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Abstract The age dynamics of sexual partnership formation determine patterns of sexually

transmitted disease transmission and have long been a focus of researchers studying human

immunodeficiency virus. Data on self-reported sexual partner age distributions are available from a

variety of sources. We sought to explore statistical models that accurately predict the distribution

of sexual partner ages over age and sex. We identified which probability distributions and outcome

specifications best captured variation in partner age and quantified the benefits of modelling these

data using distributional regression. We found that distributional regression with a sinh-arcsinh

distribution replicated observed partner age distributions most accurately across three

geographically diverse data sets. This framework can be extended with well-known hierarchical

modelling tools and can help improve estimates of sexual age-mixing dynamics.

Introduction
Patterns in sexual mixing across ages determine patterns of transmission of sexually transmitted

infections (STIs). Consequently, sexual age-mixing has been of great interest to researchers studying

the human immunodeficiency virus (HIV) since the beginning of the global epidemic.

Anderson et al., 1992 used a model of partnership formation to predict that mixing between young

women and older men would amplify the already-substantial effect of HIV on population growth.

Garnett and Anderson, 1994 used a mathematical model to show that patterns of age-mixing could

substantially influence the magnitude and timing of hypothetical epidemic trajectories, whereas

Hallett et al., 2007 demonstrated that delaying sexual debut and increasing age-similar partner-

ships could reduce an individual’s risk of HIV infection in a highly endemic setting.

These modelling studies have been complemented by analyses of survey and population cohort

data on age-mixing patterns. Gregson et al., 2002 and Schaefer et al., 2017 observed that individ-

uals with older partners were at greater risk of HIV infection in a general-population cohort in Zim-

babwe. Ritchwood et al., 2016 and Maughan-Brown et al., 2016 found that larger age differences

were associated with more risky sexual behaviour in surveys of young South African people. Similarly,

Akullian et al., 2017 found that partner age was an important risk factor for HIV infection in a cohort

study in rural South Africa. On the other hand, Harling et al., 2014 found that age-disparate rela-

tionships were not associated greater risk of HIV acquisition in young women in South Africa.

These results underscore the importance of considering age-mixing dynamics when designing

and evaluating HIV prevention strategies, and, consequently, the importance of measuring them

accurately. For example, an intervention aiming to prevent new HIV infections among young women
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could be attenuated by high prevalence among older men. Identifying changes in sexual partner

age distributions and attributing them to interventions might even be a valuable end by itself, in

which case accurate measurement must be complemented by an effective modelling strategy.

Data about sexual partner age-mixing are routinely collected by long-term cohort studies (such as

those that comprise the Analysing Longitudinal Population-based HIV/AIDS data on Africa, or

ALPHA, Network) and large-scale household surveys (such as the Demographic and Health Surveys)

(The DHS program, 2021; Reniers et al., 2016). Typically, these data consist of the respondent’s

age and sex and the ages of their sexual partners in the last 12 months. These data are highly vari-

able, skewed, and often deviate substantially from conventional parametric distributions, such as the

normal distribution or the gamma distribution (Beauclair et al., 2018).

One may consider statistical modelling approaches for the distribution of partner age as a func-

tion of respondent age and sex. Some notable previous approaches to modelling partner age distri-

butions include (Morris, 1991), who developed a log-linear modelling framework to quantify

selective mixing from contingency tables, and applied the model to ordinal categorical data on hus-

bands’ and wives’ ages in the United States. Hallett et al. used a log-logistic distribution to continu-

ously model partner age differences for women aged 15–45 years, assuming that the partner age

difference distributions did not vary over respondent age. More recently, as an input to a model of

Chlamydia trachomatis, Smid et al., 2018 fit skew normal distributions to each age-/sex-specific

partner age distribution and used a secondary regression model to smooth the estimated skew nor-

mal parameters across respondent age. They observed substantial changes in the estimated skew

normal parameters with respect to respondent age. Although this method allows for non-linear vari-

ation across respondent age, their two-stage estimation process makes uncertainty propagation

complex. Replacing this process with a single ‘distributional’ regression model, in which all distribu-

tional parameters (e.g. the location, scale, skewness, etc.) are modelled as functions of data

(Kneib and Umlauf, 2017), allows for complex variation across respondent age while still robustly

incorporating uncertainty. Another elegant approach has been the development of exponential-fam-

ily random graph models (ERGMs) to infer full partnership networks from individuals reports of the

partnerships (’ego-centric’ observations of the network) (Krivitsky and Morris, 2017). These sto-

chastic methods, along with the broader suite of ERGMs (Hunter et al., 2008a; Hunter et al.,

2008b; Krivitsky et al., 2011; Krivitsky and Handcock, 2014), can model social network data accu-

rately with robust incorporation of covariates, and tools exist to incorporate their estimates into epi-

demic models (Jenness et al., 2018; Morris, 1993).

We focused on evaluating parametric models for continuously representing the distribution of

sexual partner ages conditional on the respondent’s age. We were specifically interested in distribu-

tions that introduce parameters to control tail weight, which may capture intergenerational mixing

that could sustain endemic HIV and STI transmission (Akullian et al., 2017; Schaefer et al., 2017;

Harling et al., 2014). This led us to test the ability of the four-parameter ‘sinh-arcsinh’ distribution

originally proposed by Jones and Pewsey, 2009 to fit to these data.

We hypothesised that integrating the sinh-arcsinh distribution into a distributional modelling

framework would allow us to replicate observed partner age distributions more accurately than prior

modelling strategies. We tested this theory by comparing a variety of candidate strategies, which

varied along three dimensions: the parametrisation of the dependent variable, the choice of distribu-

tion, and the method for incorporating variability across respondent age and sex.

Materials and methods

Data
In this work, we compared a set of probability distributions and regression specifications to identify

a modelling strategy that produced stable and accurate estimates of sexual partner age distributions

with well-quantified uncertainty. We conducted two model comparison experiments to identify

which of a set of strategies best replicated partner age distributions. First, in our probability distribu-

tion comparison, we identified which of a set of distribution-dependent variable combinations fit

best to age-/sex-specific data subsets, and then, in our distributional regression evaluation, we

tested whether distributional regression methods could be used to estimate age-/sex-specific part-

ner age distributions by sharing strength across observations. In distributional regression, all
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parameters of a distribution can vary with respect to data, so it allowed us to smooth and interpolate

even higher order moments of observed partner ages. We divided the model comparison into two

separate experiments to make the probability distribution comparison as fair as possible (accounting

for the possibility that certain distributions would perform particularly well under certain regression

specifications).

We analysed data on sexual partner age distributions from three sources: the Africa Centre

Demographic Information System, a health and demographic surveillance site in uMkhanyakude dis-

trict, South Africa collected by the African Health Research Institute (AHRI) (Gareta et al., 2021;

Gareta et al., 2020a; Gareta et al., 2020b), the Manicaland General Population Cohort in Zim-

babwe (Gregson et al., 2017), and the 2016–2017 Demographic and Health Survey (DHS) in Haiti

(Institut Haı̈tien de l’Enfance, 2018).

The AHRI and Manicaland studies are multi-round, open, general population cohort studies

designed to measure the dynamics of HIV, sexual risk behaviour, and demographic change in sub-

Saharan African settings. We used rounds one through six of the Manicaland study, collected

between 1998 and 2013. The AHRI data we used were collected annually between 2004 and 2018.

The 2016–17 Haiti DHS was a large, nationally representative household survey conducted in 2016

and 2017. We did not incorporate the weights associated with the survey into this analysis because

our primary interest was in statistical modelling of partner age distribution as a function of respon-

dent age, not producing population representative statistics for the Haitian population.

These data sets consisted of individuals’ reports of their own age and sex and the ages of each of

their sexual partners from the last year. Let i 2 ð1; :::;NÞ index reported partnerships, ai 2 ½15; 64� and
si 2 f0; 1g be the age and sex of the respondent in partnership i with s ¼ 1 indicating female, and pi

be the age of non-respondent partner in partnership i. These questionnaires do not ask specifically

about partner sex, but self-reporting of non-heterosexual partnerships in these populations is

thought to be low (Arias Garcia et al., 2020; World Health Organization and UNAIDS, 2020).

Respondents in each of these data sets are disproportionately likely to report that their partners’

ages are multiples of five or multiples of five away from their own age, leading to distinct ‘heaping’

in the empirical partner age (or age difference) distributions at multiples of five. For example, if a

questionnaire asks ‘how many years older or younger is your partner than you?’, respondents might

be disproportionately likely to report a multiple of five, leading to age differences that are heaped

on multiples of five. We tested the sensitivity of our results to heaping by developing a simple

‘deheaping’ algorithm, applying it to the AHRI data, and running each analysis on the deheaped

AHRI data. We present these results in Appendix section ‘Age heaping’.

Probability distribution comparison
To identify the best probability distribution for modelling sexual partner age distributions, we split

all three data sets into 12 subsets by sex and five-year age bin ranging from 20 to 50, resulting in 36

subsets, and fit a number of distribution-dependent variable combinations to each subset.

Distributions
We tested five candidate probability distributions: normal, skew normal, beta, gamma, and sinh-arc-

sinh. Table 1 summarises the domains, parameters, and probability density functions (PDFs) of these

distributions. Because the gamma distribution is always right-skewed and men typically partner with

women who are younger than them, we transformed data among male respondents to be right-

skewed when using the gamma distribution. Specifically, we multiplied the men’s partners’ ages by

�1 to reflect the distribution horizontally across the y-axis, and added 150 to the reflected ages to

ensure that all resulting values were positive. Similarly, the beta distribution is only defined on the

interval (0, 1), so, only when using a beta distribution, we scaled all partner ages to be between zero

and one using upper and lower bounds of 0 and 150.

The sinh-arcsinh distribution, presented by Jones and Pewsey, 2009, is an extension of John-

son’s distribution (Johnson, 1949). It has four parameters: location, scale, skewness, and tail weight

(denoted, m, s, �, and d, respectively), and it can deviate substantially from the normal distribution.

Figure 1 plots the density of this distribution with � ¼ 0 and s ¼ 1 for a variety of values of skewness

and tail weight.
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Dependent variable transformations
We considered the possibility that certain distributions could fit better to particular transformations

of the dependent variable (partner age) by testing a set of four potential outcome parametrisations.

For example, if X is a positive-valued, right-skewed random variable, then assuming logX is normally

distributed might be more effective than assuming that X itself is normal.

Let yi be the dependent variable value for partnership i, and let ai and pi be the respondent age

and partner age of partnership i, respectively. We tested the following dependent variables:

1. Linear age: yi ¼ pi. This is untransformed partner age, included as a baseline. It has the unde-
sirable quality of being able to predict negative ages.

2. Age difference: yi ¼ pi � ai. If changes in expected partner age are consistent across respon-
dent age then this variable would be more consistent across respondent age than the linear
age. This parametrisation also allows for negative partner age predictions.

3. Log-age: yi ¼ log pi. We can use a log link function to ensure that our predictions will be posi-
tive-valued.

4. Log-ratio: yi ¼ logðpi=aiÞ. Finally, we can combine the link function and differencing approaches
by modelling the log of the ratio of partner to respondent age. This variable will only produce

Table 1. Details of the five distributions tested in this analysis.

We define xz ¼ ðx� �Þ=s, pðxÞ to be the standard normal PDF, FðxÞ to be the standard normal cumu-

lative density function, S�;dðxÞ ¼ sinhð�þ d asinhðxÞÞ, and C�;dðxÞ ¼ coshð�þ d asinhðxÞÞ.

Distribution Parameters Domain PDF

Normal � ðlocationÞ
s>0 ðscaleÞ

R 1

s
ffiffiffiffi

2p
p exp �xz

2

� �

Skew normal � ðlocationÞ
s>0 ðscaleÞ
� ðskewnessÞ

R 2

s
pðxzÞFð�xzÞ

Gamma k>0 ðshapeÞ
�>0 ðscaleÞ

R
þ 1

GðkÞ�k x
k�1 exp �x

�

� �

Beta a>0 ðleftÞ
b>0 ðrightÞ

R
ð0;1Þ xa�1ð1�xÞb�1

Bða;bÞ

Sinh-arcinh � ðlocationÞ
s>0 ðscaleÞ
� ðskewnessÞ

d>0 ðtailweightÞ

R 1

s
ffiffiffiffi

2p
p dC�;dðxzÞ

ffiffiffiffiffiffiffiffi

1þx2z

p exp � S�;dðxzÞ2
2

h i

0.0

0.1

0.2

0.3

−5.0 −2.5 0.0 2.5 5.0

ε −3 −2 −1 0 1

0.0

0.3

0.6

0.9

−5.0 −2.5 0.0 2.5 5.0

δ 0.25 0.5 1 2 3

Figure 1. The sinh-arcsinh density with � ¼ 0, s ¼ 1, and a variety of assumptions about � and d.
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positive predictions and, like the age difference variable, should be relatively constant over
respondent age.

Because the gamma and beta distributions are not defined on the entire real line, we only fit

them with the linear age dependent variable with the previously discussed transformations.

To identify which distribution-dependent variable combination best modelled the characteristics

of sexual partner age distributions, we stratified each of our three data sets by sex and 5-year age

bin from 20 to 24 through 45–49. We omitted ages 15–19 from the probability distribution compari-

son because relatively small sample sizes in that group would make reliable comparison difficult. We

fit every viable distribution-dependent variable combination to all 36 data set-/sex-/age bin-specific

subsets independently. Given that we fit only the linear age dependent variable to the gamma and

beta distributions, comprising a total of 504 models (14 per data subset). We fit each model using

the brms R package (Bürkner, 2018), defining custom families as necessary.

Distributional regression evaluation
Given a probability distribution that accurately replicated the non-Gaussian characteristics of partner

age distributions, we tested whether or not distributional regression would allow us to pool data

across age and sex without sacrificing fit. In distributional regression, we make all of our distribu-

tional parameters, not just the mean, functions of data (Kneib and Umlauf, 2017). Taking conven-

tional Bayesian regression as an example, we have

yi ~ Nð�i;sÞ
�i ¼ bXi;

where b and logs are free parameters. There is an explicit assumption in this model that the stan-

dard deviation of the generating distribution is constant across all observations. We can use distribu-

tional regression to relax this assumption, making s a function of data:

yi ~ Nð�i;siÞ
�i ¼ b�

X
�
i

logsi ¼ bs
X

s
i ;

where b� and bs are now our free parameters. Note that we have not assumed that X� ¼X
s. If

X
s is a column of ones, this model is identical to the conventional case. This approach increases the

complexity of the model and requires more data, but, based on previously described characteristics

of how the distribution of partnership age distribution changes with age, even a simple model for

our distributional parameters could yield large improvements.

In this application, we modelled the log-ratio dependent variable with the sinh-arcsinh distribu-

tion, specifying a model for all four distributional parameters:

logðpi=aiÞ ~ sinhð�i;si; �i;diÞ
�i ¼ b�

X
�
i

logs$

i ¼ bs
X

s
i

�i ¼ b�
X

�
i

logdi ¼ bd
X

d
i

si ¼ s$

i di;

where b�, bs, b�, and bd are free parameters. We placed essentially arbitrary shrinkage priors on

all coefficients:

b�; bs; b�; bd ~Nð0;5Þ:

By varying the specifications of the four design matrices, X�, Xs, X�, and X
d, we tested how well

a series of increasingly complex distributional regression models fit to each data set. We fit the fol-

lowing models, which varied in the definitions of their four design matrices:

1. Conventional: linear age-sex interaction for location and constants for all three higher-order
parameters

2. Distributional 1: linear age-sex interaction for location and independent age and sex effects
for all other parameters
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3. Distributional 2: linear age-sex interactions for all four parameters
4. Distributional 3: sex-specific spline with respect to age for location and linear age-sex interac-

tions for all other parameters
5. Distributional 4: sex-specific splines with respect to age for all four parameters

Table 2 describes all five models. By fitting a wide set of specifications, we hoped to assess

whether the additional complexity incurred by distributional regression was valuable. We fit each of

the five models to all three data sets, including all respondents aged 15–64 years. We implemented

these analyses with brms (Bürkner, 2018), which has deep support for distributional regression.

More detailed descriptions of each model are available in the ‘Model specification details’ section of

the Appendix. We tested the effect of age heaping on this analysis by fitting to the deheaped AHRI

data and report results in the ‘Age heaping’ section of the Appendix.

Model comparison
Across both analyses, we used two metrics to measure model fit. First, we calculated the expected

log posterior density (ELPD), which estimates the density of the model at a new, unobserved data

point (Vehtari et al., 2017). In cases where we wanted to compare across dependent variables, we

multiplied the posterior densities of any variables resulting from non-linear transformations of

observed partner ages by the Jacobians of the transformations. For example, if our observation

model was defined on the log-age dependent variable yi ¼ log pi, we divided the posterior density

by pi. We used the loo R package (Vehtari et al., 2020) to calculate ELPD values.

To measure the ability of our models to replicate partner age distributions in an objective and

interpretable way, we found the root mean squared error (RMSE) between the observed and poste-

rior predictive quantiles. We calculated quantiles from 10 to 90 in increments of 10 by age bin and

sex in the data and in the posterior predictions, and found the error in model prediction of each

quantile. This measure tells how well our model predicts the entire distribution in the same units as

our predictions. It is equivalent to finding the root mean squared distance from the line of equality

in a quantile-quantile (QQ) plot.

Software
We conducted all of these analysis using the R programming language (R Development Core

Team, 2020) and the brms library (Bürkner, 2018). We used the loo library to estimate all ELPDs

(Vehtari et al., 2020), and produced all plots in this paper with the ggplot2 library (Wickham, 2016).

We cannot provide the data we used for this analysis, but we do provide code and data for a simu-

lated case on GitHub (https://github.com/twolock/distreg-illustration; Wolock, 2021, copy archived

at swh:1:rev:a7f808f2cde2bb16edde8fdcbfa6e208df7952f9).

Results
The AHRI data included 77,619 partnerships, Manicaland had 58,676, and the Haiti DHS had 12,447.

There were 36,033 respondents reporting at least one partnership in the AHRI data, 25,024 in the

Manicaland data, and 12,143 in the Haiti DHS, resulting in averages of 2.2, 2.3, and 1.0 partners per

respondent, respectively. As an illustrative example of the distribution of partner ages, Figure 2

presents histograms of reported partner ages among women aged 34 years for each of our three

data sets. Figure 3 shows the sex- and age bin-specific empirical moments for the three data sets.

Mean partner age increased with respondent age consistently for both sexes across all three data

Table 2. Summary of five models fit in this analysis.

Model Distributional? Location Other parameters

Conventional No Age-sex interaction Constant

Distributional 1 Yes Age-sex interaction Age and sex effects

Distributional 2 Yes Age-sex interaction Age-sex interaction

Distributional 3 Yes Sex-specific splines Age-sex interaction

Distributional 4 Yes Sex-specific splines Sex-specific splines
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sets: among women, mean partner age increased by 26.0, 22.7, and 23.7 years in the AHRI data,

Haiti DHS data, and Manicaland data, respectively, between age bins 20–24 and 45–49. However,

higher order moments were less consistent: the standard deviation of women’s partners’ ages

changed by 2.3, 0.5, and 3.5 years in the AHRI data, Haiti DHS data, and Manicaland data, respec-

tively, between age bins 20–24 and 45–49.

Within each data set, there is systematic variation across sex. For example, the standard deviation

of partner ages in the Haiti DHS increased by 2.5 years among men and only by 0.5 years among

women. These summary statistics illustrate the heterogeneity of partner age distributions across age

and sex.

Probability distribution comparison
To identify the probability distribution that most accurately described the variation in sexual partner

age distributions, we first determined the dependent variable with the highest ELPD for each distri-

bution-dependent variable combination. Figure 4 illustrates each probability distribution’s best fit to

AHRI data among women aged 35–39 with each of the best distribution-specific dependent varia-

bles. Results for all 36 data subsets and the 12 deheaped subsets are presented in Appendix 1—

table 2–9.

The best dependent variable varied across data subset and probability distribution. Table 3 pro-

vides the share of data sets for which each dependent variable has the highest ELPD given each dis-

tribution. The log-ratiodependent variable was best in 50.0% of subsets with a normal distribution,

but it was best in only 27.8% of subsets with a skew normal distribution. The dependent variable

that was best in a plurality of subsets in each probability distribution (i.e. the variable with the high-

est percentage in each column of Table 3) used a log link function. We restricted all remaining com-

parisons to each distribution-subset combination’s best dependent variable.

The sinh-arcsinh distribution had the highest ELPD in 35 of 36 data subsets (98%). In 29 of the 35

(83%) cases in which the sinh-arcsinh provided the highest ELPD, the absolute value of the ratio of

the difference between the two best ELPDs and the estimated standard error of the difference was

greater than 2, indicating that the sinh-arcsinh distribution was significantly better than the alterna-

tives in the majority of cases. In one case, men aged 20–24 in the Haiti DHS, the skew normal distri-

bution resulted in a slightly higher ELPD than the sinh-arcsinh distribution, but the standard error of

the difference was greater than the difference. These results were not affected by deheaping the

data (Appendix section ‘Age heaping’).

To summarise each distribution’s performance, we calculated the average ELPD and QQ RMSE

across the three data sets (Table 4). The sinh-arcsinh distribution had the highest average ELPD and

lowest average QQ RMSE in all three data sets. The sinh-arcsinh distribution was, on average, able

to predict the empirical quantiles of each data set within half a year of accuracy (0.36, 0.37, and 0.44

AHRI Haiti 2016−17 DHS Manicaland
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Figure 2. Observed partner age distributions among women aged 34 years in all three data sets.
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years for the AHRI, Haiti DHS, and Manicaland data, respectively). Overlaid QQ plots

are presented in Appendix 1—figure 3.

Distributional regression evaluation
We fit all five distributional regression specifications to all three of our data sets with sinh-arcsinh dis-

tributions and log-ratio-dependent variables and compared the ELPDs and QQ RMSEs as before

(provided in Table 5). Across all three data sets, the most complex distributional model (Distribu-

tional 4) had the highest ELPD and lowest QQ RMSE. When fit to the AHRI and Manicaland data

sets (but not for the Haiti DHS), the most complex distributional model was at least two standard

errors better than the next best model. Notably, the largest ELPD improvements came from moving

from conventional regression (Conventional) to the simplest distributional model (improvements of

1646.0 units, 361.0 units, and 2181.2 units in the AHRI, Haiti DHS, and Manicaland data, respec-

tively). Full results are presented in Appendix 1—table 10.

Figure 5 shows the posterior predictive distributions from the conventional regression model and

the most complex distributional model among men aged 16 years, 24 years, and 37 years in the

AHRI data to illustrate the effect of distributional regression. Not only does the distributional model

AHRI (N = 77,619) Haiti 2016−17 DHS (N = 12,447) Manicaland (N = 58,676)
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Figure 3. Observed means, variances, skewnesses, and kurtoses of partner age by 5-year age bin and sex in all three data sets.
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capture the high peak in the youngest age more accurately, but it also allows the variance of the dis-

tributions to change appropriately (beyond the change that naturally results from the log link

function).

Figure 6 illustrates posterior summaries among men and women in the AHRI data for all four

distributional parameters for the conventional regression model, the simplest distributional model,

and the most complex distributional model. The red estimates (Conventional Regression) of the

three higher order parameters were constant across age and sex, whereas the blue estimates (Distri-

butional Model 1) included independent, linear age and sex effects. The orange estimates (Distribu-

tional Model 4) were generated sex-specific splines with respect to age, allowing for flexible

variation across age and sex.

The third row of plots in Figure 6, which corresponds to the skewness parameter, illustrates the

impact of incorporating sex and age effects into the model. The conventional regression model esti-

mated that neither the distrbution for men nor women exhibited much skewness; the estimated

parameter value was �0.05 (95% UI: �0.06 to �0.05) regardless of age, with 0.0 corresponding to

perfect symmetry. However, when we allowed independent age and sex effects in Distributional

Model 1, we estimated that at age 15, women’s skewness was �0.26 (95% UI: �0.27 to �0.25) and

men’s was 0.11 (95% UI: 0.10 to 0.12).

Skew normal Sinh−arcsinh

Gamma Beta Normal

25 50 75 25 50 75

25 50 75
0.0%

2.5%

5.0%

7.5%

10.0%

0.0%

2.5%

5.0%

7.5%

10.0%

Partner age

S
h

a
re

 o
f 

o
b

se
rv

a
ti

o
n

s

Figure 4. Observed partner age distributions (grey bars) and posterior predictive partner age distributions (lines) for each probability distribution

among women aged 35–39 in the AHRI data set. Posterior predictive distributions come from fitting each age bin/sex combination independently.

Table 3. Share of subsets in which each dependent variable yields the highest ELPD given each

probability distribution (excluding deheaped AHRI data).

Variable Normal Skew normal Sinh-arcsinh

Age difference 22.2% 25.0% 16.7%

Linear age 8.3% 5.6% 16.7%

Log-age 19.4% 41.7% 30.6%

Log-ratio 50.0% 27.8% 36.1%
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The most complex model (Distributional Model 4) inferred sex-specific, non-linear variation with

respect to age in all four distributional parameters. The non-linearity was particularly dramatic in the

scale parameter among men. The scale value began at 0.05 (95% UI: 0.05–0.06) among 15-year-olds,

peaked among 37-year-olds at 0.11 (95% UI: 0.10–0.11), and decreased back down to 0.05 (95% UI:

0.04–0.06) at age 64.

Finally, Figure 7 presents inferred distributional parameters from Distributional Model 4 for both

men and women for all three data sets. Based on those plots, the flexible model was justified for

most distributional parameters in all three data sets. Were we to continue developing these models,

this plot suggests that skewness might only need linear, sex-specific effects with respect to age.

Interestingly, the 2016–2017 Haiti DHS and Manicaland estimates exhibit similar patterns across all

four parameters, despite the different socio-cultural contexts surrounding partnerships in the two

populations. We also note that the DHS does not collect data on adults aged 50 years and older, so

our estimates in Haiti from age 50 to age 64 are purely extrapolated.

Table 4. Model comparison metrics averaged across all data subsets for all three data sets.

Higher ELPD values indicate better fit. Lower QQ RMSE values indicate more accurate prediction of empirical quantiles. Bolded rows

are best across all three data sets.

Distribution AHRI Haiti 2016–17 DHS Manicaland

ELPD

Gamma �14847.2 �2917.9 �13152.8

Beta �14748.0 �2896.5 �13003.5

Normal �14593.7 �2868.4 �12856.8

Skew normal �14505.1 �2854.0 �12778.5

Sinh-arcsinh �14312.5 �2839.5 �12625.8

QQ RMSE

Gamma 0.83 0.82 0.95

Beta 0.99 0.82 1.11

Normal 0.82 0.68 0.97

Skew normal 0.77 0.65 0.85

Sinh-arcsinh 0.36 0.37 0.44

Table 5. ELPD and QQ RMSE values for all five distributional regression models fit to each data set.

The models increase in complexity from Conventional Regression to Distributional Model 4. Bolded ELPD values are more than two

standard errors higher than the next best value in the column. Bolded QQ RMSE values are lowest in their column.

Model AHRI Haiti 2016–17 DHS Manicaland

ELPD

Conventional 52689.2 4777.8 21011.3

Distributional 1 54335.2 5140.8 23192.5

Distributional 2 54794.8 5138.7 23472.1

Distributional 3 55534.2 5196.7 24313.7

Distributional 4 55841.9 5207.6 24516.1

QQ RMSE

Conventional 1.30 1.33 2.05

Distributional 1 1.15 0.98 1.89

Distributional 2 1.21 0.99 1.80

Distributional 3 0.93 0.91 1.34

Distributional 4 0.66 0.84 1.04
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Discussion
We found that the sinh-arcsinh distribution reproduced observed sexual partner age distributions

better than a number of other possible distributional assumptions across age and sex in three dis-

tinct data sets. We integrated this finding into a distributional regression framework using existing

statistical modelling software. Even the simplest distributional regression in our set of candidate

models far outperformed conventional regression, in which all moments except the first are esti-

mated as constants. Our most complex distributional model fit better than all other models in all

three data sets, suggesting that modelling these data benefits from the additional complexity.

These results indicate that distributional regression models with sinh-arcsinh distributions can

accurately replicate age-/sex-specific sexual partner age distributions. This approach presents a

number of advantages over previous methods. First, like Smid et al., it allows a unique distribution

for every age-sex combination. As Figure 3 illustrates, partner age distributions can exhibit substan-

tial, systematic variation across age and sex in any of the first four moments, so we must consider

modelling strategies that allow for such variation. Second, distributional regression offers a princi-

pled method to propagate uncertainty through this estimation process.

Finally, distributional regression implemented through brms provides access to a deep set of hier-

archical modelling tools that could enable estimation in a variety of low-data settings. We evaluated

a small set of relatively simple distributional models in this work, but, theoretically, each distribu-

tional parameter could have its own, arbitrarily complex hierarchical regression model. Using these

tools, one could estimate unique partner age distributions across levels of stratification that are sub-

stantively interesting but do not provide sufficient sample size for independent estimation (e.g. study

sites or geographic areas).

We have identified several limitations in this approach. First, the amount of data required to pro-

duce usefully precise estimates is not tested. Each additional distributional parameter introduces
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Figure 5. Observed partner age distributions (grey bars) and posterior predictive partner age distributions (lines) for conventional regression and the

most complex distributional model among men aged 16, 24, and 37 years in the AHRI data set. Posterior predictive distributions come from regression

models fit to the entire AHRI data set.
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model parameters, so this method is more complex than conventional regression. The sinh-arcsinh

distribution did fail to produce the highest ELPD in our smallest data subset (N = 170), but it was

not significantly worse than the best distribution. More importantly, by integrating these data into a

distributional modelling framework, we gain the ability to impose structure on these parameters,

which could easily offset the cost of any additional model parameters.

Interpreting the inferred model parameters in sinh-arcsinh regression can also be difficult.

Although conventional regression estimates the effects of covariates on expected values, the sinh-

arcsinh distribution is parametrised in terms of a location parameter. This parameter correlates

closely with the central tendency of the distribution, but it is not strictly equal to the mean. We can

reparametrise the distribution so that we estimate a mean (and therefore effects of covariates on the

expected value), but it is not currently possible in the probabilistic programming software that

underlies brms.

Third, our analysis assumed that we were operating at a level of stratification at which partner-

ships are basically comparable, but any number of factors could lead to fundamentally different

Female Male

Lo
catio

n
S

cale
S

ke
w

n
e

ss
T

ail w
e

ig
h

t

20 30 40 50 60 20 30 40 50 60

−0.1

0.0

0.1

0.05

0.07

0.09

0.11

−0.2

−0.1

0.0

0.1

0.2

0.3

0.5

0.6

Respondent age

S
ca

le

Model Conventional Distributional 1 Distributional 4

Figure 6. Estimated sinh-arcsinh distributional parameters from the conventional regression model, and distributional models 1 and 4 fit to the AHRI

data. ‘Conventional’ assumes no variation across age and sex, ‘Distributional 1’ allows for independent age and sex effects, and ‘Distributional 4’

includes sex-specific splines with respect to age.

Wolock et al. eLife 2021;10:e68318. DOI: https://doi.org/10.7554/eLife.68318 12 of 38

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.68318


partner age distributions. For example, we did not control for whether the partnership was same-sex

or the type of the partnership (married, casual, etc.). That said, our distributional framework would

allow us to incorporate data on any of those factors directly into the model.

There are two sources of possible non-independence in our data sets that were not modelled.

First, in the two cohort studies, participants are eligible to participate in multiple survey rounds, in

which case the same partnership could be reported multiple times in our data set. Second, many

individuals report multiple partners in the same survey, and the age of one partner may be corre-

lated ages of other partners, for example due to individual preferences for partnerships. Because we

modelled multiple observations of the same individual as conditionally independent, we anticipate

that these correlations may artificially increase the precision of our estimates.

Finally, our model does not address any reporting biases in self-reported partnership data. If cer-

tain relationship types are perceived as less socially acceptable, respondents might be less likely to

report them, resulting in systematic missingness. Our method could still be appropriate to model

the age distribution from the data reported about an under-reported partnership type, but it cannot

predict whether or not a given partnership exists. However, if under-reporting correlates with

AHRI (N = 77,619) Haiti 2016−17 DHS (N = 12,447) Manicaland (N = 58,676)
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partner age (or age difference), then the empirical distributions will be biased and our method will

only smooth and interpolate the biased data.

Despite these limitations, we believe that the strategy we present will work well in future projects

that require estimates of partner age distributions. We plan to use these methods to produce age-

mixing matrices to inform epidemic models of HIV, but there are a number of additional directions

that could be explored. We are specifically interested in leveraging the spatio-temporal structure of

the survey data used here. Hierarchical mapping exercises with household survey data are increas-

ingly common in epidemiology, but estimating spatially varying partner age distributions would

require an evaluation of how best to model higher order moments over space. We would, for exam-

ple, need to consider how the variance of partner age distributions varies by urbanicity.

Similarly, population-based studies typically collect far more detailed information on partnerships

than we took advantage of here. Relationship type is a key confounder of the association between

respondent age and partner age (that we ignored for the purposes of our experiments). We might

expect the age distributions of casual partners to vary substantially from those of long-term cohabit-

ing partners. Because we have built our model in an existing regression framework, incorporating

new covariates into any of the distributional regression specifications is straightforward. The distribu-

tion regression framework with the sinh-arcsinh may also be a useful parametric model for continu-

ous representation of marginal distributions within sexual mixing models or network models, such as

the ERGM framework.

We believe that our framework offers a flexible, accurate, and robust method for smoothing and

interpolating sexual partner age distributions, but these methods are not specific to partner age dis-

tributions. The sinh-arcsinh distribution is relatively easy to implement without incurring high compu-

tational cost, so it could be applied in many settings. Even without the distributional regression

framework, we have used here, allowing the third and fourth moments of the distribution to vary

from the ‘default’ normal values could be valuable across a variety of applications.

Distributional regression is also underutilised in social science applications. We often work with

large surveys that would comfortably support models for higher order parameters. Data require-

ments will vary by application and model, but, as we have shown here, even a simple distributional

model can improve fit and avoid biasing estimates.
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Appendix 1

Age heaping
Respondents in each of these data sets are disproportionately likely to report that their partners’

ages are multiples of five or multiples of five away from their own age, leading to distinct ‘spikes’ in

the empirical partner age (or age difference) distributions at multiples of five. The left panel of

Appendix 1—figure 1 illustrates this phenomenon among women aged 24 years in the AHRI data.

These spikes, widely referred to as ‘heaping’, could bias our results towards certain probability distri-

butions, so we developed a simple deheaping algorithm, applied it to the AHRI data.

To account for the possibility that heaping affected the results, we developed a simple deheaping

algorithm and treated the deheaped AHRI data as a fourth data set. Due to the structure of the

questionnaire (‘how many years older or younger is your partner than you?’), the AHRI partner age

data exhibit strong heaping on partner ages that are multiples of five years from the respondent’s

age. For example, among women aged 24 years, we observe far more partners aged exactly 29

years than expected.

Let ns;a;p be the number of observed partnerships with si ¼ s, ai ¼ a, and pi ¼ p. Fixing age to be a

and sex to be s, we can find the expected count at partner age p, n̂s;a;p by fitting a Nadaraya-Watson

estimator to all ordered pairs ðp; ns;a;pÞ such that p� a is not a multiple of five. We can then find the

positive-valued excess counts at all p such that p� ais a multiple of five: es;a;p ¼ maxðns;a;p � n̂s;a;p; 0Þ:
This quantity, es;a;p, is what the Nadaraya-Watson estimator has identified as number of heaped

observations. Fixing p$ to be a partner age such that ðp$ � aÞmod 5 � 0, we assume that all of the

excess mass at p$ will be allocated to the four partner ages on either side of p$. We find the share of

es;a;p$ to be allocated to each of ðp$ � 2; :::; p$ þ 2Þ, denoted bs;a;p, as

bs;a;p ¼
ns;a;p

P

2

i¼�2
ns;a;p$þi

;

substituting in n̂s;a;p$ for ns;a;p wherever applicable. Finally, we find the number of individuals to be

reassigned from p$ to each p within two years of y$ as ds;a;p ¼ bs;a;p � es;a;p$ . Note that each partner age

can only ‘receive’ partnerships from its nearest multiple of five and that each multiple of five can

only ‘send’ partnerships to itself and the four partner ages on either side of it. For each y within two

years of y$, we randomly select bds;a;pe individuals to move from p$ to p. We apply this method for

both sexes and all respondent ages with at least two observations separately.

Appendix 1—figure 1 illustrates the effect of this process on data among women aged 24 in the

AHRI data. This method is quite simple, but it seems to work reasonably well on the AHRI data.

Regardless, we do not need a perfect deheaping algorithm for this application; we just need one

that will give us a plausibly deheaped version of the AHRI data. If the results differ drastically

between the heaped and deheaped data sets (i.e. if one probability distribution works perfectly only

on the deheaped data), then we will know that our results are sensitive to irregularities in the data.
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Appendix 1—figure 1. Illustration of the effect of the deheaping algorithm on women aged exactly

Appendix 1—figure 1 continued on next page
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Appendix 1—figure 1 continued

24 years in the AHRI data. Dark grey bars correspond to ages identified as potentially heaped

(multiples of five away from 24). The red line is the expected count of observations estimated by

excluding any potentially heaped ages.

Results
Appendix 1—figure 2 shows the presence of age heaping among women in the AHRI data, as well

as the effects of our deheaping algorithm. Visible diagonal lines indicate that women were dispro-

portionately likely to report that the difference between their partner’s age and their own age was a

multiple of five. Heaping to partner ages (not partner age differences) would manifest as horizontal

lines. As we can see in the right panel, the deheaping procedure resolves the majority of the heap-

ing. We cannot validate the algorithm, but for the purposes of this experiment, simply producing

plausibly deheaped age distributions should be sufficient.
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Appendix 1—figure 2. Observed sexual partner age distributions among women in the AHRI data.

The left panel is original data, and the right panel is the same data set after deheaping age

differences from multiples of five.

Appendix 1—table 1 provides ELPD and QQ RMSE values for all five regression models fit to

the deheaped AHRI data. As with the heaped AHRI data, the most complex distributional model

had the highest ELPD (58504.0). From these results, we conclude that the presence of heaping in

the three main data sets is unlikely to have substantially altered the results of this analysis.

Appendix 1—table 1. ELPD and QQ RMSE values for all five models fit to deheaped AHRI data The

models increase in complexity from Conventional Regression to Distributional Model 4.

Bolded ELPD values are more than two standard errors higher than the next best value in the column.

Bolded QQ RMSE values are lowest in their column.

Model AHRI deheaped

ELPD

Conventional 55296.2

Continued on next page
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Appendix 1—table 1 continued

Model AHRI deheaped

Distributional 1 57097.4

Distributional 2 57503.7

Distributional 3 58219.2

Distributional 4 58504.0

QQ RMSE

Conventional 1.26

Distributional 1 1.06

Distributional 2 1.14

Distributional 3 0.92

Distributional 4 0.62

Model specification details
We modelled the log-ratio dependent variable using the four-parameter sinh-arcsinh distribution:

yi ~ sinhð�i;si; �i;diÞ
�i ¼ b�

X
�
i

logs$

i ¼ bs
X

s
i

�i ¼ b�
X

�
i

logdi ¼ bd
X

d
i

si ¼ s$

i di;

where b�, bs, b�, and bd are free parameters. We placed essentially arbitrary shrinkage priors on all

coefficients:

b�; bs; b�; bd ~Nð0;5Þ:

First, we fit a conventional regression, in which only the location parameter, m, is a function of

data. Specifically, we allowed for linear sex and age effects and a linear interaction between respon-

dent sex and age (si and ai, respectively) in the model of m:

X
�
i ¼ ð1; si;ai; si � aiÞ

X
s
i ;X

�
i ;X

d
i ¼ ð1Þ:

In the second model, we allowed the three higher order distributional parameters to vary by age

and sex:

X
�
i ¼ ð1; si;ai; si � aiÞ

X
s
i ;X

�
i ;X

d
i ¼ ð1; si;aiÞ:

In the third model, all four distributional parameters had age, sex, and age-sex interaction

effects:

X
�
i ;X

s
i ;X

�
i ;X

d
i ¼ ð1; si;ai; si � aiÞ

To allow for the possibility of non-linear variation with respect to age in the fourth model, we

modelled the location parameter using sex-specific natural splines on age:

X
�
i ¼ 1; si;f1ðaiÞ; :::;fKðaiÞ; si �f1ðaiÞ; :::;si �fKðaiÞð Þ

X
s
i ;X

�
i ;X

d
i ¼ ð1; si;ai; si � aiÞ;

where K is the number of columns in the spline design matrix. By including a second set of basis

function values that are multiplied by si, we are estimating an additional, female-specific trend with

respect to age.
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Finally, we fit a fifth model, in which all four distributional parameters were modelled as sex-spe-

cific splines with respect to age:

X
�
i ;X

s
i ;X

�
i ;X

d
i ¼ 1; si;f1ðaiÞ; :::;fKðaiÞ; si �f1ðaiÞ; :::; si �fKðaiÞð Þ:
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Appendix 1—figure 3. Overlaid quantile-quantile (QQ) plots for each probability distribution’s best

fit to data in all three main data sets. Presented quantiles range from 10th to 90th in increments of

10. Lines closer to the line of equality indicate better fit to empirical quantiles.
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Appendix 1—figure 4. Observed partner age distributions (grey bars) and posterior predictive part-

ner age distributions (lines) for each probability distribution among women in the AHRI data set.

Here, we plot the posterior predicitve distribution associated with each distribution’s highest-ELPD

dependent variable.
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Appendix 1—figure 5. Observed partner age distributions (grey bars) and posterior predictive part-

ner age distributions (lines) for each probability distribution among men in the AHRI data set. Here,

we plot the posterior predicitve distribution associated with each distribution’s highest-ELPD

dependent variable.
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Appendix 1—figure 6. Observed partner age distributions (grey bars) and posterior predictive part-

ner age distributions (lines) for each probability distribution among women in the AHRI Deheaped

data set. Here, we plot the posterior predicitve distribution associated with each distribution’s

highest-ELPD dependent variable.
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Appendix 1—figure 7. Observed partner age distributions (grey bars) and posterior predictive part-

ner age distributions (lines) for each probability distribution among men in the AHRI Deheaped data

set. Here, we plot the posterior predicitve distribution associated with each distribution’s highest-

ELPD dependent variable.
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Appendix 1—figure 8. Observed partner age distributions (grey bars) and posterior predictive part-

ner age distributions (lines) for each probability distribution among women in the Haiti 2016–17 DHS

data set. Here, we plot the posterior predicitve distribution associated with each distribution’s

highest-ELPD dependent variable.
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Appendix 1—figure 9. Observed partner age distributions (grey bars) and posterior predictive part-

ner age distributions (lines) for each probability distribution among men in the Haiti 2016–17 DHS

data set. Here, we plot the posterior predicitve distribution associated with each distribution’s

highest-ELPD dependent variable.
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Appendix 1—figure 10. Observed partner age distributions (grey bars) and posterior predictive

partner age distributions (lines) for each probability distribution among women in the Manicaland

data set. Here, we plot the posterior predicitve distribution associated with each distribution’s

highest-ELPD dependent variable.
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Appendix 1—figure 11. Observed partner age distributions (grey bars) and posterior predictive

partner age distributions (lines) for each probability distribution among men in the Manicaland data

set. Here, we plot the posterior predicitve distribution associated with each distribution’s highest-

ELPD dependent variable.

Appendix 1—table 2. Full ELPD and QQ RMSE table for women in the AHRI data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Female 20-24

1 Sinh-arcsinh �31750.94 0.00 0.00 0.32

2 Skew normal �32056.39 �305.46 48.63 0.47

3 Normal �32414.54 �663.61 60.54 0.62
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Wolock et al. eLife 2021;10:e68318. DOI: https://doi.org/10.7554/eLife.68318 29 of 38

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.68318


Appendix 1—table 2 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

4 Beta �32953.92 �1202.98 112.08 0.77

5 Gamma �33461.85 �1710.92 148.15 0.80

AHRI Female 25-29

1 Sinh-arcsinh �24647.65 0.00 0.00 0.28

2 Skew normal �24906.22 �258.57 43.27 0.52

3 Normal �25238.71 �591.06 54.82 0.68

4 Beta �25701.13 �1053.48 114.84 0.89

5 Gamma �25995.81 �1348.16 132.15 0.90

AHRI Female 30-34

1 Sinh-arcsinh �19831.53 0.00 0.00 0.44

2 Skew normal �20200.44 �368.91 69.40 0.51

3 Normal �20314.79 �483.26 52.24 0.80

4 Beta �20575.61 �744.08 67.46 0.93

5 Gamma �20708.35 �876.82 73.89 0.91

AHRI Female 35-39

1 Sinh-arcsinh �15469.18 0.00 0.00 0.31

2 Skew normal �15749.79 �280.61 53.04 0.77

3 Normal �15834.32 �365.14 41.23 0.80

4 Beta �16026.51 �557.33 53.99 1.18

5 Gamma �16087.40 �618.22 57.06 1.04

AHRI Female 40-44

1 Sinh-arcsinh �12556.61 0.00 0.00 0.45

2 Skew normal �12876.71 �320.10 45.85 1.27

3 Normal �12935.34 �378.73 52.38 0.92

4 Beta �13137.69 �581.08 69.18 1.38

5 Gamma �13150.66 �594.05 62.73 1.19

AHRI Female 45-49

1 Sinh-arcsinh �10059.21 0.00 0.00 0.59

2 Skew normal �10391.95 �332.74 42.75 1.36

3 Normal �10433.64 �374.43 48.91 1.53

4 Gamma �10527.00 �467.79 50.72 1.35

5 Beta �10545.33 �486.12 56.02 1.58

Appendix 1—table 3. Full ELPD and QQ RMSE table for men in the AHRI data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Male 20-24

1 Sinh-arcsinh �20428.11 0.00 0.00 0.23

2 Skew normal �20499.86 �71.75 17.12 0.25

3 Normal �20503.89 �75.79 16.85 0.22

4 Beta �20545.59 �117.49 23.21 0.22

5 Gamma �20700.24 �272.13 43.53 0.29
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Appendix 1—table 3 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Male 25-29

1 Sinh-arcsinh �12664.21 0.00 0.00 0.26

2 Skew normal �12727.03 �62.82 17.86 0.28

3 Beta �12739.03 �74.82 18.65 0.31

4 Normal �12753.25 �89.04 19.35 0.29

5 Gamma �12788.26 �124.05 35.07 0.38

AHRI Male 30-34

1 Sinh-arcsinh �9301.03 0.00 0.00 0.29

2 Skew normal �9357.18 �56.15 14.08 0.43

3 Beta �9371.86 �70.83 16.48 0.37

4 Normal �9385.63 �84.60 14.67 0.46

5 Gamma �9419.34 �118.31 35.11 0.27

AHRI Male 35-39

1 Sinh-arcsinh �6746.89 0.00 0.00 0.30

2 Skew normal �6812.77 �65.88 17.73 0.64

3 Normal �6817.86 �70.97 23.24 0.70

4 Beta �6830.95 �84.06 17.95 0.71

5 Gamma �6832.47 �85.58 32.03 0.44

AHRI Male 40-44

1 Sinh-arcsinh �4610.95 0.00 0.00 0.35

2 Skew normal �4711.78 �100.84 18.66 0.92

3 Normal �4713.78 �102.83 18.82 0.78

4 Gamma �4718.28 �107.33 24.83 0.63

5 Beta �4742.70 �131.75 17.28 1.07

AHRI Male 45-49

1 Sinh-arcsinh �3683.47 0.00 0.00 0.34

2 Skew normal �3770.59 �87.12 16.56 0.81

3 Gamma �3776.33 �92.86 15.56 0.87

4 Normal �3778.84 �95.37 14.50 1.17

5 Beta �3805.78 �122.31 17.40 1.36

Appendix 1—table 4. Full ELPD and QQ RMSE table for women in the AHRI Deheaped data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Deheaped Female 20-24

1 Sinh-arcsinh �31411.24 0.00 0.00 0.26

2 Skew normal �31797.37 �386.13 53.15 0.59

3 Normal �32179.29 �768.05 65.50 0.56

4 Beta �32737.57 �1326.32 118.47 0.76

5 Gamma �33254.17 �1842.92 155.14 0.78

AHRI Deheaped Female 25-29

1 Sinh-arcsinh �24439.47 0.00 0.00 0.27
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Appendix 1—table 4 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

2 Skew normal �24768.06 �328.59 46.71 0.65

3 Normal �25104.46 �664.99 58.32 0.82

4 Beta �25574.33 �1134.86 119.65 1.03

5 Gamma �25870.30 �1430.83 137.51 1.05

AHRI Deheaped Female 30-34

1 Sinh-arcsinh �19680.77 0.00 0.00 0.41

2 Skew normal �20112.70 �431.94 72.95 0.55

3 Normal �20228.52 �547.76 56.19 0.81

4 Beta �20492.23 �811.46 70.53 0.92

5 Gamma �20624.82 �944.06 76.98 0.80

AHRI Deheaped Female 35-39

1 Sinh-arcsinh �15381.68 0.00 0.00 0.26

2 Skew normal �15703.77 �322.09 55.30 0.68

3 Normal �15788.73 �407.05 43.67 0.82

4 Beta �15983.57 �601.90 56.31 1.13

5 Gamma �16044.22 �662.54 59.17 1.04

AHRI Deheaped Female 40-44

1 Sinh-arcsinh �12491.91 0.00 0.00 0.25

2 Skew normal �12846.63 �354.72 47.38 0.99

3 Normal �12905.04 �413.12 54.14 0.89

4 Beta �13109.82 �617.91 70.96 1.31

5 Gamma �13121.45 �629.53 64.12 1.13

AHRI Deheaped Female 45-49

1 Sinh-arcsinh �9981.83 0.00 0.00 0.53

2 Skew normal �10357.85 �376.01 45.08 1.43

3 Normal �10401.64 �419.80 51.57 1.46

4 Gamma �10493.73 �511.90 52.90 1.37

5 Beta �10513.46 �531.63 58.21 1.61

Appendix 1—table 5. Full ELPD and QQ RMSE table for men in the AHRI Deheaped data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

AHRI Deheaped Male 20-24

1 Sinh-arcsinh �20310.35 0.00 0.00 0.27

2 Skew normal �20429.90 �119.55 27.09 0.22

3 Normal �20459.73 �149.38 35.78 0.29

4 Beta �20574.15 �263.80 75.13 0.22

5 Gamma �20899.52 �589.17 175.99 0.27

AHRI Deheaped Male 25-29

1 Sinh-arcsinh �12585.54 0.00 0.00 0.28

2 Skew normal �12680.59 �95.05 21.53 0.44

3 Beta �12697.00 �111.46 23.31 0.37

Continued on next page

Wolock et al. eLife 2021;10:e68318. DOI: https://doi.org/10.7554/eLife.68318 32 of 38

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.68318


Appendix 1—table 5 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

4 Normal �12701.76 �116.23 22.96 0.41

5 Gamma �12763.81 �178.27 41.24 0.39

AHRI Deheaped Male 30-34

1 Sinh-arcsinh �9227.26 0.00 0.00 0.37

2 Skew normal �9302.42 �75.16 16.15 0.41

3 Beta �9318.24 �90.97 19.07 0.39

4 Normal �9327.58 �100.31 16.18 0.41

5 Gamma �9372.32 �145.06 38.27 0.27

AHRI Deheaped Male 35-39

1 Sinh-arcsinh �6694.86 0.00 0.00 0.30

2 Skew normal �6774.11 �79.26 19.32 0.61

3 Normal �6780.69 �85.84 25.42 0.44

4 Beta �6791.95 �97.10 19.81 0.69

5 Gamma �6796.41 �101.55 34.45 0.40

AHRI Deheaped Male 40-44

1 Sinh-arcsinh �4591.04 0.00 0.00 0.49

2 Skew normal �4700.54 �109.51 19.38 1.16

3 Normal �4703.52 �112.49 19.93 1.00

4 Gamma �4708.43 �117.40 25.94 0.89

5 Beta �4731.41 �140.37 17.84 1.30

AHRI Deheaped Male 45-49

1 Sinh-arcsinh �3680.18 0.00 0.00 0.30

2 Normal �3796.06 �115.88 19.24 1.15

3 Skew normal �3797.14 �116.95 23.48 1.02

4 Gamma �3801.02 �120.83 24.51 0.98

5 Beta �3817.97 �137.79 19.37 1.39

Appendix 1—table 6. Full ELPD and QQ RMSE table for women in the Haiti 2016–17 DHS data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

Haiti 2016-17 DHS Female 20-24

1 Sinh-arcsinh �3259.31 0.00 0.00 0.49

2 Skew normal �3263.46 �4.15 4.95 0.53

3 Normal �3338.23 �78.92 19.54 0.91

4 Beta �3441.91 �182.60 45.77 1.24

5 Gamma �3504.85 �245.54 53.90 1.29

Haiti 2016-17 DHS Female 25-29

1 Sinh-arcsinh �4447.43 0.00 0.00 0.26

2 Skew normal �4471.22 �23.78 8.41 0.57

3 Normal �4527.25 �79.82 18.72 0.86

4 Beta �4625.97 �178.54 40.88 1.23

5 Gamma �4678.20 �230.77 45.81 1.22
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Appendix 1—table 6 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

Haiti 2016-17 DHS Female 30-34

1 Sinh-arcsinh �4720.12 0.00 0.00 0.44

2 Skew normal �4749.57 �29.45 9.06 0.68

3 Normal �4763.78 �43.66 10.51 0.62

4 Beta �4809.11 �88.99 17.19 0.85

5 Gamma �4836.82 �116.70 20.32 0.83

Haiti 2016-17 DHS Female 35-39

1 Sinh-arcsinh �4490.82 0.00 0.00 0.33

2 Skew normal �4518.58 �27.75 8.14 0.57

3 Normal �4526.55 �35.73 8.59 0.73

4 Beta �4561.27 �70.45 13.60 0.94

5 Gamma �4577.84 �87.01 15.27 0.86

Haiti 2016-17 DHS Female 40-44

1 Sinh-arcsinh �3601.02 0.00 0.00 0.35

2 Skew normal �3629.45 �28.43 7.51 0.83

3 Normal �3633.14 �32.11 7.96 0.71

4 Beta �3641.61 �40.59 9.76 0.73

5 Gamma �3644.89 �43.86 10.47 0.64

Haiti 2016-17 DHS Female 45-49

1 Sinh-arcsinh �3106.27 0.00 0.00 0.39

2 Skew normal �3133.10 �26.82 7.68 0.88

3 Gamma �3133.61 �27.33 7.50 0.68

4 Normal �3134.62 �28.35 7.46 0.81

5 Beta �3136.89 �30.62 8.61 0.88

Appendix 1—table 7. Full ELPD and QQ RMSE table for men in the Haiti 2016–17 DHS data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

Haiti 2016-17 DHS Male 20-24

1 Skew normal �468.98 0.00 0.00 0.43

2 Sinh-arcsinh �469.60 �0.62 1.12 0.41

3 Normal �475.31 �6.33 4.28 0.67

4 Beta �483.53 �14.55 7.33 0.65

5 Gamma �500.53 �31.55 13.35 0.94

Haiti 2016-17 DHS Male 25-29

1 Sinh-arcsinh �1386.13 0.00 0.00 0.38

2 Skew normal �1390.54 �4.41 3.19 0.49

3 Normal �1395.47 �9.34 4.79 0.60

4 Beta �1407.46 �21.32 7.31 0.62

5 Gamma �1434.18 �48.04 11.75 0.79

Haiti 2016-17 DHS Male 30-34

1 Sinh-arcsinh �2217.20 0.00 0.00 0.44
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Appendix 1—table 7 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

2 Skew normal �2222.10 �4.89 3.42 0.69

3 Normal �2223.97 �6.76 4.48 0.45

4 Beta �2240.58 �23.37 9.32 0.52

5 Gamma �2281.18 �63.98 17.91 0.73

Haiti 2016-17 DHS Male 35-39

1 Sinh-arcsinh �2185.96 0.00 0.00 0.28

2 Skew normal �2189.87 �3.91 2.67 0.69

3 Beta �2191.05 �5.10 3.68 0.48

4 Normal �2191.11 �5.16 3.55 0.49

5 Gamma �2205.69 �19.73 9.57 0.52

Haiti 2016-17 DHS Male 40-44

1 Sinh-arcsinh �2051.62 0.00 0.00 0.39

2 Skew normal �2060.16 �8.54 4.21 0.72

3 Normal �2060.38 �8.75 4.57 0.69

4 Beta �2062.00 �10.37 4.87 0.70

5 Gamma �2063.79 �12.17 5.73 0.47

Haiti 2016-17 DHS Male 45-49

1 Sinh-arcsinh �2138.34 0.00 0.00 0.23

2 Normal �2150.53 �12.19 6.38 0.35

3 Skew normal �2151.51 �13.17 5.97 0.56

4 Gamma �2152.88 �14.54 8.93 0.25

5 Beta �2156.13 �17.79 6.14 0.48

Appendix 1—table 8. Full ELPD and QQ RMSE table for women in the Manicaland data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

Manicaland Female 20-24

1 Sinh-arcsinh �16390.77 0.00 0.00 0.31

2 Skew normal �16502.01 �111.25 21.22 0.44

3 Normal �16779.93 �389.16 37.05 0.67

4 Beta �17111.57 �720.80 62.02 0.86

5 Gamma �17387.38 �996.61 76.80 1.02

Manicaland Female 25-29

1 Sinh-arcsinh �18702.50 0.00 0.00 0.53

2 Skew normal �18923.04 �220.53 25.27 0.94

3 Normal �19080.66 �378.16 36.05 0.83

4 Beta �19405.80 �703.30 64.97 1.05

5 Gamma �19615.53 �913.03 76.38 1.09

Manicaland Female 30-34

1 Sinh-arcsinh �16523.81 0.00 0.00 0.48

2 Skew normal �16877.96 �354.15 40.36 0.87

3 Normal �16886.62 �362.80 36.41 0.99

Continued on next page

Wolock et al. eLife 2021;10:e68318. DOI: https://doi.org/10.7554/eLife.68318 35 of 38

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.68318


Appendix 1—table 8 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

4 Beta �17021.26 �497.44 43.60 1.12

5 Gamma �17094.58 �570.76 49.53 0.93

Manicaland Female 35-39

1 Sinh-arcsinh �14397.76 0.00 0.00 0.48

2 Skew normal �14736.64 �338.88 28.35 1.25

3 Normal �14798.55 �400.79 36.87 1.39

4 Beta �14824.80 �427.04 33.02 1.47

5 Gamma �14835.11 �437.35 34.49 1.14

Manicaland Female 40-44

1 Sinh-arcsinh �12293.13 0.00 0.00 0.68

2 Skew normal �12488.28 �195.15 21.36 1.03

3 Gamma �12500.93 �207.80 22.18 1.03

4 Normal �12508.91 �215.78 23.29 1.28

5 Beta �12537.14 �244.01 25.41 1.22

Manicaland Female 45-49

1 Sinh-arcsinh �9183.03 0.00 0.00 0.56

2 Skew normal �9455.87 �272.83 23.57 1.68

3 Normal �9477.33 �294.30 23.55 1.62

4 Gamma �9497.31 �314.27 25.08 1.44

5 Beta �9576.44 �393.40 32.07 1.94

Appendix 1—table 9. Full ELPD and QQ RMSE table for men in the Manicaland data set.

Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

Manicaland Male 20-24

1 Sinh-arcsinh �9770.00 0.00 0.00 0.30

2 Skew normal �9895.82 �125.83 33.35 0.40

3 Normal �10139.11 �369.11 79.13 0.49

4 Beta �10587.64 �817.64 181.23 0.56

5 Gamma �11594.58 �1824.59 388.26 1.15

Manicaland Male 25-29

1 Sinh-arcsinh �13978.59 0.00 0.00 0.40

2 Skew normal �13990.39 �11.80 8.51 0.48

3 Normal �14018.60 �40.00 17.48 0.45

4 Beta �14152.35 �173.76 48.77 0.40

5 Gamma �14500.47 �521.87 117.58 0.55

Manicaland Male 30-34

1 Sinh-arcsinh �12949.24 0.00 0.00 0.31

2 Skew normal �13016.44 �67.21 25.01 0.37

3 Normal �13037.46 �88.22 16.57 0.49

4 Beta �13070.31 �121.07 54.74 0.41

5 Gamma �13285.47 �336.23 171.92 0.42
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Appendix 1—table 9 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

Manicaland Male 35-39

1 Sinh-arcsinh �11496.14 0.00 0.00 0.27

2 Skew normal �11528.36 �32.22 9.83 0.39

3 Normal �11530.43 �34.29 9.72 0.26

4 Gamma �11531.75 �35.61 12.47 0.24

5 Beta �11582.63 �86.49 12.97 0.48

Manicaland Male 40-44

1 Sinh-arcsinh �8714.06 0.00 0.00 0.35

2 Skew normal �8749.78 �35.72 10.11 0.51

3 Gamma �8777.08 �63.02 10.38 0.55

4 Normal �8791.45 �77.38 12.23 0.76

5 Beta �8860.22 �146.16 18.15 0.93

Manicaland Male 45-49

1 Sinh-arcsinh �7110.27 0.00 0.00 0.42

2 Skew normal �7177.03 �66.75 25.08 0.76

3 Gamma �7213.99 �103.72 13.02 1.07

4 Normal �7232.04 �121.77 13.09 1.28

5 Beta �7312.35 �202.08 18.61 1.61

Appendix 1—table 10. LOO-CV estimated ELPD values, differences, and standard errors of

differences, as well as QQ RMSE values, for all five regression models fit to all four data sets.

The ‘difference’ value of a row is the difference between that row’s ELPD value and data set-specific

best ELPD value. Higher ELPD values and lower QQ RMSE values are better.

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

AHRI

1 Distributional 4 55841.91 0.00 0.00 0.66

2 Distributional 3 55534.16 �307.75 32.36 0.93

3 Distributional 2 54794.79 �1047.12 51.69 1.21

4 Distributional 1 54335.19 �1506.72 72.32 1.15

5 Conventional 52689.21 �3152.70 100.59 1.30

AHRI Deaheaped

1 Distributional 4 58503.98 0.00 0.00 0.62

2 Distributional 3 58219.23 �284.75 28.64 0.92

3 Distributional 2 57503.68 �1000.30 47.14 1.14

4 Distributional 1 57097.39 �1406.59 64.48 1.06

5 Conventional 55296.25 �3207.73 99.42 1.26

Haiti 2016-17 DHS

1 Distributional 4 5207.57 0.00 0.00 0.84

2 Distributional 3 5196.69 �10.89 6.54 0.91

3 Distributional 1 5140.77 �66.80 12.27 0.98

4 Distributional 2 5138.75 �68.83 12.24 0.99

5 Conventional 4777.78 �429.80 30.54 1.33
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Appendix 1—table 10 continued

Rank Model ELPD ELPD Diff SE of Diff QQ RMSE

Manicaland

1 Distributional 4 24516.15 0.00 0.00 1.04

2 Distributional 3 24313.74 �202.40 20.52 1.34

3 Distributional 2 23472.07 �1044.08 47.77 1.80

4 Distributional 1 23192.49 �1323.66 54.97 1.89

5 Conventional 21011.29 �3504.86 89.01 2.05
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