corresponds to the
proportion above the threshold in the skew normal distribution and the specificity
corresponds to the proportion below the threshold in the normal distribution. Both
quantities were estimated using the sample of parameter values drawn from the
posterior distribution.

An alternative specification of the mixture model. As a sensitivity analysis, we
fitted an alternative model where we assumed that the distribution among pre-
viously infected individuals follows a mixture distribution with mixing parameter q.

Model:

ð1� pÞ ´ Normalðθ1; ν1Þ þ p½q ´Normalðθ2; ν2Þ þ ð1� qÞ ´Normalðθ3; ν3Þ�:
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As with the skew-normal model, the model was reparameterised in terms of the
difference in mean between the positive and negative component, that is we defined
θ1 ¼ qθ2 þ 1� q

� �
θ3 � δ, where δ represents the difference between the means.

The priors for νi ði ¼ 2; 3Þ were chosen to ensure that these standard deviations
are of similar magnitude to the standard deviation observed in PCR-positive
individuals (SD log2 OD ratios = 1.32 = exp(0.28)) and we used the constraint
θ3 > θ2 to avoid the problem of label switching and ensure the identifiability of
these parameters.

Priors:

δ � Normalþð0; 1:83Þ

θi � Normalð0; 10Þ i ¼ 2; 3 θ3 > θ2

ln νi � Normalð0:28; 0:2Þ i ¼ 2; 3

p � Uniformð0; 1Þ

q � Uniformð0; 1Þ:

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided in the supplementary materials (xlsx file). Source data are
provided with this paper.

Code availability
Stan code for fitting the Bayesian models is provided in Supplementary Notes 1–3 and R/
Stan code for all analyses, including the generation of tables and figures, is available at:
https://github.com/christian-bottomley/mixture_model_sarscov2.
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