
 1The Alliance for Maternal and Newborn Health Improvement (AMANHI) Gestational Age Study Group. BMJ Global Health 2021;6:e005688. doi:10.1136/bmjgh-2021-005688

Simplified models to assess newborn 
gestational age in low- middle income 
countries: findings from a multicountry, 
prospective cohort study

The Alliance for Maternal and Newborn Health Improvement (AMANHI) Gestational 
Age Study Group

Original research

To cite: The Alliance for 
Maternal and Newborn Health 
Improvement (AMANHI) 
Gestational Age Study 
Group. Simplified models to 
assess newborn gestational 
age in low- middle income 
countries: findings from a 
multicountry, prospective 
cohort study. BMJ Global Health 
2021;6:e005688. doi:10.1136/
bmjgh-2021-005688

Handling editor Seye Abimbola

 ► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (http:// dx. doi. org/ 10. 
1136/ bmjgh- 2021- 005688).

Received 12 March 2021
Accepted 25 July 2021

Correspondence to
Rajiv Bahl;  bahlr@ who. int and 
Anne CC Lee;  
 alee6@ bwh. harvard. edu

© Author(s) (or their 
employer(s)) 2021. Re- use 
permitted under CC BY. 
Published by BMJ.

ABSTRACT
Introduction Preterm birth is the leading cause of 
child mortality. This study aimed to develop and validate 
programmatically feasible and accurate approaches to 
estimate newborn gestational age (GA) in low resource 
settings.
Methods The WHO Alliance for Maternal and Newborn Health 
Improvement (AMANHI) study recruited pregnant women 
from population- based cohorts in five countries (Bangladesh, 
Ghana, Pakistan, Tanzania and Zambia). Women <20 
weeks gestation by ultrasound- based dating were enrolled. 
Research staff assessed newborns for: (1) anthropometry, 
(2) neuromuscular/physical signs and (3) feeding maturity. 
Machine- learning techniques were used to construct 
ensemble models. Diagnostic accuracy was assessed by 
areas under the receiver operating curve (AUC) and Bland- 
Altman analysis.
Results 7428 liveborn infants were included (n=536 
preterm, <37 weeks). The Ballard examination was biased 
compared with ultrasound dating (mean difference: 
+9 days) with 95% limits of agreement (LOA) −15.3 to 
33.6 days (precision ±24.5 days). A model including 10 
newborn characteristics (birth weight, head circumference, 
chest circumference, foot length, breast bud diameter, 
breast development, plantar creases, skin texture, ankle 
dorsiflexion and infant sex) estimated GA with no bias, 
95% LOA ±17.3 days and an AUC=0.88 for classifying the 
preterm infant. A model that included last menstrual period 
(LMP) with the 10 characteristics had 95% LOA ±15.7 days 
and high diagnostic accuracy (AUC 0.91). An alternative 
simpler model including birth weight and LMP had 95% 
LOA of ±16.7 and an AUC of 0.88.
Conclusion The best machine- learning model (10 
neonatal characteristics and LMP) estimated GA 
within ±15.7 days of early ultrasound dating. Simpler 
models performed reasonably well with marginal increases 
in prediction error. These models hold promise for newborn 
GA estimation when ultrasound dating is unavailable.

INTRODUCTION
Achieving meaningful declines in child 
mortality in the post- Millenium Develop-
ment Goal era will require commitment 
and innovation to reduce mortality among 

babies born preterm (<37 weeks gestation). 
According to the latest WHO estimates, 
14.8 million (10.6%) of newborns were born 
preterm worldwide in 2014.1 Preterm birth is 
the leading cause of under 5 child mortality, 
accounting for 15.9% of deaths globally.2 The 
risk of neonatal mortality among preterm 
infants is 6.8- fold higher than among infants 
born full- term.3

In low- middle income countries (LMICs), 
the lack of available or accurate data on the 
gestational age (GA) of a pregnancy, and thus 
misclassification of infant as preterm or not, 
is a critical barrier to providing adequate care 
for these vulnerable babies and estimating 
the global burden of preterm birth. Improve-
ment in GA dating is a key priority to provide 
improved clinical care of mothers and babies, 
and to improve epidemiological data on 
the burden of disease. In the most recent 

Key questions

What is already known?
 ► In low- middle income countries, the gestational age 
(GA) dating of pregnancies is commonly inaccurate 
or unknown prenatally, and the GA of the baby is es-
timated after birth.

 ► Several clinical neonatal assessments exist to esti-
mate the GA of the newborn, ranging from 4 to 23 
physical and neurological signs.

 ► A recent systematic review and meta- analysis 
demonstrated that the most commonly used clin-
ical assessment, the 10 sign Ballard score, sys-
tematically overestimated GA (3 days) and dated 
95% of newborns within  ±27 days (3.9 weeks) of 
ultrasound- based dating.

 ► The 21 sign Dubowitz examination dated 95% of 
newborns within ±18 days (2.6 weeks) of best ob-
stetrical estimate.

 ► In general, clinical newborn assessments with fewer 
signs tend to be less accurate.  
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estimates of preterm birth by WHO,1 the lack of quality 
GA data were a major limitation—with 91% of data used 
from high income or upper- middle income countries, 
and no GA data available from 76 out of 183 countries.1 
GA in LMICs is commonly based on last menstrual period 
(LMP), and LMP recall is often unreliable,4–6 particularly 
in low- literacy populations. Ultrasonography coverage is 
low in sub- Saharan Africa and Asia. Moreover, presenta-
tion to antenatal care (ANC) for many women may be 
late in pregnancy in LMICs, when ultrasound is less accu-
rate for dating. While increasing access to ultrasound is a 
priority for both maternal and newborn health, given the 
limitations and challenges to ANC access, there remains 
a critical need for new strategies to more accurately date 
newborns and identify preterm infants after birth.

For decades, the physical and neurological maturity of 
the newborn has been used to estimate the GA of the 
infant after delivery. In 1970, Dubowitz et al reported on a 
GA assessment including 21 external physical and neuro-
logical characteristics.7 In 1979, Ballard et al described 
a simplified score that required only 10 signs.8 Multiple 
scoring systems have been described in the literature 
ranging from 4 to 23 signs, including varying combina-
tions and numbers of signs and measurements.9 In a 
recent systematic review, the Dubowitz examination was 
the most accurate method for the postnatal estimation 
of GA, dating 95% of newborns within ±2.6 weeks (18.2 
days) of a best obstetrical estimate,9 while the Ballard 
examination was less precise (±3.8 weeks or 26.6 days). 
Generally, the fewer characteristics included in a scoring 
system, the more imprecise or inaccurate the estimates. 
However, feasibility is a critical consideration to imple-
mentation and scale in LMICs, where human resources 
are limited.

The WHO Alliance for Maternal and Neonatal Health 
Improvement (WHO AMANHI) study is a multicountry 
collaboration formed of investigators of maternal–new-
born health studies from Bangladesh, Ghana, Pakistan, 
Tanzania and Zambia.10 To address the current limita-
tions in GA dating, the main objective of the AMANHI 
GA study10 was to use novel techniques of machine 
learning to develop simple and programmatically feasible 
methods of estimating newborn GA following delivery in 
LMICs.

METHODS
Study design and participants
The AMANHI GA study was conducted in prospec-
tive pregnancy cohorts in five sites—two in south Asia 
(Bangladesh (Sylhet), Pakistan (Karachi, Matiari)) and 
three in sub- Saharan Africa (Ghana (Brong Ahafo), 
Tanzania (Pemba) and Zambia (Southern Province)).10 
Descriptions of the individual study sites and populations 
are detailed in online supplemental table 1. Uniform 
standard operating protocols and data tools were estab-
lished and implemented across the sites.

Pregnancy identification
For all sites except Zambia, pregnancies were identified 
by population- based surveillance of women of reproduc-
tive age every 1–3 months. In Zambia, where over 96% 
of all pregnant women attend antenatal care clinics, the 
study recruited pregnant women from antenatal clinics. 
Women were considered eligible if they had a known 
LMP that suggested a GA of <20 weeks. Pregnant women 
were consented by field workers in the local language, 
and those consenting had an ultrasound scan for preg-
nancy dating.

Ultrasonography
The ultrasound standard operations procedure (SOP) 
was developed by the AMANHI team with a mater-
nal–fetal medicine specialist (BW). The SOP specified 
standardised procedures for measuring fetal biome-
tric parameters transabdominally. Crown–rump length 
(CRL) was measured first. If CRL was >95 mm, both bipa-
rietal diameter (BPD) and femur length (FL) were addi-
tionally measured. At least two separate measurements 
were performed for each parameter. Average values were 
used for duplicate measures; median values were used for 
triplicate measures. If pregnancies were identified at <8 
weeks, a repeat scan was scheduled 4 weeks later. Women 
with pregnancies enrolling >20 weeks were excluded 
from the GA study. To assign the gold standard GA, for 
scans with CRL between 15 and 95 mm, GA was assigned 
by the INTERGROWTH- 21st formula.11 For participants 
who had CRL >95 mm, GA was assigned by averaging the 
GA determined by the BPD according to the formula of 
Hadlock et al12 and the GA determined by FL by Papa-
georghiou.11

Key questions

What are the new findings?
 ► The WHO Alliance for Maternal and Newborn Health Improvement 
(AMANHI) GA study is a multicountry study that is one of the larg-
est, well- dated, prospective, population- based pregnancy cohorts 
in low- middle income countries that included 7428 newborns from 
five countries in Africa and Asia.

 ► We aimed to develop the most precise model to predict newborn GA 
with the fewest clinical signs using machine learning techniques.

 ► In the most precise model that included 10 newborn characteristics 
(infant sex, five anthropometric measurements, three physical and 
one neurological sign) and last menstrual period (LMP), the model 
predicted GA within ±15.7 days (2.2 weeks) of early ultrasound and 
had high diagnostic accuracy for identifying preterm births.

 ► It correctly classified 91% of infants as preterm or not.
 ► In a simpler model including only two signs (birth weight and LMP), 
the prediction of GA was within ±16.7 days (2.4 weeks) of ultra-
sound and correctly classified 88% of infants as preterm or not.

What do the new findings imply?
 ► The AMANHI GA models may be used in clinical practice to more ac-
curately identify high- risk, preterm infants in low- income settings 
and improve their access to special care. T
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Neonatal assessment and anthropometrics
All pregnancies were followed until delivery and a 
neonatal assessment was conducted.

The neonatal examination included six neuromuscular 
signs of passive flexor tone or joint flexibility, and five 
physical signs from the original Ballard examination8 or 
Dubowitz examination7 (table 1). Neonatal anthropom-
etry included infant weight, foot length (heel–halux), 
breast bud diameter, as well as head, chest and middle- 
upper arm circumference. Measurement scales and tools 
used to measure infant anthropometrics are detailed in 
online supplemental table 1. Signs of feeding maturity 
were adapted from WHO’s infant feeding assessment and 
the Nyqvist preterm feeding questionnaire.13

The newborn examination was conducted in most sites 
by non- clinician field workers (with at least 10 years formal 
education) and prior experience/training in mater-
nal–newborn care (details in web online supplemental 

table 1). Infants were assessed within 72 hours of life; 
those infants deemed seriously ill were excluded.

Training and standardisation
WHO coordinated a centralised 3- day training of trainers 
in Sylhet, Bangladesh, to conduct training and standard-
isation of the neonatal assessment and anthropometrics 
(AM, ACL). After proficiency was established for each 
trainee with direct observation, a standardisation exercise 
was performed. Trainees were certified only after scoring 
all of the physical and neuromuscular signs within 1 point 
of the expert trainer on at least five newborns.

Quality control
The WHO AMANHI coordinating team conducted 
central data review on a quarterly basis and conducted 
regular site visits to monitor field implementation and 
data collection. For ultrasound, a random selected 5% of 
images were sent for central review and feedback to an 
external maternal fetal medicine expert (BW). A stand-
ardised quality checklist of minimal acceptable quality 
standards for each biometric parameter was completed. 
For the newborn assessment, trained study coordinators 
independently conducted and/or directly observed a 
random 5% of neonatal assessments in the field to ensure 
maintenance of skill and quality.

Statistical methods
For each subset of predictors considered, an ensemble 
model was constructed using the Super Learner algo-
rithm14 as implemented in the R statistical software.15 The 
resulting model was a weighted average of multivariate 
adaptive regression splines,16 random forests,17 gradient 
boosting,18 support vector machines19 and multiple linear 
regression. Cross- validation was used both to determine 
optimal weights and to protect against overfitting of indi-
vidual components of the ensemble and overly optimistic 
estimates of model performance.

It was not possible to fit ensemble models for all possible 
subsets of the 25 predictors available from the newborn 
assessments (ie, approximately 3.3 million subsets). 
A priori, we determined that 10 would be a maximum 
feasible number of signs to include in a newborn assess-
ment for front- line health workers in LMICs. Predictors 
were prescreened using LASSO regularised regression20 
and the designated ‘Top Ten’ model (model A) was iden-
tified by choosing a value for the regularisation param-
eter that resulted in 10 predictors. The initial screening 
of predictors retained various measures of anthropom-
etry, along with scores of physical and neuromuscular 
development. Scores related to feeding maturity were 
excluded during the initial LASSO screening.

To compare the accuracy of the test methods and 
machine learning models for GA estimation, Bland- 
Altman plots were generated to summarise the agree-
ment of GA as predicted by the test method versus gold 
standard (ultrasound) across the range of GA. Receiver 
operating curves were generated for each test method/

Table 1 Newborn clinical signs assessed for in the Alliance 
for Maternal and Newborn Health Improvement Gestational 
Age study

Assessment Signs

Neuromuscular 
signs

Posture

Arm recoil

Scarf sign

Popliteal angle

Heel- to- ear test

Ankle dorsiflexion

Physical signs Skin: Colour, texture, opacity and presence of 
lanugo

Ear: Shape and recoil

Breast: Nipple–areola development

Male genitalia: Testes and scrotum

Female genitalia: Labia and clitoris

Foot: Plantar creases

Anthropometry Head circumference (cm)

Chest circumference (cm)

Breast bud diameter (mm)

Mid- upper arm circumference (cm)

Foot length (mm)

Infant length (cm)

Symphysis–fundal height (cm)

Weight (g)

Breast feeding 
Observation

Signs of attachment: more areola above infant’s 
top lip than below bottom lip; mouth wide open; 
lower lip everted; chin touching the breast

Suckling behaviour: presence of deep, slow 
sucks with swallowing in between

Duration the infant was able to stay attached to 
the breast continuously during the feed

Longest continuous burst of suckling (number of 
sucks)

Suck- to- swallow ratio
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model and areas under the receiver operating curve 
(AUC) calculated for the diagnostic accuracy of classi-
fying infants <37 and <34 weeks. We assessed diagnostic 
accuracy by fixing sensitivity at a threshold of 80%, our a 
priori determined minimum sensitivity clinical threshold 
for a screening test for identifying preterm births. We also 
report diagnostic accuracy for fixed sensitivity of 85%, 
90%, 95% and at the maximum Youden index, reflecting 
highest test accuracy.

Sample size
In the AMANHI GA study, assuming that the simple 
machine learning models would detect a preterm preva-
lence of 10% with ±5% (absolute) precision and achieve 
80% sensitivity and specificity to identify preterm infants 
in comparison to early pregnancy ultrasound dating, 
sample size was estimated to be 5740 pregnant women, 
an additional 2870 women were estimated to be required 
for validation of the machine learning model.10

Patient and public involvement
Members of the public were not involved in the design 
or conduct of the study. During the formative/pilot 
phase of the study, family members of patients were 
involved in providing critical feedback on components 
of the neonatal assessment and certain procedures were 
modified based on their inputs. Specific examination 
components were eliminated (square window sign) and 
methods to calm the newborn were incorporated into 
study procedures.

RESULTS
Study participant characteristics
From 1 January 2012 to 18 January 2017, a total of 11 662 
pregnant women were enrolled, who had 10 581 live 
births (figure 1). Among these, there were 9397 singleton 
live births with early ultrasound dating available (n=8544 
>37 weeks, 666 34–<37 weeks and 187 <34 weeks gesta-
tion). Of these 7414 (87%) term infants, 507 (76%) 

Figure 1 Flow chart of Alliance for Maternal and Newborn Health Improvement GA study participants. GA, gestational age; 
US, ultrasound.
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34–<37 weeks infants, 80 (43%) <34 weeks infants were 
assessed at <72 hours of life. An important reason for the 
differential assessment was death prior to assessment (1% 
in term, 3% in late preterm (34–<37 weeks infants) and 
28% in early preterm births (<34 weeks infants)). The 
majority (67%) of assessments were performed within the 
first 24 hours of life. Complete data on all examination 

components were found in 93% of assessed newborns 
and were included in the final analytic data set.

Basic characteristics of infants included in the analysis 
across study sites are shown in table 2. Women were some-
what younger in the Bangladesh and Zambia sites; and 
less educated in Pakistan and Ghana sites. Bangladesh 
and Pakistan sites had the lowest rates of facility births 

Table 2 Characteristics of mothers–newborns included in the final analysis for Alliance for Maternal and Newborn Health 
Improvement Gestational Age study

Bangladesh 
(N=1642)

Ghana 
(N=840)

Pakistan 
(N=2100)

Tanzania 
(N=2188)

Zambia 
(N=658)

Maternal characteristics

  Maternal age, n (%)*

   15–19 234 (18.6) 74 (8.8) 132 (7.6) 169 (7.8) 193 (29.6)

   20–34 980 (77.9) 631 (75.4) 1439 (82.4) 1590 (72.9) 390 (59.7)

   35+ 44 (3.5) 132 (15.8) 175 (10) 422 (19.4) 70 (10.7)

  Maternal parity, mean (SD)† 2.1 (1.5) 2.5 (1.8) 2.7 (2.1) 3.8 (2.4) 3.1 (2.1)

  Maternal education, n (%)‡

   None 151 (9.6) 228 (27.3) 1048 (60) 289 (13.3) 12 (1.9)

   1–6 years 698 (44.2) 523 (62.6) 278 (15.9) 748 (34.3) 53 (8.2)

   7–12 years 721 (45.7) 69 (8.3) 408 (23.4) 1118 (51.3) 565 (87.6)

   13+ years 9 (0.6) 16 (19) 12 (0.7) 26 (1.2) 15 (2.3)

  Previous child death, n (%)§

   ≥1 child death 224 (19.4) 152 (21.9) 132 (9.4) 274 (15.9) 45 (14.5)

  Previous preterm birth, n (%)¶ 12 (1.1) 11 (1.6) 34 (2.2) 28 (1.6) 17 (3.3)

  Clean cooking fuel, n (%)** 16 (1) 87 (10.4) 1555 (89.1) 322 (14.8) 42 (6.5)

  Improved latrine facility, n (%)†† 1570 (96.5) 663 (79.3) 1638 (96.4) 1605 (73.6) 585 (90.1)

  Pre- eclampsia or eclampsia during 
pregnancy, n (%)‡‡

2 (0.2) 7 (0.8) 9 (0.6) 87 (4) 0 (0)

Birth characteristics

  Health facility delivery, n (%)§§ 699 (44.1) 664 (79.1) 1326 (63.1) 2135 (99.9) 602 (97.3)

  Skilled birth attendant, n (%)¶¶ 672 (42.4) 652 (77.7) 1427 (68) 1570 (73.5) 554 (91.7)

  Type of delivery, n (%)***

   Normal vaginal delivery 1506 (94.7) 739 (88.1) 1786 (88.9) 2064 (96.8) 612 (96.8)

   Assisted vaginal delivery 26 (1.6) 7 (0.8) 30 (2) 7 (0.3) 0 (0)

   C- section 58 (3.7) 93 (11.1) 202 (10) 62 (2.9) 13 (3)

  Low birth weight, n (%)

   (<2500 g) 431 (26.3) 98 (11.7) 493 (23.5) 101 (4.6) 43 (6.5)

  Small for gestational age, n (%) 691 (42.1) 275 (32.7) 751 (35.8) 206 (9.4) 119 (18.1)

Missing data are listed as (n=Bangladesh, Ghana, Pakistan, Tanzania, Zambia).
*Missing maternal age data (n=384, 3, 354, 7, 5).
†Missing parity data (n=48, 3, 163, 44, 212).
‡Missing maternal education data: (n=63, 4, 354, 7, 13).
§Missing previous child death data: (n=48, 3, 311, 109, 212).
¶Missing previous preterm birth data: (n=55, 3, 175, 109,79).
**Missing clean cooking fuel data: (n=51, 4, 354, 7, 10).
††Missing improved latrine facility data: (n=15, 4, 354, 7, 9).
‡‡Missing pre- eclampsia/eclampsia data: (n=388, 0, 664, 14, 5).
§§Missing health facility delivery data: (n=58, 1, 0, 51, 39).
¶¶Missing skilled birth attendant data: (n=58, 1, 0, 51, 54).
***Missing type of delivery data: (n=52, 1, 70, 51, 221).
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(44.1% and 63.1%, respectively). The prevalence of small 
for GA (SGA, <10% birth weight for GA and sex using the 
INTERGROWTH- 21st standard)21 was higher in Bangla-
desh (42.1%), Pakistan (35.8%) and Ghana (32.7%).

Diagnostic accuracy of existing clinical methods to determine 
GA
We determined the accuracy of the LMP and Ballard 
examination dating compared with early ultrasound 
dating (tables 3 and 4, figure 2A,B).

Last menstrual period
The average bias of LMP was 1.7 days underestimation 
compared with ultrasound (table 3), with a trend of 
underestimation of GA at lower ranges of GA and over-
estimation at higher GA (figure 2A). The 95% limits of 
agreement (LOA) were −41.0 to 37.6 days. Using an LMP 
cut- off of <37 weeks, the sensitivity and specificity of iden-
tifying preterm birth based on ultrasound was 69% and 
81%, respectively (table 4).

Clinical Ballard examination
The Ballard exam systematically overestimated GA by 9.2 
days (95% CI 8.9 to 9.4), and had a 95% LOA (−15.3, 
33.6 days) compared to early ultrasound dating. This bias 
towards GA overestimation was consistent in the country 
specific analysis (online supplemental figures 2–6). Using 
the standard Ballard calculation of gestational age, the 
sensitivity of the Ballard exam to identify preterm and 
early preterm infants was very low (9% and 3%, respec-
tively) (table 4).

Machine learning models
Using machine learning, a full prediction model was 
built that included all 25 characteristics assessed (data 
not shown). Simpler models using less signs had compa-
rable performance and are presented below. Figure 3 
shows the 10 highest ranking individual predictors of 
GA identified during building of the machine learning 
models (four anthropometric measures (birth weight, 
head circumference, chest circumference, foot length), 
five physical (breast development, breast bud diameter, 
plantar creases on foot surface, skin texture and infant 
sex) and one neuromuscular (ankle dorsiflexion)).

Model A (10 characteristic model)
Birth weight, head circumference, chest circumference, 
foot length, breast bud diameter, breast development, 
plantar creases, skin texture, ankle dorsiflexion, infant 
sex: In the ‘top ten’ newborn characteristics model 
(model A), predicted GA values fell within ±17.3 days of 
early ultrasound GA (95% LOA), with an AUC of 0.88 to 
classify <37 week infants and 0.94 to classify <34 weeks. 
While the average bias was zero across all GAs, model A 
tended to predict higher GA compared with ultrasound 
dating prior to 39 weeks, and lower GA at >39 weeks 
(figure 2C). The sensitivity and specificity to identify 
preterm birth <37 weeks was 80% and 80%; and for <34 
weeks 80% and 96%, respectively (table 4). The diag-
nostic accuracy of model A to identify preterm birth using 
different optimal thresholds with higher fixed sensitivity 
(85%, 90%, 95%) and the Youden index is shown in 
online supplemental table 2.

Table 3 Agreement between early ultrasound dating versus gestational age (GA) determined by last menstrual period (LMP), 
Ballard Score and AMANHI machine learning models (A, B, C, D)

GA determined by: N

Mean difference in 
days (95% CI) (GA test 
method—GA ultrasound)

Bland- Altman 95% 
limits of agreement (in 
days)

Precision of predicted 
GA (in days)*

LMP† (<37 weeks) 7428 −1.69 (−2.15 to –1.24) (−41.0 to 37.6) ±39.3

Original Ballard Score‡ 7428 9.16 (8.87 to 9.44) (−15.3 to 33.6) ±24.5

AMANHI model A
Newborn 10- characteristics § 
(including birth weight)

7428 0.03 (−0.17 to 0.23) (−17.3 to 17.4) ±17.3

AMANHI model B
Newborn 
10- characteristics§+LMP†

7428 0.03 (−0.15 to 0.22) (−15.7 to 15.8) ±15.7

AMANHI model C
Birth weight+LMP†

7428 0.07 (−0.13 to 0.26) (−16.6 to 16.8) ±16.7

AMANHI model D
Birth weight +head 
circumference

7428 0.06 (−0.15 to 0.28) (−18.3 to 18.4) ±18.4

*Interpretation: Refers to the precision of the predicted GA values estimated by the test method bias (95% CI of the individual differences) 
around the mean difference.
†LMP: In this study LMP was collected from maternal recall at <20 weeks gestation in all sites as part of prospective research studies.
‡Ballard Score: GA was calculated from the Ballard signs as described in Ballard et al29 using the formula GA=((2×score)+120))/5.
§AMANHI 10- characteristics: Birth weight, head circumference, chest circumference, foot length, breast bud diameter, breast development, 
foot surface (plantar creases), skin texture, ankle dorsiflexion, infant sex.
AMANHI, Alliance for Maternal and Newborn Health Improvement.
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Model B (10 characteristic model +LMP)
LMP was additionally included with model A to determine 
whether the model performance and diagnostic accuracy 
could be further improved. In model B, the precision was 
further improved to 95% LOA±15.7 days (table 3). The 
AUCs for classification of <37 and <34 weeks were 0.91 
and 0.96, respectively (table 4). At 80% sensitivity, the 
specificity to classify preterm births <37 weeks was 87%, 
and that to classify <34 week infants was 98% (alternate 
optimal thresholds in online supplemental table 2).

Model C (BW+LMP only)
In this parsimonious model with only two characteris-
tics (model C), the 95% LOA was ±16.7 days, which was 
between that of model B and model A (table 3). Model 
C tended to predict higher GA compared with the ultra-
sound in the earlier GA (<37 weeks, figure 2E). At 80% 
sensitivity, this simplified model had 80% specificity to 
identify preterm <37 weeks, and 98% specificity to iden-
tify preterm <34 weeks (alternate optimal thresholds in 
online supplemental table 2). The AUCs for classification 

of <37 and <34 weeks were 0.88 and 0.96, respectively 
(table 4, figure 4).

Model D (BW +head circumference)
In this model with two best performing anthropometric 
measures, for use in cases when LMP may not be known 
(model D), 95% LOA of ±18.4 days. These LOA were 
marginally worse than that of models A, B and C, but 
substantially better than that of Ballard examination or 
LMP. At 80% sensitivity, model D had 72% specificity 
to identify preterm <37 weeks (93% specificity for <34 
weeks) (alternate optimal thresholds shown in online 
supplemental table 2). The AUCs for classification 
of <37 and <34 weeks were 0.84 and 0.93, respectively 
(table 4, figure 4).

Sensitivity analysis
Given that growth restriction may influence the predic-
tion of GA based on the infant’s size, we conducted 
stratified analysis to explore diagnostic accuracy among 
infants ultimately born SGA versus AGA (appropriate 

Table 4 Diagnostic accuracy of Ballard, LMP and AMANHI models for identification of newborns <37 and <34 weeks (gold 
standard dated by early pregnancy ultrasound)

Model

Area 
under the 
curve

Cut- off 
selection Sensitivity Specificity

Positive 
predictive
value

Negative 
predictive
value

Positive 
likelihood 
ratio

Negative 
likelihood 
ratio

Classify <37 weeks*   

  LMP (<37 weeks)† 0.81 LMP <37 weeks 
cut- off

0.69 0.81 0.22 0.97 3.72 0.38

  LMP 0.81 80% sensitivity 0.80 0.71 0.18 0.98 2.78 0.28

  Ballard exam‡ 0.74 BS cut- 
off <37 weeks

0.09 0.98 0.25 0.93 4.29 0.93

  Ballard exam 0.74 80% sensitivity 0.80 0.52 0.12 0.97 1.68 0.38

  Model A (10- characteristics) 0.88 80% sensitivity 0.80 0.80 0.23 0.98 3.93 0.25

  Model B (10- characteristics+LMP) 0.91 80% sensitivity 0.80 0.87 0.32 0.98 5.96 0.23

  Model C (BW+LMP) 0.88 80% sensitivity 0.80 0.80 0.23 0.98 3.95 0.25

  Model D (BW+HC) 0.84 80% sensitivity 0.80 0.72 0.18 0.98 2.85 0.28

Classify <34 weeks§   

  LMP¶ 0.94 LMP <34 weeks 
cut- off

0.61 0.95 0.10 1.00 12.93 0.41

  LMP 0.94 80% sensitivity 0.80 0.90 0.07 1.00 8.05 0.22

  Ballard** 0.89 BS cut- 
off <34 weeks

0.03 1.00 0.40 0.99 74.36 0.97

  Ballard 0.89 80% sensitivity 0.80 0.81 0.04 1.00 4.13 0.25

  Model A (10- characteristics) 0.94 80% sensitivity 0.80 0.96 0.16 1.00 21.38 0.21

  Model B (10- characteristics+LMP) 0.96 80% sensitivity 0.80 0.98 0.31 1.00 50.39 0.20

  Model C (BW+LMP) 0.96 80% sensitivity 0.80 0.98 0.23 1.00 34.24 0.20

  Model D (BW+HC) 0.93 80% sensitivity 0.80 0.93 0.10 1.00 12.23 0.21

Diagnostic accuracy for different cut- offs with preset sensitivity of 85%, 90% and 95% are shown in online supplemental table 2.
*In the cohort there were 536 infants that were classified as preterm <37 weeks, and 6892 classified as ≥37 weeks.
†LMP <37 weeks was classified as preterm, and LMP ≥37 weeks classified as full term.
‡GA as determined by Ballard score was classified as preterm if GA <37 weeks using the equation GA=((2×score)+120))/5.
§In the cohort there were 66 infants that were classified as preterm <34 weeks, and 7362 classified as ≥34 weeks.
¶Threshold of GA determined by LMP <34 weeks.
**Original Ballard score equation (as per footnote 3) classification.
AMANHI, Alliance for Maternal and Newborn Health Improvement; BS, Ballard Score; BW, birth weight; GA, gestational age; HC, head circumference; LMP, last 
menstrual period.
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for GA, >10%–90% birth weight for GA and sex) (online 
supplemental table 3, figure 9a–d).

Overall, the methods had more negative bias among 
SGA infants compared with those born AGA. Ballard 
examination overestimated GA on average by 10.5 days 
in AGA, compared with 4.9 days in SGA infants (online 
supplemental table 3). All machine learning models 
tended to systematically underestimate GA compared 
with ultrasound by an average of 4–5 days in SGA infants, 
while overestimating GA by 1 day in AGA infants. The 
95% LOA were similar across models in SGA and AGA 
infants (online supplemental table 3). The AUCs for clas-
sification of preterm births<37 and <34 weeks were also 
similar for all models among SGA versus AGA infants 
(online supplemental table 9a–d).

DISCUSSION
In this large multicountry prospective pregnancy cohort 
with high quality early ultrasound dating (<20 weeks), we 

found that routine, existing methods to estimate GA, the 
LMP and Ballard examination, were biased and impre-
cise (±25–39 days). We developed a new machine learning 
model including 10 newborn characteristics (birth 
weight, head circumference, chest circumference, foot 
length, breast bud diameter, breast development, plantar 
creases, skin texture, ankle dorsiflexion, infant sex) and 
LMP, that estimated GA within ±15.7 days of early ultra-
sound dating. Furthermore, a simpler machine learning 
model including only birth weight and LMP performed 
similarly with only marginally lower diagnostic accuracy, 
dating 95% of pregnancies within ±16.7 days of early 
ultrasound.

LMP dating is still widely used for pregnancy dating 
in high- income countries. However, recall of LMP 
is less available and accurate among women of low 
literacy and socio- economic status.22 It is also subject to 
rounding4–6 23 24 (particularly to the month) and recall 
bias, and is less accurate for women presenting late in 

Figure 2 (A–F) Bland- Altman plots (with bias and trendline). (A) LMP, (B) Ballard examination, (C) model A: top 10 newborn 
characteristics, (D) model B: top 10 characteristics+LMP, (E) model C: birth weight+LMP and (F) model D: birth weight+head 
circumference. LMP, last menstrual period.
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their antenatal care. LMP dating was biased with a signif-
icant trend, tending to underestimate GA in the lower 
GAs. This may have important public health implications.

The Ballard examination is one of the most common 
clinical methods used to estimate newborn GA after 
birth. In our study the Ballard was significantly biased, 
consistently overestimating GA by 9 days. This bias was 
similar across all study sites and countries. Furthermore, 
the estimates were imprecise, dating most pregnancies 
within ±25 days. These data are in line with a prior system-
atic review9 that reported that the Ballard dated 95% of 
pregnancies within ±3.8 weeks (26.6 days). With the low 
sensitivity of the Ballard examination, it correctly identi-
fied only 1 in 10 preterm infants. Widespread use of the 
Ballard examination for GA assessment would result in 
systematic overestimation of GA and under- identification 
of preterm infants.

In the best AMANHI machine learning model (model 
B), including 10 characteristics and LMP, we were able 
to achieve high accuracy with an AUC of 0.91, indicating 
that the test could correctly classify preterm or not, 91% 
of the time. This model predicted GA within 15.7 days 
of early ultrasound for 95% of newborns. Machine 
learning has been used by other groups and investigators 
to develop algorithms for estimating GA or predicting 
preterm birth. Rittenhouse et al used machine learning 
to develop an algorithm for predicting preterm birth in 

the Zambian Preterm Birth Prevention Study, with six 
parameters including LMP, birth weight, twin delivery, 
maternal height, hypertension in labour and HIV 
serostatus.25 They reported that their model correctly 
classified >94% of newborns as preterm or not.25 Torres 
et al26 developed a method for GA estimation using deep 

Figure 3 Ranking of 10 top predictors included in the 
machine learning model*. *The limits of agreement on Y axis 
indicate that 95% of estimated values of gestational age 
(GA) estimated by the machine learning model including 
the predictor are within ±y value days of the gold standard 
ultrasound estimated GA (machine learning models have 
zero mean bias). **Each predictor listed is cumulative, that 
is, in addition to the aforementioned predictors. (ie, machine 
learning model with birth weight AND head circumference 
predict GA within ±18.4 days of early ultrasound GA).

Figure 4 Receiver operating curves (ROC) for classification 
of preterm infants, (A) <37 weeks and (B) <34 weeks. 
Model A: 10 newborn characteristics: birth weight, head 
circumference, chest circumference, foot length, breast bud 
diameter, breast development, foot surface (plantar creases), 
skin texture, ankle dorsiflexion, infant sex. Model B: 10 
newborn characteristics+LMP. Model C: Birth weight +LMP. 
Model D: Birth weight +head circumference. The point of 
each ROC curve intersection with the dotted line shows 
the point of 80% sensitivity, chosen as a desired threshold 
of sensitivity for a clinical screening tool. The dot on the 
ROC curve shows the Youden Index, the point of maximum 
sensitivity +specificity. AUC, area under the curve; LMP, last 
menstrual period.
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machine learning of newborn photos (face, foot and ear) 
as well as birth weight. The addition of newborn digital 
images improved prediction of GA by 33% compared 
with a model with birth weight alone.26

An important consideration and potential limitation 
of our 10 newborn characteristic model is the reliance 
on several measures of physical size, or anthropometric 
measures that reflect infant size rather than maturity. 
These indicators would be influenced by intrauterine 
growth restriction, with the exception of head circumfer-
ence which is potentially less affected in cases of asym-
metric intrauterine growth restriction with head sparing. 
The machine learning models included substantial input 
data from three sites with high rates of SGA (Bangladesh, 
Pakistan and Ghana), yet, still systematically underesti-
mated GA among SGA infants by approximately 4–5 days. 
The identification and validation of novel physical or clin-
ical characteristics to improve GA estimation among SGA 
and growth restricted infants is an important priority to 
improve GA estimation in settings where SGA prevalence 
is high.

Given feasibility, training and human resources 
considerations in LMIC, we also developed simpler 
two- characteristic models (models C and D), as poten-
tial alternatives to identify vulnerable babies in settings 
with limited resources. When LMP is known, model C 
(birth weight and LMP) was accurate with only marginal 
reductions in diagnostic accuracy compared with the best 
AMANHI model A. However, availability and quality of 
birth weight and LMP data remain major challenges in 
LMICs. Half of infants born in sub- Saharan Africa and 
Asia do not have a recorded birth weight.27 Poor quality 
of birth weight measurement is common with method-
ological problems including heaping of measurements, 
rounding, scale imprecision and lack of scale calibration. 
Up to one- third of women in LMICs may not recall their 
LMP, and accuracy of recall is less precise in lower socio- 
economic status and illiterate populations.5 22 Methods 
have been described to improve recall of LMP, including 
efforts to improve recording in ANC records, use of calen-
dars of religious holidays or community events to prompt 
recall and use of menstrual calendars.28 In settings where 
LMP is not known, the two characteristic anthropometric 
model (model D: birth weight and head circumference) 
could be used instead with reasonable prediction accu-
racy of ±18.4 days.

There were several limitations to this study. Infants <34 
weeks infants represented only 1% of this analysed cohort. 
About 28% of infants <34 weeks died before the assess-
ment. Given the exclusion of critically ill infants, the effect 
of morbidities on model performance cannot be assessed. 
Another consideration is the timing of the assessment. 
Certain physical signs may vary after birth, such as the skin 
opacity or foot creases. In our study, the majority of assess-
ments (80%) were conducted within 48 hours of birth. We 
had hypothesised that feeding maturity observations and 
signs may improve performance in estimating gestational 
maturity. However, we found feeding questions difficult 

to train and standardise across sites, and these variables 
dropped out of the modelling in early stages.

CONCLUSION
The WHO AMANHI machine learning GA model 
including 10 newborn characteristics and LMP predicted 
GA within ±16 days of an early pregnancy ultrasound, and 
a simpler machine learning model including only birth 
weight and LMP performed well with modest reductions 
in prediction accuracy. This accuracy is similar to the tradi-
tional clinical 21- sign Dubowitz examination and substan-
tially more accurate and less biased than the Ballard exami-
nation. These new machine learning models hold promise 
for accurate and timely identification of vulnerable, 
preterm infants -- the essential first step required in order to 
provide them with the special care needed to reduce global 
neonatal morbidity and mortality.
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