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Abstract

Objectives: We describe a systematic approach to preparing data in the conduct of Individual Participant Data (IPD) analysis.

Study design and setting: A guidance paper proposing methods for preparing individual participant data for meta-analysis from
multiple study sources, developed by consultation of relevant guidance and experts in IPD. We present an example of how these steps
were applied in checking data for our own IPD meta analysis (IPD-MA).

Results: We propose five steps of Processing, Replication, Imputation, Merging, and Evaluation to prepare individual participant
data for meta-analysis (PRIME-IPD). Using our own IPD-MA as an exemplar, we found that this approach identified missing variables
and potential inconsistencies in the data, facilitated the standardization of indicators across studies, confirmed that the correct data were
received from investigators, and resulted in a single, verified dataset for IPD-MA.

Conclusion: The PRIME-IPD approach can assist researchers to systematically prepare, manage and con-
duct important quality checks on IPD from multiple studies for meta-analyses. Further testing of this frame-
work in IPD-MA would be wuseful to refine these steps. © 2021 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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What is new?

Key findings

* The multi-step approach that can be used to manage
IPD for analysis from multiple studies involves the
following stages:

* Processing

» Replication

 Imputation

» Merging

* Evaluation

What this adds to what is known?

* PRIME-IPD provides a formalized step-by-step ap-
proach to verify and prepare individual participant
data from multiple studies for meta-analysis, thus
adding to available guidance on evidence synthesis.

What is the implication and what should change

now?

* The synthesis of IPD from multiple trials provides
a powerful approach to control for confounding
and investigate effect modification at the individual
level. However, a principled and systematic way to
build the analytic dataset with requisite checks for
data quality, is needed to ensure these benefits are
realized.

* Further testing of this framework to assess feasi-
bility and applicability to other reviews may refine
this model.

1. Introduction

Clinical decision-makers increasingly rely on systematic
reviews and meta-analyses because they collate, critically
appraise and synthesize all relevant evidence on a partic-
ular question [1]. Individual participant data meta-analysis
(IPD-MA) is considered the gold standard in systematic
reviews since it enables effect modification analyses us-
ing individual-level data [2]. IPD-MA is carried out by
collecting raw individual participant data from all eligible
studies for which the data are available. The data are then
pooled and reanalyzed simultaneously [2,3]. IPD-MA has
advantages over conventional aggregate data meta-analysis
(AD-MA), such as minimizing selective reporting bias and
allowing better characterization of subgroups and outcomes
as well as data quality assessment [4-0].

IPD are usually acquired by directly contacting the
study authors [7]. However, there are multiple barriers to
the smooth retrieval of datasets [8,9]. Authors may be hesi-
tant about sharing their datasets due to concerns about how
the data will be used, data security and other issues. In the
process of including IPD, studies may be subjected to re-
analysis. Data sharing hesitancy may stem from apprehen-

sions around having their data scrutinized and re-analyzed
[7]. This highlights the importance of developing standard-
ized measures for assessing data quality.

Furthermore, IPD datasets sponsored by industry, such
as pharmaceutical and medical device companies, are
rarely available and accessible [10]. A systematic review
exploring the retrieval of IPD for IPD-MA shows that over
20 years, only 25% of systematic reviews were able to ob-
tain all of the relevant datasets [11]. Over half of the rea-
sons for the unavailability of IPD was the loss of datasets,
which highlights the need for improvements in data col-
lection and archiving. Polanin et al. [7] have suggested
that using a data-sharing agreement document may allevi-
ate concerns related to data sharing, increasing the likeli-
hood of data sharing and promoting transparent, academic
collaboration.

Managing and preparing IPD is resource intensive and
time consuming [3,12-14]. IPD datasets differ in their nam-
ing conventions, data structure and file formats. Older
datasets require even more maintenance as they tend to
not be recorded to the current standards. Tudur Smith et al.
[15] reported the multiple challenges in data preparation,
such as the absence of a summary of variables, data col-
lection in separate files and software incompatibility, re-
sulting in the consumption of extensive amounts of time
and resources. Despite the increasing interest in perform-
ing IPD-MA and initiatives to improve methods through
the Cochrane handbook as well as guidance provided by
credible IPD working groups [16-19], there is an absence
of a comprehensive and formal approach to collect, verify
and analyze the individual level data.

This paper aims to describe the approach we developed
and illustrates its value when applied, on an IPD-NMA for
mass deworming for children [20,21].

2. Methods

A project advisory group composed of experts in IPD,
statisticians, methodologists and systematic reviewers was
established to develop a systematic approach to collate and
prepare individual participant data for analysis. Prior to
developing this approach, we reviewed relevant guidance
from the Cochrane Handbook [16], Get Real IPD Work-
ing Group, Cochrane Multiple Interventions Group [18] in-
cluding their library and the Cochrane Methods IPD Meta-
Analysis Group [19]. We itemized and categorized compo-
nents of the relevant guidance and reached consensus on
the development of a 5-step approach to prepare the IPD
data post-acquisition from study authors. We illustrated the
application of this approach to an IPD-NMA on deworm-
ing [20,21].

3. Results

Based on the literature and consensus process we devel-
oped a five stage systematic approach for the preparation
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Table 1. Checklist items for PRIME-IPD tool

PRIME: Items

Processing

« Convert data into a single format for statistical program of choice

» Compare the total number of participants in the acquired datasets to those reported in published studies
« Verify the presence of the variables of interest in the acquired dataset

« Standardize variable names across datasets

« |dentify and standardize the measurement scales used to report the variables of interest

« |dentify and standardize coding for missing values

« |dentify and correct any implausible values that may result from data conversion

« Calculate the standardized difference to quantitatively assess the difference between the replicated and published results

« Merge the imputed datasets into a single, pooled dataset, taking into consideration the number of imputed datasets, if

Replication « Recalculate reported descriptive and summary statistics using the acquired datasets
« If the standardized difference is > 10%, investigate and address potential causes
Imputation « Assess the appropriateness of conducting imputation of missing data using missing data theory
« If multiple imputation is conducted, carefully consider the number of imputations to be run
Merging » Ensure in processing step that variable order and codes are correct
appropriate
Evaluation

« Assess continuous variables for normality by residual analysis either visually or by statistical tests

« If required, calculate new variables for standardized comparison of effects

and the conduct of an IPD-NMA systematic review. They
are:
. Processing of the datasets
. Replication of published data tables
. Imputation of missing data
. Merging datasets
. Evaluation of data heterogeneity

Table 1 provides an overview of the steps undertaken
at each stage. The overview is followed by an illustrative
example of the methodology using our IPD-NMA of mass
deworming interventions for children in low-resource set-
tings [20,21].

DN AW -

3.1. Processing of datasets

The first stage of data processing is to standardize the
format of the datasets that will be included in the final
IPD analysis. However, several challenges may arise. Ac-
quired datasets may be in different formats (e.g., SAS vs.
SPSS), different variable names may be used for the same
measure, different scales may be used to report the same
measure (e.g., hemoglobin may be reported in grams per
liter or grams per decilitre), and some indicators or values
may be missing for some individual studies. Missing data
may be indicated by different symbols or notations (such
as “—99”). Data dictionaries may not be available for all
datasets. Consequently, we recommend the following steps
in the ‘Processing’ stage to overcome these challenges:

1. Convert each acquired dataset to a preferred standard-
ized format (e.g., SAS, STATA). The format should
be chosen based on facilitating easy data manipulation.
This format may or may not be the format used for the
eventual analyses.

2. Compare the total number of observations in the re-
ceived datasets to those reported in the published studies
(or global trials registers if publications are not avail-

able). In the event of a mismatch, determine the cause
of the discrepancies. In event of mismatch, contact the
authors to understand reason for discrepancy.

3. Verify that the variables of interest are available in the
acquired datasets by referring to accompanying data dic-
tionaries. In their absence, contact the primary authors
of the studies for the information required.

4. Create a master list of individual dataset variable names
mapped to the variable name of choice. Rename all vari-
ables of interest across the datasets to have common
variable names.

5. For continuous variables, identify the variables’ scales
of measurement and identify any datasets that may need
to have values converted to the preferred standard using
appropriate conversion formula(e). Determine whether
the categories of the categorical variables need to be
regrouped or separated into dummy variables.

6. Identify any missing values in the datasets and how they
are identified in the dataset (e.g., blank cells, symbols).
Confirm that the blank cells are missing values and not
due to a conversion error by comparing the percentage
of missing values per variable in the acquired and con-
verted datasets and standardize across datasets. Similar
considerations may exist for data considered not appli-
cable.

3.2. Replication of published data tables

The second step is to replicate the data tables reported
in the published studies. Since reproducibility is an an-
chor in scientific research [22-24], it is essential to check
that the processed datasets are consistent with the analyzed
datasets in the published papers. This step will provide an
additional check on data quality and fidelity to the acquired
study and increase confidence that the datasets were pro-
cessed correctly. Discrepancies between the replicated and
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published results are often expected [25,26]. Challenges in
the replication process include discrepancies in the number
of participants or units of analysis between the published
paper and the acquired datasets and lack of reporting on
statistical methods. The following steps are proposed to
assist in minimizing these challenges:

1. Calculate and compare the descriptive statistics from the
processed datasets to the published results. For example,
the percentage of females enrolled, age of participants,
and pre-existing health conditions.

2. Calculate and compare baseline and endline summary
statistics for the outcomes of interest from the processed
datasets to the published results using the same analytic
methods reported in the published article.

3. Calculate the standardized difference between the de-
scriptive and summary statistics of the published stud-
ies and the replicated results. We referred to the abso-
lute standardized difference criterion of 10% proposed
to assess baseline imbalance to assess the magnitude of
difference between replicated and published results. We
chose the criterion of 10% as an indicator of discrep-
ancy between published and replicated results based on
previously proposed thresholds [27-30]. The standard-
ized difference can be calculated as follows:

(dif ference between replicated and published results)

VVariance (dif ference between replicated and published results)

Note: Variance is calculated assuming independence of
replicated and published results.

3.3. Imputation of missing data

Missing data are inevitable in clinical research [31].
Complete case analysis, ignoring participants with missing
data, has the potential to bias results [32] and can reduce a
study’s precision and power due to a smaller sample size.
Imputation may be considered to redress missing data, de-
pending on the amount and type of missingness in the pro-
cessed datasets and according to missing data theory [33].
If multiple imputation is implemented, carefully consider
the number of imputations to be run [34], taking into con-
sideration that a greater number of imputations will result
in longer computing time [32].

3.4. Merging datasets

The merging of datasets in this context refers to the
vertical merging of rows (or observations) of two or more
datasets. All datasets to be combined in the merge step
should already have the same variables (or columns) fol-
lowing the processing step. Different statistical programs
will have different names for this command, or multiple
ways that datasets may be merged. For example, in SAS
you may use concatenation in the DATA step command,
or the APPEND procedure (SAS Institute Inc., Cary, NC,
USA). Readers should follow the guidance for merging
provided by their statistical software program, as specific

steps can vary. It is important to ensure that you can iden-
tify from which original study each observation belongs af-
ter the merge step. This can be done by creating a variable
for study name. Alternatively, in Stata, you may employ
the “generate” option [35] to create a variable identify-
ing from which dataset each observation originally came.
Observations from imputed datasets will also need to be
correctly labelled according to their original study and im-
putation number.

3.5. Evaluation of data heterogeneity

Prior to the conduct of a pooled analysis, an assessment
of the merged dataset’s heterogeneity and distribution may
be explored to inform statistical methods and interpreta-
tion of results. Further, authors may need to calculate new
variables for the standardized comparison of effects. We
suggest the following:

1. Test data distribution by residual analysis for continu-
ous variables either visually, by preparing bar charts, or
by parametric statistical tests [36]. Comparisons can be
implemented between study arms to appraise the ran-
domization of participants in each group and identify
differences between study groups.

2. Create new variables needed for analysis (e.g., “dummy
variables” for categorical variables). This step is needed
if there are any variables which need to be calculated
based on existing variables in the merged dataset (e.g.,
body mass index may be calculated using existing data
on the height, weight, age and sex of participants).

4. PRIME application

We report our experience using PRIME-IPD for prepar-
ing data for an individual participant data network meta-
analysis of mass deworming interventions for children in
low-resource settings [20,21] as an exemplar in Table 2.
The appended table shows the value-added of each step in
verifying and standardizing the acquired data for use in an
IPD-NMA.

5. Discussion

This paper details a methodology for the preparation
of data for IPD-MA composed of five steps: Processing,
Replication, Imputation, Merging and Evaluation. Stan-
dardization of included datasets is performed in the pro-
cessing step, followed by verification of datasets through
data replication. To deal with missing data, we propose
imputation if appropriate, according to missing data the-
ory. Following the merging of the processed datasets and
prior to conducting analyses using the merged dataset, we
suggest assessing heterogeneity across the variables in the
evaluation step and creating any new variables that are re-
quired for analysis. Many aspects within PRIME-IPD will
help formulate the Statistical Analysis Plan (SAP) for IPD.
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Table 2. Application of PRIME-IPD in the context of a deworming systematic review

PRIME:

Problem

Application

Processing

Replication

Imputation

Merging

Evaluation

Incomplete and missing
data dictionaries

Identification of missing
variables of interest

Use of different
measurement methods

Identification of conversion
errors

Inexact number of
participants in the datasets
compared to reported

Incorrect treatment labels

Uncorrected variables in
the provided datasets

Studies with missing data

Correctly combining
multiple datasets

New variable calculation

We used a list of analysis variables to request data since it identified which variables we needed
and reviewed the dataset files along with the data dictionaries. Correspondence with authors was
helpful in preparing datasets lacking dictionaries.

We documented the choice of outcome measures for studies that collected data at multiple time
points and identified four out of 11 studies which did not report the primary outcomes of interest
in their published manuscripts, but they did collect this data and provided it in their dataset.

We evaluated the measurements for helminth egg counts were provided. We identified various
measurement methods used between authors in terms of the number of egg samples taken and
how they were collected. We selected the most common method and standardized it across all
included studies.

We identified the presence of implausible values that required conversion before analysis such
as zeros coded 0.99 and 9999.

The authors provided full datasets, including children who were excluded from the analysis due
to missing baseline measures (e.g., missing stool samples). Replication allowed us to verify that
these children were excluded from the analyses in the published papers.

By means of replication, we found that the labels in the dataset from authors did not match the
labels in the published paper. Correspondence with the authors allowed us to correct these
labels and replicate the analyses

Hemoglobin concentration need to be corrected if measured in individuals living in areas

1000 m above sea level, since lower oxygen levels, result in higher hemoglobin concentrations
in the blood. Hemoglobin was not adjusted for in two studies’ datasets which were carried out in
areas 1000 m above sea level, so the Hemoglobin concentration values obtained when
replicating were larger than the reported [37].

For each study included in the IPD analysis, we calculated the percentage of missing data for
each variable of interest. Consequently, we assessed the distribution of the missing variables to
assess if imputation was appropriate. We imputed the eligible studies that had less than 50% of
missing data and assumed data were missing at random, creating five imputed datasets per
study. We used complete case analysis for studies with more than 50% of missing data as part
of sensitivity analyses only.

A separate variable was created to identify each observation’s original study and imputation
number (ranging from one to five). We sorted datasets by that identifier and used MERGE used
the command in SAS (9.4) to combine the imputed datasets into a new dataset.

Growth standards have varied over the years. We used WHO anthropometric software to calculate
BMI for age, weight for age and other growth standards in relatively older studies to combine
with the other studies. The Anthropometric calculator in the software also operates similar SAS
by tagging implausible weight and height values.

Subsequent to data preparation, synthesizing study data is
needed to assess the intervention effects. This step bears
its own series of barriers and challenges with guidance
provided elsewhere [6,13,17,38].

The five step approach of PRIME-IPD is a comprehen-
sive composite of previous research methods and guidance
for IPD. The Cochrane Handbook version 5 [16] highlights
the importance of recoding variables during data prepara-
tion but does not detail procedures to prepare the dataset
for IPD analysis. The “get-real” review conducted by De-
bray et al. provides insight on how to distinguish between
different missing data scenarios but does not provide sug-
gestions when considered, may improve the robustness of
the imputation process [17].

An important aspect of our approach is in including
a data replication step, which can help verify what the
authors report in their published studies and identify any

errors present in the processed datasets. Replicating the ac-
quired studies’ descriptive and summary statistics helps to
identify critical assumptions made by the original inves-
tigators and data inconsistencies in the acquired datasets.
This process adds to the robustness of the IPD analysis
conducted by the investigators. There are additional pro-
posed benefits to re-analyzing the datasets as conducted by
the original investigators such as ensuring complete, accu-
rate and unbiased reporting of results [39]. However, the
additional time and cost that may be incurred to conduct
the replication should be considered [40]. The replication
process can become unwieldy with a large number of stud-
ies. We also acknowledge that the PRIME-IPD methodol-
ogy is a lengthy process. However, based on firsthand ex-
perience, we found the benefits outweigh the costs because
we were able to identify and correct data problems before
pooling and data synthesis.
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The success of conducting IPD-MA does not solely de-
pend on the preparation of datasets for analysis, but heav-
ily depends on the ability to retrieve datasets from authors.
There are several challenges to accessing IPD, as it is often
unavailable even upon request from authors [41-43]. Less
than 50% of IPD-MA systematic reviews published be-
tween 1987 and 2015 succeeded in retrieving at least 80%
of their selected studies [7]. Therefore, there is a crucial
need to build confidence and trust among investigators us-
ing data sharing agreements, which have been shown to
increase the likelihood of a response [7,44] and using in-
vestigator collaboratives [7]. Improving IPD access coin-
cides with initiatives to make data available through online
data repositories (public or private) such as Vivli [45] and
OpenTrials [46, 47-51]. The role of data repositories in fa-
cilitating IPD analysis remains limited in terms of the cu-
ration of datasets for analysis. Investigators are requested
to upload dictionaries, but they are usually incomplete,
and datasets lack organization with major heterogeneity be-
tween studies [52]. The PRIME-IPD approach overcomes
these hurdles when dealing with several datasets through
providing a systematic approach to preparing data for anal-
ysis, including verification of terms with authors if needed.
Data-sharing repository services may address this limita-
tion in the future by unifying policies and systems.

6. Conclusion

PRIME-IPD proposes a systematic approach to the
preparation and verification of individual participant
datasets. Combining PRIME-IPD with best practices in
acquiring datasets from authors, such as the use of data-
sharing agreements, and offering appropriate acknowledge-
ment and incentives, may improve efficiency in conduct-
ing IPD analysis. Nonetheless, the PRIME-IPD approach
requires further testing in different settings and may be
require adaptations in specific scenarios.
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