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Abstract

Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi

infection. The mechanism of pathogenesis is poorly understood and the lack of a robust,

predictive animal model has held back research. We screened a series of mouse models

using gastrointestinal tracer assays and in vivo infection imaging systems to discover a sub-

set exhibiting chronic digestive transit dysfunction and significant retention of faeces in both

sated and fasted conditions. The colon was a specific site of both tissue parasite persis-

tence, delayed transit and dramatic loss of myenteric neurons as revealed by whole-mount

immunofluorescence analysis. DCD mice therefore recapitulated key clinical manifestations

of human disease. We also exploited dual reporter transgenic parasites to home in on loca-

tions of rare chronic infection foci in the colon by ex vivo bioluminescence imaging and then

used fluorescence imaging in tissue microdomains to reveal co-localisation of infection and

enteric nervous system lesions. This indicates that long-term T. cruzi-host interactions in

the colon drive DCD pathogenesis, suggesting that the efficacy of anti-parasitic chemother-

apy against chronic disease progression warrants further pre-clinical investigation.

Author summary

Chagas disease (American trypanosomiasis) is caused by the protozoan parasite Trypano-
soma cruzi. Chagas disease has two types, the cardiac form and the digestive form; some

patients have symptoms of both. How the parasite causes digestive disease is poorly

understood. It is known that damage to the gut’s nervous system is an important factor,

but it has been unclear exactly where and when this damage occurs during the course of

an infection and also why only a subset of infected people suffer from this outcome. We

studied infections in mice and found certain combinations of strains of parasites and mice

that exhibited symptoms similar to human digestive Chagas patients, including a problem

with peristalsis that localised specifically to the colon. Using parasites that were genetically

engineered to emit both bioluminescent and fluorescent light, we tracked infections over
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time and were able to analyse rare infected cells deep within the muscle tissue of the wall

of the colon. We found evidence of damaged neurons in the same location as these infec-

tion foci over 6 months after initial infection. Our results show that digestive Chagas dis-

ease probably develops as a result of chronic infection and inflammation, which

potentially changes approaches to treatment.

Introduction

Chagas disease (CD) is caused by infection with the protozoan parasite Trypanosoma cruzi,
which affects approximately 6 million people. There are two principal forms of CD, cardiac

and digestive. The most prevalent cardiac presentations include myocarditis, fibrosis, arrhyth-

mias, microvascular abnormalities, progressive heart failure and sudden death [1]. Cardiac CD

has been the subject of intensive experimental research and many predictive animal models

are available to support translation into the clinic. Human digestive CD (DCD) is character-

ised by progressive dilatation and dysfunction of sections of the GI tract [2,3]. Symptoms

include achalasia, abdominal pain, constipation and faecaloma. Eventually, massive organ dila-

tation results in megasyndromes, usually of the colon and/or oesophagus. Dilatation is associ-

ated with loss of enteric neurons leading to peristaltic paralysis and smooth muscle

hypertrophy. Treatments are largely limited to dietary and surgical interventions [4]. The lack

of a robust small animal model of enteric CD has been a major block on basic and translational

research.

Of symptomatic CD patients, ~65% have cardiomyopathy, 30% enteropathy and 5% have

both, with digestive disease most common in Bolivia, Chile, Argentina and Brazil [1]. Anti-

parasitic chemotherapy has not been considered justifiable for T. cruzi-positive individuals

with digestive symptoms, but normal heart function, as no clinical trials have addressed treat-

ment efficacy in the context of digestive outcomes [5]. Challenges for clinical trials include the

highly variable and unpredictable clinical outcomes of T. cruzi infection, the extended time

frame for disease development and, especially in the context of DCD, a paucity of experimental

data [6]. Molecular and cellular explanations of DCD pathogenesis also lag far behind the

advances made for Chagas cardiomyopathy.

The lack of progress in developing treatments for DCD may also be connected to the idea

that megasyndromes result from irreversible enteric denervation, specifically during the acute
phase of infection [7,8], in which anti-parasitic inflammatory responses are thought to cause

iNOS-dependent collateral damage to neurons, leading to aganglionosis [7,9]. Further age-

related nerve degeneration was posited to gradually unmask these parasite-driven losses, lead-

ing to progressive organ dysfunction on a timescale of years to decades [7]. However, the fre-

quent detection of T. cruzi and signs of active inflammation in oesophageal and colonic tissues

from patients circumstantially suggests that chronic parasite persistence may contribute to dis-

ease development [10–17]. Furthermore, experimental bioluminescence imaging and tissue

PCR studies in mice revealed that the GI tract is a major long-term reservoir of T. cruzi infec-

tion [18–22]. Adult enteric neurogenesis has been described in response to chemically-medi-

ated tissue injury [23] and in the steady state [24]. A series of advances has also highlighted

previously unappreciated levels of interconnectedness between the gut’s immune and nervous

systems [25–27]. We therefore sought to develop murine DCD models suitable to address the

hypothesis that host-parasite interactions in the chronically infected gut might impact contin-

uously on the enteric nervous system (ENS) and musculature to drive disease pathogenesis.
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Here, we studied a series of parasite and mouse strain combinations to identify several

models with significant digestive motility dysfunction. Using a combination of biolumines-

cence and fluorescence in vivo and ex vivo imaging techniques, we demonstrate that chronic T.

cruzi persistence, gut motility delay and enteric neuronal damage are co-localised within dis-

crete foci in the colonic muscularis. This indicates that DCD tissue pathology and transit dys-

function are likely driven by T. cruzi persistence in the colon and the associated chronic

inflammatory response. DCD should therefore be considered as potentially preventable by

anti-parasitic chemotherapy. It also opens the way to investigate the molecular and cellular

basis of pathogenesis and T. cruzi immune evasion.

Results

A subset of T. cruzi mouse infection models display chronic digestive

transit time delays

We previously developed a series of mouse models of T. cruzi infection based on parasites

transgenically expressing the luciferase variant PpyRE9h, which serves as an orange-red light

emitting in vivo reporter protein [28]. Host-parasite combinations of BALB/c and C3H/HeN

mice and TcVI-CL Brener (CLBR) and TcI-JR strain parasites permit long-term tracking of

the course and distribution of infections in individual animals (Fig 1A). These models, which

exhibit a spectrum of Chagas heart disease severities [19], were screened for gastrointestinal

(GI) transit time delays, a common feature of DCD, by oral feeding of a red dye tracer (car-

mine). Three of the four host-parasite combinations took significantly longer than control

uninfected mice to pass the tracer at acute phase, 3 weeks post-infection (p.i.), and/or at 6

weeks p.i. transition phase (Fig 1B). During the early chronic phase, 12 and 18 weeks p.i., only

the TcI-JR-infected C3H mice displayed the delay phenotype, which became markedly more

severe as the infection developed into the later chronic phase at 24 and 30 weeks p.i. Milder,

but still significant transit delay phenotypes also emerged in the other three models.

T. cruzi as a species encompasses a high level of genetic diversity structured across six

major lineages [29–31]. To test whether and at what level the strong digestive transit delay phe-

notype in C3H mice was conserved, we tested a further eight T. cruzi strains from five lineages

(4x TcI, 1x TcII, 1x TcIII, 1x TcIV and 1x TcVI) using the carmine transit assay (S1 Fig). Two

more strains were identified showing evidence of delayed transit: TcI-SN3 and TcVI-Peru.

This type of pathology is therefore a relatively rare, strain-specific trait in T. cruzi. It occurs in

both TcI and TcVI strains, but is not conserved within lineages.

Parasite persistence within the GI tract

We selected the TcI-JR-infected C3H mouse as the most suitable model of experimental

chronic DCD. The transit time delay in these animals (Fig 1B) did not show a correlation with

the overall parasite burden, which dropped by approximately two orders of magnitude from

the acute peak to the level seen in the chronic phase (Fig 1A). Much of the bioluminescence

signal in whole animal imaging derives from parasites in the skin [18,19], so we quantified

organ-specific parasite loads using ex vivo imaging at 3, 6 and 30 weeks p.i. (Fig 2A). Parasit-

ism was consistently detected in the GI tract, in foci distributed from the stomach to the rec-

tum, being relatively more intense in the stomach and large intestine compared to the small

intestine (Fig 2A and 2B). All sites exhibited significantly lower parasite loads in the chronic

than acute phase (Fig 2B). There was a positive correlation between endpoint GI parasite loads

and the severity of transit delay during the acute phase (3 weeks p.i.), but there were no such

quantitative associations in the transition (6 weeks) or chronic (30 weeks) phases (Fig 2C).
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Fig 1. Bioluminescence imaging T. cruzi infection models and digestive transit dysfunction screen. A. Ventral images of female C3H/HeN (top panels) and BALB/c

mice (bottom panels) representing TcI-JR (1st and 3rd panel) and TcVI-CLBR (2nd and 4th panel) course of infection. Images were captured using in vivo bioluminescence

imaging. Overlaid log-scale pseudocolour heat maps are representative of bioluminescence intensity; the log-scale range is indicated in units of radiance. Adjacent line

plots show parasite load represented as average bioluminescence of TcI-JR C3H/HeN (n = 10–24), TcVI-CLBR C3H/HeN (n = 5–12), TcI-JR BALB/c (n = 5–12) and
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Evidence of chronic GI parasitism was found for other models displaying milder or transient

transit dysfunction (C3H –TcVI-CLBR, BALB/c–TcI-JR, BALB/c–TcVI-CLBR, C3H –

TcI-SN3, C3H –TcVI-Peru) but also some with normal transit times (C3H –TcI-ArePe, C3H

–TcIII-Arma18) (S1 and S2 Figs). Overall the ex vivo imaging analyses showed that GI transit

time delays (Fig 1) coincided with the persistence of T. cruzi in the GI tract (Fig 2) in the prin-

cipal C3H –TcI-JR model. The relationship between transit dysfunction and gut parasitism,

TcVI-CLBR BALB/c (n = 9–22) infected mice against days post infection (p.i.). Limit of detection of bioluminescence is indicated as threshold by dashed line. B.

Schematic diagram of the carmine red-dye assay to measure gastrointestinal (GI) transit time delay in mice. C. Bar plots show GI transit time vs. weeks post-infection (p.

i.) of BALB/c (left) and C3H/HeN (right) mice in the following groups: naive control BALB/c (n = 8–18), TcI-JR BALB/c (n = 6–17), TcVI-CLBR BALB/c (n = 10–29),

naive control C3H/HeN (n = 12–35), TcI-JR C3H/HeN (n = 18–38) and TcVI-CLBR C3H/HeN (n = 6–17). Table (bottom) summarises statistical comparisons of GI

transit time delay between groups. All statistically significant values are highlighted (red). Data are expressed as mean ± SEM. Statistical significance was tested using one

way ANOVA followed by Tukey’s HSD test.

https://doi.org/10.1371/journal.ppat.1009864.g001

Fig 2. Tissue parasite distribution kinetics in TcI-JR-infected C3H/HeN mice. A. Representative images show parasite distribution in different organ tissue (lymph

nodes—LN, gut mesenteric tissue—MS, heart—HT, spleen—SP, skeletal muscle—SKM, stomach—ST, small intestine—SI, caecum—CA and colon—CO) of a TcI-JR

infected C3H mouse at 3, 6 and 30 weeks post-infection (p.i.) using ex vivo bioluminescence imaging. Overlaid log-scale pseudocolour heat maps are representative of

bioluminescence intensity; the log-scale range is indicated in units of radiance. B. Box-plots show infection intensity of different organ tissue at 3 (n = 12 per group), 6

(n = 24 per group except n = 5 lymph nodes) and 30 (n = 10 per group except n = 5 lymph nodes) weeks p.i. Data points are expressed as fold change in

bioluminescence vs. naïve controls. Limit of detection is denoted as dashed line. The horizontal line within each box indicates median and the whiskers denotes

minimum and maximum values of each dataset. C. Scatter plots show correlation between gastrointestinal transit time and end-point parasite densities expressed as

the aggregate bioluminescence radiance of the GI tract regions at 3 (n = 10), 6 (n = 12) and 30 (n = 10) weeks p.i.; r denotes Pearson’s correlation coefficient and p-

value represents a measure of statistical significance.

https://doi.org/10.1371/journal.ppat.1009864.g002
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however, depends on additional factors because (i) there was not a consistent correlation

between delay severity and infection intensity over time, and (ii) GI parasite persistence occurs

apparently ubiquitously across different mouse-parasite strain combinations (Figs 2 and S2,

[19,32]), yet only a subset have a functional DCD phenotype.

Regional dissection of the transit delay phenotype reveals localisation to

the colon

The transit time delay seen in symptomatic DCD animals was not explained by differences in

body weight or intestine length (S3 Fig). This suggested a functional impairment to peristalsis,

as seen in human DCD. Our next aim was to determine the digestive tract region(s) in which

the transit time delay was localised. To do this we fed mice with red and green fluorescent trac-

ers (Rhodamine- and FITC-conjugated 70 kDa dextran, respectively) at variable time intervals

prior to ex vivo imaging. An interval of 5 minutes was used to test whether stomach emptying

was delayed. No significant differences were detected in infected animals compared to controls

(Fig 3A), either at 6 or 30 weeks p.i. There was a significant difference in stomach weight at 6

weeks p.i. (Fig 3B), which may indicate increased retention of matter more solid than the

tracer.

To measure small intestine dysfunction, we initially analysed tracer transit after 45 minutes

and observed a trend for delay in infected mice during the acute but not the chronic phase (Fig

3C). At 3 weeks p.i. there was also significantly increased organ weight (Fig 3D), so we

extended analysis at this time point using an increased parasite inoculum and extended the

tracer interval time to 60 minutes. Here, we observed evidence of significant small intestine

transit delay (Figs 3E and S4).

We next assessed colonic transit using a 90 minute interval after the fluorescent tracer feed.

Fluorescence transit appeared similar in infected and control mice at 3 and 6 weeks p.i. (Fig

4A). Unlike the timings used to study transit delay in the upper intestinal tract (Fig 3), the

method was less reliable to study the colon in isolation because substantial amounts of dye

were still present in the small intestine and we could not quantify any dye that was excreted.

Nevertheless, large intestine weights were significantly increased in infected mice at 6 and 30

weeks p.i. (Fig 4B) suggesting a site-specific dysfunction. We therefore employed an alternative

assay in which mice were fasted for 4 hours prior to post-mortem analysis of colon lumen con-

tents. T. cruzi infected animals showed significantly greater retention of faeces inside the colon

than controls, as shown by pellet counts and both wet and dry total faecal weights, ruling out

altered water absorption as an explanation (Fig 4C). The colon-localised transit delay pheno-

type was highly significant at 6 weeks p.i. and endured into the chronic phase, at 30 weeks p.i.

(Fig 4C). By varying the fasting time (0, 2 and 4 h) we showed that this phenotype was main-

tained irrespective of stomach fullness and showed distal colon faecal impaction developing in

T. cruzi infected mice within this timeframe (Fig 4D). The other T. cruzi strains exhibiting

signs of total GI transit delay in the carmine assay (SN3, Peru, CLBR) also showed significant

retention of faeces after 4 hour fasting, whereas strains with normal carmine transit times did

not (S5 Fig). Thus, when GI transit dysfunction occurs in murine chronic T. cruzi infections it

is predominantly localised to the colon.

To further investigate whether the observed functional constipation phenotype was accom-

panied by alterations at the molecular level, we used RT-qPCR to measure transcript abun-

dance for 12 neuronal and inflammatory response genes in colon tissue from chronically

infected mice (Fig 4E). Neuron-specific tubulin β-3 (Tubb3) and neuronal nitric oxide

synthase (Nos1) genes were strongly downregulated by ~75% compared to naïve control mice.

Expression of excitatory substance P and inhibitory vasoactive intestinal peptide (Vip) ENS
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neurotransmitters was also decreased, but to a lesser extent. No evidence of altered transcript

abundance was found for markers of other enteric neuronal subtypes, tyrosine hydroxylase

(Th) and choline acetyltransferase (Chat), tropomyosin receptor kinases (Ntrk1/2/3) or nerve

growth factor receptor (Ngfr). Taken together, these data indicate a possible downregulation of

the enteric nitrergic transmission associated with GI dysfunction in DCD mice, recapitulating

observations in human Chagas megasyndromes as well as other enteric neuropathies [16,33–

36].

Chronic infection foci and enteric neuronal damage at organ and tissue

micro-domain scales

Our next aim was to investigate disease pathogenesis in this model and commonalities with

human DCD. Colon tissue from TcI-JR chronically infected mice (> 210 days p.i.) contained

significant lymphocytic inflammatory infiltrates that were diffusely and focally distributed in

the smooth muscle layers (Fig 5A). Immunohistochemical labelling of the nerve plexuses

Fig 3. Fluorescent tracer imaging assays for stomach emptying and small intestine transit. A. Schematic diagram of a mouse receiving oral gavage of a green

fluorescent marker, FITc-conjugated 70 kDa dextran, 5 minutes prior to termination to trace stomach emptying delay during infection. Representative images of

stomach and small intestine are superimposed with traces of FITc-dextran travelling through stomach into small intestine to show transit difference between control

and TcI-JR C3H/HeN infected mice. Linear-scale pseudocolour heat map shows minimum and maximum fluorescence intensity of 70-kDa FITC-dextran.

Quantification of FITC-dextran fluorescence in control naïve and TcI-JR C3H/HeN is shown in the adjacent bar plot at 6 (n = 12 per group) and 30 (n = 5 per group)

weeks post-infection (p.i.). Fluorescence is expressed as geometric centre which is centre mass of the marker. B. Bar plot shows post-mortem weights of stomach with

contents at 6 (n = 7 per group) and 30 (n = 5 per group) weeks p.i. C. Similar schematic diagram and bar plot at 3 (n = 4 per group), 6 (n = 4 per group) and 30 (n = 5

per group) weeks p.i. using a red fluorescent marker, rhodamine-dextran, to target small intestine transit. Linear-scale pseudocolor heat map shows minimum and

maximum fluorescence intensity of rhodamine-dextran. D. Small intestine weights shown in bar plot at 3 (n = 4 per group), 6 (n = 7 per group) and 30 (n = 5 per

group) weeks p.i. E. Bar plot shows quantification of rhodamine-dextran fluorescence administered 60 minutes before termination of mice at 3 weeks p.i. (n = 4 per

group). Dashed lines on bar plots show the GI segment number corresponding to the geometric centre score (0–1 = stomach, 1–10 = small intestine, proximal to distal).

Data are expressed as mean ± SEM. Statistical significance was tested using unpaired two-tailed Student’s t test (�P< 0.05).

https://doi.org/10.1371/journal.ppat.1009864.g003

PLOS PATHOGENS T. cruzi and chronic enteric neuropathy

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009864 August 23, 2021 7 / 21

https://doi.org/10.1371/journal.ppat.1009864.g003
https://doi.org/10.1371/journal.ppat.1009864


Fig 4. Evidence of colonic transit dysfunction in experimental digestive Chagas disease model. A. Schematic diagram of a mouse receiving oral gavage of a

green fluorescent marker, FITC-conjugated 70 kDa dextran, 90 min prior to termination to trace large intestine transit delay during infection. Representative

images of stomach, small and large intestine are superimposed with traces of FITC-dextran travelling through small into large intestine to show transit difference

between control and TcI-JR C3H/HeN infected mice. Linear-scale pseudocolor heat map shows minimum and maximum fluorescence intensity of FITC-dextran.

Bar plots show quantification of FITC-dextran fluorescence in the large intestine of mice at 3 (n = 4 per group) and 6 (n = 4 per group) weeks post-infection (p.i.).

Fluorescence is expressed as geometric centre which is centre mass of the marker. B. Bar plot shows post-mortem weights of large intestine at 3 (n = 4 per group),

6 (n = 7 per group) and 30 (control n = 9, TcI-JR n = 11) weeks p.i. C. Faecal output analyses between control and TcI-JR C3H/HeN infected mice are expressed as

faecal pellet count, wet and dry weight, and percentage of water content at 6 (n = 7 per group) and 30 weeks p.i. (n = 5–11 per group). D. Quantification of the

effect of different fasting times on faecal output of mice: number of faecal pellets (n = 4–16 per group) and dry faecal weight (n = 4–7 per group). Images of mouse

large intestine showing faecal impaction during infection at 30 weeks p.i. after 4 hours fasting compared to control. Scale bar is in cm and mm. Data are expressed

as mean ± SEM. Statistical significance was tested using unpaired two-tailed Student’s t test (��P< 0.01; ���P< 0.001, ���� P< 0.0001). E. RT-qPCR analysis show

log2-fold change in RNA expression of neuronal markers, including pan-neuronal tubulin β-3 (Tubb3), neurotransmitter production (Nos1, Chat, SP, Th, Vip),

neuronal growth factor receptors (Ngfr, Ntrk1, Ntrk2, Ntrk3), and non-neuronal NOS isoforms Nos2 and Nos3. RNA was from colon tissue of C3H/HeN naïve

control and TcI-JR infected mice (n = 5 per group, biological replicates). Data are expressed as Log2-ΔΔCt ± SD. Dashed line represents mean ± 2SD based on

distribution of naïve group values.

https://doi.org/10.1371/journal.ppat.1009864.g004
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Fig 5. Effects of chronic T. cruzi infection on the enteric nervous system. A. Representative brightfield images of 5 μm thick colon sections stained with

haematoxylin-eosin. Samples were cut as transverse cross-sections and images are oriented to show the mucosa to the left of the smooth muscle layers and

serosa at the right edge. Inflammatory infiltrates are apparent in infected samples, visible as increased numbers of haematoxylin (purple) stained nuclei (white

arrows). Images were taken at 400X magnification, scale bar = 50 μm. Adjacent bar plot shows number of nuclei per field to quantify cellular infiltration in

TcI-JR (n = 8), TcVI-CLBR (n = 10) infected mice compared to naïve controls (n = 8). B. Representative brightfield images of 5 μm thick colon sections to

detect neuropathology during T. cruzi infection detected by immunohistochemistry. Samples were cut as transverse cross-sections and images are oriented to
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within the muscle layers showed that the total amount of neuron-specific tubulin (TuJ1) pro-

tein within myenteric ganglia was lower on average in infected mice, but this was not statisti-

cally significant (Fig 5B). However, there was a conspicuous spatial disorganisation of TuJ1 in

a subset of ganglia, associated with the appearance of anomalous internal acellular structures

in these ganglia, which were refractory to common histological dyes (Figs 5B and S6). To

investigate this with greater precision, we used whole mount immunofluorescence analysis of

the neuronal cell body marker HuC/D. This revealed a dramatic loss of neurons across the

proximal, mid and distal colon myenteric plexus (Figs 5C and 5D). This was not a product of a

reduced number of ganglia (Fig 5E), rather a highly significant reduction in neurons per gan-

glion (Fig 5F).

A critical question for rational design of therapies for DCD is whether T. cruzi and the asso-

ciated host response continues to drive ENS pathology during the chronic phase of infection.

At this stage, very few colon cells are infected at any one time and parasite foci are spatiotem-

porally dynamic, with an intracellular lytic cycle lasting 1–2 weeks before motile trypomasti-

gotes migrate within and between tissues [37]. Thus, any temporal association between

infection and ENS damage is likely highly localised and rare at any snapshot in time. Indeed,

there was no correlation between chronic endpoint parasite loads in colon regions and the

level of local denervation (Fig 6A). We also observed both denervated and intact myenteric

ganglia immediately adjacent to each other (Fig 6B). Using dual bioluminescent-fluorescent

reporter parasites [38] we were able to visualise rare chronic infection foci at single cell resolu-

tion. In most cases, infected cells were early in the proliferative cycle, with 10–50 amastigote

forms, and they were located in close proximity to intact enteric nerve fibres (Figs 6C and S7).

We also captured a very rare, mature pseudocyst at the point of rupture, with thousands of

intracellular parasites and trypomastigote forms escaping the site (Fig 6D). The ENS at the

level of this pseudocyst was almost completely ablated, whereas the overlying and laterally

adjacent ENS networks were intact (Fig 6E). Taken together, our data demonstrate there is an

enduring association, at a highly localised tissue micro-domain scale, between chronic parasit-

ism of the gut wall and ENS lesions.

Discussion

Understanding of the mechanism of DCD pathogenesis remains rudimentary and a lack of

experimental tools hampers progress. Post-mortem and biopsy studies of human DCD cases

found reduced numbers of enteric neurons and glial cells, often coincident with intact para-

sites, T. cruzi DNA or antigen and inflammatory infiltrates [2,10–17,39,40]. These are

show the mucosa above the smooth muscle layers and serosa at the lower edge. Sections were labelled with a pan-neuronal antibody (TuJ1) detected as (3,3’-

Diaminobenzidine, DAB) chromogen deposits (brown) and counter-stained with haematoxylin (blue), with signal predominantly localising to the myenteric

neural plexus situated between the circular and longitudinal muscle layers. Black triangles indicate inflammatory foci, black arrow indicates disorganised TuJ1

distribution in a myenteric ganglion. Images were taken at 200X magnification, scale bar = 50 μm. Adjacent bar plot shows percentage of neuronal tubulin

(TuJ1) immunoreactivity in naïve control (n = 8), TcI-JR- (n = 8) and TcVI-CLBR (n = 9) infected mice. C. Representative immunofluorescent confocal images

of whole-mount colon samples to show the change in anti-HuC/D stained neuronal cell bodies (magenta, top panel) and anti-Tuj1 stained neural network

(cyan, middle panel) in the myenteric plexus during T. cruzi infection. Bottom panel shows merged images with DAPI nuclei stain (yellow). White arrows

indicate damaged ganglionic neuronal cell bodies. Images were taken at 400X magnification, scale bar = 50 μm. D. Bar plots show number of HuC/D positive

neuronal cell bodies per field of view in naïve control and TcI-JR infected whole colon samples (left) and from selected regions of the colon: proximal, mid and

distal (right; n = 5 per group, all). E. Quantification of number of ganglia in naïve control and TcI-JR infected samples from proximal, mid and distal colon

(n = 5 per group). F. Bar plots show number of HuC/D positive neuronal cell bodies per ganglion in naïve control and TcI-JR infected whole colon samples

(left) and from selected regions of the colon: proximal, mid and distal (right; n = 5 per group, all). All data and images are obtained from matched naïve control

and infected mice at 30 weeks post-infection. Data are expressed as mean ± SEM. Statistical significance was tested using unpaired two-tailed Student’s t test

(�P< 0.05; ��P< 0.01; ���P< 0.001, ���� P< 0.0001).

https://doi.org/10.1371/journal.ppat.1009864.g005
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important insights into late and terminal disease states, but they provide limited information

on pathogenesis and relationships with infection load or distribution over time, which can

only realistically be studied in animal models. T. cruzi infected mice do not develop advanced

digestive megasyndromes resembling those in humans, but these are late stage manifestations

that usually take many years to develop. Nevertheless, denervation and other features of

nascent enteropathy have been described in several mouse models at the histological level

[27,41–45]. Delayed transit has also been reported [44,46,47], but neither the GI region

involved, nor associations with infection dynamics have been determined. In this study, we

present new experimental chronic T. cruzi infection imaging models that, crucially, feature co-

localised colonic parasite persistence, denervation and delayed transit as a key functional

symptom of DCD.

Our data show that the transit delay seen in chronically infected mice predominantly local-

ises to the colon. It should be noted that in humans, digestive disease affects the oesophagus at

a similar frequency [40,48], but we did not study this region, mainly because of the technical

challenges targeting a functional assay to the murine oesophagus [49]. Also, evidence indicates

Fig 6. Chronic phase colonic T. cruzi infection foci and ENS ablation at the tissue micro-domain scale. A. Lack of correlation between end-point colon parasite

loads measured by ex vivo bioluminescence intensity and degree of colon myenteric plexus denervation. B–E. Whole mount immunofluorescence analysis of colonic

muscularis from C3H mice chronically infected with T. cruzi. B. HuC/D+ neuronal cell bodies in colonic myenteric ganglia. Naïve control shows normal morphology;

infected mice exhibit adjacent ganglia with both intact (arrowhead) and disrupted (arrow) staining patterns. C. Imaging individual T. cruzi (mNeonGreen+) infected

cells at early stage of parasite replication cycle adjacent to intact enteric neuron fibres (TuJ1+). D–E. Bioluminescence ex vivo image (centre)-guided analysis of

parasitized and parasite-free tissue micro-domains. D. Mature parasite pseudocyst containing>1000 flagellated trypomastigotes with extracellular trypomastigotes in

the local tissue parenchyma (inset) with faint neuronal (TuJ1) staining. E. Z-stack slices at the level of myenteric and submucosal neuronal plexuses showing highly

localised loss of TuJ1 staining around the rupturing parasite pseudocyst.

https://doi.org/10.1371/journal.ppat.1009864.g006
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the murine oesophagus is not chronically parasitized by T. cruzi, or is below the limit of detec-

tion for imaging, which might reflect intrinsic anatomical differences between mice and

humans in the upper GI tract [50]. The colon, therefore, presents better opportunities for

experimental investigation of pathways connecting infection, inflammation and tissue damage.

Moreover, enteric neuronal lesions and losses are the central feature in all digestive forms of

Chagas disease [51], so the focus on the colon in this model is likely to generate data that can

usefully be extrapolated, with due caution, to other GI regions including the oesophagus.

There are also wider reasons to be optimistic about the translational value of these murine

DCD models. For example, they perform well in predicting the efficacy of anti-parasitic drugs

in clinical trials, in terms of both cure of infection and impact on cardiac tissue pathology [52].

The digestive manifestations of Chagas disease predominantly occur in parts of South

America where the majority of human T. cruzi infections are caused by strains from lineages

TcII, TcV and TcVI. Conversely, DCD is apparently far rarer north of the Amazon basin,

where most human infections involve TcI. While this geographical association may well be cir-

cumstantial, being confounded by eco-epidemiological factors and human population genetic

variability [53,54], it is still noteworthy that, in mice, a) GI transit delays were strain and not

lineage-specific; and b) the most robust phenotype was caused by a TcI strain. There have been

reports of TcI infections in humans with symptoms of digestive disease in Colombia [55,56],

and they probably also occur in Venezuela [51] and Mexico [57]. It may be that disease presen-

tation is milder in TcI-endemic areas without progression to megasyndromes and is less likely

to be diagnosed. It should also be acknowledged that in vitro culture adaptation, genetic

manipulation and clonal selection may be factors affecting the strain-specific phenotypes

observed in our work. Nevertheless, our data still enable us to conclude that both host and par-

asite genetics contribute to murine DCD susceptibility. With respect to the host, evidence to

date indicates that the digestive tract is probably a ubiquitous reservoir of chronic infection in

mice. Disease severity was higher in C3H/HeN than BALB/c mice, a finding previously

observed for murine cardiac CD [19], and is consistent with the heterogeneous clinical out-

comes observed in humans [1].

A key conclusion is that gut parasitism alone is not sufficient as an explanation for DCD

development, though it is likely to be a pre-requisite. The quantity and quality of the host’s

immune and tissue repair responses are likely to be central to disease resistance and suscepti-

bility, yet understanding of gut-specific immunity in Chagas disease is mainly limited to

descriptions of the general composition of inflammatory infiltrates, which are rich in T and

NK cells [2,13,16]. Other outstanding questions include whether the patchiness of ENS dam-

age is explained by the stochastic distribution of parasites, or because particular subsets of gan-

glia or neurons differ in susceptibility [58], and if so, why? We focussed on analysis of neurons

in the myenteric plexus, but it will be important to explore other ENS components, including

potential regulatory or neuroprotective functions of enteric glial cells [2,16,59] and broader

factors known to influence neuro-immune interactions in the gut, such as host metabolism

[60] and microbiota [61].

Analysis of the kinetics of disease development in our main DCD model (TcI-JR infected

C3H mice) showed that the intensity of gut parasitism was somewhat correlated with the

degree of transit delay around the peak of the acute phase of infection, but this correlation dis-

appeared after the transition to the chronic phase. Transit assays and imaging were done on

different days, so it may be that in the acute phase, where parasite loads are very high and

more evenly distributed, snapshot parasite load measurements are more representative of

wider time frames than they are in the chronic phase, when parasites are more focal and levels

fluctuate substantially within and between individual hosts over time [18]. Also, the main

effector causing collateral damage to the ENS in the acute phase is likely to be excessive NO
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production via iNOS [9], however, the later transition and chronic inflammatory environ-

ments are different situations, in that they promote an equilibrium between parasite replica-

tion and suppression by host adaptive immunity [62]. Neuro-immune networks in the gut are

also highly diverse [63], so additional mechanisms of pathogenesis may come into play during

the chronic phase. Investigation of parasite virulence and variability in the host immune

response will therefore be required to gain further insight into the determinants of susceptibil-

ity and resistance.

In summary, by combining live parasite imaging and gut tracer analyses, we found endur-

ing associations between infection of the colon and local transit impairment at>6 months

post-infection, and moreover at the tissue micro-domain scale between single infected cells

and ENS lesions. Our results challenge the theory that DCD is a result of collateral damage to

the ENS, resulting specifically from the acute inflammatory response against T. cruzi [7,64].

They support the interpretation that the presence of T. cruzi and inflammatory infiltrates in GI

tissues of human DCD patients reflects a long-term association between parasite persistence

and disease development [11,13,15]. However, this still does not prove a causal relationship

between local infection and pathogenesis, nor the kinetics of the process; this will require elim-

ination of T. cruzi at defined time points through anti-parasitic chemotherapy, for example

using benznidazole or nifurtimox. More importantly, such experiments will help to predict

whether treatment of chronic infections might have the potential to prevent or alleviate DCD

in humans.

Materials and methods

Ethics statement

All in vivo experiments were performed in accordance with UK Home Office regulations

under the Animal Scientific Procedure Act (ASPA) 1986, within the framework of project

license 70/8207 or P9AEE04E, and were approved by LSHTM Animal Welfare Ethical Review

Board.

Parasites and infections

Transgenic clones of T. cruzi TcI-JR and TcVI-CLBR constitutively expressing the red-shifted

firefly luciferase variant PPyRE9h [28], alone or fused to mNeonGreen, were described previ-

ously [19,38]. Equivalent clones for other T. cruzi strains were generated by transfection of the

DNA construct pTRIX2-RE9h (TcI-C8, TcI-X10/4, TcIII-Arma18, TcVI-Peru), or by cas9-me-

diated replacement of the LucRE9h gene with dual reporters, namely LucRE9h::Neon

(TcVI-CLBR, TcII-Pot7a, TcIV-X10610) and LucRE9h::mScarlet (TcI-ArePe, TcI-SN3), using

the T7 RNA polymerase/cas9 system [38]. In vitro epimastigotes were cultivated in supple-

mented RPMI-1640 medium at 28˚C with 150 μg ml-1 G418 or hygromycin B, 5 μg ml-1 puro-

mycin or 10 μg ml-1 blasticidin as appropriate. Metacyclic trypomastigotes (MTs) from

stationary phase cultures were used to infect MA104 monkey kidney epithelial cell monolayers

in MEM media + 5% FBS at 37˚C and 5% CO2. Tissue culture trypomastigotes (TCTs) were

obtained from the supernatant of infected cells after 5 to 21 days, depending on the parasite

strain.

Animals and infections

Female BALB/c and C3H/HeN mice, postnatal days 42–56, were purchased from Charles

River (UK). Female CB17 SCID mice were bred in-house. All mice were housed on a 12 h
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light/dark cycle, with food and water available ad libitum unless otherwise stated. Mice were

maintained under specific pathogen-free conditions in individually ventilated cages.

SCID mice were infected with up to 5 × 105 in vitro-derived TCTs in 0.2 ml PBS via i.p.

injection. All infected SCID mice developed fulminant infections and were euthanised at or

before humane end-points. Blood trypomastigotes (BTs) were derived from parasitaemic

SCID mouse blood directly or after enrichment, achieved by allowing blood samples to settle

for 1 h at 37˚ C. BALB/c and C3H mice were infected by i.p injection of 103 or 104 BTs or

TCTs depending on the experiment.

At experimental end-points, mice were sacrificed by ex-sanguination under terminal anaes-

thesia (Euthatal/Dolethal 60 mg kg−1, i.p.) or by cervical dislocation. Organs and tissues of

interest were excised, imaged (see below) and either snap-frozen, fixed in 10% Glyo-Fixx

(Shandon) or transferred to ice-cold DMEM media. The weight of organs and tissues of inter-

est were recorded.

Total GI transit time assay

Mice were gavaged p.o. with 200 μl of 6% w/v Carmine red dye solution in 0.5% methyl cellu-

lose mixed in distilled water and returned to their home cage. After 75 min, mice were individ-

ually separated into containers and the time of excretion of the first red faecal pellet was

recorded. A maximum assay cut-off time of 4 h was implemented. Total intestinal transit time

was calculated as the time taken from gavage to output of the first red pellet.

In vivo bioluminescence imaging

Mice were injected with 150 mg kg−1
D-luciferin i.p., then anaesthetised using 2.5% (v/v) gas-

eous isoflurane in oxygen. After 10–20 min, bioluminescence imaging was performed using an

IVIS Lumina II or Spectrum system (PerkinElmer), with acquisition time and binning

adjusted according to signal intensity. Mice were revived and returned to cages after imaging.

To estimate parasite burden in live mice, regions of interest (ROIs) were drawn to quantify

bioluminescence expressed as total flux (photons/second) [18,19]. The detection threshold was

determined using uninfected control mice. All bioluminescence data were analysed using

LivingImage v4.7.3.

Ex vivo bioluminescence imaging

Mice were injected with 150 mg kg-1
D-luciferin i.p. 5–7 min before euthanasia. Trans-cardiac

perfusion was performed with 10 ml of 0.3 mg ml-1
D-luciferin in PBS. Tissues and organs of

interest (typically lymph nodes, heart, spleen, skeletal muscle, GI tract and associated mesen-

teries) were collected and soaked in PBS containing 0.3 mg ml-1
D-luciferin. Bioluminescence

imaging was performed as above. To quantify parasite load as a measure of infection intensity,

bioluminescence was calculated by outlining ROIs on each sample and expressed as radiance

(photons second−1 cm−2 sr−1). Fold change in radiance was determined by comparing samples

from infected mice with the equivalent tissues from uninfected, age-matched control mice. To

determine the detection threshold, fold change in radiance of empty ROIs on images from

infected mice was compared with matching empty ROIs on images from uninfected controls

[18].

Fluorescent tracer transit assay

Mice were fasted (or not) for 2 or 4 h before euthanasia. They were administered FITC-conju-

gated 70 kDa dextran (100 μl, 5 mg ml-1 d.H2O) or Rhodamine-conjugated 70 kDa dextran

PLOS PATHOGENS T. cruzi and chronic enteric neuropathy

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009864 August 23, 2021 14 / 21

https://doi.org/10.1371/journal.ppat.1009864


(100 μl, 10 mg ml-1 d.H2O) by oral gavage 5, 45 or 90 min before euthanasia to target the stom-

ach, small or large intestine transit, respectively. As an extension of the ex vivo biolumines-

cence necropsy (see above), fluorescence images were obtained using excitation filters set at

465/535 nm and emission filters at 502/583 nm for FITC/Rhodamine (f-stop: 16, exposure: 2

s). The relative fluorescence of the tracers was measured from the images by drawing ROIs

using LivingImage 4.7.3 software. The GI tract images starting from the stomach to the colon

were cut digitally in 15 equal segments and the centre of mass (geometric centre) of the signals

were determined. The geometric centre was calculated using the following equation, GC = ∑
(% of total fluorescent signal per segment � segment number) / 100) [65].

Faecal analyses

The colon tissue was separated and cleaned externally with PBS. The faecal pellets were gently

removed from the lumen of the colon, counted and the combined wet weight was recorded.

The faecal pellets were collected into a 12-well plate and left to dry in a laminar flow cabinet

overnight. The dry weight was then recorded and the percent water content was estimated as

the difference between wet and dry weights.

Histopathology and Immunohistochemistry

Paraffin-embedded, fixed tissue blocks were prepared and 3–5 μm sections were stained with

haematoxylin and eosin as described [19,32]. For tubulin β-3 immunohistochemistry, sections

were subjected to heat-induced epitope retrieval by incubation in 10 mM sodium citrate,

0.05% Tween20 for 30 min at 95˚C then cooled and rinsed in distilled water. Sections were

blocked with 10% sheep serum and 1% BSA in TBS for 30 min then incubated at 4˚C overnight

with 1 μg ml-1 rabbit polyclonal anti- tubulin β-3 IgG (Biolegend) and 1% BSA in TBS. Sec-

tions were then washed with 0.025% Triton X-100 in TBS and endogenous peroxidase activity

was quenched with 3% H2O2 for 30 min. Bound primary antibody was labelled with excess vol-

ume of HRP polymer anti-rabbit IgG reagent (Vector Labs) with 1% BSA in TBS for 30 min.

Slides were then washed as previously and incubated with DAB (Thermo) for 5 min. Sections

were counterstained with haematoxylin and mounted with DPX.

Images were acquired using a Leica DFC295 camera attached to a Leica DM3000 micro-

scope. For analysis of inflammation, nuclei were counted automatically using the Leica Appli-

cation Suite V4.5 software (Leica). DAB intensity was analysed as integrated density in ImageJ.

Immunofluorescence analysis

Colon tissues were transferred into ice-cold DMEM after necropsy. Tissues were cut open

along the mesentery line, rinsed with PBS, then stretched and pinned on Sylgard 184 plates.

The mucosal layer was peeled away using forceps under a dissection microscope and the

remaining muscularis wall tissue was fixed in paraformaldehyde (4% w/v in PBS) for 45 min at

room temperature. Tissues were washed with PBS for up to 45 min at room temperature and

permeabilised with PBS containing 1% Triton X-100 for 2 h, followed by blocking for 1 h (10%

sheep serum in PBS containing 1% Triton X-100). Tissues were incubated with primary anti-

bodies (mouse anti-HuC/D IgG clone 16A11 at 1:200 [Thermofisher], rabbit polyclonal anti-

tubulin β-3 IgG at 1:500 [Biolegend]) in PBS containing 1% Triton X-100 for 48 h at 4˚C. Tis-

sues were washed with PBS, then incubated with secondary IgG (goat anti-mouse AlexaFluor-

546, goat anti-rabbit AlexaFluor-633, both 1:500, ThermoFisher) in PBS containing 1% Triton

X-100 for 2 h and counterstained with Hoechst 33342 (1:10 000) at room temperature. To

assess antibody specificity, control tissues were incubated without the primary antibody. Tis-

sues were mounted on glass slides using FluorSave mounting medium (Merck).
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Whole mounts were examined and imaged with a LSM880 confocal microscope using a

40X objective (Zeiss, Germany). Images were captured as Z-stack scans of 21 digital slices with

an interval of 1 μm optical thickness. Five Z-stacks were acquired per region (proximal, mid

and distal colon), per animal. Cell counts were performed on Z-stacks after compression into a

composite image using the cell counter plug-in of FIJI software. Neuronal density was calcu-

lated as the number of HuC/D+ neuron cell bodies per field of view. HuC/D signal was associ-

ated with high background outside ganglia in samples from infected mice, attributed to

binding of the secondary anti-mouse IgG to endogenous IgG, so ENS-specific analysis was

aided by anti-TuJ1 co-labelling and assessment of soma morphology. The number of intact

ganglia in each myenteric plexus image was also counted, along with number of HuC/D+ neu-

rons per ganglia.

RT-qPCR

Colon tissue samples were snap frozen on dry ice and stored at −70˚C. For RNA extraction,

samples were thawed and homogenised in 1 ml Trizol (Invitrogen) per 30–50 mg tissue using

a Precellys 24 homogeniser (Bertin). To each sample, 200 μl of chloroform was added and

mixed by vortex after which the phases were separated by centrifugation at 13,000 g at 4˚C.

RNA was extracted from the aqueous phase using the RNeasy Mini Kit (Qiagen) with on-col-

umn DNAse digestion as per manufacturer’s protocol. The quantity and quality of RNA was

assessed using Qubit Fluorimeter (Thermofisher). cDNA was synthesised from 1 μg of total

RNA using Superscript IV VILO mastermix (Invitrogen), as per manufacturer’s protocol, in

reaction volumes of 20 μl. A final cDNA volume of 100 μl was made by adding RNase-free

DEPC water (1:5 dilution) and stored at −20˚C until further use. qPCR reactions contained

4 μl of cDNA (1:50 dilution) and 200 nM of each primer (S1 Table) and QuantiTect SYBR

Green PCR master mix (Qiagen) or SensiFAST SYBR Hi-ROX kit (Bioline). Reactions were

run using Applied Biosystems 7500 fast RT-PCR machine (Thermofisher) as per manufactur-

er’s protocol. Data were analysed by the ΔΔCt method [66] using murine Gapdh as the endoge-

nous control gene.

Statistics

Individual animals were used as the unit of analysis. No blinding or randomisation protocols

were used. Statistical differences between groups were evaluated using unpaired two-tailed

Student’s t-test or one-way ANOVA with Tukey’s post-hoc correction for multiple compari-

sons. Pearson correlation analyses was used to evaluate relationships between variables. These

tests were performed in GraphPad Prism v.8 or R v3.6.3. Differences of p< 0.05 were consid-

ered significant.

Supporting information

S1 Fig. Gastrointestinal transit dysfunction screen in mice infected with different strains

of T. cruzi. Data are gastrointestinal (GI) transit times at indicated weeks post-infection (p.i.)

for C3H/HeN mice in the following infection groups: naive control (n = 4–6), TcI-ArePe

(n = 1–4), TcI-SN3 (n = 4), TcI-SylvioX10/4 (n = 4) and TcI-C8 (n = 4), TcII-Pot7a (n = 4),

TcIII-Arma18 (n = 3–4), TcIV-X10610 (n = 4) and TcVI-Peru (n = 3).

(TIF)

S2 Fig. Ex vivo analysis of parasite tissue distributions for TcI-SN3, TcI-ArePe,

TcIII-Arma18 and TcVI-Peru strains of T. cruzi. A. Bioluminescence signal intensity (blue,

low, to red, high) in tissue samples from chronically infected C3H/HeN mice. Samples, from
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top left to right, lung, heart, genito-urinary system, liver, GI mesentery, peritoneum, skeletal

muscle, visceral adipose, large intestine, small intestine, stomach and oesophagus. B. Fre-

quency of parasite detection in the indicated organs/tissues. TcI-SN3 n = 4, TcI-ArePe n = 4,

TcIII-Arma18 n = 3, TcVI-Peru n = 2.

(TIF)

S3 Fig. Anatomical measures of gastrointestinal T. cruzi infection mouse models. A. Body

weights of naïve control (n = 3–10), TcI-JR (n = 5–22) and TcVI-CLBR (n = 5–20) infected

C3H/HeN (left) and BALB/c mice (right) vs. days post-infection (p.i.). B. Bar plots show length

of small intestine and colon of control and TcI-JR C3H/HeN mice at 3 (n = 24 per group), 6

(n = 27 per group) and 30 (n = 5 per group) weeks p.i. Data are expressed as mean ± SEM.

(TIF)

S4 Fig. Fluorescent tracer imaging assay for gastrointestinal (GI) transit in high inoculum

acute T. cruzi infection. Schematic diagram of a mouse receiving oral gavage of a green fluo-

rescent marker, FITC-conjugated 70 kDa dextran, 60 or 120 or 180 minutes prior to termina-

tion to trace localised GI transit delay during acute infection. Quantification of FITC-dextran

fluorescence in different parts of the GI tract (SI 1 –SI 10: small intestine scored into 10 equal

sections, proximal to distal) of naïve control and TcI-JR C3H/HeN (n = 4 per group) mice at 3

weeks post-infection. All mice in this experiment were infected with a high inoculum of

TcI-JR parasites (104). Data are expressed as mean ± SEM.

(TIF)

S5 Fig. Comparison of colonic transit dysfunction in different models of experimental

digestive Chagas disease. Faecal output analyses are expressed as faecal pellet count, wet and

dry pellet weight at 30 weeks post-infection (p.i.) in the following groups: naive control

(n = 7–11), TcI-JR (n = 5–11), TcI-SN3 (n = 4), TcI-ArePe (n = 1), TcIII-Arma18 (n = 3),

TcVI-Peru (n = 3) and TcVI-CLBR (n = 4–5).

(TIF)

S6 Fig. Myenteric neuronal plexus lesions in T. cruzi infection. Colon tissue samples from

C3H mice with chronic TcI-JR infections were cut as transverse cross-sections and images are

oriented to show the mucosa above the smooth muscle layers and serosa at the lower edge.

Acellular structures (arrows) within myenteric plexus ganglia that are refractory to staining by

the indicated method. 400X magnification.

(TIF)

S7 Fig. Chronic phase colonic T. cruzi infection foci of TcI-SN3 parasites in the ENS. Rep-

resentative immunofluorescent z-stack confocal images of whole-mount colonic muscularis

from C3H mice chronically infected with fluorescent TcI-SN3 (mScarlet+) parasites. Image

shows the localisation of TcI-SN3 parasites (red) in the submucosal layer of the ENS stained

with anti-TuJ1 (white). DAPI (cyan) shows DNA and white circle indicates DNA of the para-

site nest. Images were taken at 400X magnification, scale bar = 50 μm.

(TIF)

S1 Table. Quantitative PCR target gene and primer information.

(DOCX)
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7. Köberle F. Chagas’ disease and Chagas’ syndromes: the pathology of American trypanosomiasis. Adv

Parasitol. 1968; 6(63):63–116. https://doi.org/10.1016/s0065-308x(08)60472-8 PMID: 4239747

8. de Oliveira RB, Troncon LE, Dantas RO, Menghelli UG. Gastrointestinal manifestations of Chagas’ dis-

ease. Am J Gastroenterol. 1998; 93(6):884–9. https://doi.org/10.1111/j.1572-0241.1998.270_r.x PMID:

9647012

9. Arantes RM, Marche HH, Bahia MT, Cunha FQ, Rossi MA, Silva JS. Interferon-gamma-induced nitric

oxide causes intrinsic intestinal denervation in Trypanosoma cruzi-infected mice. Am J Pathol. 2004;

164(4):1361–1368. https://doi.org/10.1016/s0002-9440(10)63222-1 PMID: 15039223

10. Adad SJ, Andrade DCdS, Lopes ER, Chapadeiro E.s Contribuição ao estudo da anatomia patológica
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56. Flórez O, Esper J, Higuera S, Barraza MF, Cabrera HB, Mantilla JC, et al. Chagasic megacolon associ-

ated with Trypanosoma cruzi I in a Colombian patient. Parasitol Res. 2010; 107(2):439–42. https://doi.

org/10.1007/s00436-010-1874-2 PMID: 20502919
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