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Abstract 

Background: In drug trials, clinical adverse events (AEs), concomitant medication and laboratory safety outcomes 
are repeatedly collected to support drug safety evidence. Despite the potential correlation of these outcomes, they 
are typically analysed separately, potentially leading to misinformation and inefficient estimates due to partial assess-
ment of safety data. Using joint modelling, we investigated whether clinical AEs vary by treatment and how labora-
tory outcomes (alanine amino-transferase, total bilirubin) and concomitant medication are associated with clinical AEs 
over time following artemisinin-based antimalarial therapy.

Methods: We used data from a trial of artemisinin-based treatments for malaria during pregnancy that randomized 
870 women to receive artemether–lumefantrine (AL), amodiaquine–artesunate (ASAQ) and dihydroartemisinin–pipe-
raquine (DHAPQ). We fitted a joint model containing four sub-models from four outcomes: longitudinal sub-model for 
alanine aminotransferase, longitudinal sub-model for total bilirubin, Poisson sub-model for concomitant medication 
and Poisson sub-model for clinical AEs. Since the clinical AEs was our primary outcome, the longitudinal sub-models 
and concomitant medication sub-model were linked to the clinical AEs sub-model via current value and random 
effects association structures respectively. We fitted a conventional Poisson model for clinical AEs to assess if the effect 
of treatment on clinical AEs (i.e. incidence rate ratio (IRR)) estimates differed between the conventional Poisson and 
the joint models, where AL was reference treatment.

Results: Out of the 870 women, 564 (65%) experienced at least one AE. Using joint model, AEs were associated with 
the concomitant medication (log IRR 1.7487; 95% CI: 1.5471, 1.9503; p < 0.001) but not the total bilirubin (log IRR: 
-0.0288; 95% CI: − 0.5045, 0.4469; p = 0.906) and alanine aminotransferase (log IRR: 0.1153; 95% CI: − 0.0889, 0.3194; 
p = 0.269). The Poisson model underestimated the effects of treatment on AE incidence such that log IRR for ASAQ 
was 0.2118 (95% CI: 0.0082, 0.4154; p = 0.041) for joint model compared to 0.1838 (95% CI: 0.0574, 0.3102; p = 0.004) 
for Poisson model.
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Background
There has been limited analysis of safety data being con-
ducted in drug clinical trials compared to efficacy data. 
During drug clinical trials, scheduled and non-scheduled 
visits are conducted where multiple safety outcomes are 
collected including longitudinal clinical laboratory out-
comes and clinical AEs [1, 2]. Data on concomitant medi-
cations defined as any medication/supplement taken by 
the trial participant other than the investigational prod-
uct, are also repeatedly collected in order to support drug 
safety evidence. The repeatedly measured clinical labora-
tory outcomes are considered as objective and proxy indi-
cators for drug-induced human body organ dysfunction 
and tend to be strongly associated with incidence of clini-
cal AEs. For example, classic liver function biomarkers 
such as total bilirubin and alanine aminotransferase are 
usually used in assessment of drug safety [3]. However, 
each of the clinical laboratory safety outcomes is usually 
analysed separately based on summary statistics such 
as means or proportion of patients with elevated values 
for the safety markers [4, 5]. The clinical AE data is also 
usually analysed separately using the descriptive non-
parametric methods (e.g. cumulative incidence function 
and crude incidence rate) [6–8]. Although ignored in 
most safety analyses, concomitant medication taken dur-
ing the trial period can also influence the magnitude of 
drug safety estimates since the concomitant medication 
can interact with the treatment under investigation. Con-
comitant medication is usually also analysed separately 
(e.g. using mean cumulative function) [9]. The standard 
approaches that analysed each of the clinical laboratory 
safety data, clinical AEs and concomitant medication 
separately are inefficient and may yield biased estimates 
of AE incidence rate (i.e. clinical AEs occurrence over fol-
low-up time) since they ignore the correlation structure 
of the multiple outcomes over the follow-up time, leading 
to information loss. Furthermore, the separate analyses 
present challenges in interpreting overall drug safety pro-
file. Integrated approach in analysis of the clinical labora-
tory safety data, concomitant medication and clinical AEs 
through the use of joint models, can offer an opportunity 
to efficiently harness the available information towards 
enriching the drug safety estimates. The joint models 
can efficiently quantify how the incidence rate of AEs is 
associated with the multivariate longitudinal process of 

the multiple continuous laboratory-based measurements, 
accounting for baseline covariates, concomitant medica-
tions and unobserved heterogeneity that is not captured 
in the conventional analytical approaches of safety data, 
all of which can potentially confound the estimates.

Recently, there have been increased proposals for 
improved analysis of multivariate clinical laboratory 
data, concomitant medications and clinical AEs. Schil-
drout et  al. [10] and Rosenkranz [11] discuss the utility 
of longitudinal modelling of clinical laboratory data using 
estimating equations and maximum likelihood. However, 
such separate longitudinal models ignore correlation 
between the multiple safety outcomes. Southworth and 
Heffernan proposed joint modelling approach that cap-
tures the joint behaviour of clinical laboratory safety data 
elevated values indicative of potential liver damage [12]. 
However, this was limited as the model did not use all the 
available information due to focus on extreme values and, 
further, such modelling is mainly suited for large sample 
sizes. Merz et  al. [3] also recommended accounting for 
both multivariate longitudinal clinical laboratory data 
and clinical AEs, although they do not explicitly discuss 
how this can be practically achieved. Barker [9] demon-
strates how mean cumulative function can be used as 
an exploratory tool in analysis number of concomitant 
medications taken over the follow-up time in order to 
support drug safety evidence interpretation. Building on 
these recent developments, this paper explores whether 
jointly modelling multivariate longitudinal clinical labo-
ratory, concomitant medication and clinical AEs adjusted 
for baseline characteristics can be efficient in estimat-
ing AE incidence rate and useful in understanding joint 
evolution of the potentially correlated multiple safety 
outcomes.

In clinical trials with frequent AE occurrence (e.g. 
antimalarial treatment in pregnancy trials), event count 
models such as Poisson or negative binomial regression 
are considered important in quantifying the AE rate 
[13–16]. However, the AEs are also highly correlated 
with the cumulative concomitant medications and clini-
cal laboratory safety outcomes. Joint modelling can offer 
an opportunity to explicitly model the correlations and 
account for the follow-up time, ensuring efficient and 
unbiased estimates. Despite the advanced development 
and evident benefits of joint modelling of multivariate 

Conclusion: We demonstrated that although the AEs did not vary across the treatments, the joint model yielded 
efficient AE incidence estimates compared to the Poisson model. The joint model showed a positive relationship 
between the AEs and concomitant medication but not with laboratory outcomes.
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longitudinal data [17–19], joint modelling has received 
limited attention in drug safety assessment. Recent statis-
tical software developments have provided an opportu-
nity for extending joint models to more different types of 
outcomes [20, 21], beyond the traditionally implemented 
joint models with single continuous longitudinal data and 
single survival outcome. In this paper, we present a joint 
model for longitudinal continuous clinical laboratory 
safety data (alanine amino transferase and total biliru-
bin), individual clinical AEs and concomitant medication. 
We focus on demonstrating the utility of the proposed 
model in assessing the association between the clinical 
AEs in relation to these outcomes controlling for baseline 
covariates. Furthermore, we assessed whether the joint 
model improved the estimates in log incidence rate ratio 
(IRR) on effect of treatment on clinical AEs compared 
to the conventional Poisson model. The proposed joint 
model is useful in providing evidence-based decisions in 
determining the most important clinical safety measure-
ments to focus on for drug safety assessment especially in 
resource-constrained settings.

Methods
Data
Our proposed joint model was applied to data from 
PREGACT trial as the motivating data. PREGACT trial 
(ClinicalTrials.gov number, NCT00852423) was a mul-
ticentre, open-label randomized trial carried out in 4 
African countries (Burkina Faso, Ghana, Malawi, and 
Zambia). The current work uses the data from Malawi. 
In Malawi, the trial was implemented between June 2010 
and August 2013 and enrolled 870 pregnant women 
during their second or third trimester with falcipa-
rum malaria. The women were randomly allocated in a 
1:1:1 ratio to be treated with artemether–lumefantrine 
(AL), amodiaquine–artesunate (ASAQ) or dihydroarte-
misinin–diperaquine (DHAPQ). The primary outcome 
was polymerase-chain reaction (PCR) adjusted cure rates 
at day 63.

The safety outcomes collected at baseline and during 
follow-up were AEs, total bilirubin, alanine aminotrans-
ferase, white blood cell and red blood cell counts. The 
patients were directly observed on days 0-2 (after receiv-
ing the dose). The patients were then asked to return to 
the clinic for follow-up visits on days 3 and 7 and then 
weekly thereafter until day 63. For this analysis, we focus 
on four outcomes; two clinical laboratory safety biomark-
ers (total bilirubin and alanine aminotransferase), clini-
cal AEs and concomitant medication. The total bilirubin 
and alanine aminotransferase data was collected at enrol-
ment, day 7, 14, 28 and 63. We focused on bilirubin and 
alanine aminotransferase biochemical parameters since 
they are key biochemical parameters in antimalarial drug 

safety assessment during pregnancy and were also meas-
ured in the PREGACT trial.

The clinical AE count, defined as cumulate number of 
AEs experienced by the end of follow-up time is the pri-
mary outcome of interest in the current analysis. In all 
the subsequent discussions, the clinical AEs that were 
defined as definitely not related (by the study physician) 
to the antimalarial drug treatment are not considered 
in developing the joint model to avoid spurious results. 
The concomitant medication outcome is also defined as 
cumulative number of reported concomitant medication 
use by the end of the follow up time for each patient. In 
the current study, we considered the reported concomi-
tant medication use regardless of its intended use.

Ethical considerations
The PREGACT trial was conducted in accordance with 
the Declaration of Helsinki and Good Clinical Practice 
guidelines. The trial obtained ethical clearance from 
ethics committee at the Antwerp University Hospi-
tal in Belgium and College of Medicine Research Eth-
ics Committee at the University of Malawi [22]. Prior to 
enrolment, informed consent was also sought from the 
mother. Ethical approval was also obtained from Univer-
sity of the Witwatersrand Human Research Ethics Com-
mittee, prior to access and utilization of the data for the 
current analysis.

Notation and joint model specification
Let each patient who was randomized and received 
at least a dose be denoted as i = 1, … …, n. Let 
Vi =

(

vTi1, vTi2
)

 be a bivariate continuous clinical labo-
ratory outcome vector. Specifically, in our context we 
consider a bivariate scenario; k = 1 is alanine amino 
transferase and k = 2 is total bilirubin. Each of the two 
continuous outcome vectors (vi1,  vi2) are of (nikx1) 
dimension for the observed longitudinal measurements 
of the k-th outcome; vik = (vi1k, …….,  vink)T. We accom-
modate the situations where observation times, tijk may 
differ between individuals and outcomes (j = 1,  … . 
., nik). For each patient, we let Ci =

(

cTi1, cTi2
)

 represent a 
bivariate count outcome vector where k = 1 is for total 
number of AEs experienced during their follow-up time 
Ti and k = 2 for total number concomitant medication 
used over the follow-up time Ti. A set of covariates that 
were collected at baseline for each individual are defined 
as Xi = {X1i, X2i, … . ., Xpi}.

Conventional Poisson model for clinical AEs
In drug trials, where multiple safety outcomes are repeat-
edly collected to support safety evidence, clinical AEs are 
usually of primary interest. The occurrence of the clini-
cal AEs is typically correlated with other safety-related 
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outcomes such as alanine aminotransferase, total bili-
rubin and concomitant medication. Modelling these 
outcomes separately is inefficient since it insufficiently 
accounts for the correlations. Traditionally, modelling of 
clinical AEs count is done using the conventional Pois-
son model, where the Poisson mean response (of clini-
cal AEs in this context), φ, is assumed to be equal to the 
variance Since the clinical AEs count is non-negative the 
logarithm of φ can naturally be linked with the baseline 
variables such that the conventional Poisson model for 
the clinical AE count can be presented as;

Where φ represents Poisson mean response and β is a 
vector of coefficients (i.e. log IRR) for the corresponding 
vector of baseline covariates, XT

ik , that included mater-
nal age, gravidity, trimester at enrolment and treatment 
arm.. The model M1 has log link of the mean response 
of clinical AEs count and assumes a Poisson distribution 
of the clinical AEs. The coefficients of the covariates are 
interpreted on logarithm scale as expected change in the 
log of mean clinical AEs count per unit change in the 
covariate. Exponentiating the coefficients (i.e. log IRR) 
yields IRR. However, the estimated effect of treatment on 
clinical AEs from model M1 may be insufficient since it 
does not account for other factors that can confound the 
estimates e.g. concomitant medication and clinical labo-
ratory outcomes. Alternatively, one can consider incor-
porating this additional information (of concomitant 
medication and clinical laboratory outcomes) as part of 
covariates in model M1. This can yield model M2 below.

Since the concomitant medication and clinical labora-
tory outcomes (alanine aminotransferase, total bilirubin) 
are added in the model as time-varying covariates (with 
time t0, representing baseline covariates in M1), the vec-
tor of covariates adjusted in model M2 is XT

ik(t) denot-
ing the vector of covariates value at time t. However, both 
model M1 and M2 do not account for correlation over-
time across the longitudinal alanine aminotransferase, 
longitudinal total bilirubin, concomitant medication 
and clinical AEs outcomes. In this context of multiple 
outcomes that are correlated overtime, joint modelling 
offers an opportunity to obtain improved and efficient 
estimates since it can efficiently account for the potential 
correlations and baseline covariates. The joint model also 
enables formal quantification of the relationship between 
correlated outcomes by estimating the strength of the 
association between the outcomes.

Most previously proposed joint models consist of two 
sub-models; longitudinal sub-model and time-to-event 

(1)log (ϕ) = X
T
ikβ

(2)log (ϕ) = X
T
ik(t)β

sub-model (where the time to event outcome is of pri-
mary interest). Here, we propose a joint model where 
the primary outcome of interest is count outcome (i.e. 
clinical AEs count) such that time to event outcome 
sub-model is replaced with count outcome sub-model. 
Since we assumed Poisson distribution of the clinical 
AEs count, the count outcome sub-model was speci-
fied as Poisson-distributed. Therefore, the joint model 
presented in this paper consist of two longitudinal con-
tinuous laboratory safety biomarkers sub-models (one for 
total bilirubin and one for alanine aminotransferase) two 
Poisson sub-models (one for the individual clinical AEs 
count and one for the individual concomitant medication 
count). The connecting of these outcomes sub-models 
is very flexible such that we could use random effects or 
expected value of outcomes [23] as detailed in the model 
specification below.

Joint model formulation
As highlighted above, the joint model is formulated in 
such a way that clinical AE count is a primary outcome. 
In this section we describe the structures of the sub-
models that made the joint model considered in this 
work. The estimates in all the models are considered on 
a logarithm scale.

Longitudinal sub‑model
We modelled two continuous longitudinal clinical lab-
oratory safety outcomes (i.e. total bilirubin and ala-
nine aminotransferase) using a longitudinal sub-model 
based on a flexible linear mixed effects model that could 
accommodate nonlinear changes of the laboratory safety 
outcomes. The flexibility was achieved through the use 
of restricted cubic splines. Each continuous longitudinal 
clinical laboratory outcome vi1, vi2 was assumed to be 
normally distributed with mean μk and variance δ2k (k = 1, 
2) on a logarithm scale. Each continuous longitudinal 
clinical laboratory outcome is modelled using the sub-
model below

where εik(t) is the error term observed at time t for the 
kth outcome from patient i. The error terms for the 
model are assumed to be independent, identical and nor-
mally distributed with mean 0. The mean response model 
X
T
ik(t)β , specified as a linear function of the covariates 

at a given time for the outcome k is flexible such that it 
can accommodate time-varying covariates. The Zi(t) is 
an indicator vector of random effects for kth outcome for 
patient i at time t such that it takes the value of 1 when 
there is a random effect and 0 otherwise. The vector of 

(3)
vik (t) = X

T

ik
(t)� + Zi(t)bi + �ik (t), i = 1, … … , n; k = 1, 2
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the patient-specific shared random effects bi is assumed 
to have a multivariate normal distribution with mean 0 
and variance-covariance matrix Σ, s.t. (bi) ∼ MVN(0, ∑).

Alanine aminotransferase sub‑model Based on M1, 
considering patient-specific random intercept as our 
shared parameter of interest, linking the outcomes, the 
longitudinal sub-model for alanine aminotransferase can 
be written simply as M4 below;

where b0i1 is the patient specific random intercept corre-
sponding to the alanine aminotransferase outcome.

Total bilirubin sub‑model Similarly, the longitudinal 
sub-model for total bilirubin, M5, can be formulated as;

where b0i2 is the patient specific random intercept corre-
sponding to total bilirubin outcome.

Count sub‑models
We considered two event count sub-models; one for 
concomitant medication count and the other for the AE 
count. The two count sub-models were derived from a 
modified form of the generic Poisson model. The count 
sub-model was as follows;

Concomitant medication count sub‑model Assuming 
that the concomitant medication count had a Poisson 
distribution, its sub-model was defined as

such that log(φ| b03i) represents the logarithm of the 
Poisson mean response, φ, conditional on the patient-
specific random intercept, b03i for concomitant medi-
cation count (i.e. the concomitant medication count 
sub-model is linked with the AE count sub-model in the 
joint model via the random intercept). The XT

ik(t)β is the 
linear predictor for the Poisson model has a logarithm 
link function and contains a vector of fixed effects β cor-
responding to the baseline covariates. The α3 represents 
log incidence rate ratio per unit increase in the patient-
specific deviation from the mean random intercept of the 
reported concomitant medication use.

Clinical AE count sub‑model Considering that AE 
count was the primary outcome of interest and assum-
ing a Poisson distribution for the AE count, the AE count 
sub-model was formulated as;

(4)vi1(t) = X
T
i1(t)β + b0i1

(5)vi2(t) = X
T
i2(t)β + b0i2

(6)log (ϕ|b03i) = X
T
ik(t)β + b03iα3

The log(φ| b01i, b02i, b03i) represents the logarithm of 
Poisson mean response, φ, conditional on the shared ran-
dom intercepts for the two longitudinal clinical labora-
tory outcomes and the concomitant medication count. 
Each random intercept for the longitudinal sub-models 
and concomitant medication sub-model (b01i, b02i, b03i) 
is linked to the linear predictor XT

ik(t)β for the Poisson 
model. This yields random effects association structure 
where α1, α2, α3 estimate the strength of the association 
between the respective continuous longitudinal clinical 
laboratory outcome, concomitant medication count and 
the AE count; the α1, α2, α3 represent log incidence rate 
per unit increase in the patient-specific deviation from 
the mean random intercept of a respective continuous 
longitudinal clinical laboratory outcome or the concomi-
tant medication count outcome. For example, α1 rep-
resents log incidence rate ratio per unit increase in the 
patient-specific deviation from the mean random inter-
cept of a respective log alanine aminotransferase.

Alternative clinically meaningful formulation of the AE 
count sub-model could be linked to the expected value of 
the respective continuous longitudinal clinical laboratory 
outcome with the linear predictor of the Poisson model. 
This yields the current value association structure where 
the α1, α2, α3 represent log incidence rate ratio per unit 
increase of the respective continuous longitudinal clinical 
laboratory outcome, at time t. Current value association 
structure is very important and clinically plausible when 
linking continuous outcomes. In our cases, given the two 
continuous longitudinal clinical laboratory outcomes 
(i.e. log alanine aminotransferase and log total bilirubin) 
v1, v2, under the current value association structure, we 
can modify the AE count sub-model as;

The E[v1(t)| μ1(t)] and E[v2(t)| μ2(t)]α2 are the expected 
current values of log alanine aminotransferase and total 
bilirubin respectively. It can be noted from M6 that the 
concomitant medication count, v3, sub-model is still 
linked to the AE count sub-model via a random inter-
cept b03i. We maintained the random intercept (b03iα3) 
parameterization since this efficiently deals with any 
potential over-dispersion problem encountered in Pois-
son models. Therefore, model M8 contains a mixture 
of both the expected current value and random effects 
association structures. Since both continuous outcomes 
(the log alanine aminotransferase and log total bilirubin) 
are assumed to be normally distributed (i.e. with identity 
link), the model can further be simplified as;

(7)
log (ϕ|b01i, b02i, b03i) = X

T
ik(t)β + b01iα1 + b02iα2 + b03iα3

(8)
log (�) = X

T
ik
(t)� + E

[
v
�(t)|μ�(t)

]
�
�
+ E

[
v
�(t)|μ�(t)

]
�
�
+ b

��i��
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In this paper, we focus on reporting results from the M9 
association structure since it is more clinically meaning-
ful since it has association parameters that are directly 
interpretable in clinical practice.

Joint model likelihood and estimation
The estimates for the joint model are obtained by maxi-
mizing the marginal likelihood of the joint distribution of 
the observed data and the random effects [23]. The likeli-
hood function for the observed data can be specified as;

where θ represents the set of parameters of interest to 
be estimated including both the fixed and random effects 
(e.g. association parameters α1, α2, α3, and coefficients 
for the baseline covariates, β). Component f(bi| θ) is a 
normal density function for the random effects condi-
tional on θ and f(Vi| θ) is a normal density function for 
the log total bilirubin and log alanine aminotransferase 
conditional on θ and bi. The f(Ti, Ci| bi, θ) represents 
Poisson density function conditional on θ and bi; patient-
specific total follow up days is Ti and Ci represents total 
events recorded (for AE count sub-model and concomi-
tant count sub-model). Since obtaining the log likelihood 
requires integrating out the random effects, it becomes 
challenging as number of random effects increases such 
that the traditionally used adaptive Gauss-Hermite quad-
rature would be limited (to handle the large number of 
random effects in our complex joint model). To miti-
gate this problem, we employed Monte Carlo integra-
tion technique since the number of draws it makes from 
the random effects do not need to change with increase 
in number of random effects [23, 24] (hence reducing 
the computation burden). Estimation of our models was 
done using merlin in Stata [21]. Only 7 patients had miss-
ing data points and the data missing mechanism was 
considered completely at random.

Statistical data analysis
Firstly, we computed the summary of the baseline char-
acteristics for the women at enrolment. We presented 
means with respective standard deviation for the contin-
uous variables (e.g. maternal age, gestational age) and fre-
quencies with respective percentages for the categorical 
variables (e.g. trimester at enrolment, bed-net use). These 
summaries were also computed for the clinical AE occur-
rence and concomitant medication counts. The concomi-
tant medication was also summarized based frequency of 

(9)
log (ϕ) = X

T
ik(t)β + [µ1(t)]α1 + [µ2(t)]α2 + b03iα3

(10)
Li(θ) =

∏n

i=1
f (V i|bi, θ)f (Ti,Ci|bi, θ)f (bi|θ)dbi

the specific patients and the number of patients who took 
the medication. In order to aid visualization of the trend 
of the data, we plotted box plots for the two continuous 
longitudinal clinical laboratory data (total bilirubin and 
alanine aminotransferase) outcomes by study visit day.

We considered two different models to compare how 
they efficiently estimated effect of treatment on clinical 
AEs over the follow-up time. The models compared were 
conventional Poisson model M1 and joint model of M9 
formulation above. Both the models adjusted for the same 
set of baseline covariates (maternal age, gravidity and tri-
mester at enrolment). The traditional Poisson model was 
the first model to be fitted and we used logarithm of the 
total follow-up time for each patient as an offset.

Then we fitted a joint model with a mixture of expected 
current value of outcome and random effects asso-
ciation structure as shown in M9. We considered the 
joint model to assess the joint evolution (/association) 
between the clinical AEs and other three outcomes (ala-
nine aminotransferase, total bilirubin and concomitant 
medication) where α1, α2, α3 as defined in M9 are the 
parameters quantifying the between-outcome associa-
tion. Secondly, we were also interested investigate the 
efficiency of the joint model in improving AE incidence 
rate estimate of the treatment effect obtained from the 
conventional Poisson model M1. As part of sensitivity 
analysis we also investigated how the association struc-
ture of the joint model affects the magnitude of the 
treatment effect estimates. Comparing the association 
structures was achieved by fitting a joint model with 
random effects association structure only as specified in 
model M7 above and joint model with mixture of current 
value and random effects association structure of joint 
model M9. For both joint models, in order to flexibly 
model nonlinear changes of the continuous longitudinal 
clinical laboratory outcomes we used restricted cubic 
splines with 3 degrees of freedom considered sufficient 
to enhance flexibility of the model. We compared the fit 
of the two joint models (M9 versus M7) using the Akaike 
Information Criterion (AIC), with small values of AIC 
suggesting better model.

Additionally, we did an exploratory analysis to identify 
how the frequently reported concomitant medications 
are associated with the AEs. Such exploratory analysis 
was helpful in understanding how specific frequently 
used concomitant medication influence the overall 
impact of concomitant medication on AEs. Concomi-
tant medication was defined as frequent if it constituted 
at least 10% of the reported medications. A joint model 
of a similar structure to M9 but where the concomitant 
medication count was confined to the specific frequently 
reported concomitant medication (i.e. paracetamol) was 
used during the exploratory analysis.
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Results
The trial recruited 870 women who were randomly 
assigned to received AL, ASAQ, DHAPQ; each arm 
recruited 290 women. Baseline characteristics were simi-
lar across and between the trial arms (Table 1). Maternal 
age was skewed to the right. Overall, median maternal 
age was 20 years (IQR: 18.0-24.0). Overall mean haemo-
globin concentration at enrolment (g/dl) was 10.1 (SD: 
1.3) and distribution was also consistently similar across 
all the treatment arms. The overall reported bed net use 
in a night before enrolment was 23.2% such and it was 
similar across and between the study arms (Table 1).

In total 1512 AEs were observed over the whole follow-
up time and 108 of these were definitely not related to 
the treatment. Proportion of women who experienced 
at least one AE in the AL, ASAQ and DHAPQ treatment 
arms were 64.5% (187 of 300 women), 70.7% (205 of 290 
women) and 59.3% (172 of 290 women), respectively. 
Almost all patients took at least a concomitant medi-
cation over the follow-up such that for each arm 99% 
(287 out of 290) took at least a concomitant medication 
(Table  2). Across all the treatment arms, the reported 
median concomitant medications taken was 3; for AL 
3(IQR: 2-5), for ASAQ 3(IQR: 1-4) and for DHAPQ 
3(IQR: 2-5).

We observed that iron supplement (26.3%), paraceta-
mol (26.2%) and albendazole (10.7%) were frequently 
reported concomitant medications (Table  3). Almost all 
the patients analysed, 99.2%, took the iron supplements 
and approximately two-thirds, 60.3%, of the patients 
took paracetamol apart from the antimalarial drug under 
investigation. During the follow-up period, a total of 353 
patients reported having used albendazole once.

Overall median of log-transformed alanine ami-
notransferase was 2.7 (IQR: 2.5-3.0) such that the medi-
ans for AL was 2.8 (IQR: 2.5-3.0), for ASAQ was 2.7 (IQR: 
2.5-3.0) and for DHAPQ was 2.8 (IQR: 2.5-3.0). Overall 
median for log-transformed total bilirubin was 2.0 (IQR: 
1.7-2.4). Figure  1 below shows the detailed distribution 

of each of clinical laboratory safety outcomes over the 
follow-up days by antimalarial drug treatment arm. As 
shown in graph 1 within Fig. 1, the alanine amino-trans-
ferase did not vary much throughout the follow-up days. 
The general trend indicated that across the follow-up 
days, the alanine amino-transferase concentration was 
slightly higher among the women who received DHAPQ 
compared to those women who received either AL or 
ASAQ. After day 0 the total bilirubin concentration 
gradually decreased across all the treatment arms and, on 
average, women treated with AL had the highest biliru-
bin concentration across the follow-up days (see Graph 2 
within Fig. 1).

Parameter estimates for the models
In this section, we report the estimates from the conven-
tional Poisson model (where AEs count is an outcome) 
(Table  4) and the proposed joint model (Table  5). Our 
interest was to establish whether the joint model yielded 
better results than the conventional Poisson model and 
how the jointly modelled outcomes evolved over the fol-
low-up time in relation to clinical AEs; the results from 

Table 1 Baseline characteristics for women enrolled in PREGACT trial in Malawi

Characteristic Overall AL ASAQ DHAPQ

Maternal age (years), median (IQR) 20.0 (18.0-24.0) 20.0 (18.0-24.0) 20.0 (18.0-25.0) 20.0 (19.5-24.0)

Gestation age (weeks), median (IQR) 21.0 (18.0-25.0) 21.0 (18.0-25.0) 21.0(18.0-25.0) 21.0 (18.0-24.0)

Haemoglobin(g/dl), mean (SD) 10.1 (1.3) 10.2 (1.4) 10.0 (1.3) 10.1 (1.3)

Primigravida, n (%) 444 (51.1) 144 (49.8) 144 (49.7) 156 (53.8)

Trimester

 Second, n (%) 730 (83.9) 242 (83.4) 244 (84.1) 244 (84.1)

 Third, n (%) 140 (16.1) 48 (16.6) 46 (15.9) 46 (15.9)

 Bed net use, n (%) 202 (23.2) 65 (22.4) 67 (23.1) 70 (24.1)

Table 2 Summary of AE occurrence and concomitant 
medication use for women enrolled in PREGACT trial

Characteristic AL ASAQ DHAPQ

Total AEs 475 569 468

AE drug-relatedness totals

 Definitely not 36 34 38

 Possibly/probably 26 96 26

 Unlikely 413 443 404

At least one AE, n (%) 187 (64.5) 205 (70.7) 172 (59.3)

Total concomitant medications 1229 1033 1042

Median concomitant medications 
(IQR)

3 (2, 5) 3 (1, 4) 3 (2, 5)

At least one concomitant medication, 
n(%)

287(99.0) 287(99.0) 287(99.0)
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the AE count sub-model in the joint model (Table 5) are 
of main interest in our reporting.

Parameter estimates from the conventional Poisson model 
for the clinical AE count
Using the conventional Poisson model, M9, the clini-
cal AE incidence rate did not differ significantly across 
the treatment groups (p < 0.149). However, the estimates 
suggested that the AE incidence rate was higher in the 
ASAQ treatment group compared to the AL treatment 
group (log IRR: 0.1838; 95% CI: 0.0574, 0.3102; p = 0.004) 
(Table  4). Exponentiating the point estimate of the log 
IRR yields IRR of 1.2018, implying that the patients 
treated with ASAQ were expected to have 20.18% higher 
rate of clinical AEs occurrence compared to those treated 
with AL. The AE incidence rate did not differ between 
DHAPQ and AL treatment groups (log IRR: -0.0255; 95% 
CI: − 0.1587, 0.1076; p = 0.707). A year increase in mater-
nal age was associated with 0.0208 increase in log IRR of 
the AEs (95% CI: 0.0068, 0.0347; p = 0.004). The AE inci-
dence rate was significantly higher among the those who 
enrolled in the second trimester compared to those who 
enrolled in the third trimester (log IRR: 0.3768; 95% CI: 
0.1943, 0.5192; p < 0.001).

Parameter estimates from the joint model
We report the fixed and random parameter estimates for 
the final fitted joint model based on mixed association 
structure, M9, (i.e. random effects and current value asso-
ciation structure) in Table  5. AE count sub-model indi-
cated that the AE incidence rate did not vary across all 
the treatment groups (p = 0.376). However, the estimates 

Table 3 Summary of concomitant medication reported by 
pregnant women in PREGACT trial

a This is out of 863 patients who used concomitant medication; some patients 
took multiple concomitant medications
b This is out of 3304 times of reported concomitant medication use

Concomitant medication Number of times 
 reportedb, n(%)

Number of 
 patientsa, 
n(%)

Iron supplement 869 (26.3) 856 (99.2)

Paracetamol 864 (26.2) 520 (60.3)

Others 433 (13.1) 302 (35.0)

Albendazole 353 (10.7) 353 (40.9)

Amoxicillin 220 (6.7) 192 (22.3)

Benzathine 108 (3.3) 68 (7.9)

Pethidine 49 (1.5) 49 (5.7)

Chloramphenicol 48 (1.5) 43 (5.0)

Oral Rehydration Salts (ORS) 47 (1.4) 44 (5.1)

Dextrose 47 (1.4) 45 (5.2)

Lignocaine 39 (1.2) 39 (4.5)

Metronidazole 38 (1.2) 36 (4.3)

Quinine 35 (1.1) 26 (3.0)

Gentamycin 35 (1.1) 35 (4.1)

Sulfadoxine-Pyrimethamine 31 (0.9) 27 (3.1)

Aspirin 16 (0.5) 14 (1.6)

Pitocin 16 (0.5) 16 (1.9)

Erythromycin 13 (0.4) 12 (1.4)

Piriton 12 (0.4) 12 (1.4)

Methyldopa 12 (0.4) 9 (1.0)

Cotrimoxazole 8 (0.2) 8 (0.9)

Promethazine 7 (0.2) 7 (0.8)

Multivitamin Tabs 4 (0.1) 3 (0.4)
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Graph 1: Box plots of log-transformed ALAT level across treatment groups by day of follow-up
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Graph 2: Box plots of log-transformed bilirubin level across treatment groups by day of follow-up
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Fig. 1 Box plots profiling clinical laboratory safety outcomes for antimalarial drugs over 63-day follow-up among pregnant women in Malawi
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indicated that AE incidence rate was higher in ASAQ 
treatment group compared to AL (log IRR: 0.2118, 95% 
CI: 0.0082, 0.4154; P = 0.041) suggesting that patients 
treated with ASAQ were expected to have 23.59% higher 
rate of clinical AEs occurrence compared to those 
treated with AL (i.e. IRR = exp.(0.2118) = 1.2359). The 
AE incidence rate did not significantly differ in DHAPQ 
treatment compared to AL (log IRR: -0.0508; 95% CI: 
− 0.2559, 0.1542). Our results show that the magnitude 
of the treatment effect was higher in the joint model, M9, 
compared to the estimates in the conventional Poisson 
model, M1, above. Among the association parameters 
describing joint evolution between the outcomes, only 
concomitant medication was associated with clinical 
AEs. The association parameter, α3, linking concomitant 
medication and clinical AEs suggested that the clinical 
AEs outcome was positively and strongly associated with 
the concomitant medications (log IRR: 1.7487; 95% CI: 
1.5471, 1.9503; p < 0.001). A unit increase for a patient in 
deviation from the mean random intercept of concomi-
tant medication use was associated with 5-fold increase 
in rate of clinical AEs (i.e.IRR = exp.(1.7487) = 5.7471). 
We found that the clinical AEs were not associated the 
alanine aminotransferase nor total bilirubin over the 
follow-up time as demonstrated by their respective 
association parameters that were non-significant. For 
the association between alanine aminotransferase and 
clinical AEs over follow-up time the estimated log IRR 
was − 0.0288 (95% CI: − 0.5045, 0.4469; p = 0.906) and 
for the association between total bilirubin and clinical 
AEs the log IRR was 0.1153 (95%CI: − 0.0889, 0.3194; 
p = 0.269). As also observed in the conventional Pois-
son model above, the clinical AE sub-model indicated 
that those women who enrolled in the second trimester 
had a higher AE incidence rate compared to those who 
enrolled in the third trimester (log IRR 0.3986; 95% CI: 
0.1592, 0.6381; p = 0.001); the women who enrolled in the 
second trimester had 48.97% higher rate of clinical AEs 
(i.e. IRR = exp.(0.3986) = 1.4897) compared to those who 
enrolled in the third trimester.

In the sub-model for log alanine aminotransferase, we 
observed no significant difference across all the vari-
ables included in that sub-model. For the log total bili-
rubin sub-model, we observed 0.1786 lower log total 
bilirubin among the women who enrolled in the second 
trimester compared to those who enrolled in the third 
trimester (log IRR: -0.1786; 95% CI: − 0.2752, − 0.0820, 
p < 0.001). The concomitant sub-model showed that 

Table 4 Parameter estimates for clinical AE count incidence 
using conventional Poisson model

Characteristic Coefficient SE 95% CI P-value

Treatment

 ASAQ 0.1838 0.0645 0.0574, 0.3102 0.004

 DHAPQ –0.0255 0.0679 −0.1587, 0.1076 0.707

Maternal age 0.0208 0.0071 0.0068, 0.0347 0.004

Primigravid 0.1208 0.0731 −0.0224, 0.2641 0.098

Second trimester 0.3768 0.0829 0.1943, 0.5192 < 0.001

Constant −0.3901 0.2021 −0.7862, 0.0060 0.054

Table 5 Parameter estimates from the joint multivariate 
longitudinal clinical laboratory, concomitant medication and AE 
counts model

ALT Alanine aminotransferase, concmed Concomitant medication

Variable Coefficient (SE) 95% Confidence 
interval

P-value

Log alanine amino transferase longitudinal sub‑model
 Maternal age 0.0006 (0.0023) − 0.00394, 0.0052 0.793

 Treatment

  ASAQ − 0.0036 (0.0275) −0.0575, 0.0504 0.897

  DHAPQ 0.0031 (0.0275) −0.0508, 0.0570 0.909

 Second trimester −0.0212 (0.0311) − 0.0820, 0.0397 0.496

 Constant 2.8221 (0.0609) 2.7027, 2.9415 < 0.001

Log total  bilirubin longitudinal sub‑model
 Maternal age −0.0026 (0.0035) −0.0095, 0.0043 0.464

 Treatment

  ASAQ −0.0229 (0.0424) −0.1059, 0.0601 0.589

  DHAPQ −0.0413 (0.0422) −0.1240, 0.0414 0.328

 Second trimester −0.1786 (0.0493) −0.2752, − 0.0820 < 0.001

 Constant 2.3103 (0.0963) 2.1216, 2.4990 < 0.001

Concomitant medication count sub‑model
 Maternal age 0.0086 (0.0052) −0.0017, 0.0189 0.101

 Treatment

  ASAQ −0.1841 (0.0619) −0.3054, − 0.0629 0.003

  DHAPQ −0.1723 (0.0610) − 0.2918, − 0.0528 0.005

 Second trimester 0.2861 (0.0718) 0.1454, 0.4268 < 0.001

 Constant 0.9147 (0.1395) 0.6414, 1.188 < 0.001

Adverse events count sub‑model
 Maternal age 0.0189 (0.0088) 0.0017, 0.0362 0.031

 Treatment

  ASAQ 0.2118 (0.1039) 0.0082, 0.4154 0.041

  DHAPQ −0.0508 (0.1046) −0.2559, 0.1542 0.627

 Second trimester 0.3986 (0.1222) 0.1592, 0.6381 0.001

  αlog(ALT) − 0.0288 (0.2427) − 0.5045, 0.4469 0.906

  αlog(bilirubin) 0.1153 (0.1042) − 0.0889, 0.3194 0.269

  αconcmed 1.7487 (0.1029) 1.5471, 1.9503 < 0.001

  Constant −0.8220 (0.7739) −2.3388, 0.6949 0.288

Patient‑specific random effects standard deviations
 Standard deviations

  δlog(ALT) 0.2547 (0.0119) 0.2324, 0.2792

  δlog(bilirubin) 0.5025 (0.0154) 0.4732, 0.5336

  δlog(concmed) 0.5378 (0.0248) 0.4914, 0.5887
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concomitant medication was associated with the treat-
ment group. Women enrolled in ASAQ treatment group 
reported lower incidence rate of concomitant medication 
use compared to those in AL treatment group (log IRR: 
-0.1841; 95% CI: − 0.3054, − 0.0629; p = 0.003). Women 
in DHAPQ treatment group also reported lower inci-
dence rate of concomitant medication use compared to 
those in AL treatment group. Those women who enrolled 
in the second trimester reported a higher incidence rate 
of concomitant medication use than those who enrolled 
in the trial while in the third trimester (log IRR 0.2861; 
95% CI: 0.1454, 0.4268; p < 0.001).

The standard deviations for patient-specific random 
intercepts, across the outcomes, suggested that con-
comitant medication had the highest unobserved het-
erogeneity with standard deviation of 0.5378 (95% CI: 
0.4914, 0.5887). The lowest unobserved heterogeneity 
was observed in log alanine aminotransferase outcome 
with random intercept standard deviation of 0.2547 
(0.2324, 0.2792).

Sensitivity analyses
As part of sensitivity analysis, we attempted to relax the 
normality assumption of the random effects. We fitted a 
robust joint model for the mixture association structure, 
M9, where the random effects were assumed to have a 
t-distribution. The model yielded similar results as those 
in Table  5 and Alkaike Information Criterion (AIC) of 
18,230.28 which was comparable to an AIC of 18,278.53 
for the model in Table 5. Secondly, fitting a joint model 
with random effects association structure, M5, we 
obtained similar estimates as those in Table  5 and with 
negligibly lower AIC of 18,277.87.

Following a reviewer’s suggestion, we further investi-
gated the effect of the concomitant medications with high 
frequencies on AEs. Although iron supplement was the 
most commonly reported concomitant medication, we did 
not consider it in assessing the impact of specific concomi-
tant medication on AEs since it was taken by almost all the 
patients, 99.2%. Instead, we considered paracetamol since 
it was the second-highest reported concomitant medica-
tion where 60.3% of the patients reported it at least once. 
Assessment of the effect of treatment on clinical AEs using 
a joint model of a similar structure to M9 but where the 
concomitant medication count was confined to paraceta-
mol yielded similar results as those obtained in Table  5 
(see Table  6). The paracetamol concomitant medication 
was positively and strongly associated with clinical AEs 
(log IRR: 1.2969; 95% CI: 1.1328, 1.4609; p < 0.001). How-
ever, this observed effect of paracetamol concomitant 
medication was slightly lower compared to the overall con-
comitant medication effect as reported in Table 4 (log IRR: 
1.7487; 95% CI: 1.5471, 1.9503; p < 0.001). No interaction 

was observed between the paracetamol concomitant med-
ication and the treatment (p = 0.078) such that we focussed 
on reporting results with the main effect only model as 
shown in Table 6. The model with interaction terms had a 
negligibly lower AIC of 16,556.19 than the model without 
the interaction terms with an AIC of 16,557.29.

Table 6 Parameter estimates from the joint multivariate 
continuous longitudinal clinical laboratory, paracetamol 
concomitant medication count and AE count model

ALT Alanine aminotransferase, concmed Paracetamol concomitant medication

Variable Coefficient (SE) 95% Confidence 
interval

P-value

Log alanine amino transferase longitudinal sub‑model
 Maternal age 0.0006 (0.0023) −0.0040, 0.0051 0.810

 Treatment

  ASAQ −0.0016 (0.0276) −0.0557, 0.0525 0.953

  DHAPQ 0.0031 (0.0275) −0.0508, 0.0570 0.909

 Second trimester −0.0223 (0.0311) −0.0833, 0.0387 0.474

 Constant 2.8236 (0.0608) 2.7043, 2.9428 < 0.001

Log total   bilirubin longitudinal sub‑model
 Maternal age −0.0027 (0.0034) −0.0094, 0.0039 0.418

 Treatment

  ASAQ −0.0346 (0.0419) −0.1168, 0.0476 0.409

  DHAPQ −0.0483 (0.0416) −0.1299, 0.0334 0.246

 Second trimester −0.1747 (0.0471) −0.2669, − 0.0824 < 0.001

 Constant 2.3118 (0.0911) 2.1394, 2.4966 < 0.001

Concomitant medication count sub‑model
 Maternal age 0.0144 (0.0088) −0.0030, 0.0318 0.103

 Treatment

  ASAQ −0.3469 (0.1068) −0. 5563, − 0. 1376 0.001

  DHAPQ −0.2850 (0.1046) − 0.4901, − 0.0798 0.006

 Second trimester 0.3850 (0.1273) 0.1355, 0.6344 0.002

 Constant −0.6712 (0.2385) −1.1387, − 0.2038 0.005

Adverse events count sub‑model
 Maternal age 0.0161 (0.0092) 0.0019, 0.0340 0.079

 Treatment

  ASAQ 0.1687 (0.1099) 0.0466, 0.3840 0.125

  DHAPQ −0.0876 (0.1103) − 0.3038, 0.1286 0.427

 Second trimester 0.3986 (0.1270) 0.1497, 0.6474 0.002

  αlog(ALT) 0.0016 (0.2392) −0.4673, 0.4704 0.995

  αlog(bilirubin) 0.0218 (0.1207) −0.2148, 0.2585 0.856

  αconcmed 1.2969 (0.0837) 1.1328, 1.4609 < 0.001

  Constant −0.6805 (0.7793) −2.2079, 0.8469 0.383

Patient‑specific random effects standard deviations
 Standard deviations

  δlog(ALT) 0.2555 (0.0119) 0.2331, 0.2800

  δlog(bilirubin) 0.5028 (0.0153) 0.4736, 0.5338

  δlog(concmed) 0.7931 (0.0480) 0.7043, 0.8931
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The interest and structure of the proposed joint model 
could not permit us to assess the impact of albendazole 
on AEs. The patients who took albendazole took it once; 
therefore, this concomitant medication arose as a binary 
outcome that does not meet the joint model specification 
(i.e. where the concomitant medication is incorporated in 
the model as a count outcome). Since the objective of the 
exploratory analysis was to establish the impact of spe-
cific frequent concomitant medication on AEs, we did 
not undertake any additional analysis on the effect of the 
“other” concomitant medication on AEs.

Discussion
In clinical trials, multiple safety outcomes collected over 
the follow-up time require advanced analyses in order 
to develop a valid drug safety profile that makes full use 
of the information from the multiple safety outcomes. 
This paper introduced a framework for joint modelling 
of multivariate continuous longitudinal clinical labora-
tory safety outcomes, concomitant medication counts 
and adverse event count, exploiting the advantages of 
the existing extended multivariate generalised linear and 
non-linear mixed effects models framework [23]. Our 
work focussed on investigating whether clinical AEs var-
ied by treatment arm and how the laboratory outcomes 
and concomitant medication were associated with clini-
cal AEs over follow-up time in artemisinin-based treat-
ment of malaria during pregnancy clinical trial. We found 
that the concomitant medication was strongly associ-
ated with the clinical AEs incidence, suggesting that the 
patients who experienced more AEs were more likely to 
report the use of more concomitant medications. If not 
well-accounted for such increased use of concomitant 
medication can distort the treatment effect on the clini-
cal AE occurrence. From methodological perspective, we 
discovered that the conventional Poisson model under-
estimated the treatment effect on the AE incidence rate 
ratio; the effect of treatment on AE incidence rate esti-
mates for the joint model were higher than those from 
conventional Poisson model. The difference in the mod-
els can be attributed to the fact that the joint model uses 
more of the available information through the explicit 
modelling of the observed correlation, unobserved het-
erogeneity and any nonlinear effects [25–27]. The joint 
model efficiently uses the available information, including 
the unobserved heterogeneity, leading to more improved 
estimates compared to the conventional Poisson model 
involving separate analysis.

Controlling for baseline covariate to address any poten-
tial confounding in AE incidence rate ratio estimates, we 
found that maternal age and enrolling in the second tri-
mester were factors associated with the AE occurrence. 
A year increase in maternal age was associated with 2% 

increased rate of AE incidence. This could be as a result 
that as the women become older they are more likely to 
report AEs out of experience than the younger women. 
As expected women who enrolled in the second trimes-
ters had 49% increased rate of AE incidence compared 
to those who enrolled in the third trimester. This could 
probably be due to the fact that physiological changes 
that take place during pregnancy are more impactful in 
the second than in the third trimester. Hence, the sus-
ceptibility to AE occurrence after taking either the anti-
malarial drug or the concomitant medication (that was 
strongly associated with increase rate of AE occurrence) 
since the pregnancy related body physiological changes 
can interact with the drug.

In assessment of the impact of concomitant medica-
tion on AEs, identifying specific concomitant medication 
is usually of interest. In this paper, we observed that par-
acetamol greatly contributed to the overall association 
between concomitant medication and AEs. Although the 
difference in the effect of overall concomitant medica-
tion on AEs and the effect of paracetamol concomitant 
medication on AEs was not big, the difference could not 
be considered clinically negligible. Therefore, under-
taking both analyses (i.e. effect of overall concomitant 
medication and effect of specific most frequent concomi-
tant medication on AEs) should be considered useful in 
understanding antimalarial drug safety profile. Alter-
natively, an interesting future joint model development 
can consider quantifying the contribution of each of the 
specific frequent concomitant medication on AEs occur-
rence. This can be helpful in identifying and handling any 
potential noisy concomitant medications that contribute 
less to the AEs occurrence.

Within the joint modelling framework, our proposed 
model provides additional knowledge by extending the 
number of outcomes that can be analysed simultane-
ously, including multiple longitudinal outcomes and 
multiple count outcomes, focussing on drug safety 
assessment. We acknowledge that other researchers 
have previously proposed similar kind of modelling but 
applied in the efficacy context [28–32]. Buu et al. consid-
ered a joint model of count and binary outcome [30]. Li 
et al. considered jointly modelling proportion, count and 
continuous longitudinal outcomes [31]. Yang and Kang 
introduced a joint model for mixed Poisson outcome and 
continuous outcome [32]. Our model is considered as a 
special case of these previously proposed models focus-
sing on drug safety assessment. Key unique features of 
our proposed joint model include incorporating mixed 
association structure of random effects and expected 
value for linking the outcomes, use of restricted cubic 
splines to accommodate the capturing of any potential 
time-dependent effects, accommodating multiple safety 
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outcomes and novel application to drug safety assess-
ment. A case study based paper like ours can further 
facilitate the adoption of improved statistical analysis of 
safety data in clinical trials [33].

In this paper, data missingness mechanism was ignora-
ble. Our future work will consider investigating the impact 
of missing data on the model performance under varying 
follow-up times and model association structures. Sec-
ondly, in this paper we worked with a large sample size. 
An interesting further methodological work would be to 
assess how the sample size impacts the performance of the 
model that we applied. Unfortunately, the key limitation of 
the joint model introduced and applied in this paper is that 
it is computationally demanding such that it takes longer 
time to converge. This directly affects the scope of the 
simulations that can be done to investigate the highlighted 
potential methodological issues associated with such com-
plicated models. An extension can also be made to the 
number of outcomes included the joint model depend-
ing on the availability of the data. For example, aspartate 
amino transferase, highly correlated with alanine amino 
transference, can be added in our joint model.

Conclusion
Jointly modelling of multivariate longitudinal clinical lab-
oratory safety data, concomitant medication and clinical 
AEs efficiently harnesses the safety data in order to bet-
ter understand drug safety profile. This paper has demon-
strated the utility of joint modelling to yield improved AE 
incidence rate estimates compared to the conventional 
Poisson model. The proposed joint model helps to quan-
tify the association between the laboratory safety out-
comes, concomitant medication, and clinical AEs over 
follow-up time. Key public health relevance of the joint 
modelling of the safety outcomes includes facilitating the 
choice of the most important clinical laboratory safety 
and other safety outcomes for profiling drug safety, espe-
cially in resource-constrained settings. In this explora-
tory analysis, we have also established that the AEs that 
were observed in the PREGACT trial in Malawi were 
more linked to concomitant medications that the patients 
took. Our findings provide an assurance that artemisinin-
based treatments can be safely used in second and third 
trimester during pregnancy.
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