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Abstract 6 

Background 7 

Circulating vaccine-derived poliovirus outbreaks are spreading more widely than anticipated, which has 8 

generated a crisis for the global polio eradication initiative. Effectively responding with vaccination 9 

activities requires a rapid risk assessment. This assessment is made difficult by the low case-to-infection 10 

ratio of type 2 poliovirus, variable transmissibility, changing population immunity, surveillance delays, 11 

and limited vaccine supply from the global stockpile. The geographical extent of responses have been 12 

highly variable between countries. 13 

Methods 14 

We develop a statistical spatio-temporal model of short-term, district-level poliovirus spread that 15 

incorporates known risk factors, including historical wild poliovirus transmission risk, routine 16 

immunization coverage, population immunity, and exposure to the outbreak virus. 17 

Results 18 

We find that proximity to recent cVDPV2 cases is the strongest risk factor for spread of an outbreak, and 19 

find significant associations between population immunity, historical risk, routine immunization, and 20 

environmental surveillance (p < 0.05). We examine the fit of the model to type 2 vaccine derived 21 

poliovirus spread since 2016 and find that our model predicts the location of cVDPV2 cases well (AUC = 22 

0.96). We demonstrate use of the model to estimate appropriate scope of outbreak response activities 23 

to current outbreaks. 24 

Conclusion 25 

As type 2 immunity continues to decline following the cessation of tOPV in 2016, outbreak responses to 26 

new cVDPV2 detections will need to be faster and larger in scope. We provide a framework that can be 27 

used to support decisions on the appropriate size of a vaccination response when new detections are 28 

identified. While the model does not account for all relevant local factors that must be considered in the 29 

overall vaccination response, it enables a quantitative basis for outbreak response size. 30 



Background:  31 

Outbreaks of circulating vaccine-derived poliovirus type 2 (cVDPV2) are spreading widely, putting the 32 

entire Global Polio Eradication Initiative (GPEI) at risk, and requiring a new strategy for their control 33 

[1,2]. Preventing further transmission of circulating vaccine-derived poliovirus type 2 (cVDPV2) in 34 

affected areas of low sanitation can only occur through use of the monovalent oral polio vaccine type 2 35 

(mOPV2)[3]. However, the Sabin 2 virus in mOPV2 can transmit from person-to-person, eventually 36 

reverting key attenuating mutations and causing new emergent events and outbreaks of cVDPV2 [2]. 37 

Thus, a vaccination response to a cVDPV2 outbreak needs to be large enough to cover populations 38 

infected with the outbreak virus, but small enough to avoid unnecessary exposure to mOPV2 which may 39 

seed a new outbreak. This is a difficult balance to determine [4]. A novel genetically stable OPV2 40 

(nOPV2) which is designed to retain its attenuation is currently under development, and received 41 

approval for emergency use in November 2020. Because its use will be restricted to emergency 42 

contexts, care must also be taken to avoid unnecessary exposure until reversion risk can be established 43 

and it receives full licensure. Consequently, the challenges of determining scope and geographic extent 44 

for cVDPV2 vaccination response with mOPV2 will likely remain through at least 2021, and the 45 

challenges with using nOPV2 may be similar. 46 

Defining the at-risk population for further cVDPV2 spread, and outbreak response, is difficult. 47 

Surveillance systems for acute flaccid paralysis (AFP) will identify only a small proportion of infected 48 

individuals: wild poliovirus type 2 is estimated to cause paralysis in only 1 out of every 2000 individuals 49 

infected, and a similar case-to-infection ratio is often assumed for cVDPV2 [5]. Thus, each detection of 50 

cVDPV2 likely represents thousands of infected individuals distributed over an unknown geographic 51 

area. In addition, a successful vaccination response must cover areas infected at the time of the 52 

response, which typically occurs two or more months after paralysis onset of a case, due to laboratory 53 

processing times and operational constraints. In the intervening period, the outbreak virus may infect 54 



new populations similarly subject to poor and delayed detectability, which is difficult to account for 55 

when making risk assessments. 56 

Prior to withdrawal of OPV2-containing vaccines from routine use in 2016, population immunity to type 57 

2 poliovirus was generally high in most places [6]. Thus, cVDPV2 circulation was limited to small 58 

populations in a few countries with poor immunity. Now, however, nearly all areas with poor sanitation 59 

are susceptible to transmission of type 2 poliovirus, regardless of routine immunization coverage[7]. As 60 

a result, there are fewer barriers to virus spread, and so the extent of spread may be larger and more 61 

rapid than would be assumed based on patterns of spread observed in cVDPV2 outbreaks prior to 2016 62 

or in outbreaks of serotypes 1 and 3 poliovirus.  63 

The outbreak response protocol permits a wide range of target populations, from 400 thousand to 4 64 

million for a new detection, and thus additional and rapid quantitative analysis is useful to guide the 65 

response strategy[3]. While there have been previous studies informing geographic scope of outbreak 66 

response, there are no models currently available which can be used by countries to assess the likely 67 

extent of poliovirus spread at the district or second administrative unit level, where outbreak responses 68 

are organized. Duintjer-Tebbens and others used a deterministic model to show that larger responses to 69 

cVDPV2 were required in areas with lower immunity or higher transmissibility [8]. Spatio-temporal 70 

models of poliovirus spread exist, but are often limited to a single country and operate on longer time 71 

scales, such as 6 months, than are relevant for cVDPV2 outbreak responses [9,10]. Likewise, global 72 

models exist for wild polio virus (WPV1) spread and cVDPV emergence, but since risk is given at the 73 

national level, they cannot be used to assess subnational risk necessary for outbreak response [11].  74 

Here we describe a district-level model of cVDPV2 spread that is fitted to historical data and used to 75 

forecast short-term spread of outbreaks (1-12 months). This model accounts for polio spread informed 76 

from historical observations, the immunity changes induced by withdrawal of tOPV, routine 77 



immunization program performance, and environmental surveillance (ES) data, and can be extended to 78 

include additional factors. Since we use a relatively simple regression framework, this model can be 79 

quickly updated and be used in near real-time to inform outbreak response activities. As the model was 80 

being developed in 2019-2020, the COVID19 pandemic spread globally and resulted in all supplemental 81 

immunization activities (SIAs) being suspended due to the contraindication to physical distancing 82 

requirements. In preparation for the resumption of SIAs in June 2020, vaccination responses needed to 83 

be updated and this model was used to provide guidance to the GPEI. 84 

The rest of the paper is organized as follows. In the Methods section, we list the data used and how it 85 

was obtained (Data), and we describe the regression model including how data is used in the model for 86 

fitting and validation (Statistical Methods). In the Results section, we describe the risk factors used in 87 

the model and provide basic descriptive statistics (Description of the data), as well as the fit of the 88 

model to the data (Model results), how well the model performs when forecasting cVDPV2 outbreaks in 89 

the subsequent 1-12 months (Forecasting Risk), and how the model is used in an example risk 90 

assessment in central Africa (Use in Risk Assessments). Lastly, we conclude in the Discussion with the 91 

outlook for cVDPV2 crisis affecting the GPEI, and list some model limitations and future work.   92 

Methods 93 

Data 94 

Our main outcome variable is a new detection of poliovirus in an AFP case or ES sample within a specific 95 

district-month. We use polio surveillance data comprising AFP and ES from a database maintained by 96 

the WHO for GPEI. While our focus is on estimating cVDPV2 risk, we developed a WVP1 model to 97 

capture the shared geographic risks of detection that are common to both epidemics. For our WPV1 98 

model, we used data from 2005-2015 from countries in AFRO and EMRO (from 2015 WPV has been 99 

geographically restricted to Pakistan and Afghanistan, with a few exceptions). For our cVDPV2 model we 100 



used data from January 2021 – May 2020. Each isolate of VDPV2 is classified according to an emergence 101 

group though genetic clustering described elsewhere [12]. Isolates of cVDPV2 are either cases of 102 

poliomyelitis or positive ES samples, ES was not considered in the WPV1  model because ES has not been 103 

in widescale use during this time.    104 

To estimate immunity against transmission of serotype 2 poliovirus we used the SIA database 105 

maintained by the WHO, which gives the timing and vaccines used for SIAs from 2000-2019. We 106 

combined this with estimates of routine immunization coverage from Institute for Health Metrics and 107 

Evaluation (IHME) to estimate serotype-specific mucosal immunity for 6- to 36-month-old children for 108 

each month at the district level [13]. 109 

All data is coded to the district level (m=7125 districts within 69 countries), using the WHO polio 110 

geodatabase. Any changes in district boundaries prior to this time are simplified to this specification.  111 

Statistical methods 112 

We modeled poliovirus detection in a new district in a given month, as a function of estimated type-113 

specific immunity, cVDPV2 exposure, historical WPV1 risk, and population size. District-level immunity is 114 

estimated based on immunization campaign history using methods described elsewhere[13]. We used a 115 

radiation model of population movement which we found to fit the data best, consistent with previous 116 

models of measles and polio spread [9,14]. Historical WPV1 risk is estimated with a random effects 117 

model measuring the relative risk of WPV1 in a province, compared to a district with similar measured 118 

risk factors.  To relate these predictors to cVDPV2 detections, we used a Poisson model for cVDPV2 119 

cases and a binomial model for environmental detections, and combined both models into a joint 120 

framework. An added advantage of this framework is that the model allows for increases in sensitivity to 121 

detections in districts with environmental surveillance. Details of the model equations are given in the 122 

technical Appendix. 123 



The model was fitted to data from January 2010 to May 2020 inclusive. To estimate the predictive ability 124 

of the model, forecasts were generated starting from each month between January 2010 to May 2020 125 

inclusive, forecasting the subsequent 12 months, and then compared to the observed location of cases 126 

where surveillance data was complete (i.e. from February 2010 to May 2020 inclusive). The forecasts 127 

and observations were compared visually and by using area under the curve (AUC) diagnostics. 128 

Results 129 

Description of the data 130 

Figure 1 displays the some of the key risk factors for cVDPV2 spread, displayed on a map for the month 131 

of June 2020. We see that immunity to Type 2 polio (panel A) is highly restricted to areas where mOPV2 132 

SIAs have been implemented recently (eg. many districts within Angola, Democratic Republic of the 133 

Congo, Ethiopia, Nigeria, Niger and Somalia). Examining estimated DPT3 coverage (panel B) shows that 134 

the areas with highest Type 2 immunity are often the areas with lowest routine immunization (shown in 135 

dark grey). The WPV1 risk score (panel C), which is the estimated relative risk of a WPV1 detection in 136 

that district, all other risk factors being equal, and which also coincides with areas with recent mOPV2 137 

campaigns, suggesting common risk factors for cVDPV2 outbreaks and WPV1. Lastly, we display 138 

estimated exposure to cVDPV2 (Panel D, where red indicate higher exposure), which decreases rapidly 139 

with distance from recent cases.  Altogether, one can see stark contrasts of the various risk factors for 140 

cVDPV2: in many areas of sub-Saharan Africa we see high and localized immunity due to outbreak 141 

response, and at the same time weak routine immunization and high historical risk of WPV1 spread. The 142 

relative importance of these risk factors, and thus the likelihood of cVDPV2 spread in areas that are 143 

exposed to cVDPV2, will be estimated in the model.   144 

 145 



The data used in the model is summarized further quantitatively in Table 1, and contrasts areas with 146 

cVDPV2 detections to the general population. There were 7125 districts in AFRO and EMRO available for 147 

analysis, with data available for 125 months. There were 510 districts with cVDPV2 detections over this 148 

period. Among these detections, 72% were detections from AFP, 30% had detections from ES, and 2% 149 

had detections from both AFP and ES. Among districts with cVDPV2 detections, 90% had 1 or fewer 150 

cases (max = 4 cVDPV2 cases in one month).  151 

In general, district-months with cVDPV2 detections had lower DPT3 coverage, lower immunity, higher 152 

exposure to cVDPV2, higher under-5 population, and higher WPV risk scores.  153 

Model results 154 

Table 2 summarizes the estimated relationship between the model inputs and the risk of cVDPV2 155 

detection in the subsequent month. The variables are associated in the direction and roughly the 156 

magnitude one would expect: exposure from cVDPV2 cases is by far the strongest predictor of cVDPV2 157 

spread as measured by the chi-square statistic, and areas with high WPV risk have higher cVDPV2 risk or 158 

with increased susceptibility (i.e. lower immunity) are also at higher risk. We also find that districts with 159 

environmental sites are around 8 times more likely to detect cVDPV2 than comparable districts without 160 

environmental sites. This highlights the importance of environmental surveillance in assessing the 161 

geographic extent of cVDPV2 spread. Population size was not significantly (p<0.05) associated with 162 

cVDPV2 spread, after adjusting for the other risk factors; however we opted to retain it in the model due 163 

to its biological plausibility. 164 

Forecasting risk  165 

Overall, the model predicts expanding cVDPV2 outbreaks through 2020 and into 2021 (Figure 2), due to 166 

the spread of VDPV2 outside of recent SIA response districts and no further response due to the 167 

COVID19 restrictions at the time. The estimated risk of cVDPV2 for February 2010 through May 2021 are 168 



illustrated in Figure 2, based on surveillance data from January 2020 through May 2020 and accounting 169 

for SIAs that have been conducted. We estimate the total number of newly infected districts using the 170 

most recently available data prior to the month of interest: for February 2010 through May 2020 171 

estimates for a given month are based on the information available in the previous month, while risk 172 

estimates for June 2020 through May 2021 are based on forward simulations from the data available 173 

through May 2020.   174 

The model achieves high sensitivity and specificity for selecting areas of likely infection by cVDPV2 175 

(Figure 3). The area-under the receiver operating curve, for classifying infection status of districts 1 176 

month in the future is 0.96, and decreases monotonically with time to 0.88 for forecasts 12 months 177 

ahead. However, the sparsity of cVDPV2 cases and large geographic scope of the model make it such 178 

that broad areas at risk can be identified reliably (ie. regions within a country), but the individual 179 

districts in which cases occurs can rarely be predicted with high certainty. For instance, for districts with 180 

cases, the average predicted probability of a detection based on the previous month’s data is 10%. 181 

However, the estimate aggregate number of infected districts Jan 2010 – May 2020 shows that the 95% 182 

prediction interval of the number of infected districts includes the observed number in 103 of 124 183 

months (83%). 184 

Use in Risk Assessments.  185 

The model has been used for risk assessment to support outbreak response activities since June 2020. 186 

The maps in Figure 4 illustrate an example for Chad, Sudan, South Sudan, and Central African Republic, 187 

where at the time of analysis (September 2020) there have been 92 cVDPV2 cases in 2020, from at least 188 

4 different outbreaks, one of which (CHA-NDJ-1) has spread to all four countries. Using the model, we 189 

estimate the risk of spread to additional districts. To support vaccination response, districts are ordered 190 

by descending VDPV2 risk and the cumulative risk is plotted against cumulative target population size. 191 



These metrics are used to indicate the mOPV2 doses required to vaccinate the highest risk districts, 192 

which is then aligned with the mOPV2 supply for that epidemiological block. If no response was carried 193 

out (corresponding to a target population of 0), the estimated risk is equivalent to over 35 infected 194 

districts. As the target population of the response increases, the remaining risk reduces; as the districts 195 

are ordered by decreasing risk, the increasing size of the target population has an initially large effect on 196 

reducing risk. The scenarios corresponding to A, B, and C are described in more detail below, but in this 197 

example result in a response in excess of 8 million across the four countries. 198 

Criteria for response can vary based on risk tolerance and the perceived cost of the response, and we 199 

illustrate several examples here (Figure 4 response A, B and C). One could respond where the risk of 200 

cVDPV2 spread outweighs the risk of mOPV2 use1, as the consequence of either event (additional 201 

cVDPV2) can be considered comparable (Figure 4 A). This suggests responses covering all areas not 202 

already covered by mOPV2 responses among countries in the risk assessment, and in this example is the 203 

largest response. Alternate criteria are also considered, such as choosing a response such that that the 204 

expected newly infected districts outside the response zone is less than 1 (Figure 4 B), or less than 0.5 205 

(Figure 4 B), where in this example these criteria result in a moderately smaller response. Still other 206 

criteria may be considered, incorporating different models of mOPV2 risk, consequences of cVDPV2 207 

spread, or efficacy of response.  208 

Since this analysis was conducted outbreak response SIAs have been planned covering the areas 209 

indicated in Figure 4 A. At the same time, spread of the cVDPV2 outbreaks have been observed prior to 210 

the outbreak response, most notably across South Sudan and further into Sudan, and with related 211 

 
1 One may estimate the risk of mOPV2 by relating the number of children vaccinated with mOPV2 which could 
have generated an observed emergence (approximately 150 million at the time of writing) to the number of 
emergences following tOPV cessation (approximately 50) to estimate a crude risk of 1 outbreak per 3 million 
children vaccinated. 



environmental detections in Egypt. These new detections present additional risk to other areas and will 212 

need to be evaluated in light of the anticipated impacts of the planned mOPV2 SIAs. 213 

In practice, the modeling provides one input, which must be complemented with information on 214 

additional immunization indicators available at the country and region level, surveillance quality, prior 215 

campaign performance, population movements and presence of high-risk groups such as refugees, 216 

internally displaced populations, trends of insecurity and instability to come up with proposed scope of 217 

response. The overall scope is also invariably influenced by availability of vaccines. In general, we have 218 

found that the model suggests larger areas for response than can be approved when also considering 219 

mOPV2 emergence risk and vaccine supply.220 



Discussion 221 

Implications for cVDPV2 outbreak management 222 

This model provides a framework for assessing the risk of cVDPV2 spread using historical epidemiology, 223 

for use in risk assessments and planning the scope of outbreak response activities. By using a relatively 224 

simple framework, it can be easily updated in near real-time as new data become available. The pairing 225 

of the risk model with criteria for response enable a more complete quantitative basis for outbreak 226 

response planning.  This is particularly important given the relatively poor detectability of cVDPV2 227 

compounded by the need to limit mOPV2 use owing to the potential risk of seeding new cVDPV2 and 228 

finite stockpile. 229 

While the primary goal of this tool is ongoing use in risk assessments, it also provides insights into 230 

overall considerations for the response to cVDPV2 in the coming years. We find that risk of spread is 231 

increased in areas with lower immunity, and conversely, increasing immunity (i.e. outbreak response) is 232 

associated with decreased risk. Thus, as population immunity to type 2 poliovirus continues to decline 233 

following cessation of tOPV, and following outbreak response campaigns, the number of areas at risk 234 

and thus the speed of geographic spread of cVDPV2 are increasing. In order to address this risk, 235 

generally larger responses will be required, and our model adds evidence to the overall efficacy of 236 

outbreak response activities. Additionally, by forecasting risk over time, we show how the consequences 237 

of delayed and inadequately large responses accumulate and place additional areas at risk. This in turn 238 

may be used to adjust the scope of response depending on the timing of isolates and the likely time of 239 

response, generally recommending increased target populations for delayed campaigns. As shown in the 240 

model, the level of risk varies widely based on a range of factors, and thus simple rules of thumb for 241 

response are inadequate to guide vaccination programs, and thus quantitative methods as described 242 

here will be critical to inform outbreak response until elimination is achieved. 243 



Following this analysis, many geographical areas highlighted as at-risk (Figure 2 C), including Egypt, 244 

South Sudan, Senegal, Liberia, and Sierra Leone reported cVDPV2 outbreaks and have required outbreak 245 

responses. This spread was not inevitable, but likely a result of delayed and inadequate responses to 246 

outbreaks, exacerbated by a pause in activities due to COVID-19.  247 

While mOPV2 is available, outbreak responses will involve its increased use which in turn is likely to seed 248 

more outbreaks, though with lesser consequence than allowing current outbreaks to spread if used 249 

judiciously, as we describe. With the development and use of the novel OPV vaccine the approaches 250 

described here can be readily adapted to inform strategic use against outbreaks, with a reduced risk of 251 

emergence.   252 

Looking forward, the prospects of cVDPV2 elimination are not certain, but will depend on the ability of 253 

the GPEI to mount high quality and epidemiologically targeted responses. While our model is able to 254 

accurately predict how cVDPV2 spread in the past, where the scale and speed of responses was a given, 255 

the scale and speed of future responses are not known in advance and so our model is not able to 256 

reliably predict the evolution of cVDPV2 outbreaks beyond the near future. However, we suggest that 257 

use of near real time modelling will be an essential tool to guide outbreak response teams towards a 258 

suitable scale of response that will limit further transmission and cases. This model has been developed 259 

with this objective in mind.    260 

Model limitations and future work 261 

Compared to a mechanistic model of polio transmission, such as SEIR models, the regression framework 262 

used assumes variables without specifying causal interpretation, but which demonstrate reliable 263 

associations with polio epidemiology. While this model is useful for prediction of polio outbreak spread, 264 

there are a few notable limitations. Exposure to cVDPV2 is approximated with a radiation model of 265 

movement, which will not capture temporal or geographic variation in movement patterns, such as 266 



migratory populations, or movement restrictions such as those implemented due to COVID-19 control 267 

measures[15]. Additionally, local factors that affect baseline risk of cVDPV2 are estimated from WPV1 268 

spread. However, this may be inadequate in situations where the local factors have changed, or where 269 

WPV1 did not spread over the period considered.  Immunity and the impact of SIAs is estimated from a 270 

simple model which has its own limitations and does not in general account for local factors such as 271 

response quality or variations in vaccine efficacy [13]. 272 

There are several reasons the model may underestimate risk. For one, we model observed cases rather 273 

than asymptomatic infections, which are necessarily more widespread than observed cases. One could 274 

account for this by examining risk in a longer window over which latent infections would be expected to 275 

result in an observed case, or by constructing a model that estimates latent infections[16]. However, 276 

models with latent infections are computationally intensive and typically make stronger assumptions on 277 

disease dynamics [17]. Additionally, the model also relies on clinical surveillance, both currently and in 278 

historical outbreaks that are used to inform the model, while in practice surveillance systems may not 279 

detect all cases, and while a majority of cases are reported promptly there is a delay between onset and 280 

confirmation[18], both leading to an under-assessment of risk. Lastly, the model estimates spread of 281 

existing cVDPV2 outbreaks, but does not explicitly estimate the risk of emergence of new outbreaks. 282 

However, vaccination responses with mOPV2 are recommended only in response to detections of 283 

VDPV2, and therefore a model of spread is sufficient for organizing outbreak response activities. 284 

Further model development will focus on inclusion of IPV immunity into the model and an investigation 285 

on how international migration, nomadic and seasonal population movements can further improve 286 

model prediction.  287 
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Figures and tables 341  
All District-months District-months with 

cVDPV2 Detections 
Districts (n) 7125 510 

Months (n) 125 110 

District-months (n) 890,625 972 

Cases (mean, IQR) 0.0012 (0, 0) 1.1 (1, 1) 

DPT3 Coverage (mean, IQR) 0.72 (0.57, 0.92) 0.51 (0.3, 0.73) 

Type 2 Immunity (mean, IQR) 0.71 (0.6, 0.92) 0.51 (0.005, 0.87) 

Exposure (log-10) (mean, IQR) -6.8 (-7.6, -6) -2.5 (-3.8, -0.79) 

Population (100k) (mean, IQR) 0.38 (0.11, 0.47) 0.81 (0.28, 0.82) 

WPV Risk Score (mean, IQR) 1.8 (0.62, 2.7) 3.5 (2.1, 4.3) 

 342 

Table 1: Summary of the data. Columns give the summary for district-months with and without 343 
cVDPV2 detections 344 

Variable Relative risk (95% CI) Wald  
(Chi-square) 
statistic 

p-value 

Susceptibility (log10) 1.77 (1.65, 1.89) 271.5 < 2e-16 

DPT3 ( %) 0.61 (0.45, 0.81) 11.3 0.000755 

Exposure (log10) 1.58 (1.55, 1.60) 3257.4 < 2e-16 

ES Sample (yes vs no) 7.50 (6.40, 8.79) 621.5 < 2e-16 

Population (100k) 1.06 (1.00, 1.13) 3.5 0.063048 

WPV Risk (relative risk) 1.87 (1.66, 2.10) 109.4 < 2e-16 

 345 

Table 2: Parameter estimates, confidence intervals, and significance, for model fit. 346 



 347 

Figure 1: Spatial distribution of the variables used to estimate cVDPV2 risk. Counter-clockwise from 348 
top left A: WPV Risk score, B: DPT3 Coverage, C: Immunity, and D: Exposure, for June 2020. Disputed 349 
areas shown in grey. 350 



 351 

Figure 2: Estimated risk of cVDPV2. Top panel: predicted cVDPV2-infected districts, 2010-2020, with 352 
Poisson prediction intervals in grey. Red dots give observed districts with cVDPV2 cases in a given 353 
month. Dotted vertical lines indicate June and November 2020. Bottom panel: estimated Risk of 354 
cVDPV2 spread, looking one month ahead of the available data (June 2020) and six months ahead 355 
(November 2020). 356 



 357 

Figure 3:  Sensitivity and specificity of district-level forecasts of cVDPV2 case locations, from January 358 

2016 – June 2020. Curves indicate forecasts for different lengths of time in the future (1-12months).  359 

 360 



 361 

Figure 4: Example response options. The top left panel give the reported cVDPV2 cases (black circles) 362 

and a map of district probabilities of one or more cVDPV2 case in May-September. The top right panel 363 

gives the cumulative risk of one or more cVDPV2 detections outside of a response area as a function 364 

of response size (solid line), and also considers the risk of seeding a new outbreak with the response 365 

(dashed line). The lower panels give the recommended response options that minimize total risk of 366 

spread and seeding (Response A), or that reduce the expected risk of cVDPV2 spread to 1 district 367 

(Response B), or 0.5 districts (Response C). 368 

 369 

 370 

 371 
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