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Abstract 

During the last two decades, a number of countries or cities established heat-health warning 

systems in order to alert public health authorities when some heat indicator exceeds a 

predetermined threshold. Different methods were considered to establish thresholds all over the 

world, each with its own strengths and weaknesses. The common ground is that current methods 

are based on exposure-response function estimates that can fail in many situations. The present 

paper aims at proposing several data-driven methods to establish thresholds using historical data 

of health issues and environmental indicators. The proposed methods are model-based regression 

trees (MOB), multivariate adaptive regression splines (MARS), the patient rule-induction method 

(PRIM) and adaptive index models (AIM). These methods focus on finding relevant splits in 

indicator data but do it in different fashions. A simulation study and a real-world case study hereby 

compare the discussed methods. Results show that proposed methods are better at predicting 

adverse days than current thresholds and benchmark methods. The results nonetheless suggest that 

PRIM is overall the more reliable method with low variability of results according to the scenario 

or case.  

Keywords: Adaptive index models (AIM) ; Multivariate adaptive regression spline (MARS) ; 

Patient rule-induction method (PRIM) ; Regression trees; Threshold; Warning system. 
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1. Introduction 

Following several major and deadly heat wave events, such as the European one of August 2003 

(e.g. Valleron and Boumendil, 2004; Conti et al., 2005), the occurrence and impact of heat waves 

have become widely studied topics (Perkins and Alexander, 2013; Ouarda and Charron, 2018). 

Indeed, it is now accepted that heat waves are major environmental stressors that have important 

public health consequences, mainly in terms of excess mortality (Guo et al., 2017; Mora et al., 

2017). In addition, the frequency and intensity of heat waves are both expected to increase with 

climate change (IPCC, 2013), with potentially major public health consequences (Guo et al., 2018). 

To adapt to the increasing frequency and in severity of heat waves, many countries or regions 

across the world have implemented heat-health warning systems (HHWS) (Casanueva et al., 2019). 

The purpose of a HHWS is to anticipate potentially adverse heat waves and take appropriate action 

to reduce its impact on mortality or other health issues. HHWSs include mainly three components 

that widely vary among regions: i) the tracking and forecasting of a heat indicator, ii) one or several 

alert thresholds that indicate when heat is expected to a danger to the population and iii) an issuance 

of warning to the concerned stakeholders and targeted populations (WMO, 2015). Indicators 

include simple temperature measures, more sophisticated heat indices such as the Humidex 

(Provençal et al., 2016), UTCI (Pappenberger et al., 2015), or the more climate-based synoptic 

approaches (Sheridan and Kalkstein, 2004). Thresholds also vary based on the local population 

characteristics and susceptibility to heat (Gosling et al., 2017). As an example, the city of Montreal 

(Canada) issues warnings when forecasted three days means of minimum and maximum 

temperature both exceeds their respective thresholds of 20 and 33 °C (Chebana et al., 2013). 

Warning issuance can then take diverse forms and strengths, from public communication 
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constraints, targeted calls to vulnerable populations (Mehiriz et al., 2018) and hospital management 

(Toutant et al., 2011). 

Now that the HHWS have been implemented for at least 10 years in most developed countries, it 

appears that their effectiveness is mixed and vary from region to region (Toloo et al., 2013). Some 

studies find slight reductions in extreme heat-related mortality (e.g. Benmarhnia et al., 2016; 

Martínez-Solanas and Basagaña, 2019) while others struggle finding some (e.g. Weinberger et al., 

2018). Although communication and intervention strategies can be an explanation of these mixed 

results, it has been noted that alert thresholds do not always accurately correspond to temperatures 

at which adverse effects can be observed (Vaidyanathan et al., 2019). Appropriate thresholds are 

indeed important for a positive impact of HHWS, and should seek a trade-off between the detection 

of potentially adverse heat waves, while avoiding too frequent alerts that may cause fatigue in the 

population (Baseman et al., 2013).  

The method to fix alert thresholds vary between locations, with some choosing an elevated 

temperature percentile (usually the 95th one, such as Belgium), others basing the thresholds on a 

few selected past events (such as France and the province of Quebec, Canada, Chebana et al., 2013; 

Pascal et al., 2006), and some on regression models within predefined weather types (the synoptic 

systems, Sheridan and Kalkstein, 2004). Therefore, many of the existing thresholds have been set 

through ad-hoc methods and with little statistical evidence. Nonetheless, research is still ongoing 

to propose thresholds based on historical heat-response relationships (Cheng et al., 2019; Islam et 

al., 2017; Petitti et al., 2016).  

The common ground of all the methods mentioned above is their two-step structure in which: i) 

knowledge about the association between temperature and mortality is learned, usually through 
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epidemiological models and ii) a threshold is selected from this association using diverse criteria 

such as confidence intervals. The shortcomings of this structure are that the first step is not 

specifically focused on thresholds and thus that the uncertainty of the epidemiological analysis 

adds to the uncertainty of the criterion chosen to select appropriate thresholds. 

The objective of the present paper is to propose methods that focus directly on threshold 

identifications for HHWS. The proposed methods should be data-driven to limit their subjectivity 

and focus directly on threshold estimation without any need for prior modelling of the relationship. 

In this context, the rationale guiding the choice of methods is to exploit the nonlinearity of 

temperature-mortality associations to directly find an appropriate level of heat above which the 

associated mortality sharply increases. Although this idea underlies recent work proposing 

thresholds (Cheng et al., 2019; Longden, 2018), the proposed methods should also work well with 

any type of heat index, and allow the inclusion of thresholds on several variables. The above 

rationale leads us to regression tree-related methods that include: a) model-based recursive 

partitioning algorithm (MOB, Zeileis et al., 2008), b) multivariate adaptive regression splines 

(MARS, Friedman, 1991; Weber et al., 2012), c) the patient rule-induction method (PRIM, 

Friedman and Fisher, 1999; Polonik and Wang, 2010) and d) the adaptive index model (AIM, Tian 

and Tibshirani, 2011).  

Section 2 details the statistical problem of estimating thresholds and how to apply MOB, MARS, 

PRIM and AIM in this context. These methods are then compared through a simulation study in 

section 3. Section 4 discusses a case study on data from the metropolitan area of Montreal (Canada) 

to show a practical application of the four proposed methods and compare their outcome to the 

current thresholds. Then, section 5 discusses the results and their implication for the general context 

of warning systems. 
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2. Threshold estimation problem 

2.1. The threshold model 

The association between daily temperature 𝑋 and a health outcome of interest 𝑌 is usually modelled 

nonlinearly as: 

 𝑔(𝔼(𝑌)) = 𝛽0 + 𝑓(𝑋; 𝜷) + 𝜸𝑇𝑪 (1) 

In most applications, including the one below, 𝑌 represents daily count of deaths either of all cause 

of for specific causes, and the link function 𝑔 is then the 𝑙𝑜𝑔 function for quasi-Poisson regression 

that accounts for overdispersion (Bhaskaran et al., 2013). However, the framework introduced here 

can be used for different outcome variables such as counts of hospital admissions (e.g. 

Vaidyanathan et al., 2019; Yan et al., 2020) or emergency calls (Islam et al., 2017). The parameter 

𝛽0 is an intercept, and the vector 𝜷 represents the parameters used to represent 𝑓 (usually through 

splines) and can also be expanded to include lags of 𝑋 (Gasparrini et al., 2010). The vector 𝑪 

contains confounders such as splines of time, day-of-week, and daily humidity, with associated 

coefficients 𝜸.  

Although the association between 𝑿 and 𝑌 is usually modelled nonlinearly, it has been shown that 

it can be well approximated by a piecewise linear function (Cheng et al., 2019; Longden, 2018; 

Masselot et al., 2018). Thus, we consider the following model: 

 
𝑔(𝔼(𝑌)) = 𝛽0 + 𝜸𝑇𝑪 + {

𝜷2𝑿    𝑤ℎ𝑒𝑛 𝑿 ≥ 𝒔 
𝜷1𝑿    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 
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where the link function 𝑔, the intercept 𝛽0, and the vector 𝑪 are the same as in equation (1). In the 

context of an HHWS, controlling for these variables reduces the risk of predicting extremes that 

would not be due to heat. . 

The indicators 𝑿 are the variables on which the decision to launch an alert is based and can be any 

measure of temperature, as well as any other indicators that account for specific characteristics of 

the location and alert system. For instance, Chebana et al. (2013) consider 𝑿 = (𝑇𝑚𝑖𝑛; 𝑇𝑚𝑎𝑥) that 

are respectively daily minimum and maximum temperature in their method, and some application 

may also include humidity in the variables. We assume here that all variables in 𝑿 are either 

continuous or ordinal variables. As we consider machine-learning methods, we allow variables in 

𝑿 to be correlated in order to be able to apply the methods with Tmin and Tmax for instance. 

Although the methods discussed allow for any number of variables in 𝑿, in practice the number is 

rarely above three. Besides, considering too much variables would increase the chances of falling 

in the curse-of-dimensionality pitfall. 

The objective of the present study is to estimate the vector 𝒔 that represents the thresholds above 

which the risk associated to temperature variables 𝑿 changes. By focusing on the hot part of the 

year, we assume that 𝜷2 > 𝜷1. Note that model (2) can easily be extended to several thresholds 𝑠𝑗 

(𝑗 = 1, … , 𝐽) , but we only consider the largest one with the highest risk 𝛽𝑗.  

2.2. Thresholds assessment 

Although we focus here on threshold determination, the end goal is to predict adverse conditions 

due to temperature (typically over-mortality days). When thresholds are set, it is thus important to 

assess them by comparing the historical days for which 𝑿 ≥ 𝒔 to the historical over-mortality days. 
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In the present study, agreement between predicted alerts and true extreme days are measured by 

sensitivity, precision, and F-score.  

Sensitivity is defined as the proportion of true extreme days that are predicted by the method. The 

precision is the proportion of predicted alerts from a method that are true extreme days. A method 

with high sensitivity will thus detect most extreme days, while a method with high precision will 

rarely predict false alerts thus avoiding alert fatigue. The F-score measures the trade-off between 

sensitivity and precision and is defined as (e.g. Hripcsak and Rothschild, 2005): 

 
𝐹 =

2 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (3) 

which ranges from zero to one, with zero meaning that all alerts are false alerts and one meaning 

that alerts include all and only true extreme days.  

3. Threshold determination methods 

To estimate a threshold as defined in model (2), we consider methods from different statistical 

frameworks that all have in common an underlying objective of finding appropriate splits in the 

data. The simplest one may be the threshold regression, or breakpoint estimation when the variable 

is time, that seeks a break in a linear relationship. However, this framework tend to consider each 

variable separately, which is why we instead consider the related framework of regression trees 

through the MOB algorithm (Zeileis et al., 2008) that iteratively splits the region spanned by 𝑿 in 

order to account for interaction.  

An alternative way of looking at splits, is to consider them as knots in a linear spline context. We 

thus consider the MARS algorithm that iteratively adds knots to linear splines while also 
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accounting for interaction between variables in 𝑿. Finally, we also consider the framework of rule 

estimation, where the rules are of the form 𝑋 ≥ 𝑠. The PRIM algorithm seeks to find such rules in 

order to maximize an objective function, while the AIM algorithm uses such rules for prediction.  

3.1. Model-based recursive partitioning (MOB) 

Regression trees represent a popular body of machine-learning methods, whose idea is to partition 

the data along the exposure dimension and fit a simple model inside each group (Loh, 2014). The 

splits created by such an algorithm are thus good candidate for thresholds since they represent a 

break in the exposure-response function. There are many popular regression trees algorithm (such 

as CART, CTREE or GUIDE, see Loh, 2014, for an extensive literature review on the subject) but 

we hereby consider the MOB algorithm of Zeileis et al. (2008) that directly uses information from 

a fitted model to partition the data and thus is adapted to the expectation that the impact of heat 

accelerate above the threshold. 

The algorithm starts by considering the whole dataset as a single group which is split in two groups 

along one variable in 𝑿. Each of the two groups can in turn be split along either the same variable 

or another variable in 𝑿, and so on resulting in a tree structure. To perform the splitting, MOB fits 

a simple parametric model at each node and performs a change-point test (Zeileis et al., 2003) on 

the residuals of the fitted model versus each of the variables in 𝑿. If the test is significant on at 

least one variable of 𝑿 the node should be split and the splitting variable is the one with the smallest 

p-value on the test. The location of the split is then determined through a line search in order to 

minimize the model error in the two children nodes. The process is then repeated iteratively until 

none of the change-point tests are significant. 
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In the context of a HHWS, at each node we consider a quasi-Poisson linear model as expressed in 

model (2) to grow the tree, i.e. with variables in 𝑿 and 𝑪 as the predictors. In typical applications, 

the variables in 𝑿 are also those along which the splitting is performed, although it can be slightly 

different according to the context with, e.g., different temperature indicators used as predictor and 

splitting variables. We consider the typical significance level of 5% and, as MOB tend to construct 

much smaller trees than CART for instance, we do not perform any pruning after the tree is grown. 

We restrict the splits such that each node contains at least 5 observations to allow extreme 

thresholds with at least a few occurrences.  

Once the tree is grown, the selected thresholds are the extreme splits on the path leading to the 

node in which the risk 𝛽2 is the highest. Since some variables in 𝑋 may never be split on the path 

leading to this extreme node, MOB allows variable selection for thresholds. Thus, in the present 

context we consider that if a variable has no selected threshold in the end, it should be dropped 

from the HHWS. In the present study, MOB is fit with function glmtree in the R package partykit 

(Hothorn and Zeileis, 2015), with default parameters unless specified otherwise. 

3.2. Multivariate adaptive regression splines (MARS) 

The MARS algorithm (Friedman, 1991) is a trade-off between regression trees and splines 

expansion. The algorithm seeks to fit splines of the form (𝑋𝑗 − 𝑡𝑗)
+

 and (𝑡𝑗 − 𝑋𝑗)
+

 to high 

dimensional data, by selecting only a low number of knots 𝑡. The algorithm thus searches the 

optimal 𝑡𝑗 to approximate the relationship between 𝑌 and the predictor variables 𝑋𝑗 in a forward 

stepwise manner. It starts with an empty model and recursively adds a knot on each of the predictor 

variables in 𝑋 to the model. At each step, the chosen variable and the knot are chosen such that it 

results in the most important error decrease of the final model. It thus grows a large model of 𝑘 



11 

 

terms of the form 𝑌 = 𝛽0 + ∑ 𝛽𝑘𝐵𝑘(𝑋)𝑘  in which the 𝐵𝑘(𝑋) are spline bases. The 𝛽𝑘s are 

estimated at each step using a simple linear regression. To account for interactions between 

variables in 𝑋, products between spline basis functions of different indicators are also explored for 

addition to the model. At the end, some terms are discarded by a backward deletion to keep only 

the most predictive bases, usually a small number.   

The attractiveness of such a procedure for HHWS is that the chosen knots are natural candidates 

as alert thresholds and that it also accounts for interaction between the temperature measures in 𝑇, 

the indicators in 𝑿 and the covariates in 𝑪. In the context of HHWS, we estimate the quasi-Poisson 

model (1) by MARS by allowing interactions up to degree 2. The thresholds are then the extreme 

knots found by MARS for each of the variables in 𝑋. Since each split created in the forward pass 

of the algorithm concerns the whole domain of variables, and not a specific subset as in regression 

trees, the most extreme splits can end up creating a group without any observations. In this case, 

we select lower splits on one or several variables of 𝑿 in order to maximize the average of 𝑌 while 

the number of observations exceeding all thresholds is above five. As for MOB, a lack of split in a 

variable 𝑋𝑗 is considered as a discard of this variable that thus should not be used in the HHWS. In 

the present study, MARS is fit with R package earth (Milborrow, 2018) with default parameters 

unless specified otherwise.  

3.3. Patient rule-induction method (PRIM) 

PRIM is a bump-hunting algorithm that seeks to find boxes in the indicator space 𝑿 inside which 

an objective function of the response 𝑓(𝑌) is high (Friedman and Fisher, 1999). The boxes are 

defined as upper and lower limits for each variable in 𝑋, i.e. 𝑋𝑗 ∈ [𝑡𝑗1; 𝑡𝑗2] to allow straightforward 

interpretation of the results. The PRIM algorithm starts with a box containing the whole dataset 
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and iteratively peels the box such that the objective function 𝑓(𝑌) increases inside it. At each step 

of the peeling, a small portion 𝛼 of the data is removed either to the left or to the right of one 

variable. The variable and the side of the peeling are chosen in order to obtain the peeled box with 

the highest value of 𝑓(𝑌). The algorithm then continues until the number of observations remaining 

inside the box is below a predetermined number. At the end, a pasting process is usually carried 

out. It consists in refining the edges of the box by slightly expanding it as long as it increases 𝑓(𝑌) 

inside the box.  

In the context of an HHWS, instead of the mean, a quasi-Poisson linear model as in (2) is fitted on 

the observations contained in the current box. Thus, at each iteration, the model is peeled in order 

to maximize the risk 𝛽2. Such a criterion is proposed by LeBlanc et al. (2005) in the context of 

survival analysis. Since we are interested in heat thresholds, we consider only left peeling, which 

means that only the lower bound of the box is peeled. The process is carried out until the proportion 

of observations left in the box is below 𝜙0. The final box is then chosen as the one yielding the 

largest rate of increase compared to the previous larger box as (Dazard et al., 2016): 

 𝛽2
𝑘 − 𝛽2

𝑘−1

𝜙𝑘−1 − 𝜙𝑘
 (4) 

where 𝛽2
𝑘 is the risk and 𝜙𝑘 the proportion of remaining observations in the box at step 𝑘 of the 

peeling. The largest rate of increase (4) thus represents the best change-point in the relationship 

between 𝑇 and 𝑌. Once this box is chosen, the final thresholds are the lowest bound of the box for 

each of the variables in 𝑿. 

In the present study, we consider 𝛼 = 5% as it has been shown to yield good performances (Chong 

and Jun, 2008; Abu-Hanna et al., 2010; Capurso et al., 2016) and 𝜙0 = 5/𝑛 with 𝑛 the total number 
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of observation. This allows the algorithm to consider boxes with as low as 5 heat wave days, while 

the optimal number is chosen by the criterion (4). The method is provided in a custom R package 

primr available online (https://github.com/PierreMasselot/primr).  

3.4. Adaptive index models (AIM) 

The objective of AIM (Tian and Tibshirani, 2011) is to derive indices in the form of simple binary 

rules that best predict the response of interest with the model: 

 𝑔(𝔼(𝑌)) = 𝛽0 + 𝛽1 ∑ 𝟏(𝑋𝑗(𝑘) ≥ 𝑡𝑘)

𝑘

 (5) 

where 𝟏(. ) is the index function that take 1 when its argument is true, 𝑗(𝑘) is the variable chosen 

at index 𝑘, 𝑡𝑘 is split point, while 𝛽0 and 𝛽1 are the usual regression coefficients. Note that the AIM 

allows the same variable to enter the model several time. To construct model (5), at each step the 

indicator variable 𝑋𝑗(𝑘) and 𝑠𝑘 are chosen in order to maximize the statistic testing the hypothesis 

𝛽1 = 0, i.e. to maximize the fit of the AIM to the response 𝑌 (Huang et al., 2017). The algorithm 

thus iteratively adds new terms until a maximum number of terms 𝐾 is reached. In practice, 𝐾 is 

chosen through cross-validation. 

For a HHWS, we fit the AIM of Equation (5) using all the variable in Equation (2) to account for 

covariates in 𝐶. The thresholds 𝑠 are then the extreme split point associated to the variables in 𝑿. 

In the present study we apply the AIM with gaussian response since no method for Poisson 

response is available. Note however, that in many practical cases we take advantage of the 

convergence of the Poisson distribution to a gaussian one when the rate increases. We allow up to 

three splits per variable 𝑋𝑗 in the model, with the total number of splits chosen by 5-fold cross-

validation. The model is fit with the R package AIM (Tibshirani, 2010). 
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4. Simulation study 

In the present section, a simulation study is conducted to assess the strengths and weaknesses of 

each considered method for estimating a threshold. 

4.1. Design 

The design of the simulation study attempts to emulate real data in environmental epidemiology. 

We generate 𝑝 (𝑝 = 1,2,3,4) indicators 𝑋1, … , 𝑋𝑝 that all have a basic linear association with a 

response 𝑌, with an additional impact when all indicators cross predefined thresholds 𝑠1, … , 𝑠𝑝. It 

can be expressed as the following data-generating mechanism: 

 

𝑌 = ∑ 𝛽1𝑗𝑋𝑗

𝑝

𝑗=1

+ 𝛽2(𝑿 − 𝒔)+ + 𝜖 (6) 

where (𝑿 − 𝒔)+ = (𝑿 − 𝒔)𝐼(𝑿 ≥ 𝒔), with 𝐼(. ) the indicator function, is the joint impact of the 

indicators’ extreme values and 𝜖 is a Gaussian white noise.  

Indicators 𝑿 are generated from a multivariate normal distribution with potentially non-null 

covariance between the variables. We fix the value of 𝛽1𝑗 = 1. When all variables in 𝑿 exceed 

their respective thresholds, the risk increases by 𝛽2 ≥ 0. It represents an additional impact of 

extremes. The thresholds 𝒔 are set such that around 1.5% of observations fall in the extreme 

category.  

We consider variations of three parameters in the general data generating mechanism of Equation 

6: a) the number 𝑝 of variables in 𝑿, with 𝑝 = 1, … ,4, b) the magnitude 𝛽2 of the extreme impact 

with 𝛽2 = 0.1, 0.2, 0.3, 0.5, 1, and c) the correlation 𝜌 between variables in 𝑿 with 𝜌 = 0,0.5. The 
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two latter parameters control the impact of extreme indicators values on the response 𝑌. A full 

factorial design of these parameters thus results in 40 different scenarios.  

For each scenario, a large number 𝐵 = 1000 datasets of length 𝑛 = 1000 are generated. Each 

method is then applied to all datasets, resulting in 𝐵 = 1000 estimated thresholds 𝒔𝑏 for each 

method and each scenario. We then compute the alerts detected by these thresholds to compare 

them with the true extreme days generated through the criteria given in section 2.2. As benchmark 

methods, we consider the segmented regression of Muggeo (2003) and the GAM-based criterion 

of Petitti et al. (2016). The segmented regression is a very flexible method among the large family 

of threshold regression. It focuses on the location estimation of one or several breakpoints in a 

regression line and allows several variables as well as a non-Gaussian response, in our case 

Poisson. We automatically estimate the number of thresholds, by starting with 10 thresholds for 

each variable in 𝑋 and discarding non-admissible breakpoints at each iteration of the fitting process, 

as described by Muggeo and Adelfio (2011). The final thresholds are then the most extreme ones 

among the breakpoints fitted by the algorithm.  

To represent thresholds estimated through a complete exposure-response fitting, we apply a GAM 

with Poisson response between 𝑌 and 𝑿. The thresholds are then computed as the lowest value 

above the minimum mortality temperature such that the lower confidence interval of the estimate 

exposure-response function is above the zero-line (Petitti et al., 2016). This procedure is hereby 

selected as it represents a common intuition to determine HHWS thresholds (e.g. Islam et al., 2017; 

Vaidyanathan et al., 2019).  
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4.2. Results 

Figure 1 shows the mean and 95 % interval of F-score for each method and each scenario. Overall, 

the most stable and consistent method is PRIM that shows the highest F-scores when 𝑝 ≥ 2, closely 

followed by MARS. They both present consistently higher F-scores than the two benchmark 

methods that are SEG and GAM. Figures S1 and S2 shows that PRIM and MARS provide good 

trade-offs between sensitivity and precision.  

On the other hand, the MOB algorithm performances are heavily dependent on the magnitude of 

extreme effect with lowest F-scores for a 10% increase above the thresholds but the highest scores 

at a 100% increase. Figures S1 and S2 show that MOB tend to have high sensitivity but low 

precision, which is probably due to the stringency of its splitting criterion which tends to often not 

select some variables. The AIM algorithm overall presents the lowest F-scores of the four proposed 

methods with lower performances than SEG.  

Figure 1 indicates that the F-score is at its highest for 𝑝 = 1 and decreases as 𝑝 increases. The score 

is also slightly higher when there is correlation between the variables in 𝑿, as shown by the bottom 

row of panels in Figure 1. Among the discussed methods, PRIM is the one with the lesser drop in 

performances when 𝑝 increases. The only exception to the overall rule is GAM that shows the 

highest F-scores for 𝑝 = 4 and no correlation. However, this is the less likely scenario in practice.  
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Figure 1: Mean and 95% confidence interval of F-scores versus the percentage increase of risk 

above the threshold for each simulation scenario. 𝒑: number of variables in 𝑿; 𝝆: correlation 

between variables in 𝑿. 

 

5. Application to Montréal’s HHWS 

In this section, the proposed methods are applied to determine objective thresholds for an HHWS 

in the city of Montreal, Canada, and compared to the current thresholds. 

5.1. Data and application 

We consider daily data ranging from May to September of years 1990 to 2014 of several 

administrative health regions around the city of Montreal, Canada. The health regions incorporated 

are Montreal, Laval, Lanaudière, Montérégie and the south of the Laurentides region; these 

administrative regions constitute the metropolitan region of Montreal. They correspond to class 1 

in Giroux et al. (2017) and represented a large population of 3 209 173 in 1990 and 4 015 900 in 

2014. This gathering of regions allows to benefit from a large number of cases inside a small area 
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in which the weather can be considered almost uniform, and to compare the computed thresholds 

to the ones currently used in the area. An alert is. 

The health outcome corresponding to 𝑌 in Equations (1) and (2) is the daily count of all cause of 

deaths in the Montreal region. The temperature variables in 𝑿 are weighted moving average of 

daily minimum and maximum temperatures (respectively referred to as Tmin and Tmax in the 

following). Both Tmin and Tmax use the same weights that are (0.4,0.4,0.2) for lags 0 to 2 

(Chebana et al., 2013). These indicators are those used in the current HHWS, with an alert launched 

when the Tmin and Tmax indicators exceed 20 and 33°C respectively, which will correspond the 

benchmark thresholds for comparison purposes. Note that in MOB and PRIM, the quasi-Poisson 

linear models estimating 𝜷1 and 𝜷2 are fitted with the single temperature measure 𝑇 as 𝑇𝑚𝑒𝑎𝑛 =

(𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥)/2  instead of both Tmin and Tmax because of their high collinearity (Barnett et 

al., 2010). This stabilizes the algorithms while being roughly equivalent. The covariates considered 

in 𝐶 are two natural spline components: one on the day of season (i.e. 1 for the 1st of May, 2 for 

the 2nd of May, etc.) with 4 degrees of freedom and one on the year with one degree of freedom per 

decade (as in, e.g. Gasparrini, et al., 2015). These splines allow accounting for seasonal patterns 

and long-term trend in mortality. As the underlying population changes only slightly from day to 

day and that its trend is captured by the spline components of time in 𝐶, no offset is considered 

here which is common in time series study in environmental epidemiology (Bhaskaran et al., 2013). 

Since the purpose of an HHWS is to prevent excesses of mortality from the baseline, we compare 

the methods on their ability to detect accurately historical over-mortality (OM) events. It is 

computed as 𝑂𝑀 = 100 × (𝑌 − 𝐸𝑀)/𝐸𝑀 (Chebana et al., 2013), where 𝐸𝑀 is a baseline of 

expected mortality computed using spline smoothing, with the same bases as the covariates 

considered above. It thus allows for an event detected in the middle of summer where the base 
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mortality is lower to be as important as at the edges of the summer season. The OM events are 

defined by different cut points from 30 to 50, and the ability of each method to detect these events 

is measured by the sensitivity, precision and F-score as explained in section 2.2. The thresholds 

and scores obtained by the considered methods are compared to those of the currently implemented 

thresholds in the region of Montreal (thereafter referred to as Reference). These thresholds were 

obtained through the method of Chebana et al. (2013) that is based on a prior determination of 

over-mortality level and a line search of thresholds in order to maximize both sensitivity and 

specificity criteria (see section 2.2). 

The variability of each method for both the estimated thresholds and alert prediction accuracy is 

assessed through bootstrap simulations. In this analysis, 𝐵 = 1000 bootstrap replications are 

generated from the present data and the methods are applied on each replication to obtain a set of 

bootstrap thresholds. Since the present data are time series, we use a non-overlapping block 

bootstrap (Carlstein, 1986) with a block being a year of data. This means that years of data are 

resampled with replacement to create the bootstrap replications, which allows keeping the time-

dependent structure of data. 

5.2. Results of the proposed methods 

Applying the MOB algorithm to the Montreal data leads to the tree shown in Figure 2. Here, the 

alert system is represented by the extreme terminal node defined by the single splitting rule 

𝑇𝑚𝑎𝑥 ≥ 32.7°C. It contains 11 observations and the scatterplot indicates that this is the node with 

the steepest risk associated to Tmean. Note that the fitted tree shows well the initial assumption of 

piecewise relationship with increasing risk above each split, since the slope is slightly decreasing 

for the lowest temperatures (defined by 𝑇𝑚𝑖𝑛 ≤ 4.5 °C) and increases from the leftmost panel to 

the rightmost one. Since the extreme terminal node does not involve 𝑇𝑚𝑖𝑛 in its splitting sequence, 
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we consider it as a variable selection indicating that 𝑇𝑚𝑖𝑛 is not needed in the HHWS. However, 

if a threshold on 𝑇𝑚𝑖𝑛 is needed, its best split as a surrogate to the one reported here would be 

𝑇𝑚𝑖𝑛 ≥ 17.5. 

 

Figure 2: Tree grown by the MOB method. Terminal leaves shows 𝒀 against Tmean for the 

observation in each node, with the fitted regression line for Tmean in green. 

Figure 3 shows the exposure-response function induced by MARS for the two variables in 𝑿. 

Overall the surface increases with both 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 although it is steeper and with more knots 

along the 𝑇𝑚𝑎𝑥 dimension, in particular at extreme values. The alert region thus corresponds to 

the upper right corner above the thresholds of 18.4°C and 32.7°C of the surface which contains 10 

observations.  

Figure 4 shows the end of the peeling trajectory estimated by PRIM. This trajectory shows two 

main breakpoints. The first one is just above the 0.5 % support (i.e. 22 remaining observations) and 

the second one is the highest at a support of around 0.3% that corresponds to 11 remaining 

observations. The latter yields thresholds of 20.3°C and 32.1 °C. Note that this trajectory could 

easily be used to define additional alert level.  
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Figure 5 shows the score surface of the AIM. Here, we consider the portion with the highest scores 

in the top right corner. This identifies thresholds at 20.4°C and 32.2°C respectively. 
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Figure 3: Exposure response surface fitted by MARS for the indicators 𝑻𝒎𝒊𝒏 and 𝑻𝒎𝒂𝒙. 

Dashed lines indicates knots selected by the algorithm with thick continuous lines indicating 

extreme knots kept as thresholds. 

 

 

Figure 4: Peeling trajectory of PRIM. The ordinates show the increase rate of RR associated 

to Tmean compared to the previous box in the peeling process. 
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Figure 5: AIM scores for each value of Tmin and Tmax with day-of-season and year kept 

constant at their middle point. Lines indicate the cutpoints locations with thick continuous ones 

the final thresholds. 
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Table 1 : Estimated thresholds, alerts and performances for the proposed methods applied to 

the HHWS of Montreal. 95% bootstrap confidence intervals are in parenthesis. * Reference 

are thresholds and performances resulting from the work of Chebana et al. (2013). ** Number 

of days corresponds to the absolute number of exceedances while episodes correspond to 

gathering of exceedance days, separated by less than 3 days. *** OM: Over-mortality 

Method 

Thresholds Alerts** 

Tmin Tmax 
Number 

of days 

Number 

of 

episodes 

Mean OM 

(%)*** 

Coverage 

(%) 

MOB - 32.7 (29.2-32.7) 12 (10-126) 9 (6-63) 42.6 (12.4-58.4) 13.4 (6.2-45.2) 

MARS 18.4 (4.7-21.8) 32.7 (24.4-32.6) 10 (10-103) 7 (5-49) 47.0 (7.4-55.1) 12.3 (5.3-37.9) 

PRIM 20.3 (19.3-21.8) 32.1 (29.2-32.6) 11 (8-25) 5 (4-16) 43.9 (8.6-59.3) 12.6 (3.1-22.0) 

AIM 20.4 (18.4-20.4) 32.2 (28.2-32.3) 9 (12-275) 5 (6-97) 49.7 (8.5-59.5) 11.7 (13.3-69.8) 

Reference* 20.0 33.0 4 3 73.3 7.7 

 

Table 1 summarizes the thresholds found by each method with the resulting number of historical 

alerts as well as the mean over-mortality of these alert days. MOB and MARS find the same 

threshold for Tmax which is the highest one of all proposed methods. However, the MARS 

algorithm also estimates a threshold on Tmin, resulting in a more stringent alert system and thus 

less historical episodes compared to MOB. The PRIM and AIM algorithms propose lower 

thresholds on Tmax but higher ones in Tmin than MARS and MOB. The result is a similar number 

of alert days, but gathered in less episodes than MARS and MOB (only 5 here). The ranking of 

average OM of alert days detected by the four proposed methods is inversely proportional to the 

number of detected alert days. It ranges from 42.6% for MOB to 49.7% for AIM, which means that 

the extra days detected by MOB likely have lower OM, but not by much.  

Table 1 also reports coverage values in order to measure the accuracy of predicted alerts. For a 

method 𝑚, the coverage is defined as 𝑂𝑀𝑚 ∗ 𝑛𝑚/𝑛 where 𝑂𝑀𝑚 and 𝑛𝑚 are the mean OM and 

number of alerts for the method while 𝑛 is the total number of observations. Coverage measures 

the trade-off between a high number of detected alerts and significant enough alerts, the higher the 
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coverage, the higher average OM compared to the number of alert detected. In spite of overall 

lower OM average, MOB results in the highest coverage, followed by PRIM, which means that the 

extra alert detected by the two methods are relevant for an HHWS. On the other hand, AIM presents 

the lowest coverage value with a difference of only 1.7% below the best method (MOB). The 

Reference coverage is even below the one of AIM, because of the low number of alert days.  

 

 

 

Figure 6: Boxplots of the bootstrapped thresholds (a) and proportion of replications in which 

the method discards each variable (b). In both cases, the upper values represent Tmin and the 

lower represent Tmax. Vertical solid lines indicate the threshold found on the whole sample 

and reported in Table 1. 
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5.3. Performance comparison 

Boxplots of Figure 6a show the distribution of the 𝐵 = 1000 bootstrap thresholds and Figure 6b 

the proportion of samples in which the variable was not selected by the model. Overall, PRIM 

seems to be the least biased method, as the observed thresholds are close to the mean of bootstrap 

replications. In addition, the threshold distributions of PRIM show little outliers meaning that 

PRIM has also a low variance. MOB also shows little bias for the Tmax threshold with some 

outliers, and very few Tmin thresholds. Finally, MARS and AIM seem to be the most biased and 

variable methods overall. 

Figure 7 shows the three considered criteria for several cut points 𝑢 ranging from 30 to 50 %, for 

each method. For low values of 𝑢, MOB shows the highest sensitivity and is equal to AIM and 

PRIM for the highest values of 𝑢. On the contrary, the Reference show the lowest sensitivity values, 

meaning that these thresholds miss important OM events. The Reference shows however the 

highest precision due to the low number of alert days. The F-score values clearly indicate that for 

low cut points 𝑢, MOB is the best method, while for high cut points, its F-scores are lower than the 

other considered methods. At high cut points values, AIM present the highest F-scores.  
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Figure 7: Whole sample value and 95% interval from bootstrap replications of:. a) sensitivity 

which is the proportion of OM peaks detected by the system, b) precision which is the 

proportion of alerts that are actual OM peaks and c) F1-score making a trade-off between the 

two. The x-axis represents the OM cut-point above which it is considered an over-mortality 

event, For each measure, the closer to 1 the value, the better the thresholds.  

6. Discussion 

The present paper considers four different methods for data-based threshold identification: MOB, 

MARS, PRIM and AIM. The four methods are applied to a large number of simulated datasets and 

to a health data case study, and compared using a number of criteria. The results of both the 

simulation study and the case study example show that the four methods can result in appropriate 

thresholds with very little prior choices. In comparison, methods based on prior models such as 

GAM may not always yield a clear enough relationship to derive threshold from it, an issue 

concerning rural areas in particular because of lower counts.  

Comparisons between the methods show that the overall best method is PRIM, presenting the 

highest prediction power in simulations, and a good fitting of observed high OM events in the case 

study. In addition, the method is the most robust to design changes and varies little on bootstrap 

resampling, while offering important flexibility to the user with the peeling trajectory or other 

criteria such as a cross-validated trajectory (Dazard et al., 2016). MOB shows the best 

performances on the case study while having a good prediction power in specific scenarios of the 

simulation study. By opposition to PRIM which guarantees a threshold is found, MOB allows 

threshold selection that can be useful in exploratory analyses to determine relevant heat indicators. 

The latter may be adapted for subgroup identification in clinical studies where there are a lot of 

biomarkers to choose from, but perhaps less in environmental epidemiology where the number of 

indicators is lower and each indicator could be of interest. Note however that, although not explored 

here, the MOB algorithm also allows exploring breakpoints through the statistic used to choose 
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each split in the tree. Such a tool may allow for greater flexibility as well. Finally, MARS and AIM 

show lower performances by being slightly less adapted to the specific objective of threshold 

determination. In particular, by considering the creation of thresholds independently from other 

variables, it can result in a set thresholds with no observation exceeding all of them, especially 

when there are more than two variables in 𝑿. 

In practice, it may be useful to obtain uncertainty measures of the estimated thresholds such as 

standard deviations or confidence intervals. Here we tackled this matter through bootstrap 

replications, but uncertainty could also be measured through bayesian versions of the discussed 

methods (excluding AIM, Chipman et al., 1998; Denison et al., 1998; Wu and Chipman, 2003). 

On the other hand bagging is a possibility to obtain more robust thresholds based on bootstrap 

replications (Breiman, 1996). Note that bagging regression trees basically corresponds to the so-

called random forests, although the well-known algorithm is based on CART (Breiman, 2001) 

instead of MOB. Alternatively, boosting the algorithms could also improve the robustness of 

estimated threshold (Friedman, 2001; Wang et al., 2004). However, this exceeds the scope of the 

present paper. 

The present work does not address the matter of temporal dependence in the data that can create 

clusters of alerts. Future work should nonetheless address the subject of temporal dependence. For 

instance, criteria based on episodes rather than on days considered as independents could be used. 

Modelling the response as a Markov chain, in a similar fashion as in the extreme value theory 

literature (Winter and Tawn, 2016) is also a possible lead. 

The present study focuses on unidimensional outcomes, mainly mortality although all the methods 

proposed are applicable to other typical health outcomes such as morbidity and emergency calls. 
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However, it can also be of interest to determine thresholds based simultaneously on several of these 

outcomes and as with finer causes accounting for multi-morbidity. Since PRIM focuses on an 

objective function of the response, it can easily be extended to multiple outcomes. On the other 

hand, the task is less trivial for other algorithms, which is beyond the scope of the present paper. 

Although the present paper focuses on the heat wave issue, the possibility of tuning algorithms for 

better flexibility of the proposed methods allows their application to other issues. For instance, 

there is a growing interest in developing public health action plans and thresholds related to cold 

spells (Bustinza and Lebel, 2013; Yan et al., 2020). Thresholds for waterborne diseases and 

extreme precipitations (e.g. Guzman Herrador et al., 2015), hip fractures and snow conditions 

(Modarres et al., 2014) as well as air pollution and respiratory diseases (De Sario et al., 2013; 

Masselot et al., 2019) are also of interest. These thresholds could be based on actual regional health 

impacts and exposure instead of a general national standard with inherent high variability.  

The present paper focuses on threshold estimation, so other aspects of a methodology to set HHWS 

have not been thoroughly discussed. An example is the creation of indicators for 𝑿, but this aspect 

is beyond the scope of the present paper. The present study considered the same indicators (Tmin 

and Tmax) as in Chebana et al. (2013) but other possibilities could arise. For instance, different 

lags of the indicators can be included directly in the methods, and scores can then be used to weight 

these lags and construct indicators with associated thresholds. Such scores include variable 

importance for regression trees (Ishwaran, 2007) and variable relevance for PRIM (Friedman and 

Fisher, 1999). 
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