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ABSTRACT 9 

Eukaryotic unicellular pathogens from the genus Plasmodium are the etiological agents of 10 

malaria, a disease that persists over a wide range of vertebrate species, including humans. 11 

During its dynamic lifecycle, survival in the different hosts depends on the parasite’s ability to 12 

establish a suitable environmental milieu. To achieve this, specific host processes are exploited 13 

to support optimal growth, including extensive modifications to the infected host cell. These 14 

modifications include the formation of novel membranous structures, which are induced by the 15 

parasite. Consequently, to maintain a finely tuned and dynamic lipid environment, the 16 

organisation and distribution of lipids to different cell sites likely requires specialised lipid 17 

transfer proteins (LTPs). Indeed, several parasite and host-derived LTPs have been identified 18 

and shown to be essential at specific stages. Here we describe the roles of LTPs in parasite 19 

development and adaptation to its host including how the latest studies are profiting from the 20 

improved genetic, lipidomic and imaging toolkits available to study Plasmodium parasites. 21 

Lastly, a list of predicted Plasmodium LTPs is provided to encourage research in this field.  22 



INTRODUCTION 23 

Malaria remains prevalent in tropical and subtropical regions of the world, particularly in 24 

Africa and South East Asia. Of the six species infective to humans, the most lethal is 25 

Plasmodium falciparum [1]. This parasite has a highly dynamic and complex lifecycle, 26 

involving a vertebrate and an insect host (Figure 1). Human infection occurs through the bite 27 

of a female Anopheles mosquito where a small number of sporozoites in the saliva, enter the 28 

circulatory system. Upon reaching the liver, through cell traversal events, the sporozoite will 29 

divide following hepatocyte invasion. The resulting progeny, referred to as merozoites, are 30 

released into the bloodstream in a merosome – a large membrane filled with thousands of 31 

merozoites [2, 3]. Rupture of the merosome frees the merozoites, allowing them to invade 32 

mature erythrocytes in the blood circulation. Following invasion, the intraerythrocytic cycle is 33 

defined by the initial ring stage, followed by the metabolically demanding trophozoite and a 34 

subsequent replicative schizont stage where new merozoites can readily invade a new 35 

erythrocyte after egress [4, 5]. It is the continuous cycle of intraerythrocytic replication and re-36 

invasion that causes the symptoms of malaria. A proportion of the parasites from the 37 

intraerythrocytic cycle differentiate into male or female gametocytes, a prerequisite for disease 38 

transmission back to the invertebrate host. When, during a bloodmeal, male and female 39 

gametocytes are ingested into the midgut lumen of a female Anopheles mosquito, the abrupt 40 

environmental change triggers the differentiation of female macrogametes and flagellated male 41 

microgametes. When the male microgamete encounters the female macrogamete, the cells fuse 42 

to produce an ookinete [5]. Following one meiotic division, the ookinete migrates through the 43 

mosquito gut wall, remaining underneath the midgut basal lamina, where it transforms into an 44 

oocyst, forming a thick capsule [5]. During the lengthiest developmental multiplication stage, 45 

the oocyst undergoes several mitotic divisions, generating the sporoblast from which hundreds 46 

of sporozoites are released. These migrate through the haemolymph to reach the basal lamina 47 

of the salivary glands, where they invade acinar cells, ultimately accumulating inside the 48 

salivary duct, completing maturation, and thus becoming ready to infect hepatocytes again [5, 49 

6].  50 

Throughout the lifecycle, Plasmodium parasites remodel their host cells in numerous ways [7, 51 

8, 9], including altering the host cell membrane and inducing the formation of various 52 

membranous compartments (Figure 1) [7, 8, 9]. Many of these changes are driven by the 53 

parasite, likely through the action of lipid transfer proteins (LTPs). During residence in the 54 

vertebrate host, when the parasite replicates intracellularly either in the hepatocyte or 55 



erythrocyte, it is always entirely enveloped by the parasitophorous vacuole membrane (PVM), 56 

creating a buffer zone, the parasitophorous vacuole (PV), between the parasite plasma 57 

membrane (PPM) and the host cell cytoplasm (Figure 1) [7, 8]. Another prominent 58 

membranous structure formed in the infected hepatocyte and erythrocyte is the tubovesicular 59 

network (TVN), which is a highly elaborate and dynamic membranous tubular system that 60 

extends from the PVM, characterised by membrane whorls that appear to discreetly encircle 61 

host cell cytoplasm [7, 8, 9, 10, 11, 12]. During the intraerythrocytic lifecycle, thin 62 

membranous lamellae-like structures called Maurer’s clefts (MCs) are formed by the parasite; 63 

these likely function to export proteins to the surface of the erythrocyte [11, 12]. Additionally, 64 

two types of mobile vesicles, the 25 nm and 80 nm vesicles, have been observed in the 65 

cytoplasm of infected erythrocytes and although uncharacterised, they are potentially involved 66 

in transport of proteins to the surface of the infected cell [7]. Another interesting group of 67 

structures located in the host cell cytosol are the cholesterol-rich J dots. J dots contain several 68 

heat-shock proteins that form a chaperone complex that interacts with multiple other proteins, 69 

including the main parasite virulence factor, the cytoadherence protein PfEMP1 [13, 14, 15, 70 

16, 17, 18].  A likely function for J dots is to transport proteins through the aqueous 71 

environment of the erythrocyte cytosol and erythrocyte surface [15, 17, 18].  72 

In addition to the usual organelles found in eukaryotes, the parasite contains several specialised 73 

organelles found only in apicomplexans. These include the apicoplast, an essential four-74 

membraned vestigial plastid gained from secondary endosymbiosis of a red algae [19, 20, 21] 75 

and several apically located membranous organelles (the apical complex) necessary for 76 

invasion of host cells, comprised of micronemes, rhoptries and dense granules (Figure 1). 77 

Furthermore, the parasite produces the inner membrane complex, a membranous structure that 78 

provides the platform for entering the host cell. Hence, in addition to the standard phospholipid 79 

transfer requirements of a eukaryotic cell, Plasmodium parasites require additional 80 

mechanisms for the biogenesis of specific membranous structures and organelles as well as 81 

mechanisms involved in host cell membrane modification.  82 

Here we review the known and studied LTPs that function during the various stages of the 83 

Plasmodium spp. lifecycle and describe host LTPs shown to be relevant for malaria 84 

progression. A brief overview of the lipid profiles of the parasite and the host cell is given to 85 

facilitate contextualisation of the specific lipid requirements and function that these LTPs 86 

might play during the parasite lifecycle.  Lastly, we critically evaluate the current knowledge, 87 

indicating what we do not yet fully understand and provide a list of predicted P. falciparum 88 



genes with putative LTP functions and their predicted essentiality (Table 1) to stimulate future 89 

research in the emerging field of protein-dependent lipid transport in P. falciparum.  90 

 91 

PHOSPHOLIPIDS IN PLASMODIUM.  92 

Glycerophospholipids constitute the major lipid class detected in parasite fractions removed 93 

from the erythrocyte, with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) 94 

together accounting for ~50% of total lipid content [22, 24, 55, 89]. These structural membrane 95 

components primarily contain two saturated or monosaturated FA chains [22], consistent with 96 

parasites requiring an exogenous supply of oleic and palmitic acid to sustain growth [21, 23, 97 

24]. Lipids enriched in uninfected erythrocytes include phosphatidylserine (PS), phosphatidic 98 

acid (PA) and ceramide. It is believed that the host cell may serve as a reservoir for parasite-99 

mediated lipid salvage, if required in response to changes in the extracellular host environment 100 

[22, 24, 25, 26, 27, 55]. Mainly as P. falciparum has been shown to import several lipid species, 101 

including ceramide, complex sphingolipids and lysophosphatidylcholine (LysoPC) [28, 29, 30, 102 

31, 32, 90]. 103 

The second major class of lipids observed in infected erythrocytes is sphingolipids, which play 104 

critical roles in both membrane structure and signalling [33, 30]. Sphingomyelin (SM) is the 105 

third most abundant lipid detected in trophozoite infected erythrocytes steadily increasing from 106 

ring stages, consistent with other studies [24, 30, 31, 33, 34, 35, 36]. 107 

Lysophospholipids are minor constituents of cell membranes, present at less than 1% of total 108 

parasite lipids. However, their levels change throughout parasite development, commensurate 109 

with a putative role in intracellular signalling to regulate varied processes, including cell 110 

signaling, protein folding and the mobilisation of intracellular Ca2+ stores [37, 38, 39, 40, 41, 111 

42]. 112 

Cholesterol plays an important role in regulating the properties of phospholipid membranes, 113 

including the regulation of membrane organisation [43, 46]. Addition of cholesterol induces a 114 

condensation effect where the area per lipid decreases, leading to increased membrane stiffness 115 

[42, 43]. Cholesterol levels also affect raft structures [43, 46, 47], membrane trafficking and 116 

sorting functions that may support P. falciparum survival [48, 49, 50, 51]. Interestingly, a 117 

gradient of cholesterol is present in erythrocytes infected with Plasmodium parasites [52, 53]. 118 

Experiments using a cholesterol-sensitive fluorophore revealed that membrane cholesterol 119 



levels in parasitised erythrocytes decrease inwardly from the erythrocyte plasma membrane 120 

(EPM), MCs/TVN, PVM and finally to the PPM [53]. Fluorescence Lifetime Imagining 121 

Microscopy (FLIM) showed little or no difference in this cholesterol gradient between 122 

parasitized HbAA erythrocytes vs HbS erythrocytes that differ in lipid content, suggesting that 123 

malaria parasites may regulate the cholesterol contents of the PVM and PM independently of 124 

levels in the host cell membrane, especially after invasion [54]. Lipid and cholesterol exchange 125 

data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids 126 

produced by the parasite and that the parasite actively maintains a level of low cholesterol [52, 127 

53]. Furthermore, increased membrane cholesterol decreases the temperature required for the 128 

plasma membrane to maintain its liquid phase and is directly related to temperature-dependent 129 

changes to the cell membrane [43, 44, 45]. Interestingly, during gametocytogenesis, cholesterol 130 

levels in the parasite increase significantly [22, 54]. This is believed to be important for various 131 

reasons, including the production of internal reserves for further development after uptake by 132 

the mosquito, which also cannot produce cholesterol de novo [22, 30, 54, 112, 113, 114].  133 

 134 

LIPID TRANSFER PROTEINS 135 

Because the ER, mitochondrion and the apicoplast are involved in the de novo synthesis of 136 

lipids in Plasmodium parasites, a system must exist to transport these newly synthesised lipids 137 

to other organelles, membranes, membranous compartments, and the aqueous environment of 138 

the host cytoplasm [138, 139, 140]. As LTPs are candidates for the development of such 139 

processes, these proteins have become attractive in understanding the role and importance of 140 

lipid dynamics in cells infected by Plasmodium parasites. The parasite produces many different 141 

LTPs, some with standard functions shared with other eukaryotes and others that have been 142 

adapted for parasite-specific purposes (Table 1).  143 

StAR-related lipid transfer proteins from the Bet v1-like superfamily 144 

Plasmodium parasites encode five proteins with annotated START domains, usually ~210 145 

amino acids long, involved in the binding and non-vesicular transport of hydrophobic 146 

molecules, including lipids and cholesterol [56]. These five proteins are PF3D7_1351000 147 

(MAL13P1.256), PF3D7_0911100 (PFI0540w), PF3D7_0807400 (MAL8P1.300), 148 

PF3D7_01004200 (PFA0210c) and PF3D7_1463500 (PF14_0604). Of these, three have not 149 

yet been investigated: PF3D7_1351000 (MAL13P1.256), the phosphatidylinositol (PI) transfer 150 

protein orthologue; PF3D7_0911100 (PFI0540w), annotated as a conserved protein of 151 



unknown function with a predicted C-terminal START-like domain; and PF3D7_0807400 152 

(MAL8P1.300), a multi-domain protein with a predicted START domain and a Coenzyme Q 153 

(CoQ or ubiquinone) binding (Coq10p) domain. The PI transfer protein PF3D7_1351000 154 

(MAL13P1.256) is likely to perform functions similarly to those in other eukaryotes, whereas 155 

PF3D7_0911100 (PFI0540w) is unique to Plasmodium spp. and Hepatocystis (a related 156 

apicomplexan transmitted by midges that skips intraerythrocytic asexual replication stages, 157 

entering directly into gametocytogenesis) [57, 58]. PF3D7_0911100 (PFI0540w) is expressed 158 

at various stages during the entire lifecycle but appears dispensable for intraerythrocytic 159 

parasite growth. Orthologues of PF3D7_0807400 (MAL8P1.300) are usually associated with 160 

mitochondria and have a role in respiratory electron transport and ATP synthesis [59, 60]. 161 

Interestingly, the Coq10 START domain protein from Saccharomyces cerevisiae plays a 162 

protective role against fatty acid-induced oxidative stress along with its role in ubiquinone 163 

synthesis [59, 60]. PF3D7_0104200 (PFA0210c) and PF3D7_1463500 (PF14_0604) appear to 164 

be unique to the genera Plasmodium and Hepatocystis and may perform lipid transfer functions 165 

specific to these parasites. PF3D7_0104200 (PFA0210c) is a broad-specificity phospholipid 166 

transfer protein capable of transferring PC, PE, PI, PS and SM in vitro [61]. Original sequence-167 

based similarity searches indicated that it is most similar to the human protein STARD7, a PC 168 

transfer protein, while structurally it is most similar to phosphatidylcholine transfer protein 169 

STARD2. The protein has been detected in the PVM and host erythrocyte when overexpressed 170 

[61, 62, 63]. Genetic experiments have shown that PF3D7_0104200 (PFA0210c) and its 171 

orthologue in P. knowlesi are essential for parasite survival [63]. Intriguingly, during asexual 172 

intraerythrocytic development, PF3D7_0104200 (PFA0210c) protein synthesis initiates at 173 

entry into the trophozoite stage and protein levels drastically increase with trophozoite growth, 174 

when extension of the PPM and PVM occurs [61, 63]. This may point to a function for 175 

PF3D7_0104200 (PFA0210c) in the delivery of phospholipids to the PVM to support its 176 

expansion. One interesting aspect of PF3D7_0104200 (PFA0210c) is the unusual C-terminal 177 

extension of approximately 84 amino acids, something that is rarely detected in START 178 

domain-containing proteins [62]. Removal of the C-terminal 19 residues significantly increases 179 

lipid transfer activity in vitro, indicating a regulatory function of the C-terminal region. 180 

Attempts to remove the last 20 codons of the P. knowlesi orthologue of PF3D7_0104200 181 

(PFA0210c) were unsuccessful, indicating that this regulatory function may be essential in vivo 182 

[63]. Interestingly, a recent study has revealed IgG against PF3D7_0104200 (PFA0210c) 183 

epitopes in the blood from individuals with symptomatic and even asymptomatic malaria, 184 

indicating antibodies against this protein could form a biomarker for malaria, especially since 185 



its essentiality will likely avoid parasite adaptation, which has been observed with the non-186 

essential, exported protein HRPII [64, 65]. 187 

PF3D7_1463900 (PF14_0607) is a member of the Fam A family of proteins and is conserved 188 

among all Plasmodium species. Each Plasmodium species encodes a single member of this 189 

family, except for the rodent malaria parasite lineage, where the Fam A family is greatly 190 

expanded. The protein is predicted to be present in the parasite cytosol and transcriptional 191 

analyses in P. falciparum indicate it may be produced in sporozoites [66, 67]. Modelling of the 192 

structure of PF3D7_1463900 (PF14_0604) revealed similarities with STARD3, a cholesterol 193 

transfer protein [63]. In vitro phospholipid transfer assays using PC revealed minimal activity, 194 

consistent with the protein acting as a cholesterol transfer protein [63]. However, no direct 195 

evidence for cholesterol transfer has been reported. Interestingly, members of the expanded 196 

family have acquired a signal sequence and are predicted to be exported from the parasite to 197 

the host cell [62, 67, 68] and in contrast to other large families in Plasmodium spp., several 198 

members of the family can be expressed concomitantly in the parasite [68]. This has been 199 

shown in P. berghei during the hepatocyte stage and some, but not all, tested family members, 200 

transfer PC in in vitro assays [68]. The function of these proteins, either the ancestral gene or 201 

the members of the expanded family, remains unclear, although the altered PC metabolism in 202 

the rodent malaria parasites may require the parasite to increase the uptake and transfer of PC.   203 

 204 

Sec14/CRAL-TRIO-like lipid transfer proteins 205 

Sec14 proteins have a characteristic SEC14 domain, also known as CRAL-TRIO domain. They 206 

can function as PC sensors and as inducers of PI synthesis and transfer, transmitting PC 207 

metabolic information to PI synthesis via PI transfer proteins (PITPs) [69]. Other members of 208 

the Sec14 family are the alpha-tocopherol transfer proteins (alpha-TTPs) which facilitate the 209 

transfer of alpha-tocopherol (alpha-T), a form of vitamin E, to secretory lipoproteins [70], and 210 

the phosphatidylinositol transfer proteins (PITPs), key regulators of phosphoinositide signaling 211 

[71, 72]. Interestingly, soluble versions of PITPs activate inositol lipid kinases, promoting 212 

diversification and dynamics of phosphoinositide signaling [71, 72]. Therefore, these proteins 213 

can transport substrates, including alpha-tocopherol, PI or PC, between different intracellular 214 

membranes [69, 71, 72]. The Plasmodium spp. group of Sec14-like proteins define a novel 215 

class of multi-domain proteins with both haem-binding and PI transfer activity [72]. 216 

Plasmodium spp. encode four Sec14/CRAL-TRIO-like proteins: PF3D7_0626400 217 



(PFF1280w), PF3D7_0629900 (PFF1450w) and PF3D7_1127600 (PF11_0287) and 218 

PF3D7_0920700 (PFI1015w). Although these proteins have not yet been characterised, 219 

PFI1015w and PFF1450w are predicted to be essential (Table 1). Interestingly, the P. 220 

falciparum phosphatidylinositol 3-kinase (PfPI3K), which localises to the food vacuole in 221 

trophozoites and in vesicular compartments at the PPM/PVM, may interact with PfSec14 222 

proteins [73]. PfSec14 proteins and PfPI3K may play key roles in haemoglobin intake, as 223 

pharmacological inhibition of PfPI3K activity compromises haemoglobin endocytosis [73].  224 

 225 

Lipid ATPases (flippases) from the P4 subfamily 226 

Recent gene targeting approaches have uncovered an important role for the P. falciparum 227 

P4-ATPase subfamily, also known as lipid flippases, proteins able to actively translocate lipids 228 

from one membrane leaflet to the other, helping to generate lipid asymmetry [74, 75, 76, 77, 229 

90, 119]. P4-ATPases maintain the asymmetric distribution of phospholipids in membranes by 230 

translocating phospholipids (most commonly PE, PS and PC) from the extracellular leaflet to 231 

the inner cytoplasmic leaflet [77]. P. falciparum is predicted to encode the four P4-ATPases: 232 

PfATP2, PfATP7, PfATP8 and PfATP11 [78, 79]. Whereas the first three are conserved in all 233 

Plasmodium species, PfATP11 is absent in P. berghei [80]. While the essential role of ATP7 234 

and ATP8 remains unclear [74, 81], most ATP7-depleted ookinetes fail to internalise and 235 

translocate PC across the plasma membrane, resulting in a failure to develop [74]. This appears 236 

to result from an inability to initiate microneme secretion and a reduction of parasite survival 237 

to environmental stress, leading to elimination of ookinetes during traversal of the midgut 238 

epithelium [74, 75]. PfATP2 and its orthologue in P. berghei are essential during the 239 

intraerythrocytic stages [76, 81]. P. berghei ATP2 potentially localises to the PPM and the 240 

PVM during the erythrocytic stage [82]; higher resolution imaging or fractionation analysis 241 

will be required to fully ascertain its localisation. Interestingly, duplication of the gene 242 

encoding PfATP2 was associated with resistance to two antimalarial compounds, 243 

MMV007224 (2-N,3-N-Bis(4-bromophenyl)quinoxaline-2,3-diamine) and MMV665852 (1,3-244 

Bis(3,4-dichlorophenyl)urea) [83], indicating that PfATP2 is either responsible for decreasing 245 

the concentration of the compounds or the direct target of the compounds in the parasite. Most 246 

P4-ATPases form heterodimeric complexes with members of the Cdc50/LEM3 protein family 247 

and this association appears to be essential for their activity [76, 85]. P. falciparum encodes 248 

three putative Cdc50 proteins (Cdc50A, Cdc50B and Cdc50C) (Table 1) which are conserved 249 



among all Plasmodium species and predicted to be essential in P. falciparum. In fact, disruption 250 

of the genes encoding any one of the Cdc50 proteins inhibits parasite intraerythrocytic 251 

development [75]. Recently it was demonstrated, using recombinant proteins, that P. 252 

chabaudi ATP2 (PcATP2) forms heterodimers with PcCdc50A and PcCdc50B [76]. Moreover, 253 

the PcATP2/PcCdc50B complex displayed lipid-stimulated ATPase activity in the presence of 254 

two phospholipid substrates, POPS and POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-255 

serine and 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine). 256 

Moreover, this activity was upregulated in the presence of phosphatidylinositol-4-phosphate 257 

(PI4P). This is an essential lipid for the malaria parasite, as inhibition of PI4P synthesis blocks 258 

the development intraerythrocytic stages by disrupting membrane biogenesis around the 259 

developing merozoites [86]. Additionally, PI4P is found at the plasma membrane, like PfATP2, 260 

and the Golgi in all stages of the erythrocytic cycle [87]. It will be relevant to investigate 261 

whether the lethal effect of blocking PI4P is a direct result of the lack of PI4P or the effect it 262 

has on ATP2 function.  263 

Interestingly, P. falciparum can actively import LysoPC to generate PC [88, 89]. Although the 264 

uptake mechanisms and mode of utilization of LysoPC by the parasite remain to be determined, 265 

it is possible that LysoPC is either hydrolysed or directly acylated to form PC. In yeast, LysoPC 266 

is transported by the phospholipid flippases Dnf1p and Dnf2p, which are P4-ATPases, or by 267 

Lem3p [90]. The P. falciparum genome encodes several orthologs of Dnf1p, Dfn2p and Lem3p 268 

(Table 1), although their exact functions remain to be determined. Interestingly, decreased 269 

levels of LysoPC stimulate gametocytogenesis, while the preferred environment for 270 

gametocytes, the bone marrow, also displays low levels of LysoPC, although the details of the 271 

mechanism through which the signalling occurs remains to be determined [88, 89, 91]. 272 

P. falciparum also encodes two P4-ATPase-like proteins that are fused to functional guanylyl 273 

cyclases; PF3D7_1138400 contains GCα and PF3D7_1360500 contains GCβ. Little is known 274 

about the flippase activity of these fusion proteins, although some studies have started to shed 275 

light on this matter, suggesting that the flippase component of the protein is required for 276 

survival of the parasite [93]. Whereas GCα is essential for intraerythrocytic development, GCβ 277 

plays a critical role in colonization of the mosquito midgut [96, 141]. Interestingly, the P. 278 

falciparum protein phosphatase 1 (PfPP1), which is essential for merozoite egress, is not only 279 

stimulated by PC but targets GCα directly, indicating a potential role for PfPP1 in the regulation 280 

of GCα-dependent lipid sensing to initiate parasite egress from the erythrocyte [95]. A recent 281 

study in P. yoelii has shown that Cdc50A forms a stable complex with GCβ, which is required 282 



for the gliding motility and midgut traversal of ookinetes [96]. Meanwhile, the Cdc50A 283 

ortholog in Toxoplasma gondii is important for recruiting its GCβ partner to the plasma 284 

membrane prior to cellular egress [97]. The role of these unique fusion proteins and how the 285 

flippase activity may regulate the guanylyl cyclase activity will surely be further elucidated in 286 

the years to come.  287 

 288 

ATP binding cassette (ABC) transporters (flippases)  289 

The P. falciparum genome encodes multiple members of the family of ATP binding cassette 290 

(ABC) transporters. One of these, ABCG2 (PF3D7_1426500),  has previously been implicated 291 

in the transport of PS and PC analogues in eukaryotic cells in vitro, while in Plasmodium 292 

parasites it is suspected to work as a lipid transporter with a specific role in lipid storage [98, 293 

99]. In P. berghei ABCG2 is predominantly associated with the plasma membrane of female 294 

gametocytes and ookinetes [99]. In P. falciparum, this protein is produced predominantly in 295 

the gametocyte stage, where it is found in a more distinct localisation, a single dot-like lipid-296 

rich structure within female, but not male, gametocytes [99, 100]. Interestingly, in both species 297 

ABCG2 mutant parasites produce more gametocytes of both sexes and the level of cholesteryl 298 

esters, diacylglycerols and triacylglycerols are significantly reduced in gametocytes [99, 100]. 299 

Indicating a role for ABCG2 in control of gametocyte numbers and in the accumulation of 300 

neutral lipids, potentially important for parasite development in the insect stages since neutral 301 

lipids can function as energy storage and are precursors for metabolic activity, scarcely found 302 

in the mosquito microenvironment [111, 112, 113, 114, 115]. Several reports investigating lipid 303 

species during gametocytogenesis [22, 24, 89, 90, 91, 922], found that the levels of regulators 304 

of membrane fluidity, in particular cholesterol and SM, increase significantly during 305 

gametocyte maturation [22, 24]. Neutral lipids, serving mainly as energy reserves, increase 306 

from 3% of total lipids in uninfected erythrocytes to 27% in stage V gametocyte-infected 307 

erythrocytes [24]. ABC transporters that function as flippases are poorly conserved across the 308 

eukaryotic kingdom and hence could be suitable anti-malarial drug targets [80]. Interestingly, 309 

a putative P. falciparum ABC phospholipid transporter ATPase, PfABCF1 (PF3D7_0813700) 310 

is predicted to be essential (Table 1). However, it remains to be understood how ABC 311 

transporters function throughout the parasite lifecycle as LTPs. 312 

 313 

MULTIDOMAIN TRANSPORTERS (LIPIDS AND HAEM) 314 



Lipocalin 315 

Lipocalins bind to small hydrophobic molecules and can transport lipids and fatty acids and 316 

hypothesised to share an early evolutionary origin with the bacterial kingdom, followed by 317 

extreme divergence of the amino acid sequence [101]. Recently, a lipocalin PfLCN 318 

(PF3D7_0925900) with domains predicted to bind to both fatty acids and haem was identified 319 

in P. falciparum. It was found to localise to the PV and food vacuole (FV) of intraerythrocytic 320 

parasites and to integrate into membranes, while in free merozoites was found mainly in the 321 

cytosol [102]. Furthermore, gene inactivation revealed its importance during the 322 

intraerythrocytic stage, mutant parasites undergo abnormal schizogony with a significantly 323 

reduced number of nuclei with some disorganisation compared to wildtype parasites [102]. 324 

Furthermore, the mutant showed defects in haemozoin crystal motility, either indicating defects 325 

in the FV or a direct interaction or binding function to haemozoin. Structure predictions 326 

indicate that PfLCN is similar to the Escherichia coli Blc protein, which functions in the 327 

storage and transport of lipids necessary for membrane repair [103], and the human lipocalin 328 

NGAL which is a palmitate and fatty acid transport protein [104, 105]. 329 

 330 

CHOLESTEROL TRANSPORTERS 331 

Niemann-Pick C1-related protein and cholesterol homeostasis 332 

P. falciparum encodes a Nieman-Pick C1-related protein PfNCR1 (PF3D7_0107500), part of 333 

a family of proteins that has been shown to have a function in the transport of cholesterol in 334 

lysosomes [106]. This protein localises to the PPM and to Membrane Contact Sites (MCSs) 335 

linking the PPM with the PVM [106, 107]. Although its cholesterol transfer function remains 336 

to be experimentally confirmed, disruption of PfNCR1 made intraerythrocytic parasites 337 

susceptible to saponin, likely owing to an increased level of cholesterol in the PPM. In addition, 338 

mutant parasites showed severe alterations in the FV, indicating a role for PfNCR1 in the 339 

maintenance or biogenesis of this vacuole [107]. These findings suggest that PfNCR1 is 340 

important in the regulation and maintenance of the low cholesterol levels at the PPM and may 341 

be important for maintaining the previously observed cholesterol gradient in intraerythrocytic 342 

stages (from high levels at the erythrocyte plasma membrane to lower levels at the PVM and 343 

even lower at the PPM) [53]. A combination of cryo-EM and correlative immunofluorescence 344 

revealed that PfNCR1 is localised at MCSs, sites between the PPM and the PVM, that could 345 

potentially directly connect the PPM with the PVM [107]. Interestingly, this also revealed a 346 



distinct spatial exclusion between PfNCR1 and the solute and protein transporter EXP2 [107], 347 

indicating that lipid and solute transfer may occur at distinct regions of the PPM and PVM. 348 

Disruption of PfNCR1 expression does not interfere with the structure of the MCSs, suggesting 349 

that another LTP may be involved in this process [107]. Previous investigations in P. berghei 350 

intra-hepatocytic and oocyst development have provided the first indication of the presence of 351 

MCSs between the extended ER and the PPM [108]. These transient MCSs were observed 352 

during replicative stages using live Stimulated Emission Depletion (STED) super resolution 353 

microscopy coupled with PPM and ER protein reporters fused to sfGFP and mCherry, 354 

respectively [108]. The size of MCSs (between 10-30 nm) is below the limit of fluorescence 355 

microscopy resolution, making them technically difficult to visualise. Nonetheless, MCSs 356 

might be formed throughout the various stages of the parasite lifecycle in different regions of 357 

the parasite and parasite host-interface, likely aiding the distribution of lipids. Interestingly, 358 

steroidogenic acute regulatory (StAR) domain LTPs have been implicated with the formation 359 

of MCSs in other eukaryotes [109] hence, it is possible that the same applies to parasite-360 

encoded StAR-related lipid-transfer (START) proteins. Nonetheless, likely PfNCR1 plays an 361 

important role in the regulation of cholesterol levels in the parasite and finding that it localises 362 

at MCSs between the PPM and PVM provides for the first time an insight into how the lipids 363 

required for the expansion of the PVM and parasite growth may be transferred to and from the 364 

parasite.  365 

Potentially another parasite-derived component of cholesterol homeostasis in the infected 366 

erythrocyte is PF3D7_0113700 (PFA0660w). This protein is a Type II Hsp40 that is present in 367 

J dots and can bind cholesterol [18]. This cholesterol binding occurs through a part of the 368 

protein separate from that that binds Hsp70x, another component of J dots. It remains unclear 369 

whether J dots function as transporters of cholesterol or whether cholesterol aids in the 370 

stabilization of the transmembrane domains of the protein cargo [15, 16, 17, 18].  The known 371 

protein components of J dots are present only in the Laveranian lineage and can be readily 372 

mutated without obvious effect on parasite growth in vitro, despite a significant alteration in 373 

the formation of knobs, adhesive structures at the surface of the infected erythrocyte [110]. 374 

Potentially there exists an alternative pathway for the transport of cholesterol that is conserved 375 

in all Plasmodium parasites. 376 

 377 

HOST LIPID TRANSFER PROTEINS 378 



Erythrocyte LTPs 379 

Erythrocyte biology should be appreciated to understand the lipid transfer events occurring 380 

during the Plasmodium intraerythrocytic development. Mature erythrocytes are unique cells as 381 

they are anucleated, devoid of organelles and unable to synthesise phospholipids or cholesterol 382 

[116, 117, 118]. The erythrocyte maintains its membrane asymmetry using three classes of 383 

enzymes: flippases (erythrocyte P4-type ATPases) that flip mainly PS from the outer leaflet to 384 

the inner leaflet in an energy-dependent manner; floppases, which mainly externalise PC from 385 

the inner leaflet to the outer leaflet, also requiring ATP; and scramblases, which transport 386 

negatively charged phospholipids between membrane leaflets and are ATP-independent [119]. 387 

The activity of the phospholipid scramblase PLSCR1 is ATP-independent but is activated by 388 

changes in Ca2+ influx [120, 121]. Scramblase activity increases during invasion of the parasite 389 

owing to an influx of the Ca2+, which induces the exposure of PS to the outer surface of the 390 

erythrocyte, acting in vivo as a signal for removal of the cell by the immune system [121]. In a 391 

recent study, a combination of lipid labelling and pharmacological interventions was used to 392 

compare membrane asymmetry between P. falciparum-infected and uninfected erythrocytes. 393 

Infected erythrocytes were shown to be induced by the parasite to spend energy increasing the 394 

activity of ATP-dependent flippases to counteract the increase in outer PS induced by the non-395 

specific activity of the PLSCR1 scramblase [121]. This indicated for the first time how the 396 

parasite resolves the initial consequences of its erythrocyte invasion, which inadvertently 397 

induces host scramblase-dependent outer PS exposure owing to the increase in Ca2+ levels, by 398 

activating host flippases [121].  399 

Mosquito LTPs 400 

Little is known about LTPs in the Anopheles mosquito. Mosquitos lack the biochemical 401 

pathways to add a second or third double bond into fatty acids and cannot produce sterols de 402 

novo [111, 112, 113, 114, 115]. Female Anopheles mosquitoes require feeding on blood, mainly 403 

for egg production [114, 115]. For this it is dependent on the LTP lipophorin, which is used to 404 

acquire and transport lipids from blood meals. Interestingly, not only the mosquito is dependent 405 

on lipophorin but the parasite also uses this LTP for its lipid scavenging requirements; in the 406 

absence of this protein not only is the growth of the mosquito negatively impacted but the 407 

growth of the parasite in the mosquito is also significantly reduced through the obstruction of 408 

sporozoite metabolism [114, 115, 116]. Hence, this host LTP is a regulator of parasite 409 



infectivity, and its disruption reduces virulence and potentially transmission to the vertebrate 410 

host. 411 

Hepatocyte LTPs 412 

During the hepatocyte stage the parasite requires the presence of several host LTP proteins, in 413 

particular those involved in cholesterol transport. The scavenger receptor binding protein 1 414 

(SRBP1), a membrane protein important for cellular cholesterol homeostasis, is key for 415 

infection of hepatocytes by Plasmodium parasites in vitro [122].  Furthermore, the parasite 416 

scavenges PC and extracellular and intracellularly synthesised cholesterol [123, 124] and 417 

promotes lipid biosynthesis by the host cell through inhibition of the AMP-activated Protein 418 

Kinase (AMPK) pathway [125]. Furthermore, pharmacological inhibition experiments using 419 

U18666A, an inhibitor which mimics the Niemann-Pick type C 1 (NPC1) mutant phenotype 420 

by blocking its activity and hence inhibiting cholesterol trafficking, severely impairs parasite 421 

growth by mislocalising cholesterol to enlarged intracellular vacuoles. This arrest is reversed 422 

with the addition of methyl-β-cyclodextrin (MβCD), which is known to release cholesterol 423 

from membranes, re-localising it to the PVM surrounding the parasite [126]. Interestingly, 424 

during the early stages of parasite establishment in the hepatocyte, its lipid requirements are 425 

low.  However, the parasite establishes itself in the apical polar region of the hepatocyte, which 426 

has a higher level of cholesterol, phospholipids and SM [127], which may provide part of the 427 

vast number of phospholipids that are required to fuel the PVM expansion and growth of the 428 

parasite, including the membranes of the newly formed merozoites [127, 128].  429 

 430 

OUTSTANDING QUESTIONS 431 

Although significant insight into the growth of the parasites and its modification of the host 432 

has been gained over the past fifty years, many questions remain outstanding. Little is known 433 

about the transport of lipids to and from the PVM, the origin of the lipids used by the parasite, 434 

its lipidomic profile, exchange dynamics involved in membrane biogenesis, composition, and 435 

expansion in the intraerythrocytic stage. The recent discovery of Plasmodium parasite LTPs 436 

such as PF3D7_01004200 (PFA0210c) and lipocalin in the PV and PfNPC1 at MCSs, with the 437 

intriguing potential to act as lipid shuttles between the closely positioned PPM and PVM, are 438 

exciting new clues to the function of LTPs in this parasite [63, 102, 106, 107]. Further 439 

investigation of the localisation and function of more LTPs throughout the Plasmodium 440 

parasite lifecycle will greatly enrich this rapidly expanding field. Furthermore, the role of 441 



cholesterol remains enigmatic. There is a dramatic gradient of cholesterol in the infected 442 

erythrocyte, but how this is set up and maintained remains unclear. The parasite cannot 443 

synthesise cholesterol and hence the cholesterol gradient must be distributed from the outside 444 

inwards. Further investigation of PfNPC1 and PFA0660w, and J dots in general, are likely to 445 

shed light on this process. Another lipid that is important in the transition between different 446 

lifecycle stages is LysoPC; a decrease in LysoPC levels induces the transition from asexual to 447 

sexual stages. The uptake of LysoPC is likely to be an active process and may involve a 448 

parasite-derived transporter [89, 129]. Therefore, the biochemical and genetic characterisation 449 

of the transport and metabolism of LysoPC and other phospholipid precursors should be 450 

pursued. Many lipid transfer proteins remain unstudied, even those that have an essential 451 

function, including PF3D7_0920700, a predicted Sec14/CRAL/TRIO phospholipid transfer 452 

protein, and PF3D7_1324400, a PRELI domain-containing protein predicted to be involved in 453 

phospholipid and phosphatidic acid transport (Table 1). PRELI family members are known to 454 

regulate lipid accumulation in organelles by shuttling phospholipids [130]. Interestingly, while 455 

the lipid content of rhoptries in T. gondii has been investigated, so far, no studies have emerged 456 

with regards to the lipid contents of Plasmodium parasites, and only proteomic analyses have 457 

been performed [131, 132]. Such studies and proteomic analyses to identify lipids and LTPs 458 

associated with invasion organelles would be of great interest, especially to understand the 459 

specific invasion mechanisms of the parasite. Genetic and biochemical investigation of these 460 

proteins is likely to uncover fascinating new interactions between the parasite and the host and 461 

transfer pathways within the host.  462 

Investigating these and other outstanding questions will be greatly aided by advances 463 

in research technologies to manipulate Plasmodium parasites [61, 102, 107, 108, 133, 134, 135, 464 

136]. Inducible gene deletion, protein disruption and mRNA stability techniques have already 465 

proven to be indispensable to the investigation of many essential proteins and will undoubtedly 466 

be of great use in furthering our understanding of the proteins involved in the transfer of lipids 467 

in the parasite and in the host cell. Fluorescence Recovery After Photobleaching (FRAP) and 468 

fluorescent timer experiments will provide insight into the dynamics of LTPs in live cells and 469 

their directionality. In addition, cryoEM has already proven to move the boundaries of the 470 

detection of the fine structure of the parasite. As an example, the discovery of the MCSs 471 

connecting the PPM and the PVM will likely prove to be a pivotal moment in our understanding 472 

of the formation, expansion and maintenance of the PVM [107]. With these and other new 473 



technologies, the functional role of numerous important LTPs are likely to come into better 474 

focus over the coming years.  475 
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Table 1. Studied and predicted Plasmodium falciparum lipid transfer proteins 490 
When proteins have been previously studied references have been indicated. If no references 491 
are indicated, then these are predicted gene products. Both Gene ID and predicted protein 492 
sequence were retrieved from plasmodb.org. Domain organisation and predicted function were 493 
obtained when available from uniprot.org and ebi.ac.uk/interpro. In certain cases, the predicted 494 
gene products were mined using specific GO searches at ebi.ac.uk, using the Plasmodium 495 
falciparum (isolate 3D7) Uniprot Taxon Identifier (UTI): 36329. Specific GO codes and 496 
functions searched are described at the end of this legend. Essentiality data were obtained from 497 
plasmodb.org and cross-referenced from the supplementary data provided by Zhang and 498 
colleagues [75]. Localisation was either obtained from published studies, predicted by 499 
uniprot.org or assumed due to the domain content of the respective gene product (i.e. presence 500 
or absence of transmembrane domains).  501 
The following GO searches with included the qualifier ‘enables’ and excluded ‘involved in’.  502 
The following GO searches were used: GO:0006869 ‘lipid transport’, GO:0034040 ‘ATPase-503 
coupled lipid transmembrane transporter activity’, GO:0005319 ‘lipid transporter activity’, 504 
GO:0120020 ‘cholesterol transfer activity’, GO:0046624 ‘sphingolipid transporter activity’, 505 
GO:0035627 ‘ceramide transport’, GO:0043691 ‘reverse cholesterol transport’, GO:0017089 506 
‘glycolipid transfer activity’, GO:0035621 ‘ER to Golgi ceramide transport’, GO:0008526 507 
‘phosphatidylinositol transfer activity’, GO:0120019 ‘phosphatidylcholine transfer activity’, 508 
GO:0120014 ‘phospholipid transfer activity’, GO:1904121 ‘phosphatidylethanolamine 509 
transfer activity’, GO:0005548 ‘phospholipid transporter activity’, GO:0140337 510 
‘diacylglyceride transfer activity’, GO:0140340 ‘cerebroside transfer activity’, GO:0140339 511 
‘phosphatidylglycerol transfer activity’, GO:0140338 ‘sphingomyelin transfer activity’, 512 
GO:1990050 ‘phosphatidic acid transfer activity’, GO:0046836 ‘glycolipid transport’, 513 
GO:0140327 ‘flippase activity’, GO:0030301 ‘cholesterol transport’, GO:0015914 514 



‘phospholipid transport’, GO:0090556 ‘phosphatidylserine floppase activity’, GO:0090554 515 
‘phosphatidylcholine floppase activity’. 516 
 517 
Figure 1. The Plasmodium falciparum lifecycle.  518 
Plasmodium falciparum parasites depend on two distinct host environments, the mosquito 519 
midgut, and salivary glands, required for sexual reproduction, differentiation, replication and 520 
transmission (green background). Meanwhile the human host liver and blood cells must be 521 
invaded to sustain its differentiation and extraordinary high levels of cellular replication 522 
(beige background). A) Upon the ingestion of mature P. falciparum male and female 523 
gametocytes, the gametocytes are relocated to a drastically different midgut environment of 524 
the Anopheles mosquito (i.e. ≥5°C temperature drop, increased pH and xanthurenic acid 525 
levels). B) These changes trigger a rapid adaptational response by both gametocytes, 526 
characterised by deep nuclear reorganisation and differentiation events, resulting in eight 527 
free-swimming microgametes (male gametes) and one macrogamete (female gamete). C) The 528 
fertilisation of a macrogamete with a microgamete result in a zygote. D) The zygote becomes 529 
a motile ookinete, which traverses the mosquito midgut to encyst and become an oocyst. E) 530 
Inside the oocyst, the ookinete undergoes sporogony producing thousands of sporozoites. F) 531 
The oocyst eventually ruptures, releasing thousands of sporozoites which migrate to the 532 
mosquito salivary glands. G) Human infection occurs when sporozoite contaminated saliva is 533 
released into the blood circulation during a mosquito blood meal. H) Once in the liver, a 534 
selected hepatocyte is invaded by a single sporozoite. I) In the hepatocyte, the parasite 535 
develops inside a parasitophorous vacuole (PV) enveloped by a parasitophorous vacuole 536 
membrane (PVM). J) After several rounds of replication, through a process named 537 
schizogony, thousands of invasive merozoites are generated. K) The merozoites are released 538 
and able to invade an erythrocyte using a set of specialised invasion structures, a zoomed in 539 
depiction of a merozoite labels these apical organelles which include the micronemes (Ms), 540 
rhoptries (Rs) and dense granules (DGs). L) Merozoites initiate the intraerythrocytic asexual 541 
cycle by invading an erythrocyte through initial stochastic contact, followed by release of 542 
contents from the apical organelles, while burrowing through the erythrocyte, forming a PV 543 
and PVM. M) The parasite starts as the ring stage where for the first 24 hours it exports and 544 
imports various proteins and nutrients, moving them into and from host cytoplasm, crossing 545 
several membranous structures such as the parasite plasma membrane (PPM), the PV, PVM, 546 
tubovesicular network (TVN). N) The trophozoite the parasite growth stage, several lipid 547 
derived structures are present including the PVM, TVN, Maurer’s Clefts (MCs), J dots, 25nm 548 
and 80 nm vesicles, food vacuole (FV) and membrane contact sites (MCSs). O) The schizont 549 
is the result of a highly replicative stage (erythrocytic schizogony), generating up to 32 new 550 
merozoites. P) When the schizont is mature the PVM and erythrocyte plasma membrane 551 
bursts, releasing newly invasive merozoites. Q) A subpopulation undergoes 552 
gametocytogenesis to develop into male or female gametocytes, which once fully matured 553 
can be transmitted back to the mosquito. Diagram not to scale. 554 

 555 
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Table 1. Plasmodium falciparum Genes Encoding Studied and Predicted Lipid Transfer Proteins 

 

PlasmoDB 
Gene ID 

 

Annotation 
Domain 

Organisation 
 

Function 
 

Essentiality 
 

Localisation 
 

Refs 

PF3D7_0719500 LEM3/CDC50a family 
protein, putative 

CDC50/LEM3 
 

 
Flippase 

 
Essential 

ER, Golgi, PPM, 
integral 

membrane 
component 

 [84] 
 
 

PF3D7_1133300 LEM3/CDC50b family 
protein, putative 

 
 
 
 
 

CDC50/LEM3 
 

Flippase Essential 

ER, Golgi, PPM, 
integral 

membrane 
component 

 

[84] 
 

 

PF3D7_1029400 
 

LEM3/CDC50c family 
protein, putative 

 

 
 

CDC50/LEM3 
 

Flippase Essential 

ER, Golgi, PPM, 
integral 

membrane 
component 

 

[84] 
 

PF3D7_0104200 StAR-related lipid 
transfer protein 

One START 
domain with 

extended 
80-aa C-term 

Broad 
specificity 

phospholipid 
transfer 
protein 

 

Essential 

PV, integral 
membrane 
component 

 

[61, 
63] 

 

PF3D7_1463500 

Fam-A protein, 

displays similarity to 
a cholesterol transfer 

protein 
 

One START-like 
Domain 

Plasmodium 
specific lipid 

transfer 
Dispensable Apicoplast  

PF3D7_1351000 

 
 

Phosphatidylinositol 
transfer protein 
alpha, putative 

 
 

 
Multiple Lipid 
Transfer and 

Binding Domains 
PITP, OSBP, PH 
and START-like 

Domain 
 

Phospholipid 
transporter, 
Oxysterol-

binding 

Dispensable Cytosol and 
membrane  

PF3D7_0911100 Conserved protein, 
unknown function 

 
One C-term 
START-like 

Domain 
 

Phospholipid 
transporter, 

putative 
Dispensable unknown  

PF3D7_0807400 
Coq10p – Coenzyme 
Q-binding protein, 

START domain 

Coenzyme Q 
Binding domain 

and C-term START 
Domain 

 
Ubiquinone/ 
Coenzyme Q 

binding 
 

Essential Mitochondrion  
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PF3D7_0629900 

 
Sec14-like cytosolic 

factor or 
phosphatidylinositol/
phosphatidylcholine 

transfer protein, 
putative (PfSec14) 

 

Sec14p-like lipid-
binding domain, 

overlapping 
CRAL-TRIO lipid 
binding domain 

Phosphatidyl
inositol/phos
phatidylcholi
ne transfer 

protein, 
putative 

Essential Golgi, cytosol, 
predicted  

PF3D7_0626400 
CRAL/TRIO domain-
containing protein, 

putative 

 
N-terminal CRAL-

TRIO domain, 
Sec14 domain, 

Phage fibre 
protein domain 

 

Phospholipid 
transfer 
protein, 
putative 

Dispensable Golgi, cytosol, 
predicted  

PF3D7_0920700 
CRAL/TRIO domain-
containing protein, 

putative 

N-terminal CRAL-
TRIO domain, 

Sec14 
superfamily 

 

Phospholipid 
transfer 
protein, 
putative 

Essential Golgi, cytosol, 
predicted  

PF3D7_1127600 
CRAL/TRIO domain-
containing protein, 

putative 

N-terminal CRAL-
TRIO domain, 

Sec14 
superfamily 

 

Phospholipid 
transfer 
protein, 
putative 

Essential Golgi, cytosol, 
predicted  

PF3D7_0107500 Niemann-Pick type 
C1-related protein 

Ptc/Disp domain, 
Niemann-Pick C1 
domain family, 
sterol-sensing 

domain 
 

Cholesterol 
transfer Essential PPM [106, 

107] 

PF3D7_0925900 Lipocalin 

FA binding 
domain, 

VDE L domain, 
Nitrophorin 

domain, THAP4-
like, domain 

 

Fatty-acid 
and haem 

binding 
Essential PV, FV, Cytosol  

PF3D7_1138400 Guanylyl cyclase 
alpha (GCα) 

P-type 
(phospholipid 
transporting) 

ATPase domain, 
Adenyl and 

Guanylate cyclase 
domain and 
histidinol-
phosphate 

phosphatase 
domain 

Multi-
domain 
protein 

catalyst of 
cGMP 

biosynthesis, 
signal 

transduction, 
ATP binding, 
phospholipid 

transport 

Essential PPM [140] 
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and 
translocation 

 

PF3D7_1360500 Guanylyl cyclase 
beta (GCβ) 

Guanylate cyclase 
domain, 

C-terminal 
phospholipid 
translocating 

ATPase domain 

Multi-
domain 
protein 

catalyst of 
cGMP 

biosynthesis 
and 

phospholipid 
transporter 

Dispensable 
(P. berghei 
orthologue 

essential for 
ookinete 
motility) 

PPM, cytosol [140, 
141] 

PF3D7_0319000 P-type ATPase, 
putative 

N-terminal 
phospholipid 

ATPase domain, 
Metal cation-
transporting 

ATPase domain, 
C-terminal 

phospholipid 
ATPase domain 

 

phospholipid 
transporting 

ATPase 
(ATP11C) 

Dispensable Membrane [74] 

 
 
 

PF3D7_1223400 

 
 

P-type ATPase, 
phospholipid-

transporting ATPase, 
putative 

P-type ATPase 
domain and 

phosphorylation 
site, C-terminal 

and N-terminal P-
type ATPase A/IV 
superfamily, HAD-

like domain 
 

Phospholipid 
ATPase C/N, 

putative 
(Flippase) 

Essential Membrane  

 
 
 

PF3D7_1219600 

 
P-type ATPase, 
phospholipid-

transporting ATPase 
2 

(PfATPase2) 

P-type ATPase 
domain, haloacid 
dehydrogenase 
(HAD) domain 

ATPase-
coupled 

intramembra
ne lipid 

transporter 
activity 

(Flippase) 
 

Essential Membrane [76, 
83] 

 
PF3D7_1468600 

P-type ATPase, 
aminophospholipid 

transporter, putative 
 

HAD-like domain, 
P-ATPase domain Flippase Dispensable PPM  

 
 
 
 

PF3D7_1426500 

 
 
 

ABC transporter G 
family member 2 

(PfABCG2) 

Multi-pass 
membrane 

protein, AAA+ 
ATPase domain, 

ABC-2 type 
transporter 

domain, P-loop 

Flippase Dispensable Membrane 
[98, 
99, 

143] 
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NTPase-fold 
domain 

 

PF3D7_0319700 

ABC transporter I 
family member 1, 

putative 
(PfABCI3) 

AAA+ ATPase 
domain, ABC 

transporter-like 
domain, ABC 
transporter A 

domain, P-loop 
containing 
nucleoside 

triphosphate 
hydrolase domain 

 

Lipid 
transporter 

activity 
(Flippase) 

 

Dispensable ER, putative [74] 

 
 
 
 

PF3D7_0813700 

 
 
 

ABC transporter F 
family member 1 

(PfABCF1) 

Multi-pass 
membrane 

protein, AAA+ 
ATPase domain, 

ABC-type 
transporter 

domain, P-loop 
NTPase fold 

domain 
 

ATPase-
coupled 

transmembr
ane 

transporter 
activity 

(Flippase) 

Essential Apicoplast  

 
 

PF3D7_1464700 

 
ATP synthase 

(C/AC39) subunit, 
putative 

 

ATPase C domain, 
ATPase V0, V-
type ATPase 

domain 

Transmembr
ane 

transporter 
activity 

Essential Vacuoles, 
lysosomes  

PF3D7_1022700 Phospholipid 
scramblase, putative 

 
Palmitoylated 
Ca2+-activated 

scramblase 
domain with a 

PKC 
phosphorylation 
site and putative 

H3 and WW 
binding motifs 

 

Phospholipid 
scramblase Dispensable PPM [146] 

PF3D7_0915800 Glycolipid transfer 
protein, putative 

Glycolipid 
transfer protein 

domain 

Ceramide 
transfer 
activity, 

intermembra
ne lipid 
transfer 

 

Essential PPM, Cytosol  

PF3D7_1131800 Oxysterol-binding 
protein, putative 

Oxysterol-binding 
protein domain, 
PH-like domains 

Sterol 
transport Dispensable Cytosol, 

intracellular  
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membrane bound 
organelle 

 

 
 

PF3D7_1324400 

 
PRELI domain-

containing protein, 
putative 

PRELI/MSF1 
domain, Protein 
slowmo (Slmo) 

family. 

Phospholipid 
and 

phosphatidic 
acid 

transport 
 

Essential Mitochondrion  

 
 

PF3D7_1011300 

 

 
Protein ARV1, 

putative 
 

 
Transmembrane 

domain-
containing 

protein 
 

 
Sterol 

transport 
 

 
Essential 

 
ER  

PF3D7_0104800 Novel putative 
transporter 1 

MFS transporter, 
FMP42 protein 

domain 

Putative 
glycerol-3-
phosphate 
transporter 

 

Essential Membrane, 
putative cytosol  

PF3D7_1021700 
VPS13 domain-

containing protein, 
putative 

VPS13/Chorein-
N-terminal 

domain 

Lipid transfer 
protein 

found at 
multiple 
MCSs, 

(presumed 
LTP and lipid-

vesicle 
transfer 

roles) 
 

Essential Membrane  

PF3D7_0934700 
UBX domain-

containing protein, 
putative 

Multidomain 
protein, UBX 

domain, DSBA-
like thioredoxin 

domain, UAS 
domain of FAF1 

proteins 

Ubiquitin-
regulatory 

protein, 
putative lipid 

droplet 
formation, 

putative 
sensor for 
long-chain 

unsaturated 
fatty acids 

 

Dispensable Membrane  

PF3D7_0215000 Fatty acyl-CoA 
synthetase 

ANL, N-terminal 
domain, acyl-COA 

synthase 4 
domain, AMP-

dependent 
synthetase/ligase 

domain. 

Long-chain 
fatty acid 
transport, 
putative 
FATP4 

Dispensable ER, membrane  
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PF3D7_0215300 
Fatty acyl-CoA 

synthetase 
(PfACS) 

AMP-binding 
domain, AMP-

dependent 
synthetase/ligase, 
ANL, N-terminal 

domain 

Long-chain 
fatty acid 
transport, 
long-chain 
fatty acid 
metabolic 

process 
 

Dispensable ER, membrane [145] 




