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Abstract

We propose interval censored recursive forests (ICRF), an iterative tree ensemble
method for interval censored survival data. This nonparametric regression estimator
addresses the splitting bias problem of existing tree-based methods and iteratively
updates survival estimates in a self-consistent manner. Consistent splitting rules are
developed for interval censored data, convergence is monitored using out-of-bag sam-
ples, and kernel-smoothing is applied. The ICRF is uniformly consistent and displays
high prediction accuracy in both simulations and applications to avalanche and na-
tional mortality data. An R package icrf is available on CRAN and Supplementary
Materials for this article are available online.
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1 Introduction

Interval censoring is a widely observed censoring mechanism in survival analysis. In interval

censored data, the failure time information is given as a form of an interval that is known to

contain the failure time. In that sense, right-censored data, where the failure time is either

exactly observed or is known to be later than a certain censoring time, is a special case of

interval censored data. However, since interval censored data, in its narrow definition, are

not given as exact failure times, analysis of such data is often challenging and unique. For

instance, while the Kaplan-Meier estimator designed for right-censored data has a closed-

form solution, its counterpart for interval censored data, or the non-parametric maximum

likelihood estimator (NPMLE), does not have a closed-form solution [Huang and Wellner,

1997].

For censored data, tree-based methods have been widely used [Zhou and McArdle, 2015].

Survival trees recursively partition data into two parts until they form small, homogeneous

subgroups (‘the terminal nodes’) and estimate the marginal survival probabilities for each

terminal node (Gordon and Olshen [1985], Segal [1988], Ciampi et al. [1991], LeBlanc

and Crowley [1992], and LeBlanc and Crowley [1993]). The partitioning procedure is

usually done by exhaustively examining the degree of heterogeneity at all possible cut-

offs along every variable and selecting the cut-off that maximizes heterogeneity. Trees stop

partitioning when the terminal nodes become smaller than a predefined size or when further

splitting does not bring enough reduction in heterogeneity.

Random survival forests are constructed by averaging a large number of diverse sur-

vival trees (Hothorn et al. [2004], Hothorn et al. [2005], Ishwaran et al. [2008], and Zhu

and Kosorok [2012]). Diversity is induced by randomizations such as subsampling, random

variable selection for splitting, and random cut-off selection [Geurts et al., 2006, Mentch

and Zhou, 2020]. As a result, random survival forests have reduced variability relative to

survival trees. For example, in Geurts et al. [2006]’s extremely randomized trees (ERT)

which is a generic algorithm and is applicable to the survival context, multiple trees are

generated without resampling but by selecting a random subset of variables and one ar-

bitrary cut-off point for each variable at each node. For a comprehensive review about
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survival trees and random survival forests, see Bou-Hamad et al. [2011], Ishwaran and Lu

[2014], and Zhou and McArdle [2015].

One of the characteristic features of the tree-based methods in survival analysis is the

way of incorporating censored information into measuring heterogeneity. While Classifica-

tion And Regression Trees (CARTs, Breiman et al. [1984]) and Random Forests [Breiman,

2001], designed for continuous outcomes, use mean squared error (MSE) for quantifying

heterogeneity, in right-censored survival tree methods, alternative approaches such as the

log-rank statistic [Ishwaran et al., 2008] and inverse probability weighting [Molinaro et al.,

2004, Steingrimsson et al., 2019] are used.

Using the log-rank statistic, however, can cause bias for two reasons. First, the log-rank

statistic assumes that censoring time is independent of failure time. In practice, censoring

is often informative of failure time. Thus, when the independent censoring assumption is

violated, survival trees built based on the log-rank statistic may not be able to identify

the optimal partition. Second, even when censoring is independent of failure, the log-rank

statistic does not account for heterogeneity within each daughter node. In other words, the

log-rank statistic implicitly assumes that subjects within a daughter node share the same

marginal hazards process over censored intervals, when in fact, they may have different

hazard processes conditional on their covariate values. This discrepancy contradicts and,

as a result, possibly undermines the purpose of the random survival forests—estimation

of the covariate-conditional hazards. Thus, naive use of the log-rank statistics could incur

significant bias by choosing sub-optimal partitions.

Zhu and Kosorok [2012] provided an intuitive solution to this problem by proposing

recursively imputed survival trees (RIST) for right-censored data. The main idea is to

guess the censored failure time using conditional survival probabilities and to utilize it

for splitting. Considering that the finest covariate-conditional survival probabilities are

available only after the trees grow far enough towards their terminal nodes, they use a

recursion technique so that the terminal node prediction is utilized to impute the censored

subjects in the next iteration of the forest building process.

This issue, however, has yet to be fully addressed in the interval censored data literature.
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Moreover, tree-based regression methods for interval censored data are sparse; there are

only a few tree-based methods available. Yin et al. [2002] and Fu and Simonoff [2017]

developed tree models for interval censored data that use the likelihood ratio test and

a modified log-rank test as a splitting criterion, respectively. Yao et al. [2019] recently

extended the work of Fu and Simonoff [2017] to an ensemble method. Yang et al. [2021]

proposed a survival tree method for current status data that applies the idea of censoring

unbiased transformation [Steingrimsson et al., 2019]. However, these methods have the

aforementioned limitation of insufficient usage of covariate-conditional information.

To respond to this issue, we propose a tree-based nonparametric regression method for

interval censored survival data. The method uses a recursion strategy [Zhu and Kosorok,

2012] which incorporates a self-consistency equation [Efron, 1967]. In addition, we ad-

dress additional challenges inherent to interval censored data: first, the self-consistency

algorithm may not identify the global optimum for interval censored data, and second,

the interval censored data are highly noisy. To overcome such additional concerns, the

method is equipped with a convergence monitoring procedure over recursions, probabilistic

provision of information rather than imputation, and smoothing along the time domain.

The proposed method shows high prediction accuracy both on simulated data and on our

illustrative examples of avalanche victims data [Haegeli et al., 2011, Jewell and Emerson,

2013] and national mortality data [Sorlie et al., 1995]. An R package icrf is available on

CRAN.

The rest of this paper is organized as follows. In Section 2, we describe the data

structure and modeling assumptions. In Section 3, the proposed methods are introduced

and discussed in context. The uniform consistency of the method is derived in Section 4.

The predictive accuracy of the proposed method is evaluated using simulations and analysis

of two sets of data in Sections 5 and 6, respectively. In Section 7, we discuss limitations

and future areas for research.
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2 Data setup and model

The proposed method is applicable to interval censored data that include right-censored

and current status data as special cases. Current status data, also also known as case-I

censoring, only include survival status of a subject inspected at a single random monitoring

time. The event time, T , is only known to lie within an interval I ≡ (L,R], where L = T−

and R = T for an exactly observed T . Let F (t), F (t|X), F (t|I), and F (t|X, I) denote the

marginal, covariate-conditional, the interval-conditional, and the full-conditional distribu-

tions at time t, respectively, where X ≡ (X1, ..., Xp) ∈ X ⊂ Rp is a p-dimensional covariate

with distribution function FX(·). We use S ≡ 1 − F to represent a corresponding (condi-

tional) survival function. For the censoring mechanism, we consider covariate-conditional

non-informative censoring which is defined as,

Pr(T < t|L = l, R = r, L < T ≤ R,X) = Pr(T < t|l < T ≤ r,X).

This implies that intervals do not provide any further information than the fact that the

failure time lies in the interval given the covariate [Oller et al., 2004, Sun, 2007]. The study

length is denoted by τ <∞. A random vector U = (U1, U2, ..., UM) denotes the monitoring

times at each element of which the survival status of the subject is identified. U follows a

distribution FU with maximum potential number of follow-up times M > 0. Among the M

monitoring times, only one pair of two neighboring time points that includes T contributes

to the likelihood. Thus we only consider {L,R} = {U(m), U(m+1) : U(m) < T ≤ U(m+1),m =

0, 1, ...,M} in the data analysis, where U(m) denotes the mth order statistic of the elements

of U with U0 ≡ 0 and U(M+1) ≡ ∞. Current status data correspond to M = 1.

3 Interval censored recursive forests

3.1 Overview of the proposed method

We adopt the recursion strategy for interval censoring and address the challenges of interval

censoring—higher noise and non-identifiability of self-consistency algorithm—by carrying
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the full conditional survival probabilities of censored subjects, employing kernel smoothing

of the survival curves along time, and monitoring convergence over recursion.

We outline the high level idea of the proposed method before we give a detailed descrip-

tion in the following subsections. As an initial step, to provide rough information about

the censored intervals, we estimate the marginal survival curve, S(0)(t|X) = Ŝ(t), and ob-

tain the estimate of the full conditional survival probability for each subject, S(t|Xi, Ii) by

projection. Instead of doing imputation as in RIST, we store the conditional probability

information for each subject and use it in the splitting tests. In this way, we can avoid

the Monte Carlo error resulting from the imputation procedures which can be significant

for interval censored data. We develop the Generalized Wilcoxon’s Rank Sum (GWRS)

test and Generalized Log Rank (GLR) test that enable two-sample testing for interval cen-

sored data based on conditional probabilities. With one of those splitting rules selected, a

predefined number of trees are built under a modified ERT algorithm. Unlike the original

ERT algorithm, we subsample data to leave a small fraction (‘the out-of-bag sample’) of

the data for later use. At each terminal node of the trees, a local survival probability

estimate is obtained in two ways: 1) the NPMLE of the survival curve is obtained based

on raw interval data without using the survival curve information, or 2) the full condi-

tional survival curves are averaged. We call the former a “quasi-honest” approach, and

the latter an “exploitative” approach. The tree survival probability estimates formed in

this manner are averaged to obtain a forest survival probability estimate, S(1)(t|X), for the

first iteration. Then S(k−1)(t|X) is used to update the full conditional survival curve of

each subject S(k)(t|Xi, Ii) at the kth iteration, k = 2, 3, ..., K . For each k, S̃(k−1)(t|X) is

obtained by kernel-smoothing. The final prediction is then given by the smoothed survival

curve at the iteration of the smallest out-of-bag error. A detailed pseudo-algorithm is given

in Algorithm 1.
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Result: S̃(t|X) = S̃(kopt)(t|X) where kopt = arg mink ε
(k);

initialize S(0)(t|X) and kernel smooth (S̃(0)(t|X)), if INITIAL SMOOTH is TRUE;

for k (forest iteration) = 1, 2, ..., K do

Update S(k−1)(t|Xi, Ii) based on S(k−1)(t|Xi) and Ii for each i;

for b (tree construction) = 1, 2, ..., K do

Sample Db of size s = d0.95ne from the dataset D (DOOB
b := D\Db);

Recursively partitioning using GWRS based on {S(k−1)(t|Xi)}:

At each node, randomly pick d√pe variables, pick a random cut-off for each

selected variable, and find the optimal cut-off suggested by GWRS;

if QUASIHONEST then

S
(k)
b,l (t|Ab,l) = NPMLE({Ii : Xi ∈ Ab,l});

else

S
(k)
b,l (t|Ab,l) = 1

|Ab,l|
∑

Xi∈Ab,l
S(k−1)(t|Xi, Ii);

end

Kernel smoothing: S̃
(k)
b,l = KERNELSMOOTH(Skb,l);

The conditional survival function for the tree:

S
(k)
b (t|X) =

∑Lb

l=1 S
(k)
b,l (t|Ab,l)1(X ∈ Ab,l),

S̃
(k)
b (t|X) =

∑Lb

l=1 S̃
(k)
b,l (t|Ab,l)1(X ∈ Ab,l);

The out-of-bag error for the tree: ε
(k)
b = IMSE(S̃

(k)
b ,DOOB

b );

end

Obtain the conditional survival function for the forest:

S(k)(t|X) = 1
ntree

∑ntree

b=1 S
(k)
b (t|X), S̃(k)(t|X) = 1

ntree

∑ntree

b=1 S̃
(k)
b (t|X);

Calculate the out-of-bag error for the forest: ε(k) = 1
B

∑B
b=1 ε

(k)
b ;

end

Algorithm 1: Pseudo-algorithm for ICRF

3.2 Splitting rules

For right-censored data, Peto and Peto [1972] compared the two-sample test statistics

including the Wilcoxon Rank Sum (WRS) test and the log-rank test. They showed that the
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log-rank test is the most locally powerful test under Lehman-type alternative hypotheses

while WRS also has strong power under Log-normal mean-shift alternative hypotheses.

Thus, these tests can be considered as potential splitting rules with some modifications for

interval censoring.

For interval censored data, we develop two splitting rules by extending the WRS and

log-rank tests. We also consider two existing score tests proposed by Peto and Peto [1972]

that are used by existing tree-based methods [Fu and Simonoff, 2017, Yao et al., 2019].

Below we describe the four splitting rules and show the consistency property of the newly

developed rules. Simulation results in Section 5.3.2 show that our developed rules have on

average better performance than existing alternatives.

A. Generalized Wilcoxon’s Rank Sum test (GWRS). The WRS test statistic,

W̃n =
1

n1n2

∑
i∈G1

∑
j∈G2

ξ(T1,i, T2,j),

estimates θ̃ = Pr(T1 < T2) + 1
2
Pr(T1 = T2) where Tl is the survival time of a randomly

chosen subject in group Gl, ξ(T1,i, T2,j) = 1(T1,i < T2,j) + 1
2
1(T1,i = T2,j), and n1 and n2

are the sample sizes of the two groups, respectively. The estimand can be alternatively

expressed as θ̃(S) = 1 +
∫∞
0
ŠG1(t)dSG2(t), where SGl

(t) = Pr(Tl > t|Gl), l = 1, 2, is the

marginal survival probability of the lth group and Š(t) = 1
2
S(t) + 1

2
S(t−) where half of the

probability mass in the left continuity point is shifted toward the right. In the presence of

administrative censoring, W̊n = 1
n1n2

∑
i∈G1

∑
j∈G2

ξ(T̊1,i, T̊2,j) estimates θ(S) = Pr(T̊1,i <

T̊2,j)+
1
2
Pr(T̊1,i = T̊2,j) = 1+

∫ τ
0
ŠG1(t)dSG2(t)− 1

2
SG1(τ)dSG2(τ), where T̊l,i = Tl,i∧τ, l = 1, 2.

We then generalize this statistic to allow non-informative interval censoring as follows:

Wn(S) =
1

n1n2

∑
i∈G1

∑
j∈G2

ζ(I1,i, I2,j|X1,i, X2,j;S),

where ζ(I1,i, I2,j|X1,i, X2,j;S) = Pr(T̊1,i < T̊2,j|T1,i ∈ I1,i, T2,j ∈ I2,j, X1,i, X2,j;S)+1
2

Pr(T̊1,i =

T̊2,j|T1,i ∈ I1,i, T2,j ∈ I2,j, X1,i, X2,j;S). Note ζ(I1,i, I2,j|X1,i, X2,j;S) = 1 +
∫ τ
0
Š(t|I1,i, X1,i)

dS(t|I2,j, X2,j)− 1
2
S(τ |I1,i, X1,i)S(τ |I2,j, X2,j).

By the following theorem, the GWRS statistic, Wn(Sn), is shown to be consistent for

θ(S0), for a sequence Sn converging to the true survival function S0. The proof of Theorem
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1 is deferred to the Supplementary Materials and the consistency conditions of Sn are

provided in Theorem 3.

Theorem 1. For a fixed pair of sets Gl ⊂ X and any sequence Sn such that supt∈[0,τ ],x∈X |Sn(t|x)−

S0(t|x)| → 0 in probability as n→∞, Wn(Sn)→ θ(S0) in probability as n→∞.

B. Generalized Log-Rank test (GLR). The log-rank test statistic for uncensored

data or right-censored data is given by

L̃Rn =

∑J
j=1

Y2jD1j+Y1jD2j

Y·j√∑J
j=1

Y1jY2jD·j(Y·j−D·j)

Y 2
·j(Y·j−1)

,

where J is the number of distinct observed time points, Yl,j and Dl,j are the number of

subjects at risk right before and the number of events at the jth time point in group l,

respectively, for l = 1, 2; Y·j = Y1,j + Y2,j and D·j = D1,j +D2,j.

Using the full-conditional survival probabilities Si(t) ≡ S(t|Xi, Ii), the log-rank test can

be extended to a generalized log-rank test (GLR) for interval censored data:

LRn(S) =

∫ τ
0
Y2(t;S)dN1(t;S)+Y1(t;S)dN2(t;S)

Y (t;S)√∫ τ
0
Y1(t;S)Y2(t;S)dN(t;S)(Y (t;S)−dN(t;S))

Y (t;S)3

,

where Yl(t;S) = 1
nl

∑
i∈Gl

Si(t−), Nl(t) = 1− 1
nl

∑
i∈Gnl

Si(t), l = 1, 2, Y (t;S) = λn,1Y1(t;S)+

λn,2Y2(t;S), N(t;S) = λn,1N1(t;S) + λn,2N2(t;S), λn,l = nl

n
, and n = n1 + n2. Note that

the statistic LRn(S) is
√
nλn,1λn,2 times smaller in scale than L̃Rn.

The following theorem establishes consistency of the GLR for

ρ(S0) = −
∫ τ
0
S0(t−|G2)dS0(t|G1)+S0(t−|G1)dS0(t|G2)

S0(t−|G1∪G2)√
−
∫ τ
0
S0(t−|G1)S0(t−|G2)S(t|G1∪G2)dS(t|G1∪G2)

S3
0(t−|G1∪G2)

for some disjoint subsets Gl ⊂ X , l = 1, 2, with the proof relegated to Supplementary

Materials.

Theorem 2. For a fixed pair of sets Gl ⊂ X and any sequence Sn such that supt∈[0,τ ],x∈X |Sn(t|x)−

S0(t|x)| → 0 in probability as n→∞, LRn(Sn)→ ρ(S0) in probability as n→∞.

C. WRS-score test (SWRS). Peto and Peto [1972] introduced asymptotic score

statistics for interval censored data, one of which is the two sample WRS test. The test

9



statistic is given by S̃W n = 1
n1

∑
i∈G1

SW1,i − 1
n2

∑
i∈G2

SW2,i, where SWl,i = ŜGl
(Ll,i) +

ŜGl
(Rl,i) − 1. To rely on the self-consistency scheme the test statistic is rewritten as

SWn(S) = 1
n1

∑
i∈G1

SW1,i(S)− 1
n2

∑
i∈G2

SW2,i(S) with SWl,i(S) = S(Ll,i|Xl,i)+S(Rl,i|Xl,i)−

1, l = 1, 2.

D. Log-Rank-score test (SLR). Another score statistic (SLR) based on the log-

rank test was proposed by Peto and Peto [1972]. This statistic, under the self-consistency

algorithm, can be written as SLRn(S) = 1
n1

∑
i∈G1

SLR1,i(S)− 1
n2

∑
i∈G2

SLR2,i(S), where

SLRl,i(S) =


S(Ll,i|Xl,i) logS(Ll,i|Xl,i)−S(Rl,i|Xl,i) logS(Rl,i|Xl,i)

S(Ll,i|Xl,i)−S(Rl,i|Xl,i)
S(Ll,i|Xl,i) > S(Rl,i|Xl,i),

logS(Ll,i|Xl,i) + 1 S(Ll,i|Xl,i) = S(Rl,i|Xl,i).

The best cut point is the one that maximizes |Wn− 1
2
|, LRn, |SWn|, or |SLRn|. We use

GWRS as our main splitting rule in the subsequent analyses. In Section 5.3.2, we illustrate

how different splitting rules affect the prediction accuracy.

3.3 Self-consistent random forest and convergence monitoring

The proposed ICRF can be understood as a self-consistent estimator. The self-consistency

algorithm [Efron, 1967] can be succinctly expressed as a solution to the equation f(·; θ) =

Pnf(·|Z; θ), where Pn is the empirical average operator with respect to random quantities

denoted as script letters, Z is the observed data, and f(·; θ) is a functional parameter of

interest. For instance, the non-parametric maximum likelihood estimator (NPMLE) for

interval censored data is a self-consistent estimator for the marginal survival probability

that solves for S in S(t) = PnS(t|I), where I is the observed intervals.

This algorithm can also be extended to tree-based estimators for survival probabilities.

Without the self-consistency scheme, survival forest estimators can generally be written as

Ŝ(t|x) =
1

ntree

ntree∑
b=1

Pn

[
S1(t|Ab(x;S2))

1(X ∈ Ab(x;S2))

|Ab(x;S2)|/n

]
,

where Ab(x) is the terminal node of the bth tree that contains x, |A| is the sample size

of node A, S1(·|Ab) is the survival probability estimate of the terminal node Ab, S2 is the

survival probability that is used to support splitting decisions in trees, and the subscripts
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indicating the dependencies with the tree index b and the sample index n are suppressed

in S1 and S2. Note that S2 is needed for tree partitioning, only when the failure time is

censored. If there is no censoring, survival forest estimators can be reduced to Ŝ(t|x) =

1
ntree

∑ntree

b=1 Pn

[
S1(t|Ab(x))1(X∈Ab(x))

|Ab(x)|/n

]
. Without censoring, the self-consistency of random

survival forests can be achieved under certain smoothness assumptions by replacing Ŝ and

S1 with S and incorporating an appropriate splitting rule. Splitting rules bring consistency

to tree or random forest estimators if every terminal node of the resulting tree partition

has an arbitrarily small length in probability for every side that contains signal and at the

same time has arbitrarily many sample points, as the sample size grows larger [Cui et al.,

2017]. Random splitting [Wager and Walther, 2015, Wager and Athey, 2018] is often used

for theoretical purposes, as is assumed in Theorem 3, instead of the greedy splitting rules

[Breiman, 2001]. However, since our paper is primarily directed at heuristic approaches

based on the self-consistency concept, we will retain use of our modified ERT algorithm for

splitting in simulations and data analyses.

Different survival tree methods assume disparate S2 in the literature. For example, the

marginal survival probability estimate Ŝ(t) is used in Fu and Simonoff [2017] and Yao et al.

[2019] and a node marginal survival probability estimate Ŝ(t|A) is used in Ishwaran et al.

[2008] and Yin et al. [2002]. Note that most existing tree-based survival estimators have

three survival quantities, Ŝ(t|x), S1 and S2, that do not coincide with each other and thus,

they are not self-consistent. This discrepancy between survival probabilities may cause

a greater bias. Splitting based on crude information, e.g., using the marginal survival

probability estimate Ŝ(t) or the intermediate node survival probability estimate Ŝ(t|A) as

S2 rather than using S(t|x), results in greater finite sample bias. See the discussion of Cui

et al. [2017], where the authors discuss the bias of random survival forests for which the

splitting rule is based on the candidate node marginal survival probabilities.

Self-consistency can be derived by replacing Ŝ(t|x), S1 and S2 with S. The ICRF

estimator Ŝ solves for S in

S(t|x) =
1

ntree

ntree∑
b=1

PnS(t|I,X ∈ Ab(x;S))
1(X ∈ Ab(x;S))

|Ab(x;S)|/n
. (3.5.1)
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The self-consistency equation can be solved by recursion. This self-consistent estimator

makes sense when S(k)(t|x) ' S(t|x) for some large k. However, self-consistency equations

in general may have multiple solutions (non-identifiability) and thus, recursion algorithms

may not guarantee convergence to the truth; for example, This issue arises when estimating

the NPMLE for interval censoring [Wellner and Zhan, 1997]. For some initial guesses,

the estimator may give an inconsistent estimate. Thus, it is crucial to make sure that

an additional forest iteration brings reduction in error. To monitor this in the absence

of knowing the true survival curve, the out-of-bag samples are used for estimating the

accuracy. That is, for each tree in ERT, we randomly subsample a large fraction, e.g. 95%,

for tree construction and evaluate the tree using the small (5%) hold-out sample. Using a

metric that will be discussed in Section 5.2, we monitor the performance of the ERT’s over

a prespecified number of iterations, e.g. K = 10.

3.4 Quasi-honesty

Once partitioning procedures are done, the terminal node survival curves are estimated

either i) by applying NPMLE to the raw interval data (quasi-honest prediction) or ii)

by averaging the full conditional survival curves (exploitative prediction). The former

approach is quasi-honest, as the survival probability of the previous iteration is only used

in the partitioning procedure but not in the prediction procedure. It is not genuine honesty

[Athey and Imbens, 2016], in the sense that ICRF still uses the same interval data in both

partitioning and terminal node prediction.

The second approach is exploitative. This approach is computationally efficient, since

the prediction does not require a complicated optimization procedures, it is computation-

ally light. However, as is discussed in the following paragraphs, this approach tends to

have higher bias, non-convergence, and dilution of signals. RIST, where imputed values

containing the information about the covariate-conditional survival curve are used for both

partitioning and terminal node prediciton, is hence exploitative.

The role of (quasi-) honesty in the prediction accuracy should be understood in terms

of the bias-variance trade-off. While honesty induces higher variability by not utilizing the
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whole information at each procedure, it relaxes the overfitting problem and makes trees less

biased by maintaining less dependence between the partitioning procedure and the terminal

node prediction procedure. Hence, quasi-honesty may or may not be beneficial to interval

censored survival analysis. A large amount of information about the true survival curve is

lost due to interval censoring. This means that there might be a room for an exploitative

approach to make up the information loss, since it more fully utilizes the information.

However, it is also true that once the estimation moves in a wrong direction initially, then

the exploitative approach may keep driving the estimation sequence in the wrong direction,

while the quasi-honest approach may suffer less from such non-convergence.

Another property of the exploitative approach is dilution of signal. When the initial

survival probability starts with the marginal survival distribution, even after partitioning,

two different points in a feature space share a significant amount of information about the

survival distribution. This results in lower variance and hence, sometimes, underfitting.

This exploitative approach should therefore be used when the features do not contain a large

amount of information about the failure time distribution. We compare the performances

of these two approaches in Sections 5 and 6.

3.5 Smoothed forests

Random forests are relatively smoother than base learners with respect to features. How-

ever, they are still discrete in the time domain, especially for the NPMLE of interval

censored data. Since in reality the survival function is unlikely to include step functions, it

can be beneficial to assume some smoothness on the true survival function. Groeneboom

et al. [2010] proposed two ways of estimating smooth survival curves for current status

data. Although their first method, the maximum smoothed likelihood estimator (MSLE),

may not apply to general interval censored data, one can easily use the second method,

the smoothed maximum likelihood estimator (SMLE), for such data. The idea is to find a

non-smooth nonparametric maximum likelihood estimator (NPMLE), Ŝ(t), and use kernel

smoothing to obtain an SMLE: S̃(t) = 1 +
∫ t
0

∫
R+

1
h
kh(s− u)dŜ(u)ds, where kh is a kernel

function with bandwidth h > 0. For survival forests, the SMLE is computed for each
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terminal node of each tree: S̃k,b(t|x) =
∑Lk,b

l=1 S̃
k,b
l (t|Ak,bl )1(x ∈ Ak,bl ), where Ak,bl is the lth

terminal node in the bth tree of the kth forest iteration, l = 1, 2, ..., Lk,b, b = 1, 2, ..., ntree,

and k = 1, 2, ..., K. Then the smoothed random survival forest is S̃k(t|x) =
∑ntree

b=1 S̃
k,b(t|x).

In this paper we use a Gaussian kernel with bandwidth h = cnmin
−1/5 where we choose

c to be the inter-quartile range of the marginal survival distribution estimate and nmin is

the minimum size of the terminal nodes. For discussion on the choice of the bandwidth,

see Groeneboom et al. [2010]. For the boundary kernel near t = 0, we use a mirror kernel

k̃h(t, u) = kh(t, |u|) for t ≤ 4h.

4 Uniform Consistency of ICRF

Although the recursion technique is intended for bias correction for finite samples, the large

sample behaviour of ICRF is of interest. We present in Theorem 3 a uniform consistency

result for the quasi-honest ICRF. The proof is provided in the Supplementary Materials. We

only consider case-II censoring, since this result can be generalized without much difficulty

to case-K censoring for K <∞ [Huang and Wellner, 1997].

Assumption 1 (Absolutely continuous measure). The probability measure of the failure

time, T , is absolutely continuous with respect to that of the monitoring times (L,R). Specif-

ically, the joint density of the monitoring times is positive (g(l, r|x) > 0), if 0 < S0(r|x) <

S0(l|x) < 1, for all x ∈ X , where S0 is the true survival probability.

Assumption 2 (Lipschitz continuity of the failure and censoring survivor functions). There

exist constants LS and LG such that |S0(t | x1)− S0(t | x2)| ≤ LS‖x1 − x2‖1 and |G(t1, t2 |

x1) − G(t1, t2 | x2)| ≤ LG‖x1 − x2‖1 for all x1, x2 ∈ X and t, t1, t2 ∈ [0, τ ], where G is the

censoring survival distribution and g is its derivative with respect to time.

Assumption 3 (Weakly dependent covariate values). The covariate space X is a p-

dimensional unit hypercube, i.e., X ∈ X = [0, 1]p. X has a density fX such that ζ−1 ≤

fX(x) ≤ ζ for all x ∈ X and some constant ζ ≥ 1.

Assumption 4 (α-regular and random-split trees). Trees in the ICRF are random-split

and α-regular according to Definitions 3 and 4 of Wager and Athey [2018].
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Assumption 5 (Terminal node size). The minimum size nmin of the terminal nodes in the

ICRF trees grows at the following rate:

nmin � nβ,
1

2
< β < 1,

where a � b implies both a = O(b) and b = O(a).

Theorem 3 (The uniform consistency of interval censored recursive forests). Suppose As-

sumptions 1–3 hold. Then the interval censored recursive forest Ŝn built based on Assump-

tions 4–5 and quasi-honesty is uniformly consistent. That is,

sup
t∈[0,τ ],x∈X

|Ŝn(t | x)− S0(t | x)| → 0

in probability as n→∞.

5 Simulations

In this section, we run simulations in order to evaluate the prediction accuracy of ICRF

in multiple aspects. We also discuss the computational cost of the method. The first set

of simulations is to compare the prediction accuracy of ICRF to that of existing methods

under multiple scenarios. The second set of simulations is to compare the performances

of different splitting rules of ICRF and to compare the performances of quasi-honest and

exploitative prediction rules. The final set shows the performance as sample size grows.

The competitors considered include the Cox proportional hazards model [Finkelstein,

1986] which is implemented using the R package icenReg [Anderson-Bergman, 2017], the

survival tree method for interval censored data [Fu and Simonoff, 2017], and the survival

forest method for interval censored data [Yao et al., 2019].

All the models except the Cox model are implemented using an R package icrf (version

2.0.0). Note that since ICRF estimates are a weighted average of NPMLE’s and the method

of Yao et al. [2019] provides an NPMLE of weighted individuals, implementation of the

latter by icrf might involve finite sample differences. Because for other methods than

ICRF, the estimates are not identifiable at each time point but are uniquely obtained
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only as a set of probability masses in intervals, we interpolate the within-interval survival

curve assuming a uniform density within those intervals. However, when the length of the

intervals is not finite, an exponential density is assumed. That is, given the estimated

probability p̂[a,∞) of the last unbounded interval, the interpolated survival estimate is given

by Ŝ(t) = 1 − p̂
−t/a
[a,∞) for a ≤ t < ∞. The NPMLE often assigns a probability mass to

the last bounded time interval even when there are subjects known to have failure times

in an unbounded interval. This can deflate survival curves in the tail drastically. Such

non-regularity can be relaxed by posing structures to the estimator [Anderson-Bergman

and Yu, 2016, Polyanskiy and Wu, 2020]. In those cases, a correction is made so that the

last probability mass is allocated exponentially over an unbounded interval. We further

include smoothed versions of the existing methods for a fair comparison. The code for the

simulations is provided in the Supplementary Material.

5.1 Generative models and tuning parameters

We first define the simulation settings by describing generative models and tuning param-

eters for the estimators. The basic framework for the generative models is largely taken

from Zhu and Kosorok [2012].

Generative models. Six scenarios for two different monitoring times (K = 1 and

K = 3) are studied. Scenario 1 (PH-L) assumes a proportional hazards model with lin-

ear hazards ratio, Scenario 2 (PH-NL) has a nonlinear hazards ratio (PH-NL) in place of

Scenario 1, and the third (non-PH) is a non-proportional hazards model, where all three sce-

narios assume non-informative censoring. The fourth scenario (CNIC) has non-informative

censoring conditional on X, and the fifth scenario (IC) has informative censoring. To fur-

ther study how smoothed estimators behave under a non-smooth true survival curve, we

further adopted Scenario 6 (non-SM), where the first scenario is modified so that the den-

sity of the event times is degenerate. The settings are defined more concretely in Table 1.

The sample size n of the training sets is 300 and samples are independently drawn. The

study period (τ) is set to 5 for all scenarios.

Tuning parameters. The tuning parameters for the tree-based methods are sum-
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scenario X p T Uk µ ρ var(µ)

1 PH-L N25(0,Σ(ρ)) 25 Exp(µ) Exp(µ̄) e0.1
∑20

j=11Xj−0.1 0.9 1.27

2 PH-NL U([0, 1]10) 10 Exp(µ) U([0, τ ]) sin(πX1) + 2|X2 − 1
2
|+X3

3 - 0.24

3 non-PH N25(0,Σ(ρ)) 25 G(µ, 2) U([0, 3
2
τ ]) 0.5 + 0.3|

∑15
j=11Xj| 0.75 0.68

4 CNIC N25(0,Σ(ρ)) 25 LN(µ) LN(0.8µ) 0.3|
∑5

j=1Xj|+ 0.3|
∑25

j=21Xj| 0.75 0.41

5 IC N10(0,Σ(ρ)) 10 Exp(µ) LN(T ) 2expit(X1 +X2 +X3) 0.2 0.46

6 Non-SM N25(0,Σ(ρ)) 25 SDE(µ) Exp(µ̄) e0.1
∑20

j=11Xj−0.1 0.9 1.27

Table 1: Simulation settings; Independent samples of size n = 300, X = (X1, ..., XP );

Σ(ρ) = {σij(ρ)}, σij = ρ|i−j|; U = (U(1), ..., U(K)) with K = 1, 3 and elements Uk (condi-

tionally) independent of each other; NP (µ,Σ), the p-dimensional normal distribution with

mean µ and variance Σ; LN(µ), the log-normal with mean µ and variance 1; U(A), the

uniform distribution over A; Exp(µ), the exponential distribution with mean µ; G(µ, θ),

the Gamma distribution with shape µ and scale θ; SDE(µ), the semi-discretized Expo-

nential defined as 1
2
(Exp(µ) + 1

2
d2Exp(µ)e); µ̄, a constant near the sample average of the

µ’s.

marized in Table 2. The minimum size of the terminal nodes is 6 for ensemble learners

and 20 for the non-ensemble tree method. For ensemble learners, 300 trees are built by

considering randomly chosen d√pe candidate variables at each node. The default split-

ting rule for ICRF is set as GWRS and both quasi-honest and exploitative prediction are

used for terminal node predictions. However, other splitting rules are also compared. The

marginal survival probability estimates are used as the initial guess. As for smoothing, the

bandwidths are chosen to be h = cn−1/5 with c = 1
2
[Ŝ−1(0.25)− S−1(0.75)].

5.2 Prediction Accuracy

To assess the prediction accuracy of the estimators, we use integrated absolute error

and supremum absolute error over the study period. They are defined as εINT (Ŝn) =∫ τ
0
|S0(t)− Ŝn(t)|dt and εSUP (Ŝn) = supt∈[0,τ ] |S0(t)− Ŝn(t)|, respectively. These error mea-

surements are obtainable only when the true survival curve S0 is available. To measure
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method nfold ntree mtry s replace nmin

ICFR 10 300 d√pe d0.95ne no 6

Fu - 300 d√pe d0.632ne yes 6

Yao - - - - - 20

Table 2: Tuning parameters for tree-based methods; Fu, the method of Fu and Simonoff

[2017]; Yao, the method of Yao et al. [2019]; nfold, the maximum number of iterations

for ICFR; ntree, the number of trees making up the random forests; mtry, the number of

candidate features on which splitting tests are done at each node; s, the size of the random

resample for a tree in random forests; replace, whether to resample with replacement or

not; nmin, the minimum number of observations in terminal nodes.

the error in the absence of the true survival curve, we use the integrated mean squared

errors type 1 (IMSE1) and type 2 (IMSE2) [Banerjee et al., 2016]. IMSE1 is defined as

the squared discrepancy of the estimate from the actual survival status averaged over

the interval of the known survival status and then averaged over the sample. That is,

IMSE1(Ŝn|D) = 1
n

∑n
i=1

1
τ−(Ri∧τ)+(Li∧τ)

{ ∫ Li∧τ
0

(1− Ŝn(t|Xi))
2dt+

∫ Ri∧τ
Ri

Ŝn(t|Xi)
2dt
}

, where

D = {(L1, R1, X1), ..., (Ln, Rn, Xn)} is the test set. This can be regarded as a modified

integrated Brier score [Graf et al., 1999].

IMSE2 is defined over the whole time domain up to the study length, where the dis-

crepancy over the censored interval is calculated by the difference between the covariate-

conditional survival curve and the full-conditional survival curve:

IMSE2(Ŝn|D) =
1

n

n∑
i=1

1

τ

∫ τ

0

(Ŝn(t|Xi, Ii)− Ŝn(t|Xi))
2dt.

As mentioned in the previous section, IMSE1 is used for convergence monitoring of

ICFR, as it is a model-free measure. The out-of-bag samples are used as a test set for

measuring IMSE1. The error measurement for convergence monitoring is given by

IMSEICFR
1 (Ŝn|D) =

1

ntree

ntree∑
b=1

IMSE1(Ŝn,b|DOOB
b ),

where D is the whole training data and DOOB
b is the out-of-bag sample left for the bth tree.
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5.3 Simulation results

5.3.1 Comparison with other methods

Simulations are done with nsim = 300 replicates for each distinct setting. The simulation

results based on quasi-honesty and GWRS rule are illustrated in Figure 1. The results

in the left column are for Case-I censoring and those in the right column are for Case-II

censoring. For convenience, we denote the ICRF estimator at the kth iteration by ICRF-k.

The iteration with the best out-of-bag error among the ten iterations is denoted by A. In

the results, ICRF-1, ICRF-2, ICRF-3, ICRF-5, ICRF-10, and ICRF-A are presented.

Comparison with other methods. For most of the scenarios, ICRF’s have minimum

or close-to-minimum integrated and supremum absolute errors. For Scenario 5 (both M =

1, 3), where Cox models have better integrated absolute errors than the ICRF’s, ICRF’s

have as good supremum errors as the Cox models. Also noting that simpler models such

as Fu and Simonoff [2017]’s method and the Cox models have better accuracy than the

method of Yao et al. [2019] under Scenario 5, there is evidence that underfitting might be

beneficial for settings where features contain weak signals, i.e., when var(E(T |X)) is low.

In Scenario 1, where data are generated under the proportional hazards model, ICRF’s

have better average accuracy than that of the Cox models. Although the Cox models

eventually have higher accuracy for larger samples (see Figure 3), the results indicate that

ICRF methods have a relatively high prediction accuracy.

Convergence monitoring. The ICRF’s error rate often becomes smaller as the num-

ber of iterations increases on average. Although in general it decreases, it often fluctuates

and sometimes increases. However, ICRF-A, the ICRF at the best iteration of IMSE1

measured against the out-of-bag samples, have integrated and supremum absolute errors

close to the minimums most of the time.

5.3.2 Splitting rules and quasi-honesty

Four splitting rules (GWRS, GLR, SWRS, SLR) with quasi-honest versus exploitative

predictions are compared in Figure 2 under six scenarios, with M = 1 monitoring time.

Most of the time, the new splitting rules (GWRS and GLR) have on average less error
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Figure 1: Prediction errors of methods under different simulation settings (the ICRF’s are

built in a quasi-honest manner); Fu, Fu and Simonoff [2017]; Yao, Yao et al. [2019]; (*),

smoothed versions; The boxes on the left column are for case-I censoring (M = 1) and those

on the right column are for case-II censoring (M = 3); For each setting, the horizontal line

indicates the minimum of mean error levels of the methods.

than the score-based rules (SWRS and SLR). Between GWRS and GLR, the two methods

have about the same prediciton accuracy. The gap between the new splitting rules and the

score-based rules might reflect the fact that score-based rules rely on approximation, while

GWRS and GLR do not.

On the other hand, the comparison between quasi-honest and exploitative predictions

is less consistent. One does not always beat the other. In Scenarios 2, the exploitative

prediction has lower integrated absolute error, and in other scenarios, it has higher error

rates. As mentioned in the last paragraph of Section 3.4, exploitative prediction tends

to make weak contrasts between two feature values and is expected to perform well when

the true distribution has faint signals. In contrast, quasi-honest prediction provides more

precise estimates when the signal is strong. As can be seen Figure A1 in the Supplementary

Materials, exploitative prediction is computationally lighter than quasi-honest prediction

and this difference overwhelms the difference made by different choices of the splitting rules.
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See the Supplementary Materials for more discussion on computational cost.

Figure 2: Mean and 1st and 3rd quartile εINT of splitting rules and prediction rules under

Case-I censoring.

5.3.3 Varying sample sizes

The prediction accuracy of each method is evaluated under different sample sizes for current

status data (M = 1) under Scenario 1 (proportional hazards model). The integrated

and supremum errors are measured. For ICRF, the last fold (10th) estimate is used for

illustration. The mean, the 1st quartile, and the 3rd quartile of error measurements across

300 replicates are illustrated in Figure 3.

The Cox model, although it does not have the smallest errors for small sample sizes

(n = 100, 200), has rapidly decreasing errors as the sample size grows larger for both
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integrated and supremum absolute errors. Among the nonparametric models, ICRF shows

the highest prediction accuracy in terms of all error measures for most sample sizes. For

n = 1600, the integrated error is lowest for the Cox model and has virtually a converged

value for all ensemble-based methods.

The computation time of ICRF increases in a mildly superlinear fashion with respect

to the sample size. See Figure A2 and Web Section 4 of the Supplementary Materials.

Figure 3: Prediction errors under different sample sizes for Scenario 1 and K = 1.

6 Data analyses

In this section, we apply ICRF (using 10 iterations), and three other methods—Fu and

Simonoff [2017], Yao et al. [2019], and the Cox model—with the corresponding smoothed

versions to two existing data sets: (i) avalanche victim data where the time of discovery

and a victim’s survival status were only observed (Jewell and Emerson [2013]), and (ii)

data extracted from the National Longitudinal Mortality Study (Sorlie et al. [1995]).
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6.1 The avalanche victims data

The data of 1,247 avalanche victims buried in Switzerland and Canada between October

1980 and September 2005 are analyzed ([Jewell and Emerson, 2013]). The dataset includes

duration of burial and status of survival of the subjects, and thus can be regarded as

current status data. The covariates include location, burial depth, and the type of outdoor

activities involved. Approximately 10% of the observations have missing burial depth. The

main quantity of interest is the covariate-conditional survival probability where the event

time is defined as time from burial to death. The event time here is counterfactual in a

sense that the event time is the time until death had the person not been discovered (prior

to death).

We use the following assumptions. First, burial duration is independent of the time to

event. This assumption is feasible as avalanche recovery is usually performed in the absence

of knowledge of the survival status of victims. Second, the missingness of burial depth is

completely at random. Although this assumption may not be fully valid, we analyze the

data using complete cases only for comparative purposes. Third, the survival of individual

victims are independent. Since a single avalanche may involve multiple burials due to

group activities, without a sufficient number of covariates, this assumption may not be

valid. However, the point estimator of the survival function remains valid.

We randomly partition the complete data (n = 1127) into training (n = 789) and

test (n = 338) datasets 300 times. The training sets are used for estimation of the survival

curves, and the fitted models are evaluated using the corresponding test sets. The avalanche

data is highly skewed (median = 30, mean = 2,932, 3rd quartile = 110, max = 342,720

in minutes). To make the estimation computationally feasible, a log-transformed time

domain is used with a transformation h : [0,∞) 7→ [0,∞) where h(t) = log(t+ 1), and the

prediction accuracy is evaluated in the transformed time domain. The study length is set as

τt = 14400 minutes (10 days) or τ = log(τt+1) = 9.58. The analyses are implemented using

the R package icrf and the code is provided in the Supplementary Material. Preliminary

parametric and semi-parametric regression analyses of the data are available in Jewell and

Emerson [2013].
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The prediction accuracy (IMSE) of the fitted models is summarized in Table 3 (LEFT).

Among nonparametric methods, the ICRF with exploitative prediction has the best pre-

diction accuracy. Although the smoothed Cox model shows the best prediction accuracy

(IMSE1 = 0.21, IMSE2 = 0.19) among all available methods, the exploitative ICRF has a

comparable performance (IMSE1 = 0.22, IMSE2 = 0.19).

Prediction error Variable importance

method IMSE1 (sd) IMSE2 (sd) variable quasi-honest exploitative

ICRF (Q) 0.026 (0.0032) 0.026 (0.0038) by IMSE1 (multiplier = 0.0073)

ICRF (E) 0.022 (0.0021) 0.019 (0.0013) Burial depth 1.00 0.47

Fu 0.024 (0.0030) 0.027 (0.0042) Group activity 0.17 0.41

Fu (*) 0.023 (0.0028) 0.020 (0.0032) Location 0.16 0.24

Yao 0.025 (0.0031) 0.026 (0.0031) by IMSE2 (multiplier = 0.0041)

Yao (*) 0.026 (0.0030) 0.026 (0.0030) Burial depth 1.00 0.67

Cox 0.021 (0.0025) 0.019 (0.0021) Group activity 0.27 0.46

Cox (*) 0.021 (0.0026) 0.019 (0.0022) Location 0.55 0.27

Table 3: Average prediction error of the avalanche survival models for each method (LEFT)

and variable importance of the ICRF model fitted on the first training set of the avalanche

data (RIGHT). ICRF (Q), quasi-honest ICRF; ICRF (E), exploitative ICRF; The im-

portance values are rescaled so that maximum values for each measure becomes 1. The

multiplier is the original importance scale.

Figure 4 illustrates the expected truncated log survival time,
∫ τ
0
h(t)dS(h(t)) + τS(τ),

of avalanche victims estimated by each smoothed model. While the Cox model, by as-

sumption, has a monotone expected survival time with respect to each of the covariates,

nonparametric models show non-monotone curves. The expected truncated survival time

curves of the two prediction rules have a significant difference in their model variability,

or var[E[T |X]]. Quasi-honest ICRF, compared to exploitative ICRF, has a wigglier curve

along burial depths and has wider gaps among different group activities.

For most models, burial depth seems to be the most important covariate. In general,
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the mean truncated survival time decreases as the burial depth increases. However, for the

emsemble methods (ICRF, Yao et al. [2019]), the mean survival time increases for depths

greater than 350 cm. This is considered to be an overfitting problem in a sparse data

region. In many models, the location also plays as important a role as burial depth; In the

Cox model, the mean survival time in Canada is on average smaller than in Switzerland.

Unlike the Cox model, nonparametric models have different patterns of expected survival

time curves for different countries.

Variable importance is formally quantified by measuring the increase in IMSE for a

dataset where the values of each covariate in the original dataset are randomly permuted

across the sample. The permutation is outside of the tree building procedure and does not

affect the final prediction. The increase in IMSE is averaged across ten sets of random

permutations. A larger increase in error for a variable indicates higher importance of the

variable. The variable importance calculated for the model fitted on the first training set

of the avalanche data is presented in Table 3 (RIGHT). For either type of measurement

(IMSE1 or IMSE2), burial depth is the most important variable explaining the survival

probability. Group activity is chosen as more important than location except when impor-

tance is measured using IMSE2 for the quasi-honest rule.

6.2 National Longitudinal Mortality Study

We use the National Longitudinal Mortality Study (NLMS) data to explore the ability of

the proposed method to model rich covariate information for survival data. The NLMS is

a collaborative effort between the US Census Bureau and the National Heart, Lung, and

Blood Institute (NHLBI), National Cancer Institute (NCI), National Institute on Aging

(NIA), and the National Center for Health Statistics (NCHS). The views expressed in this

paper are those of the authors and do not necessarily reflect the views of the Census Bureau,

NHLBI, NCI, NIA, or NCHS. Among several data sets resulting from this extensive study,

we use the dataset with six years of follow-up recorded around April 2002. The data are

available at https://biolincc.nhlbi.nih.gov/studies/nlms.

The data include 0.7 million subjects with time to mortality, demographic information
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Figure 4: Estimated mean truncated log survival time in the avalanche data. The size of

dots at the bottom of each box represents the number of sample data points.

such as age, sex, and race, socioeconomic data such as income and housing tenure, and

other covariates. Censoring is very high (97% survived six years), as this is a general

population sample, but only administrative censoring was observed. We narrow our focus

to the elderly (age ≥ 80 in years at entry) with complete covariate records (n = 3, 630)

and artificially induce current status censoring where the monitoring time depends only on

age and household size. The proportion of missing covariate data is 20.7% for the whole

data and 65.9% for the elderly subset. Thus, it should be noted that this data analysis is

solely for performance comparison among the methods and that the results obtained from

this regression analysis are limited to the selected population. The analysis framework is

largely the same as for the avalanche data, except that with the increased sample size, the

terminal node size was allowed to be larger (nmin = 20 for random forests and nmin = 40

for trees). We provide further detail about the data, the pre-processing pipeline, and the

censoring mechanism in the Supplementary Materials.

Table 4 (LEFT) provides the prediction accuracy (IMSE) of the models trained and
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evaluated based on 70:30 cross-validation. The methods of Yao et al. [2019] and the ex-

ploitative ICRF have similarly the lowest prediction errors among all methods including

the Cox model. This indicates that strong assumptions such as proportional hazards and

linearity may be violated in the data. Table 4 (RIGHT) lists the variable importance ac-

cording to ICRF. Besides age, type of health insurance (HI-type) turns out to be the most

important variable that explains the failure time distribution, followed by presence of a

social security number (SSN), self-reported health status (health), and sex.

Prediction error variable importance

method IMSE (sd) quasi-honest exploitative

ICRF (Q) 0.113 (0.0038) age 1.00 age 1.00

ICRF (E) 0.113 (0.0065) HI-type 0.93 HI-type 0.71

Fu 0.135 (0.0057) SSN 0.76 SSN 0.54

Fu (*) 0.134 (0.0057) health 0.57 health 0.45

Yao 0.112 (0.0042) sex 0.55 sex 0.31

Yao (*) 0.111 (0.0038) race 0.20 weight 0.24

Cox 0.117 (0.0055) tenure 0.15 relationship 0.18

Cox (*) 0.120 (0.0130) (multiplier) 0.0169 (multiplier) 0.0151

Table 4: Average prediction error of the NLMS survival models for each method (LEFT)

and variable importance of the ICRF model fitted on the first training set of the NLMS

data based on IMSE1 (RIGHT). For prediction error of the NLMS data, types 1 and 2 of

the IMSE are equivalent. ICRF (Q), quasi-honest ICRF; ICRF (E), exploitative ICRF;

The importance values are rescaled so that maximum values for each measure becomes 1.

The multiplier is the original importance scale.

7 Discussion

In this paper, we proposed a new tree-based iterative ensemble method for interval censored

survival data. As interval censoring masks a huge amount of information, maximizing

27



the use of available information can significantly improve the performance of estimators.

Using an iterative fitting algorithm with convergence monitoring, ICRF solves the potential

bias issue which most existing tree-based survival estimators have. Specifically, this bias

issue arises from not fully utilizing the covariate-conditional survival probabilities in the

early phases of the tree partitioning procedure for these methods, which causes the kernel

estimate to incur significant bias. The WRS and log-rank tests were generalized for interval

censored data and were used as splitting rules to fully utilize the hidden information. Quasi-

honesty and exploitative rules were discussed for terminal node prediction. Smoothing adds

another feature to ICRF.

We suggested many of the default modeling hyper-parameters, such as using GWRS or

GLR as a splitting rule, the bandwidth of kernel smoothing, and the best iteration selection

procedure by the out-of-bag IMSE1 (or IMSE2) measurement. However, the choice of

the terminal node prediction rule remains unspecified. The quasi-honest and exploitative

prediction rules each have their own strengths. The quasi-honest rule induces higher model

variability, while the exploitative rule tends to favor simpler models. Thus, they perform

well under high and weak signal settings, respectively.

The challenge is that IMSE measurements are not always a good replacement for the

true error measurement (εINT and εSUP ). The out-of-bag IMSE1 measurement recommends

the exploitative prediction rule for most of the simulation settings, including scenario 3

where the quasi-honest rule has higher accuracy than the exploitative rule. Although the

exploitative rule still beats the quasi-honest rule for five out of six scenarios and hence

a decision rule based on out-of-bag IMSE1 measurements may make sense, care must be

taken.

This problem can be seen as a model selection problem balancing parsimony and flexi-

bility. If the true model is thought to be smooth and simple, the exploitative rule should be

employed. If the true model is believed to be complicated, the quasi-honest rule should be

used. Unfortunately, the complexity or smoothness of true models is usually unknown. As

model selection criteria such as AIC, BIC, and Mallow’s Cp have been proposed in linear

regression settings, new model selection criteria for interval censored survival models might
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greatly improve prediction accuracy.

The signal dilution property of the exploitative prediction rule might be caused by the

fact that the marginal survival probability is shared by all censored subjects and the shared

information is again carried forward to the next conditional survival probability estimate.

This property might be mitigated by using non-marginal survival curves as the initial

estimate. For example, the Cox model estimate or the first iteration of the quasi-honest

ICRF estimate can be used as the initial estimate.
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