
FASEB BioAdvances. 2021;3:205–230.	﻿	     |  205www.fasebbioadvances.org

Received: 14 October 2020  |  Revised: 25 November 2020  |  Accepted: 16 December 2020

DOI: 10.1096/fba.2020-00101  

R E S E A R C H  A R T I C L E

Identification of methylation changes associated with positive and 
negative growth deviance in Gambian infants using a targeted 
methyl sequencing approach of genomic DNA

Claire R. Quilter1  |   Kerry M. Harvey1  |   Julien Bauer1  |   Benjamin M. Skinner1,2  |   
Maria Gomez1  |   Manu Shrivastava1  |   Andrew M. Doel3,4  |   Saikou Drammeh4  |    
David B. Dunger6  |   Sophie E. Moore3,4  |   Ken K. Ong6,7,8  |   Andrew M. Prentice4  |    
Robin M. Bernstein5,9   |   Carole A. Sargent1  |   Nabeel A. Affara1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2020 The Authors. FASEB BioAdvances published by the Federation of American Societies for Experimental Biology

Abbreviations: Cis-eQTM, Cis-acting quantitative trait methylation; Cis-meQTL, Cis-acting methylation quantitative trait locus; CTCF, CCCTC-binding 
factor; DAVID, Database for Annotation, Visualization, and Integrated Discovery; DMR, Differentially Methylated Region; EBI, European Bioinformatics 
Institute; EWAS, Epigenome-Wide Association Study; FDR, False Discovery Rate; GAD, Genetic Association Database; GWAS, Genome-Wide 
Association Study; LAZ, Length for Age Z score; MAF, Minor Allele Frequency; MRC, Medical Research Council; NCBI, National Center for 
Bioinformatics Technology; OMIM, Online Mendelian Inheritance in Man; PCA, Principal Components Analysis; SGA, Small for Gestation Age; SNP, 
Single Nucleotide Polymorphism; Trans-meQTL, Trans-acting methylation quantitative trait locus; TSS, Transcription Start Site; UGR, Uterine Growth 
Restriction.

1Department of Pathology, University of 
Cambridge, Cambridge, UK
2School of Life Sciences, University of 
Essex, Colchester, UK
3Department of Women and Children's 
Health, King's College London, London, 
UK
4MRC Unit The Gambia at London 
School of Hygiene and Tropical 
Medicine, Banjul, The Gambia
5Growth and Development Lab, 
Department of Anthropology, University 
of Colorado, Boulder, CO, USA
6MRC Epidemiology Unit, University of 
Cambridge School of Clinical Medicine, 
Cambridge, UK
7Department of Paediatrics, University of 
Cambridge School of Clinical Medicine, 
Cambridge, UK
8Institute of Metabolic Science, 
Cambridge Biomedical Campus 
Cambridge, Cambridge, UK
9Institute of Behavioural Science, 
University of Colorado, Boulder, CO, 
USA

Abstract
Low birthweight and reduced height gain during infancy (stunting) may arise at least 
in part from adverse early life environments that trigger epigenetic reprogramming 
that may favor survival. We examined differential DNA methylation patterns using 
targeted methyl sequencing of regions regulating gene activity in groups of rural 
Gambian infants: (a) low and high birthweight (DNA from cord blood (n = 16 and 
n = 20, respectively), from placental trophoblast tissue (n = 21 and n = 20, respec-
tively), and DNA from peripheral blood collected from infants at 12 months of age 
(n  =  23 and n  =  17, respectively)), and, (b) the top 10% showing rapid postnatal 
length gain (high, n = 20) and the bottom 10% showing slow postnatal length gain 
(low, n = 20) based on z score change between birth and 12 months of age (LAZ) 
(DNA from peripheral blood collected from infants at 12  months of age). Using 
BiSeq analysis to identify significant methylation marks, for birthweight, four differ-
entially methylated regions (DMRs) were identified in trophoblast DNA, compared 
to 68 DMRs in cord blood DNA, and 54 DMRs in 12-month peripheral blood DNA. 
Twenty-five DMRs were observed to be associated with high and low length for age 
(LAZ) at 12 months. With the exception of five loci (associated with two different 
genes), there was no overlap between these groups of methylation marks. Of the 194 
CpG methylation marks contained within DMRs, 106 were located to defined gene 
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1  |   INTRODUCTION

About 45% of global deaths in children under 5  years of 
age are thought to be related to undernutrition.1 Children 
who survive early periods of undernutrition may suffer 
longer-term consequences, including stunting and other 
developmental deficits,2 which are major contributors to 
long-term morbidity and mortality.3,4 Although the preva-
lence of stunting declined in sub-Saharan Africa from 42% 
in 1990 to 32% in 2015, the numbers of affected individuals 
increased from 47 million to 58 million.5 Studies estimate 
that 20% of growth retardation starts in utero where un-
der-nutrition in pregnancy increases the risks of intrauter-
ine growth retardation (IUGR) and small for gestation age 
(SGA) infants, preterm delivery6 and long-term impaired 
immunity. It is hypothesized that an adverse early life en-
vironment and nutrition induce phenotypic adaptations 
through developmental plasticity7 to favor survival in the 
short term, but at the expense of lifelong effects on health.8,9

Nutritional interventions to improve child growth and 
adult health10,11 have had limited success, primarily for 
the lack of a clear understanding of optimal timing, target 
groups, and the composition of supplements. The period of 
growth and development from conception to a child's sec-
ond birthday (coined the first 1000 days) is one of the most 
critical windows of opportunity for interventions.12 There is 
a complex interplay between an individual's genetic constitu-
tion and the environment. Responses to extrinsic factors via 

modifications to the epigenome (which may include to both 
chromatin-associated proteins and DNA bases) in the first 
1000 days are believed to be important in establishing pro-
tective adaptations against the impact of under-nutrition and 
an adverse environment (thrifty phenotype).13,14 DNA meth-
ylation at CpG couplets is one of the most actively studied 
modifications to the epigenome.

A large meta-analysis of multiple epigenome-wide associa-
tion studies (EWAS) by the Childhood Epigenetics Consortium 
found methylation at 914 CpG sites associated with birthweight 
in whole blood DNA from healthy neonates, but <1.3% persisted 
in children (2–13 years), <0.1% in adolescents (16–18 years), and 
none in adults (30–45 years).15 The current study uses samples 
and data from a cohort of Gambian mother–infant pairs exhibiting 
high rates of maternal and child under-nutrition. Rural Gambian 
infants are small at birth relative to international standards, show 
positive growth patterns during the first few months of life and 
then, enter a period of reduced growth marked by profound fal-
tering until at least 24 months of age.16,17 Schoenbuchner et al.16 
have suggested that stunting is an extreme adaptation to profound 
faltering episodes potentially arising from a complex interaction 
of malnutrition, infection, and disease. Despite four decades of 
nutrition-sensitive and nutrition-specific interventions halving 
under-nutrition for young children from rural Gambia, substantial 
(30%) growth faltering remains,17 indicating a gap in our under-
standing of its complex etiology.

Epigenetic studies carried out on Gambian populations 
have highlighted the importance of maternal nutrition and 
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regulatory elements (promoters, CTCF-binding sites, transcription factor-binding 
sites, and enhancers), 58 to gene bodies (introns or exons), and 30 to intergenic DNA. 
Distinct methylation patterns associated with birthweight between comparison groups 
were observed in DNA collected at birth (at the end of intrauterine growth window) 
compared to those established by 12 months (near the infancy/childhood growth tran-
sition). The longitudinal differences in methylation patterns may arise from meth-
ylation adjustments, changes in cellular composition of blood or both that continue 
during the critical postnatal growth period, and in response to early nutritional and 
infectious environmental exposures with impacts on growth and longer-term health 
outcomes.
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exposures and the effects of maternal nutritional supple-
mentation in this highly seasonal environment. Many as-
pects of health and behavior in rural Gambia are influenced 
by the annual seasonality with a single rainy “hungry” sea-
son (late June–October) followed by a dry “harvest” season 
(November–May/June).2,18 Specifically, there is evidence that 
seasonal variation in nutrition during the periconceptional 
period influences methylation status in postnatal infants at a 
number of loci,19 is related to methyl-donor nutrient content 
of the mother's diet 20-23 and may be associated with an in-
crease in both preterm and SGA infants.18 Periconceptional 
nutrition supplementation influences methylation changes in 
cord and postnatal infant blood DNA at CpG loci linked to 
genes associated with infection and immunity24 and alters the 
methylation at imprinted loci.25 Maternal exposure to afla-
toxin B1 is also associated with DNA methylation changes at 
specific loci in Gambian infants.26

The aim of the present study was to identify epigenetic 
marks that are established during the critical first 1000 days 
in a cohort of rural Gambian infants and explore how these 
may be associated with normal versus stunted growth out-
comes in order to determine whether any targets for interven-
tion are associated with prenatal and/or postnatal periods of 
epigenetic modification. We used a targeted methyl sequenc-
ing approach of genomic DNA from placental trophoblast 
tissue, cord, and infant (12 months of age) blood to iden-
tify the methylation changes. These changes may be useful 
as biomarkers, highlighting genes influenced by exposures 
during embryonic and fetal development and early infancy, 
and identifying potential pathways through which these may 
influence the growth outcomes at birth and in the first year 
of life.

2  |   MATERIALS AND METHODS

2.1  |  Samples

The study was conducted among pregnant women and their 
infants living in the rural West Kiang region of The Gambia. 
Participants were recruited as part of the HERO-G (Hormonal 
Regulators of Growth) study. The study cohort was 238 new-
borns whose growth had been assessed longitudinally to 
24 months of age. Table 1 summarizes data associated with 
the samples from individuals used in this study. The full 
HERO-G protocol is described elsewhere.27 Placentas from 
women who delivered at home were collected by trained field 
workers and immediately transported on ice to the nearby 
Medical Research Council (MRC) Unit The Gambia Keneba 
laboratory (within 20–30 minutes) and carefully processed 
to obtain trophoblast material following a standard proto-
col (see placenta sample collection protocol in Data S1). 
Placental samples each of 400 mg were taken at four different 

evenly spaced locations, at least 2  cm from the edge, and 
at consistent relative positions in each placenta to mitigate 
placental tissue heterogeneity. Samples were cut into four 
pieces, placed in RNAlater at a volume of 5 x tissue weight 
(Cat No 76106, Qiagen), and transported frozen on dry-ice 
to the United Kingdom for DNA extraction. After extraction 
samples from each of the four placental regions were pooled 
equimolarly. Cord blood and infant blood samples were col-
lected into EDTA-lined tubes (BD Vacutainer, pink top) for 
DNA extraction in the United Kingdom. Ethical approval 
for the study was given by the joint Gambia Government/
Medical Research Council (MRC) Unit The Gambia Ethics 
Committee (SCC 1313v3), with additional approval from the 
University of Colorado Institutional Research Board (proto-
col number 13–0441). Community approval was obtained 
from each participating village, and written, informed con-
sent was obtained from each participating family. Samples 
for analysis were selected retrospectively from the study co-
hort representing (a) the highest 20% and lowest 20% birth-
weights and (b) according to the top and bottom 10% change 
in length-for-age (LAZ) from birth to 12  months. For the 
12-month samples the male average age = 376.4 days, SD 
9 days (366–409 d) and females average age = 378.8 days, 
SD 10 days (367–413 d). Table 2 summarizes the number of 
samples analyzed after quality testing for each tissue and test 
group and those that are common between groups.

2.2  |  Nucleic acid extraction

DNA for DNA methylation studies was extracted from tis-
sues using the Quick-DNA Mini Prep Plus kit (Cat No. 
D4068, Zymo Research). DNA extracted from blood fol-
lowed the Biological Fluids and Cells protocol and DNA 
extracted from placenta followed the Solid Tissue proto-
col. DNA abundance and quality were determined after 
extraction using a Nanodrop ND-1000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, Massachusetts, USA). 
Absorbance ratios (A260/A280 and A60/A230) were above 
the recommended 1.8. DNA from each sample was further 
quantified on a Qubit® Fluorometer using Qubit® dsDNA 
HS Assay kit (Cat. No. Q32854, Thermo Fisher Scientific, 
Waltham, Massachusetts, USA).

2.3  |  Methyl-Seq library preparation

Methyl-Seq was performed using the SureSelectXT 
Methyl-Seq kit (Cat. No. G9651B, Agilent, Santa Clara, 
California, USA) according to the manufacturer's protocol 
(SureSelect XT Methyl-Seq Target Enrichment System for 
Illumina Multiplexed Sequencing protocol, version C.0, 
January 2015); this covers over 3.7 million individual CpG 
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T A B L E  1   Summary of Individual-Specific Data of Those Included in the Study

Mat ID
Mat 
Age

GA 
(wks) Parity (Cat) S_MOC S_MOB

BW 
(kg)

BW 
Cat

BL 
(cm)

LAZ Change 
V1–12 m LAZ Cat Tissue

MALES

20.27 36 Primiparous W W 1.7 low 45.00 −0.45 low Pl, CB, 12mB, 12mH

35.19 38.1 Multiparous D D 2.14 low 44.43 1.55 high Pl, 12mB, 12mH,

33.32 38.1 Multiparous D D 2.32 low 47.00 0.53 mid Pl, CB, 12mB

38.61 38.6 Multiparous W D 2.38 low 45.50 −0.39 low Pl, CB, 12mB, 12mH

23.6 37 Primiparous W D 2.44 low 47.80 0.42 mid Pl, CB, 12mB

23.32 37.8 Multiparous W D 2.48 low 45.90 0 mid Pl

26.33 40.7 Multiparous D D 2.51 low 49.00 2.14 high CB,12mB, 12mH

27 39.9 Multiparous W W 2.53 low 49.00 1.7 high Pl, CB, 12mB, 12mH

24.39 38.9 Multiparous D D 2.56 low 47.40 0.99 high Pl, CB, 12mB

18.65 39.4 Primiparous D W 2.59 low 50.40 0.5 mid Pl, CB, 12mB

31.49 41.2 Multiparous W D 2.59 low 42.30 −0.49 low Pl, 12mB, 12mH

20.67 38.9 Primiparous D D 2.67 low 46.70 1.8 high 12mB, 12mH

31.16 40.7 Multiparous D D 2.7 low 48.40 1.21 high 12mB, 12mH

45 W D 2.91 mid 0.97 high 12mH

38.5 41 Multiparous D W 2.92 mid 49.00 −0.91 low 12mH

40.82 39.7 Multiparous D W 2.96 mid 50.10 1.96 high 12mH

28.69 40.7 Multiparous D D 3.06 mid 49.33 −0.43 low 12mH

41.27 40.7 Multiparous D D 3.07 mid 52.00 −0.75 low 12mH

32.82 39.9 Multiparous W D 3.13 mid 53.00 −0.66 low 12mH

27.11 41.2 Multiparous D D 3.26 high 51.50 −0.49 low 12mH

23.04 39.4 Multiparous W D 3.26 high 51.23 −0.91 low 12mH

29.15 38.6 Multiparous D D 3.26 high 48.00 1.52 high 12mB, 12mH

37 38.1 Multiparous D D 3.27 high 48.10 1.37 high 12mB, 12mH

37.53 38.1 Multiparous W D 3.28 high 49.30 1.08 high Pl, CB, 12mB, 12mH

25.64 40.2 Multiparous D W 3.34 high 51.00 0.95 mid Pl, CB, 12mB

34.46 40.4 Multiparous W W 3.34 high 48.30 0.19 mid Pl, CB, 12mB

20.29 40.2 Multiparous W W 3.36 high 53.47 −1.01 low Pl, CB, 12mB, 12mH

37.18 39.1 Multiparous D D 3.36 high 50.50 1.82 high Pl, CB, 12mB, 12mH

22.07 41 Multiparous D W 3.37 high 48.47 0 mid Pl, CB

28.91 40.2 Multiparous D D 3.39 high 50.50 0 mid Pl, CB

23.51 38.9 Multiparous D W 3.45 high 50.47 1.02 high Pl

31.48 40.7 Multiparous D D 3.5 high 50.00 0.08 mid 12mB

37.96 41.2 Multiparous D D 3.52 high 50.40 1.7 high 12mB, 12mH

40.36 39.1 Multiparous W D 3.55 high 49.50 0.6 mid Pl

41.88 41 Multiparous D W 3.59 high 51.00 −0.33 mid Pl, CB, 12mB

39.33 40.7 Multiparous D D 3.72 high 52.50 −0.93 low Pl, CB

31.19 41.8 Multiparous D D 3.79 high 50.77 −0.28 mid Pl, CB, 12mB

39.69 40.2 Multiparous D W 3.8 high 53.00 −1.35 low Pl, CB, 12mB, 12mH

39.65 41 Multiparous D W 3.9 high 50.00 0.82 mid Pl, CB, 12mB

36.61 Multiparous D W 1.31 high 12mH

FEMALES

18.72 39.4 Primiparous D W 2.42 low 46.00 1.12 high Pl, 12mB, 12mH,

(Continues)
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dinucleotide sequences covering CpG islands, CpG island 
shores, CpG island shelves, under-methylated regions, 
promoters, enhancers, transcription factors, CTCF-binding 
sites, DNase 1 hypersensitive sites, and DMRs. Three mi-
crograms of DNA from each sample was initially sheared 
by Covaris sonication to 150–200 bp in size and used to 
prepare genomic DNA libraries with the SureSelectXT 
Methyl-Seq Library Prep kit. After hybridization with the 
SureSelectXT Methyl-Seq capture library, targeted regions 

were isolated using complementary RNA baits. Isolated 
targets were bisulfite converted using the EZ DNA 
Methylation-GoldTM (Cat. No. D5005, Zymo Research) 
which converts unmethylated cytosines to Uracil, while 
methylated cytosines are unaltered. Subsequent PCR am-
plification creates an unmethylated CG→TA transition at 
unmethylated positions. Each sequence-modified, target-
enriched library preparation was attached to a readable 
index (short DNA identifying code) by PCR. Libraries 

Mat ID
Mat 
Age

GA 
(wks) Parity (Cat) S_MOC S_MOB

BW 
(kg)

BW 
Cat

BL 
(cm)

LAZ Change 
V1–12 m LAZ Cat Tissue

19.04 39.9 Primiparous W W 2.46 low 46.00 0.34 mid Pl, CB, 12mB

29.89 39.1 Multiparous D D 2.48 low 50.00 0.54 mid Pl, CB

21.16 38.9 Multiparous D D 2.48 low 45.50 1.86 high 12mB, 12mH

23.01 38.7 Multiparous D D 2.5 low 47.00 0.11 mid 12mB

39.72 38.6 Multiparous D W 2.53 low 46.40 −0.28 mid Pl, 12mB

22.98 38.3 Multiparous D D 2.54 low 49.97 1.14 high Pl, CB, 12mB, 12mH

38.38 39.7 Multiparous W D 2.56 low 47.37 0.05 mid Pl, CB, 12mB

29.65 40.2 Multiparous W D 2.58 low 45.00 0 mid Pl, CB

26.92 38.1 Multiparous W D 2.61 low 46.50 0.65 mid Pl, CB, 12mB

41.69 38.1 Multiparous D D 2.63 low 48.50 0.9 mid Pl, 12mB

40.49 37 Multiparous W W 2.64 low 47.20 1.15 high Pl, CB, 12mB, 12mH

19.19 38.1 Primiparous W W 2.67 low 46.50 −4.44 low Pl, CB, 12mB

38.56 38.9 Multiparous D W 2.69 low 45.67 1.44 high 12mH

32.99 40.7 Multiparous D D 2.73 low 46.27 −0.39 low 12mH

23.95 39.9 Multiparous W W 2.96 mid 50.27 −0.47 low 12mH

22.03 42 Multiparous D D 2.96 mid 49.40 1.67 high 12mH

37.22 39.4 Multiparous W D 2.99 mid 49.50 −0.46 low 12mH

26.08 38.3 Multiparous D D 3 mid 46.00 −0.46 low 12mH

36.2 41.2 Multiparous D D 3.07 mid 50.07 −0.89 low 12mH

38.07 40.4 Multiparous D D 3.21 mid 50.27 −0.76 low 12mH

34.8 38.9 Multiparous W D 3.25 high 53.20 1.1 high CB

35.4 40.4 Multiparous D D 3.29 high 50.50 0.78 mid CB

36.78 40.2 Multiparous D W 3.31 high 49.00 0.07 mid Pl

32.43 39.7 Multiparous W D 3.33 high 51.00 0.81 mid Pl, CB

24.1 39.9 Multiparous W D 3.33 high 50.20 0 mid CB

34.3 39.4 Multiparous W D 3.33 high 50.00 −0.67 low CB

34.25 41 Multiparous W D 3.37 high 45.17 −1.39 low Pl, CB, 12mB, 12mH

39.54 40.2 Multiparous W D 3.42 high 49.80 −1.11 low 12mB, 12mH

27.27 39.9 Multiparous D D 3.75 high 53.00 −0.17 mid Pl, CB

38.38 40.7 Multiparous D D 3.84 high 47.50 0.97 high Pl, CB, 12mB

27.12 41 Multiparous D D 3.97 high 52.00 −0.87 low Pl, 12mB, 12mH

27.07 Multiparous D W 1.1 high 12mH

Summary of individual-specific data for subjects contributing to study. Key: Mat Age, Maternal age; GA, Gestational age; S_MOC, Season of month of conception; 
S_MOB, Season of month of birth; BW, Birthweight; LAZ, Length for age Z score change birth to 12 months; BL, Birth length; D, Dry season; W, Wet season; 
pl, Placenta; CB, Cord blood; 12 mB, 12-month blood sample selected on birthweight; and 12 mH, 12-month blood sample selected on LAZ score. The samples 
categorized as high or low for both birthweight and length for age were those used in the analysis. Table 2 shows the numbers and sex for each tissue.

TABLE 1  (Continued)
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were quantified on a Bioanalyzer 2100 (Agilent, Santa 
Clara, California, USA) using the Agilent High Sensitivity 
DNA kit (Cat. No. 507–4626, Agilent, Santa Clara, 
California, USA) or using a 2200 TapeStation (Agilent, 
Santa Clara, California, USA) with High Sensitivity DNA 
ScreenTapes (Cat. No. 5067–5593, Agilent, Santa Clara, 
California, USA). Equimolar indexed libraries were multi-
plexed (in groups of 6) to a final concentration of 4 nM in 
20 μL of nuclease-free dH2O or 10 mM of Tris–Cl, pH 8.5 
(Buffer EB, Cat. No. 19086, Qiagen) and run on a single 
flow cell on an Ilumina NextSeq 500 according to the man-
ufacturer's instructions using a 2x75 bp paired end read kit 
giving a total read length of 150 (TG NextSeq® 500 kit 
High Output Kit v2, Cat. No. TG-160–2002, Illumina). To 
overcome color imbalance inherent to low complexity in 
a bisulfite-converted genome, 10% of phiX genome was 
spiked into the reaction. Q30 scores of bases from NextSeq 
runs were within the threshold recommended by the manu-
facturer and depth of coverage was approximately 40x.

2.4  |  DNA data mapping

FastQC v0.11.428 (http://www.bioin​forma​tics.babra​ham.
ac.uk/proje​cts/fastq​c/) was used to visualize the sequenc-
ing quality of the raw reads which were then trimmed 
using Trim Galore! v0.4.029 (http://www.bioin​forma​tics.
babra​ham.ac.uk/proje​cts/trim_galor​e/). This removes low 
quality bases (Qscore <20) starting from the 3’ end of 
the read. After trimming, short reads are removed (<20 
bases). Figure S1 shows a typical example. The Bismark 
package uses Bowtie 2 alignment software v2.2.630,31 to 
align sequences to the reference genome (GRCh38/hg19 
assemblies) and then, methylation data were extracted em-
ploying default settings.31 Alignment mapping efficiency 
was in the region of 80% across all samples and is illus-
trated by Figure S2. The bisulfite error rate, estimated from 
the methylation status at cytosines outside a CpG context 
was in the region of 1.0% (Figure S3). Duplicated reads 
(removed using Bismark) were in the region of 20%. At 
each cytosine site, the methylation level was calculated as 
the ratio of the count of “C” (or the number of sequenc-
ing reads with methylated cytosine) to the count of “C” 
plus “T” (or the total number of reads covering that site). 
M-bias plots were generated after methylation data were 
extracted with Bismark to yield the percentage methylation 
across all reads in order to identify any bias (e.g., bias at 
the end of the read due to drop in quality) arising from the 
position in the read of the cytosine residue being called. 
Figure S4 illustrates an example (for infant bloods) of an 
M-bias plot illustrating the reduction of call quality at the 
5’ and 3’ ends of the paired reads. This provides a guide to 
the extent of necessary sequence trimming (typically four 

bases removed from the 5’ end and one from the 3’ end). 
Methylation information was then re-extracted and the out-
put was processed and converted to a bedgraph.

2.5  |  Methylation data analysis

The resulting bed files from Bismark were used for further 
statistical analysis. Three comparison groups based on differ-
ent growth criteria were examined: (a) high versus low birth-
weight babies sampled at birth for placenta and cord blood, 
(b) high versus low birthweight groups sampled at 12 m for 
infant blood, and (c) high versus low length-for-age based on 
change in Z score (LAZ) between birth and 12 months sam-
pled at 12 months for infant blood. Differential methylation 
between groups was examined using BiSeq.31,32 Only CpGs 
covered by at least 10 reads were included in the analysis.

2.6  |  Detection of DMRs

Analysis was performed using R v 3.2.233 and BiSeq version 
1.18.0 (32, see review 34). BiSeq is designed specifically 
for targeted bisulfite sequencing data and includes features 
such as limiting high coverage, removing low coverage, spa-
tial correlation, a multiple testing correction, visualization, 
and genomic annotation. DMRs were detected by compar-
ing birthweight categories (high vs. low) or length-for-age 
(LAZ) scores (high vs. low) and incorporated sex as a covari-
ate. Briefly, sequences were grouped into clusters of adjacent 
CpG sites. CpG methylation often occurs in clusters and spa-
tial correlation is a key characteristic of DNA methylation. 
As methylation is conserved across short distances, identifi-
cation of these related regions reduces data dimensions and 
also increases detection power by borrowing nearby CpG 
information. BiSeq CpG clusters were defined as CpG sites 
covered in at least 25% of samples (defined as frequently 
covered CpG sites) with a maximum distance of 100 bp be-
tween CpG sites within a cluster and with clusters containing 
at least 5 of these CpGs. To mitigate sequence overrepresen-
tation distorting the data, sequences with greater than 90% 
of maximum coverage were removed. The methylation data 
were smoothed within CpG clusters using the smoothing al-
gorithm (“predictMeth”). This estimates the true methylation 
level of each site in each sample. The methylation data were 
tested for both the test groups and resampled datasets under 
the null hypothesis that differences in methylation are ran-
dom. The data from both were modeled by beta regression, 
with the group as the independent variable and the methyla-
tion probability as the dependent variable. A Wald test was 
used to confirm the parameters used in the beta regression 
could be included in the model and associated p-values were 
transformed into Z scores to allow DMRs to be detected.31 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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To account for multiple testing errors (multiple testing cor-
rection using the Benjamini–Hochberg method),35 a two-step 
hierarchical procedure was employed. This first tests clus-
ters, then individual CpG sites within those clusters. The 
two-step approach avoids loss of power by first testing at the 
cluster level and then, the CpG in the cluster that showed a 
change in methylation and hence the number of CpGs need-
ing correction is greatly reduced. A variogram was created 
under the null hypothesis, which estimates the correlation 
in methylation between two CpG sites within a cluster. This 
was plotted and smoothed, with a sill of 1 for all our tests and 
was combined with the Z scores of the test results of inter-
est to estimate the correlation of Z scores between two loca-
tions in a cluster. Clusters without differentially methylated 
CpG sites were removed (FDR >= 0.1), before the remaining 

clusters were trimmed to indicate individual significant CpG 
sites (FDR <= 0.05). PCA analysis of methylation patterns 
determined from different DNA sequence runs did not reveal 
any batch effects.

2.7  |  Pyrosequencing

Validation of differentially methylated cytosines as de-
tected by Methyl-Seq was performed by bisulfite pyrose-
quencing on the ZFHX3 gene. Initially, PCR primers were 
designed using the Pyromark assay design SW 2.0 (Cat. 
No.9019077, Qiagen, USA) and were supplied by Sigma-
Aldrich, UK. One of the primers was biotinylated and pu-
rified by HPLC. The primers were; ZFHX3: forward PCR 

T A B L E  2   Summary of DNA Samples Analyzed in the Study

DNA extraction

Low BW High BW Total

Placenta

Male 10 14 24

Female 11 6 17

Both 21 20 41

Cord bloods

Male 8 12 20

Female 8 8 16

Both 16 20 36

DNA extraction

Low BW High BW Total Low LAZ High LAZ Total

Infant blood (12 m)

Male 12 13 25 11 13 24

Female 11 4 15 9 7 16

Both 23 17 40 20 20 40

Subjects in Common

Placenta BW and 
cord blood BW

30

Cord blood BW 
and Infant 
blood (12 m) 
BW

26

Cord blood BW 
and Infant 
blood (12 m) 
LAZ

11

Infant blood (12 m) 
BW and Infant 
blood (12 m) 
LAZ

22

Numbers of DNA samples analyzed for each tissue according to sex and test group and the number of subjects in common between tissues and test groups. Key: BW, 
Birthweight; LAZ, Length for age Z score.



212  |      QUILTER et al.

primer GTTTTAATTTGATTGGGGGGAAAG, reverse 
PCR primer CCTTTAACAAACTAACCTCCTAACA, 
and forward biotinylated sequencing primer 
TTTTTTTAAATGTAGATTTGAATT.

PCR amplification was performed with 10 ng of bisulfite 
converted DNA using EpiTaq HS (Cat. No. R110A, TaKaRa 
Bio Inc, Japan). PCR was set up according to the manufac-
turers’ instructions but the concentration of MgCl2 varied 
between 15 and 25 mM dependant on the primer set. Both 
methylated and unmethylated controls from the EpiTect PCR 
control DNA kit (Cat. No. 59695, Qiagen, USA) were run 
alongside. Thermal cycling conditions were performed using 
a touchdown program with an annealing temperature range 
of 53°C–62°C and cycle number range of 25–35, depen-
dant on primer set. The PCR products were electrophoresed 
on a 3% of agarose gel to check for product specificity. 
Pyrosequencing was then performed on the PyroMark Q24 
Vacuum Workstation (Qiagen, USA) as described in the man-
ufacturer's instructions. PyroMark CpG software Design 2.0 
(Cat. No. 9019067, Qiagen, USA) was used in this assay and 
primers with the best quality score were selected. Bisulfite 
conversion was shown to be efficient for all samples as the 
fluorescence signal by cytosine in a non-CpG context was 
≤1% of the signal produced by thymine.

2.8  |  Cellular heterogeneity assessment 
between sample groups

For cord blood, cell composition was compared between 
low and high birthweight groups using overlaps with a 
cord blood cell type-specific reference panel of 215,000 
CpGs derived from the Illumina EPIC 850  k array (ref: 
https://www.ncbi.nlm.nih.gov/pmc/artic​les/PMC62​
84779/). The reference panel set of CpG loci was used to 
find overlaps with the processed Methyl-Seq capture data-
set. Co-methylation patterns extend up to several 100 base 
pairs across CpG clusters.36,37 In order to obtain enough 
coverage for the regions covered by the EPIC reference 
set, we used intervals of 200 bases centered around the lo-
cations of the EPIC reference CpG set (updated in Human 
Genome––HG19). This yielded 14993 regions each con-
taining CpG loci as present in the processed methyl cap-
ture sequence dataset. Methylation calls were extracted 
from the processed sequence data as described above and 
the mean values in these regions were used to generate 
PCA plots and heatmaps to calculate the correlation val-
ues between experimental groups (using Pearson correla-
tion). In the absence of a 12-month blood reference panel, 
the adult blood reference panel based on the Illumina 
Infinium HM450 k and EPIC 850 K methylation chips38,39 
was used and processed in the same way for coverage 
across the Methyl-seq capture dataset. An interval of 200 

bases yielded 33 regions each containing CpG loci (pro-
viding coverage for CD4 and CD8 lymphocytes, NK cells, 
neutrophils, B-cells, and monocytes) that are present in 
the processed methyl capture sequence dataset to compare 
the 12-month groups.

2.9  |  CpG and gene annotation

Ensembl was used to annotate differentially methylated CpGs 
(based on hg38 version GRCh38 human genome build) to 
determine their location with respect to regulatory features. 
Ontologies, mutational and functional data of those genes as-
sociated with significant differentially methylated CpGs were 
determined using the U.S. National Center for Biotechnology 
Information (NCBI; Bethesda, MD, USA; http://www.
ncbi.nlm.nih.gov/) Gene, Online Mendelian Inheritance 
in Man (OMIM), PubMed databases and the Database for 
Annotation, Visualization, and Integrated Discovery v6.7 
(DAVID - http://david.abcc.ncifc​rf.gov/).40 Disease as-
sociations were determined by interrogating the Genetic 
Association Database (GAD) for complex diseases and the 
EBI GWAS Catalogue. PANTHER v14.0 (http://www.panth​
erdb.org) 41,42 was used to provide an overview of gene on-
tology (GO Terms) defining protein classes, cellular compo-
nents, biological procesess, and molecular functions of genes 
implicated by methylation marks.

3  |   RESULTS

3.1  |  Quality Triage of Sample Cohorts

All samples underwent assessment to exclude maternal 
contamination and poor-quality samples. Maternal blood 
contamination of cord blood (for both sexes) was assessed 
using marker CpGs that are only methylated in adult blood 
DNA, and maternal contamination of placenta trophoblast 
samples from males was also flagged by examining the 
levels of Y DNA methylation dilution43; see Figure S5a,b 
Poor quality and/or obvious outlier samples were identi-
fied by plotting a heatmap of the methylation data for each 
experimental group (see example of the methylation data 
from the birthweight cohort at 12 months of age in Figure 
S6). The major component of variation was sex. Principal 
Component Analysis (PCA––done with and without inclu-
sion of the sex chromosomes) matrices were also applied 
to a list of available variable information for the subjects 
contributing to each cohort and tissue sample (see Table S1) 
to determine whether they had a significant effect on the 
variation in the data. Examples for sex (male/female), birth-
weight category (high/low), and season (dry/wet) are illus-
trated in Figures S7a,b,c; only sex contributed significantly 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284779/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284779/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://david.abcc.ncifcrf.gov/
http://www.pantherdb.org
http://www.pantherdb.org


      |  213QUILTER et al.

to variation in the data. Sample sets emerging from these 
analyses were re-analyzed with sex as a covariate.

3.2  |  Assessment of Confounding Cellular 
Heterogeneity

There is no available cell-type-specific reference set for cord 
and adult blood to assess cell composition changes based 
on DMRs detected by Methyl-Seq data. Potentially con-
founding differences in cell-type composition between cord 
blood groupings (high and low birthweight) and infant blood 
groupings (high and low birthweight and length for age) 
were, therefore, assessed using DMR regions within the cap-
ture DNA sequence dataset that overlap within a 200 base-
pair interval with the EPIC 850 k cord blood and Infinium 
HM450  k adult blood cell-type-specific CpG panels (see 
methods). The adult overlaps were used for the 12-month 
infant blood data in the absence of an age-related reference 
panel for this time-point. The heatmap and PCA plots are 
shown in Figures S8 and S9. For both cord and infant blood 
data, the heatmaps indicate high correlation between sam-
ples and no clear clustering according to comparison groups. 
PCA analysis indicates inter-individual differences in cellu-
lar composition. For the small number of probes from the 
adult blood reference panel present within the Methyl-Seq 
capture DNA sequence dataset, the analysis shows separation 
of individual samples into two groups; this may reflect the 
small number of probes available and their disproportionate 
weighting or variation in the rate of loss of nucleated eryth-
rocytes between individuals. However, in all three PCA plots 
the variation between samples captured in PC1 and PC2 is 
distributed fairly uniformly across both experimental groups 
(high or low birthweight or tall or short height for age) indi-
cating little difference in cellular composition between com-
parison groups to confound the determination of differential 
methylation values at the same time-point.

3.3  |  Differentially Methylated Loci 
Identified Through BiSeq Analysis

The total number of significant differentially methylated 
regions (DMRs) and the direction of median methylation 
change identified for each comparison group (placenta-birth-
weight, cord blood-birthweight, infant blood-birthweight at 
12  months, and infant blood-LAZ) by BiSeq analysis and 
the total number of significant CpGs they contain is shown 
in Table S2a–d and summarized in Table 3; 194 CpG loci in 
total. Each significantly differentially methylated CpG in each 
DMR was examined for the presence of single-nucleotide 
polymorphism (SNP) directly in the CpG; these are shown in 
Table S2a–D. Apart from three SNP-containing CpGs, all the 

MAFs (minor allele frequencies) were <0.01. For the CpGs 
associated with implicated genes RPS6KA2, PRSS3, and 
GAR1, the MAFs were <0.03, <0.11, and <0.02, respectively. 
These MAFs are at a level that would not significantly alter 
the estimation of methylation differences between test groups.

The distribution of CpGs between gene regulatory elements, 
gene bodies, and intergenic regions is shown in Table 4 (see 
Table S2a–d for full details on all DMRs and CpG locations). 
Figure 1A–D provides an overview of the gene ontology (de-
termined using PANTHER v14.0 available at http://www.panth​
erdb.org) characterizing genes implicated by differential meth-
ylation marks. The pie charts summarize the distribution of this 
gene set across GO terms defining molecular functions, biolog-
ical processes, cellular components, and protein classes. It can 
be seen that certain GO categories predominate. For example, 
analysis of molecular function reveals that binding, catalytic 
activity, molecular function regulator, and transcriptional reg-
ulator activity are most prominent. Detailed information on the 
genes and proteins in each of the GO categories can be obtained 
by uploading the gene lists to http://www.panth​erdb.org from 
Table S2a–b and interrogating each pie chart sector.

Very few of the differentially methylated CpGs found in 
DMRs identified from the cord blood comparisons are found 
in the 12-month infant blood comparisons; (a) of the four 
closely linked CpGs associated with TNXB, one (upstream 
intergenic) is differentially methylated in the cord blood 
birthweight group and the remaining three (within intron 1 
of the gene) in the 12-month infant blood birthweight group 
and (b) the intergenic CpG upstream of the HLX gene is dif-
ferentially methylated in both the 12-month birthweight and 
12-month length for age groups.

3.4  |  CpG Loci Showing 5% or Greater 
Methylation Change

We have chosen to focus on those marks that show 5% or 
greater methylation change. Figure 2 summarizes the CpGs that 
have been located to regulatory features (promoters, CTCF-
binding sites, and transcription factor-binding sites––56 CpG 
loci in total) and figure 3 those located to gene bodies (introns 
and exons) and closely linked intergenic regions (64 CpG loci 
in total). Figures  2 and 3 also present the locations of CpGs 
(based on hg38 release 85 from ENSEBL) with respect to the 
Transcription Start Site (TSS) of genes implicated by location 
(93 in total), the median p-value for the DMR corrected for 
multiple testing, direction and change in median methylation 
value, GWAS disease associations, and a short vignette sum-
marizing any mutational data and functional studies of impli-
cated genes culled from the various databases outlined in the 
materials and methods. Finally, Figures 2 and 3 flag whether 
any of the DMR-associated genes are also subject to Trans or 
Cis-meQTLs (genetic variation that influences methylation at 

http://www.pantherdb.org
http://www.pantherdb.org
http://www.pantherdb.org
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CpG sites adjacent to implicated genes) and/or Cis-eQTMs 
(variation of methylation that influences expression of an ad-
jacent gene) collated in the Bios QTLBrowser held at www.
genen​etwork.nl/biosq​tlbro​wser (85), these are marked in red 
in the first column). These data were based on the analysis 
of cohorts from the Dutch population and may only partially 
reflect genetic variation in the Gambian population with Trans 
or Cis-eQTL effects.

The implicated gene names in Figures 2 and 3 are color 
coded according to categories of gene function/disease re-
vealed by functional and/or mutation analysis (see legends) 
and Figure 4 summarizes the numbers of implicated genes 
found in associated disease categories bearing the same color 
coding. It is immediately clear that neurological, growth and 
development, and oncological disorders are the most prom-
inent among the implicated genes showing 5% or greater 
methylation change.

3.5  |  Replication of Findings in Other 
Methylation Studies

Identification of a significant proportion of the same im-
plicated genes reported in related studies provides strong 

validation of the findings reported here. Highlighted in red 
bold in Table S2a–d are the DMR-implicated genes that are 
also documented in the recent large meta-analysis of mul-
tiple EWAS by the Childhood Epigenetics Consortium ex-
amining DNA methylation associated with birthweight.15 
When all genes (4848, representing about 19% of the esti-
mated 25,000 genes in the human genome) from the con-
sortium study associated with 8170 CpGs significant after 
FDR correction for multiple testing are screened, 62 DMR 
implicated genes from the current study show a match (of 
which 34 show >5% methylation change). If this is re-
stricted to those genes (729; about 2.9% of human genes) 
associated with 914 CpG loci surviving Bonferroni cor-
rection (p < 1.06E-7), then 11 matches are found (marked 
with a red asterisk of which 10 show >5% methylation 
change in the current study). The vast majority of CpGs 
in the meta-analysis are located within or closely linked to 
genes. Thus taking the number of genes in the genome as 
25,000, the approximate probability of a match by chance 
for any given DMR-implicated gene in the present study is 
0.19 (4848/25000) for all genes and 0.029 (729/25000) for 
those associated with the 914 CpG loci. The probability 
that these matches have occurred by chance for 62 and 11 
genes is 0.19−62 and 0.029−11, respectively.

T A B L E  3   Summary of Numbers of DMRs, CpG Loci, and Implicated Genes

Cohorts Total Number of DMRs

Direction of Median Methylation Change 
for DMRs Relative to High Groupings for 
Birthweight and LAZ

Total Number of CpG sites in 
DMRs and implicated genes+ve -ve

Placenta BW 4 2 2 4 (4)

Cord blood BW 68 25 43 88 (78)

Infant blood (12 m) BW 54 29 25 71 (65)

Infant blood (12 m) LAZ 25 13 12 31 (26)

Summary of total number of DMRs, CpG loci, implicated genes (in brackets), and direction of median methylation change identified from the comparisons made at 
each time-point between groupings. Key: BW, Birthweight; LAZ, Length for age Z score. Median methylation change is expressed relative to the high birthweight and 
high length for age groupings.

T A B L E  4   The distribution of methylation marks between regulatory features, gene bodies, and intergenic regions

Genomic Feature

Number of CpGs in Feature Number of CpGs in Feature
% of 
Total>5% median methylation change <5% median methylation change

Promoter 30 44 37.9

Promoter and CTCF-binding site 9 3 6.2

CTCF-binding site 11 3 7.2

Transcription Factor-binding site 4 1 2.5

Enhancer 0 1 0.5

Exon 16 5 10.8

Intron 28 9 19.5

Intergenic 17 13 15.4

http://www.genenetwork.nl/biosqtlbrowser
http://www.genenetwork.nl/biosqtlbrowser
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F I G U R E  1   Gene Ontology Analysis of Genes Implicated by Associated Methylation Marks. Panther version 14 was used to provide an 
overview of the gene ontology characterizing genes implicated by methylation marks. Panther 14.0 identified 161 hits from the uploaded list of 
173 genes. A. GO terms for Molecular Function found 93 molecular function hits. B. GO terms for Biological Process found 276 process hits. C. 
GO terms for Protein Class found 94 class hits. D. GO terms for Cellular Component found 300 cellular component hits. Color coding has been 
assigned starting at 12 o'clock and working clockwise on the pie chart
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Comparisons have been made to two further studies ex-
amining the impact of gestational age86 (where some of the 
data are subsumed in the large meta-analysis mentioned 
above) and smoking on birthweight87; these share, respec-
tively, 53 (marked with a green asterisk in Table S2a–d) and 
11 (marked with a blue asterisk) genes associated with dif-
ferential methylation identified in the current study. These 
two studies identify a further 22 DMR-associated genes that 
overlap with our findings, bringing the replication in other re-
lated studies to 84 (48%) of the 173 implicated genes we have 
documented (The asterisks in figure 2 and 3 mark which of 
those shared genes show 5% or greater methylation change––
in total 49 of the 93 in tables 5 and 6 between the three birth-
weight-related studies).

The genes ZNF678, VTRNA2-1, SCRIB, and TNXB 
match those reported in other studies on maternal expo-
sures and differential methylation of associated CpG loci 
in Gambian infants22,26 (marked with black triple asterisks 
in Table S2a–d) and SEMA3B, ARID1B, and HOXA10 from 
the Cambridge Baby Growth Study88 (marked with black 
double asterisks).

The high degree of replication observed in related stud-
ies provides robust validation of the findings reported here. 
Pyrosequencing analysis of the methylation mark associated 
with the ZFHX3 gene was performed to illustrate an example 
experimental confirmation of methyl-seq derived methyla-
tion data. Table 5 summarizes the data for several individuals 
selected from the high and low groups for the 12-month LAZ 
comparison. The results in Table 5 show good concordance 
between the two methods in both the quantum and direction 
of change when compared to the median methylation value 
change derived from the group comparisons by BiSeq analy-
sis of methyl-seq data.

4  |   DISCUSSION

It has been suggested that epigenetic changes may be in-
volved in the mechanism of reprogramming induced by 
under-nutrition, infection, and adverse environmental expo-
sures, although, it is not clear whether these are primary or 

secondary events in the chain of causality. This paper has 
used extremes of variation in birthweight and subsequent 
gains in length to examine associated methylation changes 
in DNA from trophoblast and cord blood DNA from small 
and large babies, and blood DNA from 12-month old infants 
analyzed both according to their size at birth and their change 
in length from birth to 12 months (LAZ).

The methylation marks found at birth and those at 
12  months in relation to birthweight show little longitudi-
nal persistence (see figures 2 and 3 and Table S2a–d). This 
suggests ongoing epigenetic adjustments, significant changes 
in blood cellular composition (such as the loss of nucleated 
erythrocytes89 or both in the critical postnatal growth pe-
riod, and the subsequent infancy-childhood growth transition 
(ICT).90 Nonetheless, what does persist at 12 months is dif-
ferent, almost completely non-overlapping methylation pat-
terns (not confounded by cellular composition differences) 
between the high and low birthweight comparison groups 
and the comparison groups showing rapid or slow postna-
tal height gain. These two distinct methylation patterns may 
reflect different interactions with nutritional, infectious, and 
other environmental exposures during the postnatal growth 
phase potentially associated with negative or positive growth 
trajectories or a combination of both. Thus, any continued 
challenges (such as those provoked by under nutrition and 
infection) to homeostasis during the development period 
may trigger epigenetic programming and shift the timing and 
duration of these periods of growth. The study reported by 
Bernstein et al.91 has revealed an accelerated transition to a 
childhood pattern of growth in Gambian compared to UK 
infants. A later transition, observed in U.K. infants, extends 
the high growth rate experienced during the infancy stage. 
This is reduced in Gambian infants, potentially impacting on 
growth outcomes in childhood while diverting energy into 
other processes critical for responses to acute infectious chal-
lenges; later developmental stages in this population offer an 
extended window for catch-up growth.

Over half (54.3%) of the identified methylation marks are 
located in gene regulatory elements, 30.3% in gene bodies, and 
the remaining 15.4% in intergenic regions closely linked to im-
plicated genes. Alteration of gene activity by methylation of 

F I G U R E  2   Implicated Genes Associated with Methylation Changes of 5% or Greater in Regulatory Elements. This figure documents those 
genes where a methylation change of 5% or greater has occurred within a defined regulatory feature. It also provides a summary of function and 
any disease associations resulting from genome-wide association studies (GWAS––culled from the GAD and EMBL genetic association catalogue 
databases), mutation analysis, and functional investigations. The methylation change is expressed relative to the high birthweight and high length 
for age groups. All mapping of DMRs is based on human genome build hg38 version GRCh38 of the human genome. The positions of CpGs is 
given in relation to the Transcription Start Site (TSS) of the implicated gene. Also shown highlighted in red in the first column is whether the gene 
is associated with Trans and/or Cis-meQTLs and/or Cis-eQTMs. Where plural is shown, this indicates two or more Trans-meQTLs, Cis-metQTLs, 
or Cis-eQTMs associated with the gene (information obtained from the BIOS QTL Browser at www.genen​etwork.nl/biosq​tlbro​wser). NI, No 
Information. Color key of gene disease and functional associations: brown, neurological; purple, fertility; light blue, growth and development; dark 
blue, oncological; and light green, immunological. The asterisks mark the implicated genes found associated with methylation marks in related 
studies.15,86,87

http://www.genenetwork.nl/biosqtlbrowser
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implicated genes may occur by impacting the functionality of 
cis-transcriptional regulatory elements or changing chromatin 
conformation and accessibility to the transcriptional machin-
ery. Several of the methylation marks are found in the binding 

site (an estimated 326,000 in the human genome) for the mul-
tifunctional CTCF zinc finger protein. This protein plays a key 
regulatory role through a number of varied functions that in-
clude influencing chromatin architecture (binding at chromatin 
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domain boundaries and the formation of chromatin loops), 
binding to promoters, enhancers and within gene bodies, and 
recruitment of transcription factors. The protein can also act 
as an insulator, blocking long-range promoter-enhancer inter-
actions for review see (92). Of particular relevance is the ob-
servation that methylation at CTCF-binding sites in imprinted 
regions can disrupt the binding of the CTCF protein and its 
insulator activity93 and, more generally, at many other meth-
ylated sites outside imprinted regions.94 From the annotation 
associated with each of the CpG loci covered by this meth-
yl-seq capture set, almost all the methylation marks described 
in this study are in regions containing DNAse 1 hypersensitive 
Sites (DHS–markers of DNA regulatory regions and transcrip-
tionally active open chromatin) described by the ENCODE 
(Encyclopedia of DNA Elements)95 project. The ENCODE 
project has shown that a small proportion (~ 5%) of DHSs are 
found in TSS (Transcription Start Site) regions, that most are 
located in introns and intergenic DNA and that there is cell-
type specificity in the distribution of DHSs. This indicates that 
the majority of methylation marks reported in our study are po-
tentially in areas of remodeled open chromatin associated with 
transcriptional activity and may influence target gene activity 
possibly by altering chromatin architecture. Figure 2 and 3 also 
indicate that a number of the DMR-associated genes showing 
5% or greater methylation change are subject to trans and/or cis 
genetic variation (Trans-meQTL and Cis-meQTL) that impacts 
the level of methylation of closely linked CpG loci; in some 
cases these methylation changes affect gene expression (Cis-
eQTM). One consequence of this polymorphism in the genetic 
modulation of methylation marks is that it is likely to lead to a 
diversity of methylation responses to environmental exposures 
in different populations. Thus interaction between environmen-
tal exposures, genetic background and modulation of methyla-
tion patterns will have to be assessed for each study population.

Distribution of implicated genes across GO term categories 
demonstrates that they encompass biochemical and biological 
functions that include signaling or interaction with signaling 
pathways; interacting with or acting as receptors; constituents of 
or interacting with the extracellular matrix; deposition of con-
nective tissue; structure and function of the actin cytoskeleton; 

trafficking across cellular membranes; cell cycle control and 
cellular growth; transcription regulation; and metabolic reg-
ulation (see Figure 1). Biological functions revealed by func-
tional studies, animal models, and mutation analysis primarily 
highlight roles in neurological, growth and developmental, neo-
plastic, and immunological dysfunction (see figures 2, 3, and 4 
and Table S2a–d for details). The precise impact of the meth-
ylation changes on the expression of implicated genes, how-
ever, is unknown and awaits more detailed functional analysis. 
Nevertheless, the location of these methylation marks within ap-
propriately positioned regulatory elements and gene bodies or 
in close intergenic linkage to implicated genes, encourages their 
consideration as biomarkers associated with and the genetic 
pathways within which they are active in as potential contrib-
utors to variation in prenatal and postnatal growth, subsequent 
outcomes in later life and as possible intervention targets.

In total, 84 genes implicated by DMRs (shown in red bold 
and flagged by green and blue asterisks-see Table S2a–d) are 
shared with DMR-associated genes reported in the large ar-
ray-based meta-analysis of multiple EWAS by the Childhood 
Epigenetics Consortium and two further related studies.15,86,87 
This demonstrates concordance with a substantial proportion 
(48%) of the genes documented in the current study and pro-
vides robust validation of the BiSeq analysis of methyl-seq 
data. Eleven matched genes are associated with CpG loci 
surviving stringent Bonferroni correction in the Kuppers 
et al. study15 (marked with a red asterisk in Table S2a–d). 
Differences in genetic background, environmental exposures 
and nutrition between populations contributing to different 
studies could lead to methylation changes at different CpG 
loci but still affect DMRs associated with the same impli-
cated genes. In the case of MAD1L1 and NFIX, differential 
methylation has been detected at the same Bonferroni sig-
nificant CpG sites that are reported in the meta-analysis15). 
MAD1L1 (a component of the mitotic spindle-assembly 
checkpoint) has a role in cell cycle control and tumor sup-
pression and methylation levels have been strongly correlated 
with hepatocellular carcinoma.96 It is also a susceptibility 
gene for bipolar disorder and schizophrenia with a risk allele 
linked to reward systems in healthy adults.97 NFIX is most 

F I G U R E  3   Implicated Genes Associated with Methylation Changes of 5% or Greater in Gene Bodies and Intergenic Regions. This figure 
documents those genes where a methylation change of 5% or greater has occurred within a gene body or intergenic region. It also provides a 
summary of function and any disease associations resulting from genome-wide association studies (GWAS––culled from the GAD and EMBL 
genetic association catalogue databases), mutation analysis and functional investigations. The methylation change is expressed relative to the 
high birthweight and high length for age groups. All mapping of DMRs is based on human genome build hg38 version GRCh38 of the human 
genome. The positions of CpGs is given in relation to the Transcription Start Site (TSS) of the implicated gene. Also shown highlighted in red in 
the first column is whether the gene is associated with Trans and/or Cis-meQTLs and/or Cis-eQTMs. Where plural is shown, this indicates two or 
more Trans-meQTLs, Cis-metQTLs, or Cis-eQTMs associated with the gene (information obtained from the BIOS QTL Browser at www.genen​
etwork.nl/biosq​tlbro​wser). NI, No Information. Color key of gene disease and functional associations: brown, neurological; purple, fertility; light 
blue, growth and development; dark blue, oncological; light green, immunological; dark green, connective tissue; orange, metabolic; vermillion, 
cardiovascular; and gray, hearing. The asterisks mark the implicated genes found associated with methylation marks in related studies.15,86,87

http://www.genenetwork.nl/biosqtlbrowser
http://www.genenetwork.nl/biosqtlbrowser
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highly expressed in brain, fat, and prostate, is linked to can-
cer (DNA hypermethylation associated with lung adenocar-
cinoma––LUAD),98 muscle development and dystrophies.99 

Interestingly, 19p13 microduplications encompassing NFIX 
are responsible for intellectual disability, short stature, and 
small head circumference.100
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Three implicated genes match those flagged by methyl-
ation changes found in DNA from babies in the Cambridge 
Baby Growth Study investigating the effects of maternal 
gestational diabetes or intrauterine growth retardation.88 

ARID1B and SEMA3B are potential tumor suppressor genes. 
ARID1B is a chromatin remodeling factor and individuals 
with  ARID1B-related disorder have many phenotypic fea-
tures including slow growth.101 The third gene is HOXA10 

F I G U R E  3   (Continued)
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(homeobox A10), whose expression is downregulated in en-
dometriosis but in late gestation is required for proper placen-
tal differentiation and function.100,102

Implicated genes ZNF678 (a zinc finger gene),  
VTRNA2-1, SCRIB, and TNXB have been reported in other 
Gambian-based studies investigating periconceptional 

F I G U R E  3   (Continued)
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nutritional exposures associated with differential methyl-
ation.11,22,26 VTRNA2a-1 is a noncoding RNA gene that 
functions as a tumor suppressor47-50 and is an imprinted 
locus.51,52 SCRIB (a scaffold protein found at epithelial 
adherens junctions and neuronal presynaptic compart-
ments) can act as a tumor suppressor gene and has been 
shown to be mutated in severe neural tube defects (see 
OMIM entry 607733). TNXB is an extracellular matrix 
glycoprotein thought to function in matrix maturation 
during wound healing. Different pathogenic alleles give 
rise to Ehlers–Danlos Syndrome64 and a form of chronic 
kidney failure, Vesicoureteral Reflux –VUR,65 both of 
which involve alterations to collagen deposition in the ex-
tracellular matrix.

The genes DLK1 and MEG9 (LINC00584––long intergenic 
noncoding RNA) are worthy of further comment given their 
location within an important imprinted region on chromosome 
14 at 14q32. As revealed by maternal and paternal Uniparental 
Disomy (UPDm and UDPp, respectively), and genetic and 
functional studies of individual genes encompassed within the 
locus (for review see OMIM entries 601038, 60563, 611896, 

172690, 613648, and ref (103), the region has a major impact 
on growth and development. The 14q23 locus is complex with 
a cluster of maternally and paternally imprinted genes, non-
coding snoRNAs (small nucleolar organizer RNA), miRNAs 
(microRNAs), LncRNAs (long noncoding RNAs), and LINC 
RNAs under the control of an intergenic differentially meth-
ylated region (IG-DMR).104 Three genes (DLK1, RTL1, and 
DIO3) are all expressed from paternal alleles. DLK1, contain-
ing six epidermal growth factor repeats, has reduced plasma 
levels in women bearing small for gestational age babies,105 is 
an inhibitor of adipocyte differentiation106 and shows genetic 
association with age of menarche.107,107,108,109,110 RTL1 is es-
sential for maintenance of fetal capillaries and potentially in-
volved in formation of the chorioallantoic placenta,111 while 
DIO3 (Thyroxine Deiodinase Type III) is essential for the mat-
uration and function of the thyroid axis.112 A further four genes 
(MEG3, RTL1as, MEG8, and MEG9) are all expressed from 
maternal alleles. MEG3 is a LncRNA affecting growth and de-
velopment in MEG3 knock-out mice113; RTL1as is an antisense 
transcript to the paternally expressed gene RTL1 and encodes 
a number of microRNAs that may regulate the expression of  

F I G U R E  3   (Continued)
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RTL1105; MEG8 is a LncRNA involved in the regulation 
of trophoblast proliferation and invasion, and implicated in  
spontaneous early abortion114 and MEG9, a LINC RNA in-
volved in megakaryocyte differentiation and angiogenesis70 
shows genetic association with body mass index and age of 
menarche.107

The UPDm (no paternal transcripts: Temple Syndrome) 
phenotype is characterized by prenataland postnatal 
growth retardation, neonatal hypotonia, precocious pu-
berty, and facial dysmorphism. The UPDp (no maternal 
transcripts: Kagami–Ogata Syndrome) phenotype is char-
acterized by severe growth retardation, skeletal abnormal-
ities, facial anomalies, and abdominal muscular defects. 
Trans-regulation by maternally expressed small noncoding 

RNAs from the 14q32 region on the activity of other 
genes in the genome is likely to contribute to these com-
plex phenotypes.105 On the maternal chromosome DLK1 
is silenced. The current study shows a 6% methylation dif-
ference of a DLK1 DMR (higher in high birthweight than 
low birthweight babies). In contrast, MEG9 is silenced on 
the paternal chromosome and shows a 22% methylation 
difference of a MEG9 DMR (higher in high birthweight 
than in low birthweight babies). It is not clear what the 
impact of these methylation marks is on expression levels 
as they lie outside the immediate promoter within the gene 
body. Nevertheless, given that both methylation marks 
are in DMRs containing DHSs marking potentially open 
chromatin, it is reasonable to suggest that alteration of 

T A B L E  5   Methylation Analysis of the DMR Associated with the ZFHX3 Gene by Pyrosequencing

ZFHX3 (% methylation)

Pyrosequencing Methyl-seq

Sample High Sample Low Sample High Sample Low

1 20 1 31 1 22 1 40

2 22 2 31 2 22 2 42

3 23 3 31 3 23 3 42

4 23 4 33 4 23 4 41

5 30 5 35 5 24 5 40

6 35 6 46

Mean:

23.6 sd+/−3.38 32.6 sd+/−1.79 22.8 sd+/- 0.74 41.3 sd+/- 1.1

Individual samples sourced from the 12-month high and low LAZ (length for age) comparison groups.
Median methyl-seq determined methylation change between groups = −14.8 referenced to high LAZ value.
This table compares the methylation levels determine for the DMR associated with the ZFHX3 gene by pyrosequencing and methyl-seq analysis. Individuals from 
the high (n = 5) and low (n = 6) 12-month length for age comparison groups were selected for analysis. The table shows the mean % methylation values and standard 
deviation for the two types of analysis. The quantum and direction of change is close to that observed for median methylation change from the comparison of the high 
and low groups determined by BiSeq analysis of methyl-seq data.

F I G U R E  4   Number of Implicated Genes from Figures 2 and 3 Associated with Different Disease Categories. The color key allows 
cross-reference to the gene lists in Figures 2 and 3. Neur, Neurological; Repro, Reproductive; Growth and Dev, Growth and Development; 
Onco, Oncological; Imm, Immunological; Conn Tiss, Connective Tissue; and Cardio-vasc, Cardio-vascular
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the methylation landscape in this region of chromosome 
14 could impact chromatin architecture and gene activity 
with a bearing on growth and development outcomes. It 
is interesting to note that a study examining the effect of 
maternal periconceptional micronutrient supplementation 
of Gambian mothers found increased methylation of a 
DLK1-associated CpG in cord blood DNA from offspring 
of mothers who had received the supplements.24

A number of limitations should be noted. An accessible tis-
sue such as blood as a proxy for methylation changes in other 
key target tissues will not capture all the relevant alterations in 
methylation status. However, there is sufficient concordance 
between tissues to yield a subset of potentially relevant loci.115-

117 Analysis has been performed with males and females com-
bined; hence sex differences in the methylation patterns have 
not been determined. The sample size is small, nevertheless, 
as outlined in the methods, BiSeq is designed for the analysis 
of targeted methyl sequence data and takes advantage of the 
conservation of methylation across short distances, co-assess-
ing methylation changes at several individual cytosine residues 
within intervals of 100 base pairs. This reduces data dimen-
sions and increases detection power by borrowing nearby CpG 
information and provides a more detailed and statistically 
significant evaluation of the methylation status across any 
given genomic region; this has allowed identification of sta-
tistically valid differentially methylated CpGs from this small 
study. Greater coverage (3.7 million CpGs as compared to the 
Illumina HM450 k and Epic 850 k chips) of the SureSelect 
targeted sequencing approach of key gene regulatory elements 
(adjacent and distant, proximal or distal) to genes they control, 
offers the opportunity to identify additional methylation marks 
not necessarily scored by the array-based platforms.

Studies, such as the one reported here, provide associa-
tions and not cause and effect relationships between genes 
and phenotypes. Mutational evidence is helpful in establish-
ing the likelihood that a gene contributes to a complex phe-
notype. Identification of methylation marks can be useful in 
that (a) they might act as biomarkers of early life adverse 
exposures that impact on early growth and may potentially 
indicate those individuals with higher future disease risks 
and (b) potentially flag genes that may be useful interven-
tion targets to ameliorate the consequences of stunting. An 
integrated large scale analysis of inter-individual variation 
of methylation marks in relation to genotype (Trans and 
Cis-meQTLs), eQTLs (expression quantitative trait loci in-
cluding Cis-eQTMs), disease susceptibility, developmental 
phenotypes, nutrition, and environmental exposures provides 
a means of potentially unpicking causal relationships and the 
relevance of implicated genes. Clearly, the most effective 
approach to mitigate stunting and associated disease suscep-
tibilities would be to ensure healthy nutrition, adequate sani-
tation, and living conditions early in the life course.
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