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A B S T R A C T   

Nonsynonymous single nucleotide polymorphisms (nsSNPs) are one of the most common forms of mutations 
known to disrupt the product of translation thereby altering the protein structure-function relationship. GULP1 
(PTB domain-containing engulfment adaptor protein 1) is an evolutionarily conserved adaptor protein that has 
been associated with glycated hemoglobin (HbA1c) in Genome-Wide Association Studies (GWAS). In order to 
understand the role of GULP1 in the etiology of diabetes, it is important to study some functional nsSNPs present 
within the GULP1 protein. We, therefore, used a SNPinformatics approach to retrieve, classify, and determine the 
stability effect of some nsSNPs. Y27C, G142D, A144T, and Y149C were jointly predicted by the pathogenic- 
classifying tools to be disease-causing, however, only G142D, A144T, and Y149C had their structural architec-
ture perturbed as predicted by I-MUTANT and MuPro. Interestingly, G142D and Y149C occur at positions 142 
and 149 of GULP1 which coincidentally are found within the binding site of GULP1. Protein-Protein interaction 
analysis also revealed that GULP1 interacted with 10 proteins such as Cell division cycle 5-like protein (CDC5L), 
ADP-ribosylation factor 6 (ARF6), Arf-GAP with coiled-coil (ACAP1), and Multiple epidermal growth factor-like 
domains protein 10 (MEGF10), etc. Taken together, rs1357922096, rs1264999716, and rs128246649 could be 
used as genetic biomarkers for the diagnosis of diabetes. However, being a computational study, these nsSNPs 
require experimental validation to explore their metabolic involvement in the pathogenesis of diseases.   

1. Introduction 

The advancements in genetic technology, have led to the identifi-
cation of several genetic variations within the human genome, this is 
however not without some challenges. Single Nucleotide Polymorphism 
(SNP) is the most abundant form of variation in the human genome and 
range from 3 to 5 million in number [1]. SNPs have been discovered to 
contribute to the onset of diseases, hence, they are used as genetic 
markers for understanding the etiology of diseases, however, some SNPs 
are neutral, that is, they are not disease-causing [2]. SNPs that alter the 

primary sequence of an amino acid are referred to as nonsynonymous 
single nucleotide polymorphisms (nsSNPs). Due to the changes they 
elicit on the amino acid chain, the product of translation is affected, 
therefore distorting the functions of proteins [3], and possibly drug 
metabolism and absorption [4]. These SNPs have been extensively 
studied through Genome-Wide Association Study (GWAS) or 
family-based study’s [4]. 

GULP1 (PTB domain-containing engulfment adaptor protein 1) is an 
evolutionarily conserved adaptor protein necessary for phagocytosing 
apoptotic cells through phagocytosis [5]. It contains several 
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protein-interacting domains and regions such as the N-terminal 
phosphotyrosine-binding (PTB) domain, leucine zipper domain, and a 
proline/serine rich-domain [6,7]. They regulate cellular cholesterol and 
glycosphingolipid translocation [5]. Aberration in the structure of 
GULP1 has been reported in several diseases such as schizophrenia [8], 
arthritis [9], and cancer [10]. 

In our previous GWAS analysis, we identified the association be-
tween GULP1 and glycated hemoglobin (HbA1c) [11]. HbA1c is a 
marker used for diagnosing diabetes and is often used in the estimation 
of the average glucose level for last three months in individuals to keep 
track of diabetic vascular damage [12]. HbA1c is not only used for the 
diagnosis of diabetes mellitus, it can be used in the diagnosis of 
diabetes-induced pathologies such as retinopathy, nephropathy and 
neuropathy. However, HbA1C is also not fully utilised for diagnosis in 
Africa due to concerns around it being confounded by infections and 
iron deficiency. Taking into consideration the role GULP1 plays in the 
diagnosis of diseases, it is important to study the functional consequence 
of variants present within this gene. We therefore carried out a SNPin-
formatics investigation on SNP data retrieved from NCBI-SNPs database 
employing pathogenic predicting tools such as PolyPhen, PANTHER, 
SNP&GO, PhD-SNP, etc. We further investigated the conservation and 
stability of the predicted pathogenic nsSNPs. Furthermore, structural 
examination and visualization of the pathogenic SNPs were carried out 
using molecular dynamic simulation and CHIMERA respectively. The 
investigational approach (Fig. 1) employed in this study has an advan-
tage of enabling the quick and cheap screening of functionally important 
variants which will need to be validated by experimental procedures. 

2. Materials and methods 

2.1. GULP1 structural elucidation 

To characterize the 3-dimensional structure of GULP1, we used a 
computational structure based technique facilitated by Iterative 
Threading Assembly Refinement (I-TASSER) algorithm [13]. I-TASSER 
algorithm is trained with thousands of protein models that serve as 
templates for building structures of native proteins or proteins that lack 
3D structure [13]. COACH [14] was employed to determine the poten-
tial binding pockets of the GULP1 protein. COACH combines the binding 

site predictions of TM-SITE [15], FINDSITE [16], and ConCavity [17] to 
predict potential binding pockets. Amino acid changes were exerted in 
GULP1 3D structure by using “swapaa” command line in CHIMERA [18]. 

2.2. GULP1 nsSNP dataset retrieval and prediction of functional impact 
of nsSNPs 

UniProt database [19] was used as the source for retrieving the 
FASTA sequence of GULP1 gene (Q9UBP9) while the GULP1 nsSNPs 
dataset was downloaded from the dbSNPs database [20] and further 
cross-validated with the gnomAD browser [21] and Ensembl browser 
[22]. To access the pathogenicity of GULP1 nsSNPs, SIFT [23], Poly-
phen2 [24], and PhD-SNP [25] were engaged. SIFT accesses the path-
ogenic status of a SNP by using a ranking score known as tolerance index 
(TI) score [23]. Mutations with a TI score <0.05 are regarded as being 
harmful whereas those with TI values > 0.05 are referred to as 
non-pathogenic [23]. PolyPhen moreover investigates the off chance 
probability that the change is found in the evolutionary conserved 
domain, using the PSIC score [24]. PhD-SNP employs a trained dataset 
to examine the pathogenic nature of an amino acid substitution as either 
disease-causing or non-disease causing [25]. SNPs&GO is a very precise 
and accurate server which projects disease-related amino acid substi-
tution with 82% accuracy [26]. PMUT is a tool that annotates and 
predicts whether an amino acid substitution at a position is pathological 
or non-pathological. PMUT uses different types of backend algorithms to 
describe a mutation and neural networks to process the data [27]. 
SNAP2 is a tool trained based on a neural network, it differentiates be-
tween effect and non-synonymous variation by using information from 
the sequence and variants. It uses a prediction score that ranges from 
− 100 to +100 signifying a strong non-synonymous prediction and 
strong synonymous prediction respectively [28]. 

2.3. Effect of mutation on GULP1 structural stability 

The probability of an nsSNP altering the strength of a protein is very 
high, it either increases or decreases the stability of the protein. To 
evaluate the effect of nsSNP on GULP1 stability, three tools (I-Mutant 
[29] and MUpro [30]) were used. I-Mutant is a support vector machine 
tools that automatically predicts protein stability differences upon 
amino acid substitution. I-Mutant is optimized to predict protein sta-
bility using a protein structure or protein sequence. If the protein 
structure is used as a query, the accuracy of I-Mutant is 80% while it is 
77% if protein sequence is used. The energy change (DDG) value which 
is the Gibbs free energy of the mutant minus Gibbs free energy of the 
wild protein in Kcal/mol. MUpro is a tool that uses the combination of 
two machine learning approaches support vector machines and neural 
networks to predict how single nucleotide mutation affects protein sta-
bility, it has an accuracy of 84%. A DDG score of less than 0 signifies that 
the amino acid substitution decreases protein stability while a score 
greater than 0 connotes increase protein stability. 

2.4. GULP1 sequence conservation analysis and post-transcriptional 
modification sites (PTMs) prediction 

Estimation of the conserved region present within GULP1 was pre-
dicted with the aid of the ConSurf server [31]. ConSurf estimates the 
conservation value based on the evolutional relatedness between the 
proteins and its homologs. Post-transcription modification has been 
implicated in events involved in the pathogenesis of diseases such as 
signaling pathways, protein-protein interaction. Thus, the prediction of 
PTM helps to provide insight on the impact of variations in pathogenesis 
of diseases. We used Modpred and Musite to determine the PTM sites 
present in GULP1. Modpred predicts PTM sites using protein sequence. Fig. 1. Schematic workflow of the steps undertaken in this study.  
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2.5. Time-wise structural perturbatory effect of mutation on GULP1 

We employed molecular dynamic simulation (MDS) to explore the 
structural perturbatory impact of mutation on GULP1 using a simulation 
protocol previously reported [32,33]. GULPI proteins (wild and mu-
tants) parametrization was carried out with the aid of FF14SB present in 
AMBER18 software. GULP1 parameter and topology coordinates were 
derived using the LEAP variant of AMBER18. A partial restrain, full 
restrain, heating, and equilibration [34] were then carried out. A pro-
duction run of 100ns was then subsequently done [35]. The production 
run trajectories were examined with the aid of the CPPTRAJ variant of 
AMBER18 [36]. Visualization and amino acid substitution were facili-
tated by CHIMERA [18]. 

3. Results 

3.1. GULP1 structure determination 

The 3-dimensional structure of GULP1 has been previously crys-
talized (6ITU) [37] and deposited in the Protein Data Bank (PDB). 
However, this crystalized structure is only a part of the whole GULP1 
protein. Hence, it was necessary to build a GULP1 structure containing 
all the important domains. The FASTA sequence of GULP1 was retrieved 
from the UniProt server [19] and consequently used as an input in 
I-TASSER, 6ITU and 3SUZ were used as templates. The modeled GULP1 
protein has a confidence score (C-score), estimated TM-Score, and an 
estimated Root Mean Square Deviation (RMSD) [38] of − 2.59, 0.41 ±
0.14, and 12.3 ± 4.3 Å respectively (Fig. 2A). GULP1 was validated with 
the aid of Verify-3D, PROCHECK, and ERRAT. Investigation using these 
tools revealed that the modeled GULP1 has high structural integrity and 
could be used for further downstream bioinformatic analysis. Binding 
site characterization using COACH identified 22 residues (residues P40, 
K41, T43, L95, H96, R97, I98, S99, F100, C101, A102, D103, K105, 
K116, H123, E135, T138, L139, G142, F145, Y149, and F152) at a 
C-score of 0.43, COACH predicted two out of the three predicted nsSNPs 
occur at positions (142 and 149) located within the active site. 

3.2. Prediction of pathogenic SNPs and evaluating GULP1 protein change 
in stability 

GULP1 SNPs retrieved from dbSNPs contains 628 SNPs, out of these, 
207 were non-synonymous. The 207 nsSNPs were inputted into the PhD- 
SNP, PANTHER, PolyPhen, and SNPs&GO servers. Four nsSNPs 
(rs1446644508, rs1357922096, rs1264999716, and rs128246649) were 
predicted to be disease-causing by these four SNPs-pathogenic 

predicting tools (Table 1). Further analysis of these four SNPs with 
PMUT and SNAP2 revealed that they were also pathogenic and disease- 
causing. The four predicted SNPs were further analysed to evaluate their 
effect on GULP1 stability. I-MUTANT and MuPro were employed to 
determine the change in protein instability. rs1446644508 was pre-
dicted by I-MUTANT and MuPro to increase and decrease GULP1 sta-
bility respectively. However, rs1357922096, rs1264999716, and 
rs128246649 were jointly predicted by I-MUTANT and MuPro to 
decrease stability of GULP1. Hence, theses SNPs were used for further 
analysis. 

3.3. Evaluation of post translational modification sites and conservation 
analysis 

Post Translational Modifications linked to our predicted nsSNPs were 
determined with the aid of the ModPred server by using the primary 
sequence of GULP1 as input. ModPred predicted that rs128246649 is 
located in the proteolytic cleavage site, while rs1357922096, 
rs1264999716, and rs1446644508 had no PTM site. Conservation 
analysis is important in unraveling whether the nsSNPs are found in a 
conserved region or not. Analysis from the ConSurf server revealed that 
rs1446644508 and rs1357922096 are located in a highly conserved 
region of GULP1 with both having a conversation score of 8. 
rs128246649 occur in an averagely conserved region with a conserva-
tion score of 5 (Table 2). 

3.4. Time-wise structural perturbatory effect of mutation on GULP1 

To explore the time-wise effect of the mutation on the mutant pro-
teins relative to the wild type, we examined the Root Mean Square De-
viation (RMSD), Radius of Gyration (RoG), Principal Component 
Analysis (PCA), and the number of hydrogen bonds in the proteins. As 
seen above in the stability estimation using I-MUTANT and MuPro, the 
mutation altered the stability of the protein by causing a decrease in the 
stability of the mutant. Likewise, the Cα backbone RMSD plot corrobo-
rates these findings, the wild protein displayed high stability throughout 
the simulation period, however, upon mutation, the instability of the 
proteins was markedly increased (Fig. 3A). Similarly, when the proteins 
were projected on two motional components, principal component 1 
(PC1) and principal component 2 (PC2), the wild protein had little 
dispersion along the two principal components (PC1 and PC2), unlike 
the mutant proteins (G142D, A144T, and Y149C) that exhibited a highly 
dispersed motion along the two principal component, this is as a result of 
the instability conferred on the proteins by mutation (Fig. 3B) (see 
Fig. 4). 

Fig. 2. 3-Dimensional structure of modeled GULP1 (A). Superimposed structures of the wild and mutant proteins (B).  
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The RoG estimation which measures the compactness of the Cα 
backbone of a protein during a production run also followed a similar 
trend as the RMSD plot. The wild protein exhibited high atomic 
compactness while the mutant proteins showed lower compactness 
when compared to the wild protein (Fig. 3D). The average number of 
hydrogen bonds in the protein before mutation was 108 while that of 
G142D, A144T, and Y149C were estimated to be 111, 114, and 104 
respectively (Fig. 3C). The extra hydrogen bonds seen in G142D and 

A144T could be due to the intramolecular bonds formed by Aspartic acid 
and Threonine, while that seen in the Y149C protein could be as well due 
to bond loss when Tyrosine was mutated to Cysteine. Protein-protein 
interaction prediction using STRING revealed that GULP1 interacts 
with 10 proteins i.e. Cell division cycle 5-like protein (CDC5L), ADP- 
ribosylation factor 6 (ARF6), Arf-GAP with coiled-coil (ACAP1), Multi-
ple epidermal growth factor-like domains protein 10 (MEGF10), 
Engulfment and cell motility protein 3 (ELMO3), Engulfment and cell 

Table 1 
Effect of Amino acid change on GULP1 gene and Disease association.  

rsID Mutation PolyPhen PhD-SNP/Score PANTHER/Score SNPS&GO/Score 

rs1446644508 Y27C PD Disease/0.812 Disease/0.849 Disease/0.629 
rs1357922096 G142D PD Disease/0.857 Disease/0.878 Disease/0.768 
rs1264999716 A144T PD Disease/0.815 Disease/0.671 Disease/0.612 
rs128246649 Y149C PD Disease/0.872 Disease/0.939 Disease/0.762 

PD: Probably Damaging. 

Table 2 
Impact of Amino Acid change on the stability of GULP1.  

rsID Mutation I-MUTANT MuPro Conservation Score PTM Sites 

rs1446644508 Y27C Increase Decrease 8 *** 
rs1357922096 G142D Decrease Decrease 8 Proteolytic Cleavage 
rs1264999716 A144T Decrease Decrease 0 *** 
rs1282464649 Y149C Decrease Decrease 5 ***  

Fig. 3. Backbone RMSDs are depicted as a function of time for the wild and mutant proteins (A). PCA scatter plots depicting a distinct separation of motions between 
wild and mutant proteins (B). Total number of hydrogen bonds in the wild and mutant proteins (C). Radius of gyration of C-α atoms of the wild and mutant pro-
teins (D). 
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motility protein 2 (ELMO2), Engulfment and cell motility protein 1 
(ELMO1), Intraflagellar transport protein 122 homolog (IFT122), 
Dedicator of cytokinesis protein 1 (DOCK1), and Adapter molecule crk 
(CRK). 

4. Discussion and conclusion 

Millions of SNPs have been identified within the genome, while some 
occur in the intronic region, others are found in the exonic region. As 
Genome-Wide Association studies (GWAS) increase, diverse SNPs will 
be identified and deposited in various databases such as dbSNP, 
Ensemble, gnomAD and GWAS catalogue. Due to this avalanche of SNPs 
data, it is somewhat becoming demanding to pinpoint particular SNPs 
that contribute to the onset of diseases. Computational approaches 
provide a scientific succour in the identification of SNPs that are path-
ogenic or disease-causing, these SNPs are referred to as nsSNPs. In 
addition, nsSNP alter protein-protein interaction, protein-DNA interac-
tion, protein-ligand interaction, and drug metabolism. Thus, identifi-
cation of nsSNPs could be used as genetic biomarkers for the diagnosis of 
diseases [39,40]. 

Each of the bioinformatics tools used in this study was developed 
using a different algorithm, which may lead to the possibility of having 
divergent prediction for the same analysis. However, the reproducibility 
afforded by using multiple bioinformatics tools for each analysis, en-
sures precision and accuracy of the results. Tools employed in this study 
include SIFT, PolyPhen2, PhD-SNP, Musite, I-MUTANT, ConSurf, etc. 
Out of the 207 identified nsSNPs, four (rs1446644508, rs1357922096, 
rs1264999716, and rs128246649) were jointly predicted by PhD-SNP, 
PANTHER, PolyPhen, and SNPs&GO to be pathogenic. However, only 
three nsSNPs were predicted by I-MUTANT and MuPro to have had their 
structural architecture affected. rs128246649 possesses a proteolytic 
cleavage site, while rs1446644508 and rs1357922096 are found in a 
highly conserved region of GULP1. The molecular simulation analysis as 
revealed by the RMSD, RoG, PCA, and number of hydrogen bonds 
corroborated these findings. 

One of the major limitations of studies such as this is that the iden-
tified nsSNPs require experimental validation. As this study only pre-
dicts potential nsSNPs which could be pathogenic. In the course of 
prediction, the limitation inherent in the different tools used might in-
fluence the result and perhaps alter the accuracy of the result. 

Funding 

ON and SF are funded in part by the National Institutes of Health 
Common Fund to the H3ABioNet Project grant number 5U24HG006941- 
09. TC is an international training fellow supported by the Wellcome 
Trust grant (214205/Z/18/Z). 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

NA. 

References 

[1] Dokholyan NV. Predicting the functional consequences of non-synonymous single 
nucleotide polymorphisms in. Sci Rep 2017:1–18. 

[2] Wang X, Tomso DJ, Liu X, et al. Single nucleotide polymorphism in transcriptional 
regulatory regions and expression of environmentally responsive genes. Toxicol 
Appl Pharmacol 2005;207:84–90. 

[3] Yue P, Moult J. Identification and analysis of deleterious human SNPs. J Mol Biol 
2006;356:1263–74. 

[4] Giacomini KM, Brett CM, Altman RB, et al. The Pharmacogenetics Research 
Network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 2007; 
81:328–45. 

[5] Su HP, Brugnera E, Van Criekinge W, et al. Identification and characterization of a 
dimerization domain in CED-6, an adapter protein involved in engulfment of 
apoptotic cells. J Biol Chem 2000;275:9542–9. 

[6] Liu QA, Hengartner MO. Human CED-6 encodes a functional homologue of the 
Caenorhabditis elegans engulfment protein CED-6. Curr Biol 1999;9:1347–50. 

[7] Smits E, Criekinge W Van, Plaetinck G, et al. The human homologue of 
Caenorhabditis elegans CED-6 specifically promotes phagocytosis of apoptotic cells 
elke Smits *, Wim van Criekinge *, Geert Plaetinck and Thierry Bogaert. Curr Biol 
1999;9:1351–4. 

[8] Chen X, Sun C, Chen Q, et al. Apoptotic engulfment pathway and schizophrenia. 
PloS One 2009;4. 

[9] Qingchun H, Runyue H, LiGang J, et al. Comparison of the expression profile of 
apoptosis-associated genes in rheumatoid arthritis and osteoarthritis. Rheumatol 
Int 2008;28:697–701. 

[10] Ma CIJ, Martin C, Ma Z, et al. Engulfment protein GULP is regulator of 
transforming growth factor-β response in ovarian cells. J Biol Chem 2012;287: 
20636–51. 

[11] Gurdasani D, Carstensen T, Fatumo S, et al. Uganda genome resource enables 
insights into Population history and genomic discovery in Africa. Cell 2019;179: 
984–1002. e36. 

[12] Nathan DM, Kuenen J, Borg R, et al. Translating the A1C assay into estimated 
average glucose values. Diabetes Care 2008;31:1473–8. 

[13] Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf 2008;8: 
1–8. 

[14] Yang J, Roy A, Zhang Y. BioLiP: a semi-manually curated database for biologically 
relevant ligand-protein interactions. Nucleic Acids Res 2013;41:1096–103. 

[15] Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using 
complementary binding-specific substructure comparison and sequence profile 
alignment. Bioinformatics 2013;29:2588–95. 

[16] Brylinski M, Skolnick J. A threading-based method (FINDSITE) for ligand-binding 
site prediction and functional annotation. Proc Natl Acad Sci USA 2008;105: 
129–34. 

[17] Capra JA, Laskowski RA, Thornton JM, et al. Predicting protein ligand binding sites 
by combining evolutionary sequence conservation and 3D structure. PLoS Comput 
Biol 2009;5. 

[18] Yang Z, Lasker K, Schneidman-Duhovny D, et al. UCSF Chimera, MODELLER, and 
IMP: an integrated modeling system. J Struct Biol 2012;179:269–78. 

[19] Bateman A, Martin MJ, O’Donovan C, et al. UniProt: the universal protein 
knowledgebase. Nucleic Acids Res 2017;45:D158–69. 

[20] Sherry ST, Ward M, Kholodov M, et al. dbSNP: the NCBI database of genetic 
variation29; 2001. p. 308–11. 

[21] Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum 
quantified from variation in 141,456 humans. Nature 2020;581:434–43. 

[22] Hunt SE, McLaren W, Gil L, et al. Ensembl variation resources. Database 2018; 
2018:1–12. 

[23] Vaser R, Adusumalli S, Leng SN, et al. Protocol UPDATE SIFT missense predictions 
for genomes. Nat Protoc 2015;11:1–9. 

[24] Adzhubei IA, Schmidt S, Peshkin L, et al. HHS Public Access 2010;7:248–9. 
[25] Capriotti E, Fariselli P, PhD-SNPg. A webserver and lightweight tool for scoring 

single nucleotide variants. Nucleic Acids Res 2017;45:W247–52. 

Fig. 4. Protein-Protein interaction plot of GULP1.  

O.S. Soremekun et al.                                                                                                                                                                                                                          

http://refhub.elsevier.com/S2352-9148(20)30654-7/sref1
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref1
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref2
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref2
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref2
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref3
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref3
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref4
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref4
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref4
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref5
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref5
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref5
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref6
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref6
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref7
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref7
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref7
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref7
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref8
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref8
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref9
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref9
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref9
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref10
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref10
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref10
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref11
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref11
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref11
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref12
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref12
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref13
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref13
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref14
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref14
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref15
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref15
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref15
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref16
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref16
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref16
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref17
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref17
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref17
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref18
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref18
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref19
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref19
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref20
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref20
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref21
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref21
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref22
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref22
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref23
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref23
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref24
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref25
http://refhub.elsevier.com/S2352-9148(20)30654-7/sref25


Informatics in Medicine Unlocked 22 (2021) 100503

6

[26] Calabrese R, Capriotti E, Fariselli P, et al. Functional annotations improve the 
predictive score of human disease-related mutations in proteins. 2009. 
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