Technology-based Nutrition Interventions employing the Mediterranean Diet: A Systematic Review

Authorship and Affiliation

Nada Benajiba ^a; Elizabeth Dodge ^b; Meghit Boumédiène Khaled ^c; Enmanuel A. Chavarria ^d; Cara J. Sammartino ^e; Basil H. Aboul-Enein ^f

^a Princess Nourah Bint Abdulrahman University Department of Health Basic Sciences Deanship of Preparatory Year Riyadh, Saudi Arabia E-mail: nabenajiba@pnu.edu.sa

^b University of New England College of Graduate & Professional Studies 716 Stevens Ave. Portland, ME 04103 USA E-Mail: edodge1@une.edu

[°] Djillali Liabes University of Sidi-Bel-Abbes Faculty of Life and Natural Science/Department of Biology Laboratory of Nutrition, Pathology, Biotechnology and Health (Lab-NUPABS) BO. 89 Sidi-Bel-Abbes, Algeria E-mail: boumedienemeghit.khaled@univ-sba.dz

^d Emory University Rollins School of Public Health Department of Behavioral, Social, and Health Education Sciences 1518 Clifton Rd. NE Atlanta, GA 30322 E-mail: Enmanuel.Chavarria@Emory.edu

^e Johnson & Wales University College of Health & Wellness Department of Health Science 8 Abbott Park Place Providence, RI 02903 USA E-mail: cara.sammartino@jwu.edu

^f London School of Hygiene & Tropical Medicine Faculty of Public Health and Policy 15-17 Tavistock Place London WC1H 9SH United Kingdom E-mail: Basil.Aboul-Enein@lshtm.ac.uk

Address correspondence and reprint requests to:

Basil H. Aboul-Enein London School of Hygiene & Tropical Medicine Faculty of Public Health and Policy 15-17 Tavistock Place London WC1H 9SH United Kingdom E-mail: Basil.Aboul-Enein@lshtm.ac.uk

Abstract

Context: Over the past two decades, overweight and obesity rates have increased exponentially, along with related comorbidities including Type II Diabetes, hypertension, cardiovascular disease, and some cancers. The Mediterranean Diet (MDiet) has been suggested as a potential way to mitigate the health burdens related to overweight and obesity. **Objective:** The current review examined the literature on digital interventions that were MDiet focused to determine efficacy, best practices, and potential limitations. Data Sources: The search was conducted across fifteen databases for relevant publications published through April 2020 in English, French, Spanish, Arabic, or Italian. Data Extraction: This review adopted PRISMA guidelines using a combination of the keywords and phrases and evaluated independently for relevance, merit, and inclusion/exclusion criteria. Data Analysis: The systematic literature review resulted in 15 articles that met search criteria. Ten interventions were delivered online, and 5 were delivered via smartphone using an app. The majority of online delivered, MDiet focused interventions were found to be effective, particularly when modeled after evidence based, and best-practice online nutrition education interventions. Such interventions have also been found to be effective in promoting positive health behaviors and health outcomes, such as increased physical activity, increased HDL, and a lower total HDL cholesterol ratio. Conclusion: Technology-based interventions to educate and promote adherence to MDiet are successful at achieving the stated outcomes. Further research is needed to determine the efficacy of MDiet interventions delivered via smartphone apps.

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint

Abdulrahman University through the Fast-track Research Funding Program.

Keywords: Mediterranean diet; Intervention; Technology; internet; apps

- 1 Technology-based Nutrition Interventions employing the Mediterranean Diet: A
- 2 Systematic Review
- 3 Authorship and Affiliation
- 4 Nada Benajiba ^a; Elizabeth Dodge ^b; Meghit Boumédiène Khaled ^c; Enmanuel A. Chavarria ^d;
- 5 Cara J. Sammartino^e; Basil H. Aboul-Enein^f
- 6
- 7 ^a Princess Nourah Bint Abdulrahman University
- 8 Department of Health Basic Sciences
- 9 Deanship of Preparatory Year
- 10 Riyadh, Saudi Arabia
- 11 E-mail: nabenajiba@pnu.edu.sa
- 12
- ^b University of New England
- 14 College of Graduate & Professional Studies
- 15 716 Stevens Ave.
- 16 Portland, ME 04103 USA
- 17 E-Mail: edodge1@une.edu
- 18
- 19 ° Djillali Liabes University of Sidi-Bel-Abbes
- 20 Faculty of Life and Natural Science/Department of Biology
- 21 Laboratory of Nutrition, Pathology, Biotechnology and Health (Lab-NUPABS)
- 22 BO. 89 Sidi-Bel-Abbes, Algeria
- 23 E-mail: boumedienemeghit.khaled@univ-sba.dz
- 24
 - d Emanuel I Inizanaitas
- 25 ^d Emory University
- 26 Rollins School of Public Health
- 27 Department of Behavioral, Social, and Health Education Sciences
- 28 1518 Clifton Rd. NE
- 29 Atlanta, GA 30322
- 30 E-mail: Enmanuel.Chavarria@Emory.edu
- 31
- ^e Johnson & Wales University
- 33 College of Health & Wellness
- 34 Department of Health Science
- 35 8 Abbott Park Place
- 36 Providence, RI 02903 USA
- 37 E-mail: cara.sammartino@jwu.edu
- 38
- ^f London School of Hygiene & Tropical Medicine
- 40 Faculty of Public Health and Policy
- 41 15-17 Tavistock Place
- 42 London
- 43 WC1H 9SH
- 44 United Kingdom
- 45 E-mail: Basil.Aboul-Enein@lshtm.ac.uk
- 46

47

48 Address correspondence and reprint requests to:

- 49 Basil H. Aboul-Enein
- 50 London School of Hygiene & Tropical Medicine
- 51 Faculty of Public Health and Policy
- 52 15-17 Tavistock Place
- 53 London
- 54 WC1H 9SH
- 55 United Kingdom
- 56 E-mail: Basil.Aboul-Enein@lshtm.ac.uk
- 57

58 Abstract

59 **Context:** Over the past two decades, overweight and obesity rates have increased exponentially,

along with related comorbidities including Type II Diabetes, hypertension, cardiovascular
 disease, and some cancers. The Mediterranean Diet (MDiet) has been suggested as a potential

disease, and some cancers. The Mediterranean Diet (MDiet) has been suggested as a potential
 way to mitigate the health burdens related to overweight and obesity. Objective: The current

review examined the literature on digital interventions that were MDiet focused to determine

64 efficacy, best practices, and potential limitations. **Data Sources:** The search was conducted

65 across fifteen databases for relevant publications published through April 2020 in English,

- 66 French, Spanish, Arabic, or Italian. **Data Extraction:** This review adopted PRISMA guidelines
- using a combination of the keywords and phrases and evaluated independently for relevance,

68 merit, and inclusion/exclusion criteria. Data Analysis: The systematic literature review resulted

- 69 in 15 articles that met search criteria. Ten interventions were delivered online, and 5 were
- 70 delivered via smartphone using an app. The majority of online delivered, MDiet focused
- 71 interventions were found to be effective, particularly when modeled after evidence based, and
- 72 best-practice online nutrition education interventions. Such interventions have also been found to

be effective in promoting positive health behaviors and health outcomes, such as increased
 physical activity, increased HDL, and a lower total HDL cholesterol ratio. Conclusion:

74 physical activity, increased TDL, and a lower total TDL choresteror ratio. Conclusion.
 75 Technology-based interventions to educate and promote adherence to MDiet are successful at

achieving the stated outcomes. Further research is needed to determine the efficacy of MDiet

77 interventions delivered via smartphone apps.

78 This research was funded by the Deanship of Scientific Research at Princess Nourah Bint

79 Abdulrahman University through the Fast-track Research Funding Program.

80

81 Keywords: Mediterranean diet; Intervention; Technology; internet; apps

82

83 Introduction

Over the past two decades, obesity rates have reached near pandemic levels. ¹ Previous research 84 has evaluated physical activity, nutrition, and diet as mitigators to chronic illnesses related to 85 obesity.² The Mediterranean diet (MDiet) is among one of the diets with greatest empirical 86 evidence in peer-reviewed literature that has positive effects on chronic illnesses.³ The MDiet 87 88 consists of fish, olive oil, fruits, vegetables, whole grains, legumes, nuts, and small amounts of low-fat and fermented dairy.³ Empirical support for the MDiet suggests it reduces the incidence, 89 and prevents progression of, cardiovascular disease, ^{4,5} breast cancer, ^{6,7} depression, ^{8,9} colorectal 90 cancer, ^{10,11} Type II diabetes, ¹²⁻¹⁴ obesity, ^{13,15-17} asthma, ^{18,19} and cognitive decline. ^{20,21} Based 91 on previous literature demonstrating MDiet's utility, the MDiet continues to be a central focus of 92 many interventions aimed at reducing obesity.¹⁵⁻¹⁷ Prior research on the MDiet assists with 93 guidelines for researchers to develop interventions using the MDiet. ¹⁷ However, new modalities 94 have been developed, such as online and mobile platforms supporting the MDiet as a potential 95 way to manage overweight and obesity. ²² Literature demonstrating the effectiveness of 96 adherence to the MDiet on mobile platforms is sparse, leaving a significant gap in knowledge 97 about how best to deliver these interventions. Data collected during the last few decades suggest 98 99 that tailored computer and online interventions can promote healthy eating habits. It remains to be examined on whether interventions promoting MDiet on mobile platforms are also effective. 100 Online intervention and platforms allow incorporating a range and variety of programs and 101 102 multimedia tools such as audio, video, etc. with low cost and convenience. The vast tools available lend towards applicability with various learning styles across multiple research and 103 104 educational settings. We anticipate that technology-based interventions, especially those based 105 on a theoretical framework or model, are effective at increasing adherence to a MDiet and can be successfully implemented across diverse settings and populations, making the internet an ideal
 resource to deliver health promotion interventions ²²⁻²⁴.

Recent reviews by Martinez-Gonzalez et al., ²⁵ and Franquesa et al., ¹⁴ provide guidance 108 on methodological nuances, and clinical relevance; however, many questions remain about the 109 effectiveness of diet interventions delivered across all digital platforms. The aim of this 110 111 systematic review is to examine the current literature on technology-based interventions, with a primary focus on adherence to the MDiet. For the purpose of this manuscript, we define online 112 interventions as those accessible via any Internet accessible device and interventions that are 113 both static (provide only information) and dyadic (web 2.0 human interface). Secondary 114 outcomes are related to the intervention and MDiet, and include weight loss, increase in HDL-c, 115 increased physical activity, increased fruit and vegetable intake, and decreased body fat 116 percentage. Our findings will guide our discussion on methods with most evidence, populations 117 for which digital interventions are most effective, and cost/benefit, if any. Among published 118 peer-reviewed literature, the current review sought consensus on best practices and limitations 119 among evidence-based interventions utilizing the MDiet. Our findings fill gaps that exist in the 120 literature specific to technology-based interventions and their impact on adherence to MDiet, as 121 122 well as related health outcomes. We also examine the role of theory in each study assessed. This evaluation of the current literature highlights opportunities and areas for improvement in future 123 124 digitally implemented MDiet interventions.

125

126 Methods

127 Selection Criteria

Table 1 details inclusion and exclusion criteria for selected articles. Briefly, inclusion 128 articles considered the following items: 1.) Population - age groups with or without morbidities; 129 2.) Intervention type - all digitally delivered interventions examining adherence to the MDiet, the 130 impact of MDiet on nutrition behaviors and nutrition-related health outcomes including changes 131 in anthropometric measurements and body composition, blood pressure (BP), glycaemia level, 132 133 blood lipid profile, dietary fiber intake, physical activity, well-being; and, 3.) Effectiveness of the intervention in achieving the stated aims related to MDiet, including increased scores for MDiet 134 135 adherence. It is evaluated based on tools such as MDiet Score (for adults) and KIDMED score (for children and adolescents), as well as changes in anthropometric and biochemical outcomes. 136 The score for MDiet is measured using the validated questionnaire composed of 14 questions. 137 Each question is scored as 0 or 1. Thus, the total score ranges from 0 to 14. Adequate adherence 138 to the Mediterranean diet is considered when the total score is ≥ 9 points. ²⁶ While, the KIDMED 139 score is calculated using a 16-item questionnaire. It is constituted of 12 positive questions and 4 140 negative questions. After summing up the responses, the total score obtained is ranging from 0 to 141 12. ²⁷ The adherence and compliance to the KIDMED is categorized as follows: ≤ 3 (low), 4-7 142 (medium), and ≥ 8 (high). 143

Peer-reviewed articles published in English, French, Spanish, Arabic, or Italian languages were
included. Nutrition interventions reported outside of traditional peer-reviewed articles were
excluded (i.e. commentaries, narratives, communications, conference papers, non-interventional
studies, white papers, and similar article types) (see Table 1). The search was conducted in
Spring 2020 and the results communicate literature published through April 2020. Further,
Figure 1 details the elimination process leading towards selected articles. Additionally, we
incorporated the Population, Intervention, Comparison, Outcomes and Study (PICOS) ^{28,29}

design guidelines to develop our inclusion and exclusion criteria. Specifically, we are interested
in assessing digital interventions aimed at promoting MDiet adherence to address obesity and
overweight. The population of focus was generalized, interventions focused on digital platforms,
comparisons were guided by prior literature, outcomes sought were guided by prior literature
among face-to-face interventions. Logically, we assumed that findings relevant to digital
platforms would expand upon prior face-to-face interventions.

157 Search Procedures

This systematic review used Preferred Reporting Items for Systematic Reviews and 158 Meta-Analyses (PRISMA) guidelines, ³⁰ and began with a comprehensive search within 159 professional academic databases using a combination strategies of the following MeSH 160 keywords, terms, phrases and Boolean operators: "Computer [All Fields]; OR app [All Fields]; 161 OR online [All Fields]; OR digital [All Fields]; OR technology[All Fields]; OR internet-based 162 [All Fields]; OR web-based [All Fields]; AND intervention [All Fields]; OR program [All 163 Fields]; OR education [All Fields]; AND Mediterranean diet [All Fields]; OR Mediterranean-164 style diet [All Fields]." The search strategy was adapted according to the indexing systems of 165 each respective database. Two of the authors (B.A-E and C.J.S) conducted the searches for 166 relevant articles and one author (B.A-E) utilized Rayyan QCRI software ³¹ to assist in the 167 screening process. The following fifteen databases were utilized in this search: ArticleFirst; 168 169 Biomed Central; BioOne; BIOSIS; CINAHL; EBSCOHost; JSTOR; ProQuest; PubMed; SAGE 170 Reference Online; ScienceDirect; Scopus; SpringerLink; Taylor & Francis; and Wiley Online (see Figure 1). Titles and abstracts were screened for relevancy, and subsequently, potentially 171 relevant journal abstracts were reviewed by 3 of the authors (N.B., E.D., and M.B.K.). Potential 172 173 studies for inclusion in this review were evaluated independently for relevance, merit, and

inclusion/exclusion criteria (see Table 1). Reference lists of included studies were screened for 174 additional relevant studies. Articles accepted for inclusion were individually reviewed by each 175 author; data relevant to review was extracted, tabulated, and assessed for quality based on the 176 AND EAL process (see Table 2). ³² The AND EAL process was conducted by 1 of the authors 177 (E.D.). Any potential disagreements were discussed within the team and consensus reached. 178 179 Briefly, the AND EAL process expands on a mere narrative search by following a prescribed 5 step systematic literature search process that is established by the Academy of Nutrition and 180 Dietetics. The prescribed steps include formulating an analysis question, gathering and 181 classifying evidence, appraising merit of articles, summarizing evidence, and synthesizing 182 results. ³³ If an article did not contain sufficient information for inclusion eligibility, the article 183 was reviewed in its entirety. 184

185 Study quality assessment and risk of bias

The authors were instructed on quality assessment before the search and review analysis was 186 performed. Each study was assessed by 2 independent reviewers. After the initial assessment, the 187 reviewing authors exchanged articles. The reviewing authors did not share assessment results. A 188 subsequent discussion was held between the reviewing authors to verify their respective 189 190 assessment results. All the articles were then discussed by the primary author before final decision for final article eligibility (see Figure 1). The quality of the studies was determined 191 according to the AND EAL process mentioned above and respective quality score was assigned 192 (see Table 2). ^{32,33} 193

194

- 195 **Results**
- 196 Study design and countries

The search identified 15 articles that met the established search criteria. The studies were classified according to study design, resulting in 2 single-arm pre-post, 2 quasi-experimental, 5 randomized controlled trial, 2 randomized, double-blind, multicenter, parallel group clinical trials, 2 intervention studies, 1 single blinded, two-arm RCT with individual allocation, and 1 randomized pilot trial. We also categorized whether theory was applied in the research, and if so, which theory was applied. Information regarding the methodology results for these studies is summarized in Table 2.

All studies were conducted between 2005 and 2020 in the following countries; USA, Scotland, Ireland, Netherlands, Spain, Greece, United Kingdom, Poland, Italy, Germany, and Australia. Most of the studies were from the Mediterranean region and Spain (56.2%). Postintervention follow-up duration varied between studies, lasting from 2 to 12 months, with the exception of one study which included one-week calendar intervals to record pyramid adherence ³⁴. Six months of follow up was observed for 5 of the 15 studies. Two studies did not note duration.

211 Age and health status of the target population

Among the fifteen studies included in the systematic review, the majority (87.5%) targeted adults between 18 to 70 years of age. One study investigated 52 children with overweight/obese parents, and one examined adolescent soccer players [mean age=14.19]. Of the 15 studies, 12 included healthy individuals ages 25-75 years, while 3 studies included patients affected with T2DM, obesity and CVD (Table 2).

217 Technology approach used and measured outcomes

The interventions examined included a variety of digital approaches, such as the use of online courses or games, tailored and/or personalized nutrition education provided via internet or web-based education, smartphone applications, physical activity monitoring, and tracking
adherence to the MDiet. Adherence to MDiet and MDiet score were the most frequently
measured outcomes. Other commonly measured outcomes included intake of specific foods
(vegetables and fruits), level of physical activity, biomarkers (mostly lipids), BMI and BP.

224 **Primary outcome**

225 Ten studies utilized internet-based technology in their intervention (Table 2). The Food4Me PoP study, conducted across 7 European countries, evaluated a personalized nutrition 226 (PN) and physical activity (PA) intervention using a web-based platform. ³⁵ The study by 227 Livingstone et al. ³⁵ found that post intervention, MDiet scores were significantly greater across 228 the 3 PN intervention levels compared with the control condition (p=.002). ³⁵ Similarly, four 229 other studies offering interventions via online platforms found an increase in MDiet score and 230 adherence post intervention. These include a three-country research collaboration (N=454) 231 conducted between Italy, Spain and Greece, ²² a intervention (N=53) examining MDiet 232 adherence in Scottish females, ³⁶ a pilot intervention based on the Health Action Process 233 Approach (N=70) in Northeast England, ³⁷ and a single arm pre-post study (N=81) using a 234 website and AI coach to improve health outcomes. ³⁸ 235

236 Secondary outcomes

At 3-months follow-up, researchers found that the intervention group from the Mediterranean Eating Experience intervention had increased adherence to MDiet, resulting in significantly higher HDL (p<.001) and significantly lower total: HDL cholesterol ratios (p<.001) compared to the control group. ³⁹ A 3 intervention level RCT examining the use of print-based versus web-based educational materials to increase physical activity and adherence to MDiet in children with overweight and obesity (N=52) found significant decreases (p<.05) in body fat across all intervention groups with no between group differences, suggesting that initial
counseling followed by the use educational materials whether print-based, web-based, or webbased with motivational emails were equally effective in helping participants adhere to a

246 Mediterranean diet and physical activity regimen. ⁴⁰

Investigating the impact of a online MDiet module included in an undergraduate nutrition 247 248 course, researchers found that participants (N=65) increased their MDiet adherence, based on pre-post KIDMED score, with significant increases noted in males (p < .005), Whites (p < .001), 249 and participants with a family history of heart disease (p < .002). ⁴¹ A randomized pilot trial 250 251 investigating knowledge of healthy diets in Spanish youth soccer players (mean= 14.9 years) used the Mediterranean Diet Quality Index (KIDMED) questionnaire to measure MDiet 252 adherence pre-post a 6 month web-based nutrition education intervention and found that while 253 the intervention group significantly increased MDiet knowledge (p < .001) post-intervention, this 254 was positively, but weakly, correlated with MDiet adherence (p=.013). ⁴² In an approach 255 utilizing an online game, participants (N=16546) logged weekly food intake and activity relative 256 to the Italian food pyramid guidance system to receive personalized nutrition, and PA 257 recommendations; although MDiet adherence, assessed via a well-being index (W-I), was low, ³⁴ 258 259 the literature in the current review supports further expanding such interventions to include the use of tailored online education to improve MDiet adherence (Table 2). 260

As indicated in Table 2, Five studies examined adherence to MDiet and PA based on interventions using smartphone apps. $^{43-47}$ A pilot RCT conducted with cardiac patients (N=100) in the US compared adherence to MDiet in patients randomized to a standard-of-care (SOC) counseling group vs. those receiving a smartphone-based counseling app; both groups significantly increased adherence to MDiet at 6 months (*p*<.001), with no significant difference

between groups. ⁴⁴ Another randomized controlled clinical trial (N= 833) examined the impact of 266 a physical activity and MDiet intervention offered via a smartphone app compared to standard 267 counseling on cardiovascular risk factors (CVRFs) and found no significant differences between 268 groups; although cardiovascular risk (CVR) decreased in both groups at 3 months, at 12 months, 269 this decrease was only maintained in the counseling group. ⁴⁷ Garcia-Ortiz et al., ⁴⁵ also found 270 that participants in both groups increased MDiet score, however, there was not a significant 271 difference (p=.46) between groups. ⁴⁵ A study conducted by Recio-Rodriguez et al., ⁴⁶ found that 272 moderate-to-vigorous activity increased significantly ($p \le .02$) in the intervention group compared 273 to the counseling only group, but this difference was not significant between groups. ⁴⁶ Utilizing 274 the same app (EVIDENT II) as the previous studies, researchers conducted an RCT to 275 investigate the impact of a multifactorial intervention including a food workshop, PA, and use of 276 the app on adherence to MDiet in adults (N=204) with Type II Diabetes Mellitus (T2DM); it was 277 found that participants in the intervention group reported significantly increased adherence to the 278 MDiet compared to the control group at 3 (p<.001) and 12 months post-intervention (p<.001).⁴³ 279 To reduce risk of bias we independently assessed quality of study for each selected article 280 following methods described by Liberati et al. ³⁰ and Ouzzani et al. ³¹ (see Table 2). 281

282 Discussion

The primary findings from this literature review indicate that technology-based interventions, particularly those that are based on a theoretical framework or model, are effective at increasing adherence to a MDiet. The applied theories spanned multiple disciplined and included behavioral theories and frameworks such as the Health Belief Model, and Stages of Change. The reviewed interventions effective at increasing MDiet adherence and in some cases physical activity, interestingly several also found a positive impact on critical indicators of

health, including decreased body fat, increased HDL cholesterol, and lower total:HDL 289 cholesterol ratios. MDiet has previously been demonstrated to increase HDL and lower the 290 total:HDL cholesterol ratio, which has the potential to reduce cardiovascular risk.⁴⁸ 291 These findings were persistent across diverse populations, including participants from the 292 US, Scotland, Ireland, Netherlands, Spain, Greece, UK, Poland, Germany, Italy and Australia, 293 ^{22,35,36,38,41,47} as well as across a diverse range of ages (14-75 years, ^{22,34-36,38,39,42-47} indicating that 294 the impact of technology-based interventions to increase adherence to a MDiet could be 295 successfully applied across multiple research and educational settings. A majority of the 296 297 countries included in the reviewed interventions are Mediterranean countries, and therefore it is reasonable to assume that participants had a familiarity with the MDiet pattern. Further, the 298 diversity of countries included in this review demonstrate the feasibility of promoting healthful 299 eating and behavior change is high across far reaches of the globe. The reviewed research also 300 suggests that a MDiet is an acceptable modification to dietary patterns, regardless of the country 301 the intervention is being implemented in; the acceptability of and adherence to a MDiet in 302 diverse and non-Mediterranean countries has been described in the literature. ⁴⁹⁻⁵¹ 303

Appropriate design is critical for successful online nutrition education intervention 304 305 outcomes, and online interventions are often comparably successful compared to face-to-face interventions. ⁵² However, online interventions are widely accessible to a broader audience, and 306 can save time and resources required for face-to-face interventions.⁵³ Factors that increase the 307 308 efficacy of online interventions include tailoring of the intervention, researcher and participant interaction, use of theory to inform the design, emphasis on targeting specific behaviors, and 309 intervention duration of 3 or more months are important factors that increase success. 54-56 Also 310 311 in alignment with previous findings, some of the reviewed studies found similar but significant

increases in MDiet adherence in both online vs face-to-face groups, but mainly no statistically significant between group differences, indicating that effective online intervention design can result in comparable behavior change outcomes relative to in-person interventions. While the findings on the effect of smartphone or app-based interventions to increase MDiet adherence were mixed, four of the included studies found comparable efficacy in the intervention group, with no between-group differences in outcomes.

Based on the reviewed literature, online and app-based interventions, particularly 318 interventions that are developed to include a tailored component and are based on a theoretical 319 framework or model, such as the Health Belief Model, ^{34,35,38,41,47,57} Health Action Process 320 Approach, ^{22,58} Theory of Planned Behavior, ^{38,40,59} and the Behavior change wheel model ^{42,60} 321 are an effective way to educate consumers and promote dietary and health behavior change, to 322 include increasing MDiet adherence, and physical activity. The effect of online intervention 323 delivery is consistent across diverse populations, as well as a wide range of ages, and has broad 324 implications for delivery opportunities for nutrition education. Future research should focus on 325 the potential benefits of reduced programmatic and research costs and increased access related to 326 the ability to offer online interventions. Further research to determine best-practices in relation to 327 the delivery of MDiet related education via apps and smartphones is needed to inform 328 development of app-based interventions and to ascertain whether this modality is as efficacious 329 as online delivery. 330

331 Study and outcome limitations

These efforts are not without limitations. We acknowledge that although systematic and thorough some studies not documented in the sought databases might have inadvertently led to its omittance. To counter this limitation we sought among a robust number of 11 databases. Also, in terms of limitations related to outcomes the vast spread of population, ages, and measuresreported lead to limitations of generalizability to any specific subpopulation.

337 Implications

The current efforts offer critical tools for nutritionists, dieticians, and research interventionists alike that aim to improve weight and health of individuals facing overweight and obesity. The current efforts highlight the need for theoretically-driven intervention studies. Further, findings set the groundwork to enhance future digital interventions utilizing MDiet by synthesizing preliminary evidence of effectiveness of MDiet interventions delivered via digital platforms. The scientific premise is set for future work by highlighting aspects to consider (e.g. population, theory, age group, and measures) in future works.

345 Conclusion

Technology-based interventions to educate consumers about the benefits of MDiet, as 346 well as increase adherence to MDiet, are successful at achieving these outcomes. In some 347 instances, these technology-based interventions produced significant results when compared to 348 in-person interventions, and in others, the results were comparable with no significant between 349 group differences. Such interventions have also been found to be effective in promoting related 350 351 health behaviors and health outcomes such as increased physical activity, increased HDL, and lower total: HDL cholesterol ratio secondary to promoting MDiet. Best practices in the design 352 and implementation of online nutrition education can be successfully applied to online 353 354 interventions specific to MDiet. Further investigation on the best practices related to the development and delivery of app-based interventions to increase adherence to MDiet are needed. 355 356 Based on the current review, online delivery of MDiet interventions can be successfully

- 357 implemented across diverse settings and populations, making the internet an ideal resource to
- 358 deliver health promotion interventions.
- 359

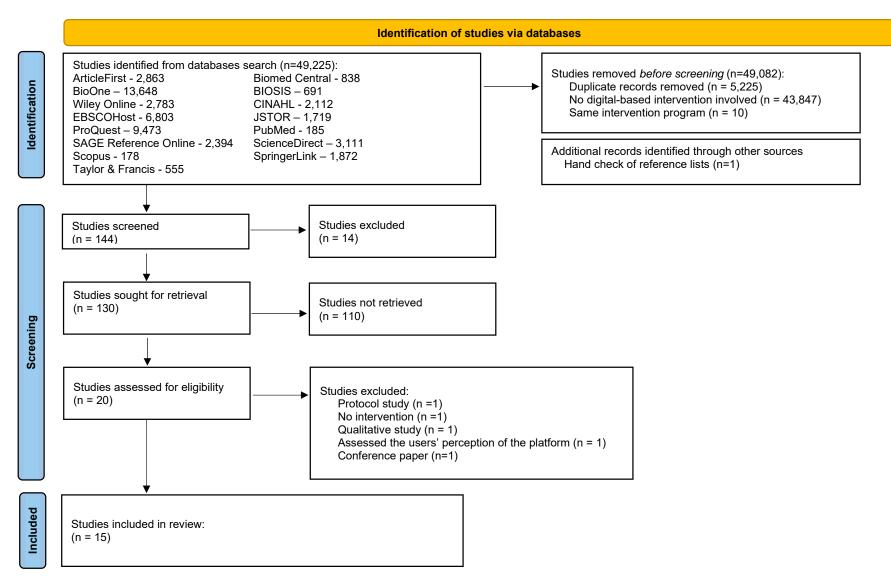
360 Acknowledgements

- 361 The authors declare that they have no declaration of interest. The authors would like to express
- their appreciation to Cassandra Enzler for providing valuable edits to several initial drafts of the
- 363 paper. This research was funded by the Deanship of Scientific Research at Princess Nourah Bint
- 364 Abdulrahman University through the Fast-track Research Funding Program.
- 365

366 Conflict of interest

- 367 The authors declare no conflict of interest.
- 368

369	Refer	ences
370	1	Dithen M. Oheniter alabel enidemiale er en dreethe generic Net Der Fride eringl
371	1.	Blüher M. Obesity: global epidemiology and pathogenesis. <i>Nat Rev Endocrinol</i> .
372	r	2019;15(5):288-298.
373	2.	Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. <i>PharmacoEconomics</i> .
374	2	2015;33(7):673-689.
375	3.	Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its
376	4	components, and cardiovascular disease. Am J Med. 2015;128(3):229-238.
377	4.	Dontas AS, Zerefos NS, Panagiotakos DB, Vlachou C, Valis DA. Mediterranean diet and
378	5	prevention of coronary heart disease in the elderly. <i>Clin Interv Aging</i> . 2007;2(1):109-115.
379	5.	Temple NJ, Guercio V, Tavani A. The Mediterranean Diet and Cardiovascular Disease:
380	6	Gaps in the Evidence and Research Challenges. <i>Cardiol Rev.</i> 2019;27(3):127-130.
381	6.	Turati F, Carioli G, Bravi F, et al. Mediterranean Diet and Breast Cancer Risk. <i>Nutrients</i> .
382	7	2018;10(3):326.
383	7.	Mentella MC, Scaldaferri F, Ricci C, Gasbarrini A, Miggiano GAD. Cancer and
384	0	Mediterranean Diet: A Review. Nutrients. 2019;11(9):2059.
385	8.	Sánchez-Villegas A, Henríquez P, Bes-Rastrollo M, Doreste J. Mediterranean diet and
386	0	depression. Public Health Nutr. 2006;9(8A):1104-1109.
387	9.	Skarupski KA, Tangney CC, Li H, Evans DA, Morris MC. Mediterranean diet and
388		depressive symptoms among older adults over time. J Nutr Health Aging.
389	10	2013;17(5):441-445.
390	10.	Farinetti A, Zurlo V, Manenti A, Coppi F, Mattioli AV. Mediterranean diet and colorectal
391		cancer: A systematic review. Nutr. 2017;43-44:83-88.
392	11.	Donovan MG, Selmin OI, Doetschman TC, Romagnolo DF. Mediterranean Diet:
393		Prevention of Colorectal Cancer. Front Nutr. 2017;4(59).
394	12.	Esposito K, Giugliano D. Mediterranean diet and type 2 diabetes. <i>Diabetes Metab Res</i>
395	10	<i>Rev.</i> 2014;30(S1):34-40.
396	13.	Salas-Salvadó J, Guasch-Ferré M, Lee C-H, Estruch R, Clish CB, Ros E. Protective
397		Effects of the Mediterranean Diet on Type 2 Diabetes and Metabolic Syndrome. <i>J Nutr.</i>
398		2016;146(4):920S-927S.
399	14.	Franquesa M, Pujol-Busquets G, García-Fernández E, et al. Mediterranean Diet and
400		Cardiodiabesity: A Systematic Review through Evidence-Based Answers to Key Clinical
401		Questions. Nutrients. 2019;11(3).
402	15.	Buckland G, Bach A, Serra-Majem L. Obesity and the Mediterranean diet: a systematic
403	1.6	review of observational and intervention studies. <i>Obes Rev.</i> 2008;9(6):582-593.
404	16.	D'Innocenzo S, Biagi C, Lanari M. Obesity and the Mediterranean Diet: A Review of
405		Evidence of the Role and Sustainability of the Mediterranean Diet. <i>Nutrients</i> .
406	17	2019;11(6):1306.
407	17.	Mancini JG, Filion KB, Atallah R, Eisenberg MJ. Systematic Review of the
408	10	Mediterranean Diet for Long-Term Weight Loss. Am J Med. 2016;129(4):407-415.e404.
409	18.	Chatzi L, Apostolaki G, Bibakis I, et al. Protective effect of fruits, vegetables and the
410		Mediterranean diet on asthma and allergies among children in Crete. <i>Thorax</i> .
411	10	2007;62(8):677.
412	19.	Calatayud-Sáez FM, Calatayud Moscoso del Prado B, Gallego Fernández-Pacheco JG,
413		González-Martín C, Alguacil Merino LF. Mediterranean diet and childhood asthma.
414		Allergol Immunopathol. 2016;44(2):99-105.


415	20.	Panza F, Solfrizzi V, Colacicco AM, et al. Mediterranean diet and cognitive decline.
416		Public Health Nutr. 2007;7(7):959-963.
417	21.	Féart C, Samieri C, Barberger-Gateau P. Mediterranean diet and cognitive function in
418		older adults. Curr Opin Clin Nutr Metab Care. 2010;13(1):14-18.
419	22.	Schwarzer R, Fleig L, Warner LM, et al. Who benefits from a dietary online
420		intervention? Evidence from Italy, Spain and Greece. Public Health Nutr.
421		2017;20(5):938-947.
422	23.	Mariscal-Arcas M, Jimenez-Casquet MJ, Saenz de Buruaga B, et al. Use of Social Media,
423		Network Avenues, Blog and Scientific Information Systems Through the Website
424		Promoting the Mediterranean Diet as a Method of a Health Safeguarding. Front
425		<i>Commun.</i> 2021;6(55).
426	24.	Alexander GL, McClure JB, Calvi JH, et al. A randomized clinical trial evaluating online
427		interventions to improve fruit and vegetable consumption. Am J Public Health.
428		2010;100(2):319-326.
429	25.	Martinez-Gonzalez MA, Gea A, Ruiz-Canela M. The Mediterranean Diet and
430		Cardiovascular Health. Circ Res. 2019;124(5):779-798.
431	26.	Schröder H, Fitó M, Estruch R, et al. A short screener is valid for assessing
432		Mediterranean diet adherence among older Spanish men and women. J Nutr.
433		2011;141(6):1140-1145.
434	27.	Serra-Majem L, Ribas L, García A, Pérez-Rodrigo C, Aranceta J. Nutrient adequacy and
435		Mediterranean Diet in Spanish school children and adolescents. Eur J Clin Nutr. 2003;57
436		Suppl 1:S35-39.
437	28.	Brown P, Brunnhuber K, Chalkidou K, et al. How to formulate research
438		recommendations. BMJ. 2006;333(7572):804.
439	29.	Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions. West
440		Sussex, England: John Wiley & Sons Ltd; 2011.
441	30.	Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic
442		reviews and meta-analyses of studies that evaluate healthcare interventions: explanation
443		and elaboration. BMJ. 2009;339:b2700.
444	31.	Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app
445		for systematic reviews. Syst Rev. 2016;5(1):210.
446	32.	Academy of Nutrition and Dietetics. Evidence Analysis Manual: Steps in the Academy
447		Evidence Analysis Process. Research, International and Strategic Business Development
448		Team. <u>https://www.andeal.org/vault/2440/web/files/2016_April_EA_Manual.pdf</u> .
449		Published 2016. Accessed January 20, 2021.
450	33.	Academy of Nutrition and Dietetics Evidence Analysis Library. EAL systematic review
451		process. https://www.andeal.org/eal-sr. Published 2021. Accessed May 23, 2021.
452	34.	del Balzo V, Vitiello V, Dernini S, et al. Computer tailored nutrition education:
453		Mediterranean diet. Ann Ig. 2012;24(2):123-130.
454	35.	Livingstone KM, Celis-Morales C, Navas-Carretero S, et al. Effect of an Internet-based,
455		personalized nutrition randomized trial on dietary changes associated with the
456		Mediterranean diet: the Food4Me Study. Am J Clin Nutr. 2016;104(2):288-297.
457	36.	Papadaki A, Scott JA. The Mediterranean eating in Scotland experience project:
458		evaluation of an Internet-based intervention promoting the Mediterranean diet. Br J Nutr.
459		2005;94(2):290-298.

460	37.	Lara J, O'Brien N, Godfrey A, et al. Pilot Randomised Controlled Trial of a Web-Based
461		Intervention to Promote Healthy Eating, Physical Activity and Meaningful Social
462		Connections Compared with Usual Care Control in People of Retirement Age Recruited
463		from Workplaces. <i>PloS one</i> . 2016;11(7):e0159703-e0159703.
464	38.	Maher CA, Davis CR, Curtis RG, Short CE, Murphy KJ. A Physical Activity and Diet
465		Program Delivered by Artificially Intelligent Virtual Health Coach: Proof-of-Concept
466		Study. JMIR Mhealth Uhealth. 2020;8(7):e17558-e17558.
467	39.	Papadaki A, Scott JA. Follow-up of a web-based tailored intervention promoting the
468		Mediterranean diet in Scotland. Patient Educ Couns. 2008;73(2):256-263.
469	40.	Bruno A, Escobar P, Cebolla A, et al. Home-exercise Childhood Obesity Intervention: A
470		Randomized Clinical Trial Comparing Print Versus Web-based (Move It) Platforms. J
471		Pediatr Nurs. 2018;42:e79-e84.
472	41.	Aboul-Enein BH, Bernstein J. Promoting Dietary Behavior Using the Mediterranean Diet
473		in an Online College Environment. Calif J Health Promot. 2014;12(2):107-111.
474	42.	Fernández-Álvarez MM, Martín-Payo R, García-García R, Cuesta M, Carrasco-Santos S.
475		A nutrition education intervention in adolescents who play soccer: The IDEHA-F project.
476		Psicothema. 2020;32(3):359-365.
477	43.	Alonso-Domínguez R, García-Ortiz L, Patino-Alonso MC, Sánchez-Aguadero N,
478		Gómez-Marcos MA, Recio-Rodríguez JI. Effectiveness of A Multifactorial Intervention
479		in Increasing Adherence to the Mediterranean Diet among Patients with Diabetes
480		Mellitus Type 2: A Controlled and Randomized Study (EMID Study). Nutrients.
481		2019;11(1):162.
482	44.	Choi BG, Dhawan T, Metzger K, et al. Image-Based Mobile System for Dietary
483		Management in an American Cardiology Population: Pilot Randomized Controlled Trial
484		to Assess the Efficacy of Dietary Coaching Delivered via a Smartphone App Versus
485		Traditional Counseling. JMIR Mhealth Uhealth. 2019;7(4):e10755.
486	45.	Garcia-Ortiz L, Recio-Rodriguez JI, Agudo-Conde C, et al. Long-Term Effectiveness of
487		a Smartphone App for Improving Healthy Lifestyles in General Population in Primary
488		Care: Randomized Controlled Trial (Evident II Study). JMIR Mhealth Uhealth.
489		2018;6(4):e107.
490	46.	Recio-Rodriguez JI, Agudo-Conde C, Martin-Cantera C, et al. Short-Term Effectiveness
491		of a Mobile Phone App for Increasing Physical Activity and Adherence to the
492		Mediterranean Diet in Primary Care: A Randomized Controlled Trial (EVIDENT II
493		Study). J Med Internet Res. 2016;18(12):e331-e331.
494	47.	Gonzalez-Sanchez J, Recio-Rodriguez JI, Fernandez-delRio A, et al. Using a smartphone
495		app in changing cardiovascular risk factors: A randomized controlled trial (EVIDENT II
496		study). Int J Med Inform. 2019;125:13-21.
497	48.	Rosato V, Temple NJ, La Vecchia C, Castellan G, Tavani A, Guercio V. Mediterranean
498		diet and cardiovascular disease: a systematic review and meta-analysis of observational
499		studies. Eur J Nutr. 2019;58(1):173-191.
500	49.	Francis L, Young J, Lara J. Adherence to and acceptability of the Mediterranean diet
501		amongst young adults in the North East of England. Proc Nutr Soc.
502		2018;77(OCE4):E214.
503	50.	Davis C, Hodgson J, Bryan J, Garg M, Woodman R, Murphy K. Older Australians Can
504		Achieve High Adherence to the Mediterranean Diet during a 6 Month Randomised
505		Intervention; Results from the Medley Study. Nutrients. 2017;9(6).

51. Sotos-Prieto M, Mattei J. Mediterranean Diet and Cardiometabolic Diseases in 506 Racial/Ethnic Minority Populations in the United States. Nutrients. 2018;10(3). 507 Hurkmans E, Matthys C, Bogaerts A, Scheys L, Devloo K, Seghers J. Face-to-Face 52. 508 Versus Mobile Versus Blended Weight Loss Program: Randomized Clinical Trial. JMIR 509 Mhealth Uhealth. 2018;6(1):e14-e14. 510 Rogers MA, Lemmen K, Kramer R, Mann J, Chopra V. Internet-Delivered Health 511 53. Interventions That Work: Systematic Review of Meta-Analyses and Evaluation of 512 Website Availability. J Med Internet Res. 2017;19(3):e90-e90. 513 Murimi MW, Nguyen B, Moyeda-Carabaza AF, Lee HJ, Park OH. Factors that contribute 54. 514 to effective online nutrition education interventions: a systematic review. Nutr Rev. 515 516 2019;77(10):663-690. Kroeze W, Werkman A, Brug J. A systematic review of randomized trials on the 55. 517 effectiveness of computer-tailored education on physical activity and dietary behaviors. 518 Ann Behav Med. 2006;31(3):205-223. 519 Ajie WN, Chapman-Novakofski KM. Impact of computer-mediated, obesity-related 520 56. nutrition education interventions for adolescents: a systematic review. J Adolesc Health. 521 2014;54(6):631-645. 522 Rosenstock IM. Why people use health services. Milbank Mem Fund Q. 57. 523 1966;44(3):Suppl:94-127. 524 525 58. Schwarzer R. Self-efficacy in the adoption and maintenance of health behaviors: theoretical approaches and a new model. In: Schwarzer R, ed. Self-efficacy: Thought 526 Control of Action. Washington DC: Hemisphere; 1992:217-243. 527 59. Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process. 528 1991;50(2):179-211. 529 Michie S, van Stralen MM, West R. The behaviour change wheel: A new method for 60. 530 characterising and designing behaviour change interventions. Implement Sci. 531 532 2011;6(1):42. 533

20

Figure 1. Flow Diagram of Literature Search Process

Parameter	Inclusion Criteria	Exclusion Criteria
Population	All age groups	N/A
Morbidities	With or without morbidities	N/A
Intervention type	All digitally delivered interventions examining: - Adherence to the MDiet - Impact of MDiet on nutrition behaviors - Impact of MDiet on nutrition-related health outcomes.	Non digitally formatted or delivered interventions
Outcomes	Anthropometric measurements	Non-numeric/categorical
	Body composition	assessments
	Blood pressure	
	Glycaemia level	
	Blood lipid profile	
	Dietary fiber intake	
	Physical activity	
	Overall well-being	
Effectiveness of the intervention to MDiet	Increased scores for MDiet adherence	N/A
	Increased MDiet Score for adults*	
	Increased KIDMED score for	
	children and adolescents**	
	Positive changes in anthropometric	
	outcomes	
	Positive changes in biochemical	
Language	outcomes English, French, Spanish, Arabic,	All other languages
Language	or Italian	All other languages
Category	Peer-reviewed articles	Non peer-reviewed articles
Cutogoly		Commentaries
		Narratives
		Communications
		Conference papers
		Non-intervention based studies
		White papers
		Grey Literature
		Similar article types

Table 1. PICOS Criteria for inclusion and exclusion of studies

*The score for MDiet is measured using the validated questionnaire composed of 14 questions. Each question is scored as 0 or 1. Thus, the total score ranges from 0 to 14. Adequate adherence to the Mediterranean diet is considered when the total score is ≥ 9 points (Schröder et al. 2011).²⁶

** The KIDMED score is calculated using a 16-item questionnaire. It is constituted of 12 positive questions and 4 negative questions. After summing up the responses, the total score obtained is ranging from 0 to 12. The adherence and compliance to the KIDMED is categorized as follows: ≤ 3 (low), 4-7 (medium), and ≥ 8 (high) (Serra-Majem et al. 2003).²⁷

Authors (Year)	Quality Score -,θ, +	Target Population	Type of Study	Sampl e Size	Interventio n	Theoretical Framework / Model	Measured Parameters	Main Results	Pre and post intervention MDiet scores	Main Recommendations
Aboul- Enein and Bernstein, 2014 ⁴⁰	+	College students male and female (age not indicated) USA	Single cohort pretest- posttest design	N = 65	Online undergradu ate nutrition course module using the MDiet	Health Belief Model	Compliance to KIDMED index before and after the intervention	Significant improvement in total KIDMED scoring of participants (p<.001). Differences in KIDMED scores significantly according to ethnicity (p=.007) and family history of HD (p=.002).	Total KIDMED scoring: Pre: 4.12 Post: 8.45 p<.001.	A single pedagogical illustration of e- learning to promote MDiet patterns is delivered among college students to encourage an alternative nutritional guideline to control overweight and obesity. More research on nutrition intervention considering gender and patients with family history of HD is needed focused.
Papadaki and Scott, 2005 ³⁵	+	Healthy females (Age range: 25–55 years, age mean: 40.6 y.) Scotland	Quasi- experi mental design	N=53 (interv ention group) N=19 (contr ol group)	6-months intervention study internet- based, stepwise, tailored- feedback intervention	Tailored- feedback, not theory based	Consumptio n of 4 key components of the MDiet: vegetables, fruits legumes and MUFA: SFA ratio. HDL-c Total-c	Significant increase in intake of vegetables (p=.002), fruits, nuts and seeds (p=.025) and legumes (p=.001), as well as the MUFA:SFA ratio (p<.001) in their diet in	Mean total MDiet score Pre: 3.21 Post: 3.60 P= 0.035	This Internet-based, stepwise tailored intervention used to promote healthy eating in the context of the traditional MDiet presents a realistic approach to dietary behaviour change. This could promote the increase of plant

Table 2 Summary of literature search (n=15)

							the intervention group. Significant increase in plasma HDL-c levels (p<.001) and a reduced ratio of total:HDL-c (p<.001).		foods consumption and to reduce SFA fat and increase MUNFA intake in line with current Scottish dietary recommendations to promote health.
Papadaki + and Scott, 2008 ³⁸	females, (Age range:	experi mental design	N=53 (interv ention group) N=19 (contr ol group)	6-months intervention trial + pre-test- post-test evaluation + a 3- month follow-up tailored dietary and psychosoci al feedback + Internet education	Tailored- feedback, not theory based	Dietary intake Blood lipids	Over 9 months, there was a significant increase of vegetable intake (p<.001), legumes (p=.002) and MUFA/SFA ratio (p=.001) There was significant improvement in levels of HDL- cholesterol (p=.005) and ratio of total: HDL-c (p=.0025) in intervention group compared with control group.	Mean total MDiet score Pre: 3.21 Post: 3.60 P= 0.035	The success of the intervention is proved as indicated by sustainability of adequate changes in dietary and blood lipid profile. In terms of practical implications, this intervention can be effective to promote adopting a MDiet style diet in work settings.

Livingstone + et al., 2016 ³⁴	Adults male and female (Mean age 39.9) 7 European countries (Ireland, Netherland s, Spain, Greece, United Kingdom, Poland and Germany)	Rando mized controll ed trial (Food4 Me)	N = 1607	6-months intervention + internet based + PN	Personalized nutrition and Health Belief Model	Dietary intake (MDiet score) BMI PA level	At baseline, an association was obtained between MDiet scores and healthier lifestyles and lower adiposity (p<.05). After the intervention, MDiet scores increased in intervention compared to control group	Mean total MDiet score Pre: 5.10 Post: 5.48 (No p-value was provided comparing before and after intervention).	It is recommended to provide individuals with detailed, tailored combining of diet, phenotype, and genotype. Internet-based approaches could promote a cost- effective offer scaling-up PN interventions.
Alonso- +	Male and	Rando	N=20	A 12-	No theory	Adherence	(P = .002). Dietary advice based on DNA resulted in major differences in MDiet scores (P = .029), however clinical application of this result is limited. Adherence to	Mean total MDiet	This multifactorial
Domínguez et al., 2019	female T2DM Patients 2 groups of age:	mized and controll ed clinical	4	A 12- month multifactori al intervention :	noted	to MDiet Diet Quality Index WC BMI	the MDiet (p<.001) and diet quality index (p<.001) improved more	score Pre: 7.2 Post: 8.5 P<0.001	intervention including component of food workshop and a smartphone

		(Age range 25–50 and 51–70 years) Spain	trial with 2 parallel groups		Food workshop + a smartphone application + heart- healthy walks		Total cholesterol LDL-c HDL-c	in intervention group after 3 and 12 months follow up. There was a trend in maintaining the favorable changes in interventional group after 12 months and significant increase of consumption of olive oil ($p<.001$), nuts ($p<.001$), white meat more than red meat ($p=.004$) and use of sofrito sauce ≥ 2 servings /week		application showed moderate effect in increasing adherence to the MDiet and diet quality quality among patients with T2DM.
Choi et al., 2019 ⁴³	+	Male and female adult patients consulting to the cardiology clinic (Mean age: 56.6 years for male and 57.2	Rando mized controll ed trial	N=10 0	A 6 – months intervention Experiment al group: received a smartphone app-based Mediterran ean diet intervention	No theory noted	Knowledge of a Mediterrane an diet Adherence to MDiet Height Weight, BP Laboratory biomarkers	(p=.004). BP, lipid parameters, HbA1c, or CRP did not show any significant difference between the two groups (p>.05).	Mean total MDiet score Pre: 7.15 Post: 8.8 P=0.02	Adherence to MDiet was effective with both traditional or smartphone app- based nutrition counseling.

		years for					(HbA1c +	Weight loss		
		females)			Traditional		CRP)	was significant		
					standard-			in		
		USA			of-care			experimental		
					group:			group (p=.03)		
					received			compared to		
					2 additional sessions of			control group.		
					in-person			The increase in		
					dietary			adherence to		
					counseling.			MDiet and diet		
					8			compliance		
								was significant		
								in both group		
								over time		
								(P<.001), with		
								no difference		
								between the		
								groups.		
arcia-	+	Male and	Rando	N=83	A 12	No theory	Adherence	A decline in	Mean total MDiet	The stronger the
rtiz et al.,		female	mized,	3	months	noted	to MDiet	PA was	score	adherence to the
018 44		adults	controll		intervention			registered in	Pre : 7.55	apps, the better the
		Participants	ed,				Adherence	both groups at	Post : 8.05	obtained results
		Mean age	multice		Control		to smart	12 months	(No p-value was	among participants
		51.8 years	nter clinical		group : Counseling		phone apps	(p=.15).	provided comparing before	in terms of healthy lifestyles.
			trial		on PA and		PA	High app	and after	
			with 2		the MD			adherence lead	intervention).	
		Spain	parallel					to better		
			groups		Interventio			behavior		
					n group:			(p=.001).		
					Counseling					
					on PA and			Adherence to		
					the MDiet			MDiet		
					+ training			increased in		
					in the use			both groups at		
					of an app			12 months, no		
					during 3-			significant		
					months.			differences		

								between both groups (p=.46).	701 1	
Recio- Rodríguez et al., 2016 ⁴⁵	+	Adult subjects (Mean age 51.7 years) Spain	Rando mized, double- blind, multice nter, parallel group clinical trial	N=83 3	A 3-month intervention Control group: will receive counseling on how to adapt to the MDiet and on PA Interventio n group: will receive counseling on how to adapt to the MDiet and on PA + training on how to use a smartphone application to promote a healthy diet and PA.	No theory noted	Adaptation to the adherence to MDiet PA Vascular structure and function: Central arterial pressure + radial augmentatio n index, +Pulse velocity, + Cardio- ankle vascular index, + Carotid intima- media thickness	Significant increase of leisure-time MVPA in intervention group (p=.02) but not in the control group only group; p=.38). No significant differences in increase of activity were found between the two groups. The accelerometer recorded a decrease in PA after 3 months in both groups Increased in adherence to the MDiet was obtained in both groups (p<.001), but no difference between groups (p=.86).	The reported change was given in overall score of mean of MDiet. Post intervention score increased by 0.42 points in the smartphone application + training group. Post intervention score increased by 0.53 points in the counseling group.	More research studies to be carried out to identify the population subgroups which would benefit mostly from interventions based on information and communication technologies.

Schwarzer + et al., 2017	Adults males and females (age range 18–65 years) Italy, Spain and Greece	Interve ntion study	N= 454 at baseli ne and N= 112 at follow -up	A 2-month follow-up web- based intervention	Health Action Process Approach including stages of change, outcome expectancies , planning and action control	Dietary behaviours index MDiet scores Psychologic al constructs: outcome expectancies , planning, action control and stage of change	The MDiet scores increased (p<.01). Interactions were found between time and all four psychological constructs on the obtained changes (P<.05) Participants with low levels of baseline psychological constructs were found to demonstrate greater behavioural adoption (p<.01).	Mean total MDiet score Pre : 7.44 Post : 8.13 (No p-value was provided comparing before and after intervention).	The intervention is efficient in terms of improving MDiet consumption, with psychological constructs. It is recommended to take into account differences in readiness of individuals for change which would help adopting MDiet and the given treatment.
Lara et al., + 2016 ³⁶	Adults regular internet users, within two years of retirement Northeast England	A single blinded, two- arm RCT with individ ual allocati on	N= 70	A 2-month intervention Control group: receiving 'usual care' control Interventio n group: LEAP: Receiving a	Health Action Process Approach	Adherence to a MDiet PA by accelerometr y Healthy ageing outcomes: Measures of physiologica l function +	Participants had considerable scope for improvement in diet as assessed by MDiet score. The web platform LEAP was visited a median of 11	Mean total MDiet score Pre: 4.7 Post: 4.6 p>0.05	Feasibility and effectiveness of the trial procedures and the LEAP intervention using a web platform is demonstrated.

				web-based platform promoting healthy eating: MD + PA + meaningful social roles + a pedometer for self- monitoring of PA		Physical capability, cognition + Psychologic al and social wellbeing	times, for a mean total time of 2.5 hours. The module with highest visiting number are 'Moving more', 'eating well' and 'being social' were the most visited modules. LEAP participants emphasized on the importance and acceptability of that diet and PA within the context of healthy ageing.		
Bruñó et al., 2018 ³⁹	 θ Overweig or obese children and adolescen Spain 	mized clinical trial	N=52	3 months intervention Mixed exercise (aerobic and resistance) + MDiet program either implemente	Theory of Planned Behavior	Percentage body fat Physical fitness (VO ₂ peak), Handgrip strength, SBP DBP	Differences between groups was not significant (p>.05). Body fat percentage metrics over time significantly improved in	MDiet scores were not calculated.	Practice Implications: A 3- month intervention composed of MDiet and physical exercise program could be beneficial in improving the body composition of children and adolescents with overweight/obesity.

					d by means of printed material or via a web- platform (with or without e- mail support) 3 intervention groups: Print-based group Move-It group			for all three groups (p <.05). 10 min after the exercise- stress test, theVO ₂ peak (p =.027), handgrip strength, and blood pressure variable values improved in the three groups, but significance found for SBP-		
					Move-It plus support group			10min only for "Move It plus support" group (P<.009).		
del Balzo et al., 2012 ³³	θ	Adult male and female (Average age 33.5±15 years)	Interve ntion study	N=16 546	Weekly lifestyle game	Health Belief Model	Well-being index Consumptio n of different food groups (MDiet) PA	The eating pattern obtained demonstrated variety among participants.	MDiet scores were not calculated.	Efficiency of the web-based personalized intervention is demonstrated.
		Italy						Daily consumption of different food groups was registered, although in lower quantities than suggested.		

								Nutritional habits were different due to age and educational level.		
Gonzalez- Sanchez et al., 2019 ⁴⁶	+	Male and female patients, who attended a consultatio n with their family doctor 18-70 years Spain	Multice nter, random ized and controll ed clinical trial	N=415 counse ling + app group (IG) N= 418 counse ling only group (CG).	12 months follow up interventio n on PA and MD.	Health Belief Model	DBP SBP Total-c HDL-c HbA1c Glycemia BMI PA Global CVR	CVR did not change significantly at 3 or 12 months (p>.05). However, SBP (p=.013), DBP (p=.019), total- c (p=.011) and triglycerides (p=.035) were better in CG group compared to IG group (p>0.05)	MDiet scores were not calculated, as it was reported in a previous publication (Garcia-Ortiz et al., 2018).	The use of an app during 3 months in addition to a standard counseling had no supplementary positive long-term effects on either die or PA.
Maher et al., 2020 ³⁷	+	Male and female inactive community -dwelling adults (Age: 45 to 75 years) Australia	Single- arm pre- post	N=81	12 weeks interventio n artificially intelligent chatbot (Paola) + a Garmin Vivofit4 tracker to monitor daily steps + A website with	Health Belief Model and Theory of Planned Behavior	Feasibility of the intervention PA Diet Body composition Blood pressure	Significant increase of total daily steps compared with baseline (p<0.05) Significant improvement in MDiet scores with mean increase of 5.7 points, (p<.05)	Mean total MDiet score Pre: 3.8 Post: 9.6 p<0.05	Feasibility of life- style intervention based on the artificial intelligent virtual assistant is demonstrated.

				educationa l materials and recipes + A printed diet an activity log sheet.			Significant reduction of weight and WC, (p<.05) Feasibility and safety of the intervention are demonstrated.		
Fernández- + Álvarez et al., 2020 ⁴¹	Adolescent soccer players (mean age=14.19 years) Spain	A random ized pilot trial	N=319	Control group (CG) Interventio n group (IG): 6 months educationa l interventio n based on the use of posters, a web-app, and practical activities on MDiet	Behavior Change Wheel Model	Usage rate of MDiet adherence to MDiet Acquisition of knowledge MDiet	A significantly higher mean score on the knowledge questionnaire was obtained in IG compared to GC ($p <.001$). The correlation between diet knowledge and KIDMED scores was positive and weak ($r = .222$, p = .013). About 1/3 of the total post- test KIDMED score was explained by the total pretest KIDMED (p <.001) and diet knowledge (p =.05) scores	Mean total KIDMDiet score Pre: 6.34 Post: 6.39 p>0.05	Feasibility of the intervention combining the use of posters and a web app is demonstrated. It provides information on healthy eating habits to adolescent soccer players and how to maintain them.

Abbreviations

ABSI: Body shape index BMI: Body mass index CRP: C-reactive protein CVR: Cardio-vascular risk DBP: Diastolic blood pressure HbA1c: hemoglobin A1c HD: Heat Disease HDL-c: High density lipoprotein cholesterol KIDMED: Mediterranean Diet Quality Index for children and teenagers LEAP: Living Eating, Activity and Planning through retirement MDiet: Mediterranean Diet MUFA: Monounsaturated fatty acids MVPA: Moderate-to-vigorous physical activity PA: Physical activity PN: Personalized Nutrition SBP: Systolic blood pressure SFA: Saturated fatty acids T2DM: Type 2 Diabetes Mellitus Total-c: Total cholesterol WC: Waist circumference