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SUMMARY
We recently reported that the risk of sexually acquired HIV-1 infection is increased significantly by variants in
the gene encoding CD101, a protein thought to modify inflammatory responses. Using blood samples from
individuals with and without these variants, we demonstrate that CD101 variants modify the prevalence of
circulating inflammatory cell types and show that CD101 variants are associated with increased proinflam-
matory cytokine production by circulating T cells. One category of CD101 variants is associated with a
reduced capacity of regulatory T cells to suppress T cell cytokine production, resulting in a reduction in
the baseline level of immune quiescence. These data are supported by transcriptomics data revealing alter-
ations in the intrinsic regulation of antiviral pathways and HIV resistance genes in individuals with CD101
variants. Our data support the hypothesis that CD101 contributes to homeostatic regulation of bystander
inflammation, with CD101 variants altering heterosexual HIV-1 acquisition by facilitating increased preva-
lence and altered function of T cell subsets.
INTRODUCTION

Inflammation is a double-edged sword in the host response to

pathogens; some inflammatory responses enhance critical de-

fense mechanisms to eliminate an invading pathogen, but others

may provide unintended pathogen entry mechanisms by

increasing the concentration of target cells for the pathogen or

mediating harmful immunopathology. Clearly, efforts to develop

anHIV-1 vaccine have been focused on the former effect: to guide

the inflammatory response toward protection against HIV-1 infec-

tion. However, prior studies of natural host resistance to HIV-1

infection have suggested that host resistance to HIV-1 acquisition

may be rooted in intrinsic differences in levels of bystander inflam-

mation.1 To identify host inflammatory pathways that affect HIV-1

acquisition risk, wepreviously appliedwhole-genome sequencing

to African heterosexual individuals with epidemiologically quanti-

fied exposure to HIV-1, some of whom became HIV-1 infected

and others who remained HIV-1 uninfected over follow-up. We

identified functional variation in the CD101 gene (GenBank:

Gene ID 9398) as having the strongest genome-wide association
Cell R
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with HIV-1 acquisition risk.2 We identified three different single-

nucleotide variants (SNV) that alter distinct amino acids in sepa-

rate extracellular immunoglobulin (Ig)-like domains in the CD101

coding region and are collectively associated with a significant

increase in HIV-1 acquisition.2 We also identified four missense

variants that alter amino acids in the cytoplasmic domain of the

protein (Figure S1) and are associated with an increase in HIV-1

acquisition risk that did not reach statistical significance after

adjustment for multiple comparisons.2

Previous studies have shown that the CD101 gene encodes a

transmembrane protein highly expressed on T cells, monocytes,

and dendritic cells.3 Early studies have demonstrated that T cell

receptor (TCR) cross-linking induces expression of CD101 on

human T cells4,5 and that proliferation of T cells in response to

stimulation with anti-CD3 is inhibited by treatment with an anti-

CD101 antibody,3,6,7 suggesting that CD101 plays a role in

TCR-dependent T cell activation. Specifically, it has been shown

that treatment of CD4+CD101+ T cells with a presumed agonistic

anti-CD101 antibody leads to inhibition of interleukin-2 (IL-2)

production induced by CD3 stimulation.7 This immunoregulatory
eports Medicine 2, 100322, June 15, 2021 ª 2021 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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role of CD101 is further supported by a study demonstrating that

a higher level of wild-type CD101 expression onmurine regulato-

ry T (Treg) cells is associated with an increased capacity to sup-

press effector T cells in a model of graft versus host disease;8

however, expression of CD101 was not found to discriminate

more suppressive Treg cells in individuals with rheumatoid

arthritis.6 CD101 is also highly expressed on activated mucosal

tissue-resident memory T cells9 and may regulate a balance be-

tween anti-inflammatory Treg cells and proinflammatory Th17

cells in mucosal tissue.10 Recent work has also demonstrated

that, during chronic viral infection, CD101 is highly expressed

on terminally differentiated, exhausted, and highly dysfunctional

circulating CD8+ T cells,11 contributing to the notion that CD101

is an immunoregulatory protein that may play a role in restraining

T cells in various tissues and contexts, including inflammatory

processes such as autoimmunity12,13 and infectious diseases.2

Given the evidence that CD101 plays an immunoregulatory

role, we sought to better understand mechanisms by which

CD101 missense variation modifies host responses that may

be relevant to HIV-1 acquisition. Specifically, we hypothesized

that candidate CD101 Ig-like or cytoplasmic missense variants

facilitate increased HIV-1 infection risk by mediating a height-

ened homeostatic inflammation set point through altered Treg

cell function and activation of effector CD4+ and CD8+ T cells.

To address this hypothesis, we used peripheral blood mononu-

clear cells (PBMCs) from individuals with and without these

missense variants in CD101 to assess the association of

CD101 variants with differences in phenotype, function, and

transcriptomics profile of circulating conventional and Treg cells.

RESULTS

CD101 variants affect the phenotypes of circulating
PBMCs
To test the effect of CD101 genetic variation on immune cell fre-

quency and phenotype, we identified cryopreserved PBMCs

from 118 HIV-1-uninfected individuals (cases) with a single

missense variant located in the CD101 Ig-like domains (n = 85)

or cytoplasmic domains (n = 33) and 117 HIV-1-uninfected indi-

viduals (controls) with no CD101 functional variants (Figure S1).

The epidemiologic characteristics of the sampled individuals

were similar by variant (Table S1). We hypothesized that variants

in different regions ofCD101 could differentially alter immune cell

function. Thus, we compared immune cell phenotypes for

PBMCs from cases with Ig-like-variants with controls and, sepa-

rately, cases with cytoplasmic variants with controls. We used a

broad panel of antibodies (Table S2) to characterize lymphocyte

(T and B cell), monocyte, and dendritic cell (DC) subsets by high-

parameter flow cytometry and analyzed the data by conventional

manual gating (Figures S2–S4) and via the recently described full

annotation using shape-constrained trees (FAUST) method,14

which combines new algorithms for unbiased clustering, variable

selection, and feature selection (Figure S6).

Phenotypic effect of Ig-like CD101 variants
These studiesdemonstratedmultiple significantphenotypicdiffer-

ences across all cell type categories evaluated in individuals with

Ig-like variantscomparedwith thosewithout functionalCD101var-
2 Cell Reports Medicine 2, 100322, June 15, 2021
iants (Table 1; Figure S5; Tables S3 and S4). However,most differ-

enceswere evident in theproportion of activated immune cell sub-

sets expressing CD101, which were generally higher for T cell

subsets from individuals with Ig-like variants (Figures 1A and 1B;

Table 1; Tables S3 and S4). For example, CD101 Ig-like variants

were associated with an increased proportion of circulating

CD8+ T cells expressing CD101 (Figure 1B). FAUST analysis also

identified an increased frequency of activated CD101+CD8+

CD45RA+CCR7�CD38+ T effector memory (TEMRA) cells as well

as CD101+HLA-DR+-expressing CD4+ T cells among individuals

with Ig-like variants (Figure S6A). Similarly, Ig-like variants were

associated with elevated proportions of CD101-expressing sub-

sets of Treg cells, including CD25+CD127loFoxp3+ cells with and

without Helios expression (Figure 1C; Figures S5N and S5P).

Moreover, CD101+ Treg cells expressing the activation and prolif-

erationmarkersCTLA-4,CD39, orKi-67werealso increased in fre-

quency among individuals with Ig-like variants (Figure 1C; Figures

S5NandS5P;Table1), suggestingacomplex roleofaltered immu-

noregulatory capacity in the context of genetic CD101 variation.

In contrast, proportions of CD101+CD141+ DCs, CD101+ inter-

mediate (CD14++CD16+) and non-classical monocytes (CD14+

CD16++), and CD101+ B cells were reduced in Ig-like-cases

compared with controls (Figures 1D–1F). Notably, the proportion

of classical and intermediate monocytes expressing the HIV-1

co-receptor CCR5 was elevated for Ig-like variants compared

with controls, irrespective of CD101 expression (Figure S5E).

Additionally, expression of the chemokine receptor and HIV-1

co-receptor CXCR4 was increased on CD1c+ DCs from individ-

uals with Ig-like variants compared with controls (Figure 1D).

Interestingly, across all our investigated cell phenotypes, indi-

vidual Ig-like variants contributed to the observed immune alter-

ations to a greater or lesser degree. Specifically, the phenotypic

effects of rs12093834 were generally stronger than those of

rs17235773, and no significant effects of rs3754112 were identi-

fied (Table S3).

Phenotypic effect of cytoplasmic CD101 variants
We also compared immune cell phenotypes using PBMCs from

individuals without CD101 functional variants with those from

individuals with CD101 cytoplasmic domain variants, either

rs34248572 or rs150494742 (Tables S3 and S4). Cytoplasmic

CD101 variation was associated with few differences in the fre-

quencies or activation of immune cell subsets in general (Figures

S5G–S5L).However,whenspecifically considering frequenciesof

CD101+ cells by manual gating, cases with CD101 cytoplasmic

variants had similar changes in Treg cell and DC subset pheno-

types compared with those with Ig-like variants (Figure 2; Table

S3). Additionally, FAUST identified a significant reduction in the

frequencyofHelios+Foxp3+ Treg cells among total Treg cells in in-

dividuals with cytoplasmic variants compared with no functional

variants (FigureS6B), suggesting apotential deficit in immunoreg-

ulationamongcases.15Moreover,we foundamarked reduction in

plasmacytoid DCs that co-expressed CCR5 and CD40 (Fig-

ure S6C), suggesting the possibility of altered plasmacytoid DC

(pDC)-mediated antiviral immunity, including type I interferon re-

sponses—a mechanism relevant to host:pathogen interactions

with HIV-1. Overall, cytoplasmic variants were associated with a

smaller change in T cell andmonocyte subsets than the alteration



Table 1. Phenotypic effects of the presence of Ig-like versus no Ig-like CD101 variants

Cell type characteristics

No CD101 functional

variants (N = 117) (median ± s)

R 1 CD101 Ig-like variant

(N = 92) (median ± s) p valuea

CD4+ T cells

CD45RA�CCR7�CD101+ effector mem of

CD4+ T cells

1.2 ± 1 2 ± 1.5 <0.0001

CD8+ T cells

%CD45RA+CCR7�CD101+ effector of

CD8+ T cells

2.2 ± 2.9 5.4 ± 5.2 <0.0001

%CD45RA�CCR7�CD101+ effector mem

of CD8+ T cells

9.7 ± 8.7 17.9 ± 10.7 <0.0001

%CD101+ of CD8+ T cells 37.9 ± 16.9 51 ± 14.8 <0.0001

%CXCR4+CD101+ of CD8+ T cells 33.6 ± 14.2 45.9 ± 14.3 <0.0001

%CCR5+CD101+ of CD8+ T cells 7.9 ± 6.4 13.7 ± 9.4 <0.0001

Regulatory T (Treg) cells

%CD101+ of Treg cells 13.7 ± 11.1 20.1 ± 9 <0.0001

%CTLA-4+CD101+ of Treg cells 8.3 ± 6.7 13.6 ± 6.7 <0.0001

%CD39+CD101+ of Treg cells 9.1 ± 8 13.4 ± 8 0.0001

%Ki-67+CD101+ of Treg cells 0.8 ± 0.8 1.3 ± 0.8 <0.0001

Dendritic cell (DC) characteristics

%CXCR4+ of CD1c+ DCs 47.4 ± 32.7 58.8 ± 26.6 0.0063

%CXCR4+CD101+ of CD1c+ DCs 55.6 ± 29.8 68.9 ± 18.1 <0.0001

%CD101+ of CD141+ DCs 29.9 ± 13.1 18.9 ± 10.2 <0.0001

%CD40+CD101+ of CD141+ DCs 21 ± 11.1 12.4 ± 8.4 <0.0001

%CD80+CD101+ of CD141+ DCs 1.7 ± 1.5 1 ± 0.9 0.0002

Monocyte characteristics

%CCR5+ of classic monocytes 27.1 ± 17.4 37.3 ± 18 <0.0001

%CCR5+CD101+ of classic monocytes 26.8 ± 17.3 36 ± 17.4 0.0002

%CCR5+ of intermediate monocytes 43 ± 19.8 53.6 ± 16.9 <0.0001

%CD101+ of intermediate monocytes 85.6 ± 10.2 79.2 ± 13.3 0.0002

%CCR5+CD101+ of intermediate

monocytes

38.4 ± 18.1 45.4 ± 15.6 0.0034

%CD101+ of nonclassic monocytes 25.2 ± 19.4 16.5 ± 14.6 0.0002

%CD40+CD101+ of nonclassic monocytes 16.9 ± 13.7 11 ± 10 0.0004

B cell characteristics

%CD101+ of B cells 6.6 ± 3.4 4.9 ± 2.4 <0.0001

%CD80+CD101+ of B cells 1.7 ± 1.4 1.2 ± 1 0.0094

%CD40+CD101+ of B cells 6.2 ± 3.1 4.7 ± 2.2 <0.0001
aUncorrected p values are shown; p values in bold are significant after Bonferroni correction for 100 comparisons.
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in these subsets associated with Ig-like variants. Individual por-

tions of the CD101 receptor certainly serve functionally distinct

purposes, and genetic alterations therein could be surmised to

result in distinct immunologic consequences. However, variation

at several distinct genetic locations inCD101 altered immune out-

comes, and further analysis of the CD101 protein structure will be

useful in elucidating associated mechanisms.

CD101 variants are associated with conventional T cells
that manifest an elevated proinflammatory response to
stimuli
To examine changes in the functional potential of T cells associ-

ated with specific CD101 genetic variants, we performed ex vivo
stimulationassays incombinationwith intracellular cytokine stain-

ing (ICS; Figure S7). PBMCswere stimulatedwith an Epstein-Barr

virus (EBV) lysate or with a combination of anti-CD3 and anti-

CD28 to separately examine T cell responses to a viral versus a

polyclonal stimulus. EBV was selected as the antigenic stimulus

instead of HIV-1 because we previously showed that, in HIV-1-

exposed, uninfected individuals, the prevalence of circulating

T cells responding to HIV-1 antigens is low.16 Further, EBV sero-

prevalence is high inAfricanadults, and thereforemost individuals

wereexpected tohaveEBV-specificTcellspresent in thebloodas

a result of prior EBV exposure. This allowed us to quantify an indi-

vidual’s T cell response to viral antigen challenge through ICS,

which we then stratified based on CD101 variant status.
Cell Reports Medicine 2, 100322, June 15, 2021 3
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Figure 1. CD101+ immune cell frequency and phenotype vary based on the presence of genetic variants in the Ig-like region of CD101

Circulating PMBCs from study participants possessing Ig-like variants inCD101, including rs12093834, rs17235773, and rs3754112 (N = 85), versus no functional

variant (N = 117) were assessed by high-parameter flow cytometry for expression of various subset-specific and activation markers on CD101+ cells.

(A–C) The mean and SD of the frequency of activation and subset-specific markers expressed on CD101+CD4 T cells (A), CD101+CD8 T cells (B), and CD101+

Treg cells (C) for Ig-like variants versus controls.

(D) CD101+ DCs are broken into CD1c+ DCs and CD141+ DCs alongside various activation markers within those subsets (D).

(E) The total frequencies of classic (CD14++CD16�), nonclassic (CD14+CD16++), and intermediate (CD14++CD16+) monocytes expressing CD101 alongside the

frequencies of various activation markers within each indicated subset.

(F) CD101+ B cells and expression of CD80 and CD40 among CD101+ B cells.

Data points represent the mean and SD of biologic replicates as indicated by N per group. Two-sample t tests were performed with Bonferroni correction for 100

comparisons to determine significance. ***p < 0.001; ****p < 0.0001.
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Figure 2. Circulating CD101+ immune cell frequency and phenotype vary minimally based on the presence of genetic variants in the cyto-

plasmic domain of CD101

Circulating PMBCs from study participants possessing cytoplasmic variants in CD101, including rs34248572 (N = 20) and rs150494742 (N = 13), versus no

functional variant (N = 117) were assessed by high-parameter flow cytometry for expression of various subset-specific and activation markers on CD101+ cells.

(A–C) The mean and SD of the frequency of activation and subset-specific markers expressed on CD101+CD4 T cells (A), CD101+CD8 T cells (B), and CD101+

Treg cells (C) for cytoplasmic variants versus controls.

(D) CD101+ DCs are broken into CD1c+ DCs and CD141+ DCs, alongside various activation markers within those subsets.

(legend continued on next page)
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We found that, compared with individuals with no functional

CD101 variants, those with the Ig-like variant rs12093834 or

cytoplasmic variant rs34248572 had an increased frequency of

CD101+ interferon (IFN)-g+CD8+ T cells after EBV or CD3/

CD28 stimulation (Figures 3A and 3B; Table 2; Table S5). Com-

parisons were done using a nonparametric rank regression using

an unadjusted analysis (only variant as the predictor) and an

adjusted analysis (controlling for batch, gender, and age).

Notably, four individuals homozygous for rs12093834 had in-

creases in the frequency of CD101+IFN-g+ CD8+ T cells that

were at or above the median of all rs12093834+ individuals, sug-

gesting a possible allele dose-response relationship (Figures 3A

and 3B). Similarly, individuals with the Ig-like variant rs12093834

had an increased frequency of CD101+IFN-g+ CD4+ T cells after

EBV lysate stimulation (Figure 3C). Consistent with our pheno-

typic results, individuals with the cytoplasmic variant

rs34248572 demonstrated more limited functional differences;

however, we observed a trend (p = 0.057) toward increased fre-

quency of IFN-g+tumor necrosis factor alpha (TNF-a)+ CD8+

T cells after CD3/CD28 stimulation, aligned with the suggestion

that CD101 variants may result in increased proinflammatory

cytokine production by T cells (Figure 3D).

Our phenotypic analysis revealed that CD101-expressing

T cells (and subsets thereof) were particularly sensitive to func-

tional alterations in CD101. We therefore additionally assessed

the effect of CD101 variants to alter the ability of CD101+

T cells to produce proinflammatory cytokines upon ex vivo stim-

ulation by gating on only CD101+ T cells prior to quantifying cyto-

kine expression. Interestingly, stimulation with EBV resulted in an

augmented frequency of CD4+ and CD8+ CD101+ T cells dually

expressing IFN-g and TNF-a in individuals with the cytoplasmic

variant rs34248572 but not the Ig-like variant rs12093834 (Fig-

ures 3E and 3G; Table S5). However, when cells were stimulated

polyclonally with anti-CD3/CD28, individuals carrying the Ig-like

or cytoplasmic CD101 variant demonstrated an increased

frequency of CD101+ CD4+ and CD8+ T cells co-expressing

IFN-g and TNF-a compared with individuals with no functional

variants (Figures 3F and 3H). Moreover, we found that individuals

with the Ig-like variant rs12093834 or cytoplasmic variant

rs34248572 have an increased frequency of CD101+ CD8+

T cells that are TNF-a+IFN-g� after polyclonal stimulation of

sorted CD3+ cells (Figure S8; Table S5). Our data suggest that

these variants may be associated with increased proinflamma-

tory potential of CD101+CD8+ and CD4+ T cells in the circulation.

CD101 variation diminishes Treg cell-mediated
restraint of effector T cells
Given that we observed that variants in CD101 are associated

with increased proinflammatory cytokine expression by circu-

lating CD101+ T cells (Figure 3), we next wanted to determine

whether this may be due to increased pro-inflammatory re-

sponses from effector T cells and/or reduced Treg cell suppres-
(E) The total frequencies of classic (CD14++CD16�), nonclassic (CD14+CD16++),

frequencies of various activation markers within each indicated subset.

(F) CD101+ B cells and expression of CD80 and CD40 among CD101+ B cells.

Data points represent the mean and SD of biological replicates as indicated by

samples with no functional variants, with Bonferroni correction for 100 comparis
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sion capacity in individuals with variants in CD101. As shown in

Figure 4A, we performed an indirect Treg cell suppression

assay to examine the effect of CD101 variants on the ability

of Treg cells to suppress T cell effector function. This involved

comparing cytokine production of antigen-stimulated whole

PBMCs with Treg cells present at a natural frequency (‘‘whole

PBMCs’’) with cytokine production of antigen-stimulated

PBMC made deficient in Treg cells (through fluorescence-acti-

vated cell sorting [FACS]; ‘‘Treg depleted’’). We first evaluated

the overall effect of Treg cell depletion by comparing the ability

of T cells to produce cytokines in the absence of Treg cells

across individuals with Ig-like or cytoplasmic CD101 variants

compared with no functional variants. In the absence of Treg

cells, CD4+ T cells and CD8+ T cells exhibited no functional dif-

ferences in the context of CD101 genetic variation (Figure 4B;

see gating strategy including without stimulation controls in Fig-

ure S7). These results suggest that the effector T cell responses

are not intrinsically more pro-inflammatory in individuals with

CD101 variants. This finding, combined with our demonstration

that the frequencies of CD4+ and CD8+ T cells producing proin-

flammatory cytokines were increased in individuals with CD101

variants (Figure 3), led us to compare cytokine production in

Treg cell-depleted cultures with whole PBMCs. We performed

this comparison separately for individuals with no variants,

those with the Ig-like variant rs12093834, and individuals with

the cytoplasmic variant rs34248572 (Table S5). We reasoned

that depletion of functionally suppressive Treg cells would be

associated with a relative increase in proinflammatory cytokines

compared with whole PBMCs, whereas depletion of impaired

Treg cells would result in a smaller increase in proinflammatory

cytokines. Indeed, we found that depletion of Treg cells from in-

dividuals with the Ig-like variant rs12093834 resulted in a

smaller change in EBV-induced IL-2 production by CD4+

T cells, but there were not other differences in T cell cytokine

production in the absence of Treg cells (Table 2; Table S5). Fig-

ure 4C shows a trajectory plot of the change in the frequency of

IL-2-producing CD4+ T cells in whole PBMCs and Treg cell-

depleted PMBCs for each individual, and Figure 4D shows

boxplots by variant, indicating the difference in percent of

IL-2-producing CD4+ T cells in Treg cell-depleted minus whole

PBMCs. These data suggest that individuals with the Ig-like

CD101 variant have Treg cells that are less able to suppress

EBV-specific CD4+ T cell production of IL-2, in line with lower

levels of Treg cell-mediated immune quiescence in individuals

with CD101 Ig-like variants.

CD101 variants are associated with distinct
inflammatory transcriptional signatures
Given our observations that the phenotype and function of mul-

tiple T cell subsets are affected by CD101 variants, we next

sought to determine whether there were corresponding tran-

scriptional differences that could explain the altered functional
and intermediate (CD14++CD16+) monocytes expressing CD101 alongside the

N per group. Two-sample t tests were performed, comparing each variant to

ons to determine significance. ****p < 0.0001, ***p < 0.001.
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Figure 3. T cells from individuals with variants in CD101 have increased potential to express cytokines

(A–D) Cytokine-producing CD8+ or CD4+ T cells from EBV-stimulated (A andC) or aCD3/aCD28-stimulated (B and D) whole PBMCs forCD101 Ig-like (N = 42) and

cytoplasmic variants (N = 18) compared with no functional CD101 variants (missense, 30 or 50 untranslated region, splice site) (N = 40). Live-sorted PBMCs,

including lymphocytes and APCs, were recovered and stimulated with EBV lysate or glycine control (A and C) or aCD3/aCD28 or medium control (B and D) for 6 h

prior to staining for intracellular cytokine production. The frequencies of CD101+CD8+ T cells producing IFN-g after subtracting background values were affected

by the presence of Ig-like and cytoplasmic-CD101 variants (A and B). Similarly, production of IFN-g by CD101+CD4+ T cells after EBV stimulation was increased

significantly for individuals carrying an Ig-like variant, whereas possessing a cytoplasmic variant did not have a significant effect (C). CD8+ T cells co-producing

IFN-g and TNF-a after aCD3/aCD28 stimulation also trended toward an increased frequency in individuals with the cytoplasmic variant (D). Four participants were

homozygous for Ig-like variant rs12093834; they are denoted by orange symbols.

(E–H) Live-sorted PBMCs, including lymphocytes and APCs, were recovered and stimulated with EBV lysate or glycine control (E and G) or aCD3/aCD28 or

medium control (F and H) for 6 h prior to staining for intracellular cytokine production. Total CD4+CD3+ or CD8+CD3+ T cells were gated by CD101 positivity and

then assessed for their ability to co-produce IFN-g and TNF-a. EBV lysate stimulation of PBMCs isolated from individuals with cytoplasmic variants resulted in an

increased frequency of IFN-g+TNF-a+CD8+ (E) and CD4+ (G) T cells, whereas having an Ig-like variant did not produce a significant effect. Stimulation with aCD3/

aCD28 antibodies elicited an increased frequency of IFN-g+TNF-a+ CD8+ (F) and CD4+ (H) T cells in individuals with both Ig-like and cytoplasmic-variants.

Matched background control values were subtracted for all participants. Four participants were homozygous for Ig-like variant rs12093834; they are denoted by

orange symbols.

Each data point represents one individual. Adjusted p values were calculated as described in STAR Methods.
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patterns in circulating T cells from individuals with CD101 vari-

ants. To address this question, we used FACS to sort CD8+

T cells or conventional, non-Treg CD4+ T cells from PBMCs

collected from individuals with no functional variants in CD101

and compared them with cells sorted from individuals with an

Ig-like variant or cytoplasmic variant in CD101 (Figure 5A). Low

RNA recovery from the limited number of sorted Treg cells

from available cryopreserved PBMCs prevented us from per-

forming RNA sequencing (RNA-seq) on this population.
Comparison of CD4+ T cells from individuals with an Ig-like

variant or a cytoplasmic-variant in CD101 with CD4+ T cells

from individuals with no functional variants yielded many differ-

entially expressed genes (Table S6A). Genes that were downre-

gulated in CD4+ T cells from individuals with Ig-like variants

included many IFN-stimulated genes (ISGs), including IFIT3,

IFI44L, IFIT1, IFI27, ISG15, and IRF7, as well as the HIV resis-

tance genes BST2 andMX1. Similarly, many ISGs were downre-

gulated in CD4+ T cells from individuals with cytoplasmic
Cell Reports Medicine 2, 100322, June 15, 2021 7



Table 2. Effect of CD101 variation on T cell activation and Treg cell functional characteristics

Measure Stimulation condition

Whole PBMCs: Median difference in

response for stimulation minus control Unadjusted Adjusted

No functional

variants (N = 40)

Ig-like variant

rs12093834 (N = 41)

Coefficient p value Coefficient p value

%CD101+IFNg+ of CD8+ T cells EBV lysate 4.553 12.550 5.900 <0.001 5.690 <0.001

%CD101+IFNg+ of CD8+ T cells anti-CD3/CD28 0.606 1.570 0.762 0.003 0.819 <0.001

%CD101+IFNg+ of CD4+ T cells EBV lysate 0.442 0.835 0.268 0.016 0.252 0.007

Measure Stimulation condition No functional

variants (N = 40)

Cytoplasmic variant

rs34248572 (N = 18)

Coefficient p value Coefficient p value

%CD101+ IFNg+ of CD8+ T cells EBV Lysate 4.553 11.730 5.726 0.000 4.941 0.001

%CD101+ IFNg+ of CD8+ T cells anti-CD3/CD28 0.606 2.000 0.289 0.003 0.73 0.008

%IFNg+ TNFa+ of CD8+ T cells anti-CD3/CD28 0.790 1.905 0.684 0.045 0.5 0.057

Measure Stimulation condition Treg depleted minus whole

PBMC: Median difference in response

for stimulation minus control

Unadjusted Adjusted

No functional

variants (N = 40)

Ig-like variant

rs12093834 (N = 41)

Coefficient p value Coefficient p value

%IL-2+ of CD4+ T cells EBV lysate 0.506 0.080 �0.353 0.014 �0.327 0.002
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variants, including IFI44L, IFIT3, and IFIT1 (Figures 5B and 5C;

Table S6A). Overall, this decreased expression of ISGs in CD4+

T cells from individuals with CD101 variants is consistent with

the finding that HIV-1 infection risk is increased in individuals

with these variants because it is possible that reduced ISG

expression renders CD4+ T cells more susceptible to infection

with HIV, in part through a less potent anti-viral response.

Many genes were also increased in expression in CD4+ T cells

with CD101 rs12093834 or rs34248572 compared with no vari-

ants. Notably, expression of CREM, which encodes a transcrip-

tional activator of T cells that has been shown to contribute to

T cell dysregulation in autoimmune conditions,17–20 was

increased in CD4+ T cells from individuals with an Ig-like variant

or a cytoplasmic variant (Figures 5B and 5C). Thus, increased

expression of CREM could lead to a dysregulated and inflamma-

tory T cell profile, but additional experiments to investigate the

effects of ectopic expression of this gene are required to validate

this possibility.

When we compared CD8+ T cells from individuals with an Ig-

like variant or a cytoplasmic variant in CD101 with individuals

with no functional variants, we also found many genes to be

differentially expressed (Table S6A). Among genes upregulated

in CD8+ T cells from individuals with an Ig-like variant in CD101

wereRGS1, TNF,CTLA4,CD28, and IFNGR1, and those from in-

dividuals with a cytoplasmic variant in CD101 were CREM,

RGS1, TNF, CTLA4, and GZMK (Figures 5B and 5C; Table

S6A). Increased expression of TNF is consistent with our finding

that CD8+ T cells from individuals with variants inCD101 express

increased levels of TNF-a following stimulation (Figure 3), again

pointing to their increased inflammatory potential. However,

CD8+ T cells from individuals with an Ig-like or cytoplasmic

variant in CD101 have reduced expression of GZMB and, there-

fore, may have reduced cytolytic potential, which could reduce

the efficacy of HIV protection in the face of HIV-1 exposure.

Finally, functional characterization of the differentially ex-

pressed genes was performed using Gene Ontology (GO) term
8 Cell Reports Medicine 2, 100322, June 15, 2021
enrichment analysis to determine whether particular biological

processes were significantly over- or underrepresented in the

differentially expressed genes. Notably, for CD4+ T cells from in-

dividuals with either type of variant in CD101, downregulated

pathways were dominated by terms associated with ‘‘response

to virus’’ (GO:0009615) and ‘‘defense response to virus’’

(GO:0051607) and for CD4+ T cells from individuals with an Ig-

like variant in CD101 ‘‘response to interferon beta’’

(GO:0035456) (Table S6B). For CD8+ T cells from individuals

with an Ig-like variant in CD101, the GO term ‘‘regulation of im-

mune response’’ (GO:0050776) was enriched significantly

among downregulated pathways (Table S6B). In addition, in

CD8+ T cells and from individuals with an Ig-like variant, the

GO term ‘‘inflammatory response’’ (GO:0006954) was enriched

significantly among upregulated pathways (Table S6B). These

results suggest that individuals with variants in CD101 may

have CD4+ T cell subsets with reduced anti-viral activity and,

thus, increased susceptibility to HIV infection and CD8+ T cell

subsets with increased pro-inflammatory potential.

DISCUSSION

Our data support the concept that variation in CD101 modifies

the homeostatic set point toward a proinflammatory environ-

ment. Specifically, our results are consistent with three principal

conclusions: (1) candidate CD101 variants are associated with

increased prevalence of proinflammatory phenotypes for a

wide range of circulating immune cell types (Table 1), with the

strongest associations revealed among CD101+ immune cells

(Figures 1 and 2); (2) conventional CD4+ and CD8+ CD101+

T cells from individuals with these candidate CD101 variants

appear to be more proinflammatory, as assessed by cytokine

expression (Figure 3) and overall transcriptional profile (Figure 5);

and (3) although bulk effector T cells did not differ in cytokine re-

sponses byCD101 variant status, Treg cells from individuals with

Ig-like variants are less able to suppress IL-2+CD4+ T cells



A

B

C D

Figure 4. CD101 variation diminishes Treg cell-medi-

ated restraint of effector T cells

(A) Schematic of the PBMC sorting and stimulation protocol

(created with BioRender). PBMCs (N = 100) were sorted into (1)

whole live PBMCs and (2) Treg cell-depleted or (3) purified

CD3+ T cell fractions. Cells were stimulated with EBV lysate or

control or aCD3/aCD28 or control for 6 h. Cells were then

analyzed for their expression of cytokines by intracellular

cytokine staining (ICS).

(B) The frequency of CD4+ and CD8 T cells producing proin-

flammatory cytokines in response to EBV among Treg-cell-

depleted PBMCs was analyzed per case or control.

(C and D) Individual trajectory plots (C) and summary results (D)

of D% IL-2+CD4+ T cells from Treg cell-depleted and whole

PBMCs for CD101 cytoplasmic (N = 18) and Ig-like variants (N =

42) compared with no functional variants (N = 40). Live-sorted

‘‘whole’’ PBMCs, including lymphocytes and APCs, or PBMCs

sorted to deplete Treg cells were recovered and stimulated

with EBV lysate or glycine control for 6 h prior to staining for

intracellular cytokine production. In (C), the frequencies of IL-2-

producing CD4+ T cells recovered from the ‘‘whole’’ PBMC

fraction and the Treg cell-depleted fraction are plotted as a

trajectory plot, and in (D), the difference between the per-

centage of IL-2+ CD4+ T cells in Treg cell-depleted compared

with whole PBMCs is plotted.

Results are stratified by the presence of an Ig-like or cyto-

plasmic variant. Each data point represents one individual.

Adjusted p values were calculated as described in STAR

Methods.

Cell Reports Medicine 2, 100322, June 15, 2021 9

Article
ll

OPEN ACCESS



(legend on next page)

10 Cell Reports Medicine 2, 100322, June 15, 2021

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
compared with Tregs from individuals with no functional CD101

variants (Figure 4). We hypothesize that these inflammatory phe-

notypes contribute mechanistically to why these variants are

associated with increased risk of HIV-1 acquisition.

Rather than investigating the effects of genetic variation as we

did here, prior studies investigating the role of CD101 as an

immunoregulatory marker have probed differences in the func-

tion of cells with or without wild-type CD101 protein expression.

For example, a previous study of human cells reported that CD8+

T cells lacking CD101 expression have a significantly greater

cytotoxicity potential compared with CD101+ CD8+ T cells.6

This is in line with the more recent finding that CD101 expression

can be used to identify a population of dysfunctional, terminally

exhausted CD8+ T cells that lack proliferation potential in the

context of chronic virus infection.11 Those studies concluded

that CD101+ CD8+ T cells have reduced cytotoxicity and prolifer-

ation potential. The key findings from our study are that (1) indi-

viduals with specific variants in the CD101 Ig-like domain

compared with those with the reference CD101 sequence have

a higher frequency of CD101+ CD8+ T cells producing proinflam-

matory cytokines, and (2) based on a Treg cell depletion assay,

individuals with these variants may have Treg cells with a

reduced capacity to suppress bystander proinflammatory

CD4+ T cells. These changes may arise from the effect of these

gene variants on CD101 function, such as its ability to bind its

natural ligand and/or transmit an intracellular signal. Given that

we did not formally test the cytotoxic function of CD8 T cells,

we cannot comment on how these gene variants affected

T cell cytotoxicity or proliferation potential. Notably, the

increased frequency of cells expressing variant CD101 may

also represent a feedback response to the decreased function-

ality of this molecule. Other studies found that ligation of

CD101 blocks TCR-induced proliferation by inhibiting calcium

flux and activation of tyrosine kinase, resulting in suppression

of IL-2 transcription.7,21 However, because the natural ligand

for CD101 has not yet been identified, wewere not able to assess

how genetic variation affects binding of CD101 to its ligand or

downstream intracellular signaling cascades and therefore

assessed the downstream effects of gene variants on T cell pro-

liferation. Additional studies of T cell proliferation potential in

antigen-presenting cell (APC)-free assays in the context of

wild-type (WT) CD101 or CD101 variants will be required to

determine how variants may directly affect T cell proliferation

and other functional properties. Nevertheless, given that we

identified increases in cytokine expression by CD101+ T cells

in individuals with CD101 variants (Figures 3 and 4), it is possible

that this increased proinflammatory environment, at least in part,

supports an immune-mediated increase in risk of HIV-1 acquisi-
Figure 5. CD101 variation is associated with transcriptional changes i

CD4+ conventional or CD8+ T cells were sorted from PBMCs sampled from 3 indi

variant (rs12093834) or 3 with a cytoplasmic variant (rs34248572) in CD101.

(A) The gating strategy for sorting included gates for lymphocytes and singlets, an

were sorted as CD3+CD4+ and, to exclude Treg cells, were further gated as CD2

(B) Volcano plots showing genes that are differentially expressed between the i

discovery rate (FDR) values were less than 0.05.

(C) Heatmaps showing the top 10 differentially upregulated genes and top 10 d

plasmic) versus no variant, with samples ordered by genotype.
tion. In earlier studies, we assessed the peripheral cytokine

milieu of individuals with or without functional CD101 variants

and found a reduced concentration of serum IL-1RN as well as

a tendency toward a reduction in sCD40L in cases, although

we found no difference among the remaining 25 cytokines as-

sessed.2 Given that the described cohort is comprised of healthy

individuals, perhaps it is not surprising that systemic cytokine

concentrations are comparable. Further, given our data showing

a similar proinflammatory capacity of effector T cells by CD101

variant status, our indirect evidence (through Treg cell depletion)

supports the hypothesis that Treg cells from individuals with

CD101 variants are less able to suppress viral antigen-driven

production of IL-2 by CD4+ T cells (Figure 4), and this may

contribute to the association between CD101 variants and

increased risk of HIV-1 infection. In phenotypic assays, we spe-

cifically evaluated bulk Treg cells (CD25+CD127loFoxp3+) as well

as those that do or do not additionally express Helios. Interest-

ingly, FAUST revealed a deficit in the frequency of Helios+ Treg

cells among individuals with CD101 cytoplasmic variants. This

may be particularly important, given that Helios-deficient mice

exhibit increased frequencies of activated effector T cells (as

well as other autoimmune-related issues).15

In addition to the noted differences in T cell phenotypes and

function based on CD101 variants, we also identified several as-

pects of APC phenotypes that differed according to the type of

variant. It is possible that variants modify the ability of APCs to

activate T cells, thus affecting HIV-1 acquisition risk via an indi-

rect DC-mediated mechanism, and our assay results cannot

rule out this possibility. Indeed, we did observe differential

phenotypic effects of CD101 variation on DCs, including acti-

vated pDCs expressing the HIV co-receptor CCR5. These data

suggest a possible role of differential type I IFN signaling among

individuals with variants—a potentially important anti-HIV mech-

anism. Moreover, a previous study of cutaneous DCs found that

ligation of CD101 on DCs via amonoclonal antibody led to IL-10-

mediated inhibition of T cell proliferation.22 Because we found

that the presence of CD101 variants was associated with a

reduced frequency of DCs expressing CD101 protein (Table 1),

it is possible that this reduced expression of CD101, in turn,

leads to reduced potential to produce IL-10 and, thus, restrain

T cell activation and proliferation. Indeed, because our ex vivo

stimulation assays used whole PBMCs and, thus, included

DCs and other APC subsets that also express CD101, it is

possible that our findings of increased production of cytokines

by CD4+ andCD8+ T cells in individuals with CD101 variants (Fig-

ures 3 and 4) were due to alterations in DC function alone or

working in concert withmodifications in T cell activation because

of CD101 variants. In either case, this more proinflammatory
n circulating CD4+ and CD8+ T cells

viduals with no functional variants in CD101 or from 3 individuals with an Ig-like

d CD8+ T cells were sorted as CD3+CD8+, whereas conventional CD4+ T cells

5�.
ndicated groups. Genes were considered differentially expressed when false

ifferentially downregulated genes for each genotype category (Ig-like or cyto-
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environment supported by elevations in bystander inflammation

may contribute to increased HIV-1 infection risk as a counter-

point to the previously noted association of natural resistance

to HIV-1 infection with immune quiescence.1 However, addi-

tional testing of the immunosuppressive potential of DCs from in-

dividuals with and without CD101 variants is required to formally

test this prediction.

The importance of studyingCD101 variation as a risk factor for

bystander inflammation is underscored by the collective popula-

tion prevalence of these variants. Although rs12093834 itself is

present in less than 10% of Kenyans, we previously identified

at least three and possibly five or more variants in Kenyans in

the seven CD101 Ig-like domains that were associated with

risk for HIV-1 acquisition.2 In total, 20%–25% of East Africans

may retain one or more of these variants. Although we grouped

variants by structural location, the inflammatory effect of each

variant was distinct; this, alongwith the fact thatmany of the spe-

cific variants we analyzed here are not present in other ancestral

populations (e.g., rs12093834 is absent in Europeans), suggests

that the specific CD101 variants associated with proinflamma-

tory signatures may differ by population. Although our data sug-

gest a proinflammatory risk signature that could be helpful in

identifying variants that play a similar role in other populations,

rapid, high-throughput methods are needed to more readily

identify such variants. However, identification of an immunoge-

netic mechanism that directly connects bystander inflammation

with sexually transmitted HIV-1 also underscores a link between

HIV-1 acquisition and host inflammation that has been appreci-

ated since early in the HIV-1 pandemic.

In conclusion, our data support the hypothesis that host ge-

netic variants in CD101 confer increased T cell activation and

may mediate Treg cell dysfunction. Although there are currently

no known drugs that directly modify CD101 function, our data

raise the prospect that development of drugs that modulate spe-

cific CD101 functions could reduce inflammation and the risk of

infection by modifying the host rather than directly targeting the

pathogen. Furthermore, given the potential relationship of

CD101 function to autoimmunity, we speculate that an interven-

tion targeting CD101 function that is designed to increase im-

mune quiescence could benefit other diseaseswhere excess im-

mune activation or inflammation can be detrimental, such as

coronavirus disease 2019 (COVID-19), autoimmunity, or tissue

rejection. Although additional studies are required to identify

how gene variants in CD101 affect binding of this receptor to

its natural ligand as well as downstream signaling events, our

study provides insight into the potential mechanism whereby

CD101 variation may increase the risk of HIV-1 acquisition.

Limitations of the study
Our Treg cell depletion data suggest that Treg cells from individ-

uals with the identified functional CD101 variants exhibit more

limited suppressive activity of virally exposed CD4+ T cells. How-

ever, we were limited in our ability to directly demonstrate these

results using a more conventional suppression assay because of

finite numbers of available PBMCs. Additional studies should be

undertaken to directly assess Treg cell suppression capacity in

the setting of CD101 variants. Other approaches to corroborate

our observations, including identification of the CD101 ligand
12 Cell Reports Medicine 2, 100322, June 15, 2021
and dissection of potentially distinct functions of CD101 on

APCs versus T cells, will provide further clarity.
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CCR7 BV421 Biolegend G043H7; RRID:AB_11203894

CCR6 BV605 Biolegend G034E3; RRID:AB_2561449

HLA-DR BV711 Biolegend L243; RRID:AB_2562913

CXCR4 BUV395 BD 12G5; RRID:AB_2738490

CD3 BB515 BD HIT3a; RRID:AB_2744379

CD25 APC-R700 BD 2A3; RRID:AB_2870475

CD127 BV570 Biolegend A019D5; RRID:AB_2832685

IL-2 PE BD MQ1-17H12; RRID:AB_1727541

IFN-g V450 BD B27; RRID:AB_1645594

CD69 BV605 Biolegend FN50; RRID:AB_2562307

TNF-a BV711 Biolegend Mab11; RRID:AB_2562740

CD8a BUV395 BD RPA-T8; RRID:AB_2722501

CD14 BUV737 BD M5E2; RRID:AB_2870095)

CD3 eBioscience HIT3a; RRID:AB_468859

CD28 BD CD28.2; RRID:AB_396068

HLA-DR FITC BD TU36; RRID:AB_395942

CD1c BB700 BD F10/21A3; RRID:AB_2743468

CD16 APC-Cy7 Biolegend 3G8; RRID:AB_314217

CD11c PE Biolegend S-HCL-3; RRID:AB_2616899

CXCR4 PeCF594 BD 12G5; RRID:AB_11153132

CD123 PeCy5 BD 9F5; RRID:AB_394029

CD14 BV421 Biolegend HCD14; RRID:AB_2563296

CD3 BV605 Biolegend OKT3; RRID:AB_2561911

CD141 BV711 BD 1A4; RRID:AB_2738033

CD80 BV786 BD L307.4; RRID:AB_2738631

CD40 BUV395 BD 5C3; RRID:AB_2739110

CD20 BUV737 BD 2H7; RRID:AB_2687489

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Cryopreserved PBMC samples African

participants enrolled in the Partners in

Prevention HSV/HIV Transmission Study

and the Partners PrEP Study

University of Washington

repository; 23 and 24

Partners in Prevention HSV/HIV

Transmission Study (ClinicalTrials.gov

number, NCT00194519), the Couples

Observational Study, and the Partners PrEP

study (ClinicalTrials.gov number,

NCT00557245)

CD101 genomic data from African

participants enrolled in the Partners in

Prevention HSV/HIV Transmission Study

and the Partners PrEP Study

University of Washington

repository; 2, 23, and 24

Partners in Prevention HSV/HIV

Transmission Study (ClinicalTrials.gov

number, NCT00194519), the Couples

Observational Study, and the Partners PrEP

study (ClinicalTrials.gov number,

NCT00557245)

Chemicals, peptides, and recombinant proteins

Live/Dead Aqua Invitrogen L34957

Live/Dead Blue Invitrogen L34962

EBV Lysate East Coast Bio EV012

Critical commercial assays

SMART-Seq v4 Ultra Low Input RNA Kit Clontech Laboratories 635026

Nextera XT DNA Library Preparation Kit Illumina FC-131-1096

Deposited data

RNA sequencing data have been deposited

in the GEO repository

GEO Repository GSE152381

Software and algorithms

FlowJo Software BD V9.9.6

FAUST Algorithm 14 https://www.biorxiv.org/content/10.1101/

702118v2

Real Time Analysis v3.4.4 Software Illumina v3.4.4

bcl2fastq2 Conversion Software Illumina v2.20

R package Rfit 25–28 N/A

Bioconductor package GOseq v1.36 was

used to perform enrichment analysis on

differentially expressed genes against GO

Biological Processes

29 and GO_BP_DIRECT from

DAVID database; https://david.

ncifcrf.gov/home.jsp

N/A

The filtered expression matrix was

normalized by TMM method and subject to

significance testing using GLM LRT

method.

30 N/A

Bioconductor package edgeR 3.26.8 was

used to detect differential gene expression

between genotypes

31 N/A

FeatureCounts in Subread 1.6.5 was used

to quantify gene-level expression by

counting unstranded paired-end reads

32 N/A

FastQC 0.11.8 and RSeQC 3.0.0 were used

for QC including insert fragment size, read

quality, read duplication rates, gene body

coverage and read distribution over

different genomic regions

33 N/A

STAR v2.7.1 with 2-pass mapping was

used to align paired-end reads to human

genome build hg38 and GENCODE gene

annotation V31

34 N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to, and will be fulfilled by the lead contact, Jennifer

Lund (jlund@fredhutch.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA sequencing data have been deposited in the GEO repository (GSE152381).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population
The studies reported here utilized cryopreserved peripheral blood mononuclear cell (PBMC) samples, and CD101 genomic data from

African participants enrolled in the Partners in Prevention HSV/HIV Transmission Study23 and the Partners PrEP Study.24 Demographic

details are provided in Table S1. CD101 sequence data was generated through our prior study2 in which either whole genome

sequencing, or targeted re-sequencing of the CD101 exons, splice sites, and 30- and 50 untranslated regions was applied to samples

collected from N = 1329 individuals with quantified levels of HIV-1 exposure and known HIV-1 infection outcomes. Among these indi-

viduals we defined a case of CD101 Ig-like variation as a participant who was either homozygous or heterozygous for only one of the

three candidate CD101 Ig-like SNVs (rs12093834, rs17235773, or rs3754112). Cases of CD101 cytoplasmic variation were defined

as individuals homozygous or heterozygous for only one of two CD101 cytoplasmic SNVs (rs150494742 or rs34248572). Cases were

restricted to those individualswhohadonly the identifiedcandidatevariantwithnoother functional (i.e.,missense, splicesite,oruntrans-

lated region)CD101SNVs. Controls for this analysis were identified as individuals whoseCD101 sequence lacked any functional SNVs.

Study approval
We identified individuals for this study from HIV-1 serodiscordant couples recruited into three cohorts of African heterosexual HIV-1

serodiscordant couples: the Partners in Prevention HSV/HIV Transmission Study (ClinicalTrials.gov number, NCT00194519), the

Couples Observational Study, and the Partners PrEP study (ClinicalTrials.gov number, NCT00557245). Detailed procedures have

been reported elsewhere for each of these studies.23,24,35 All participants provided written informed consent for participation in

the clinical study, and samples for this study were drawn from those participants who provided additional consent for future research

on HIV including genotyping. Relevant study documents went through ethical review and approval by the following committees:

Ethics committees (local and national African study sites):

Kenya Medical Research Institute Ethics Committee;

Kenyatta National Hospital Ethics Committee;

Kilimanjaro Christian Medical College;

Moi University Ethics Committee;

Republic of Botswana Ministry of Health;

South Africa Medicines Control Council;

Uganda National Council for Science & Technology;

Uganda National AIDS Research Committee;

Uganda Virus Research Institute;

University of Witwatersrand Ethics Committee;

University of Cape Town Institutional Review Board

Ethics committees (site-affiliated international institutions):

Harvard School of Public Health;

Indiana University Institutional Review Board;

London School of Hygiene and Tropical Medicine;

United States Centers for Disease Control and Prevention;

University of California, San Francisco Institutional Review Board;

University of Washington Institutional Review Board

The University of Washington Institutional Review Board also was the institutional review

board for the UW coordinating center applications for all three studies.
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METHOD DETAILS

Phenotype analysis by flow cytometry
Cryopreserved PBMCs (N = 268) were maintained at �150�C according to guidelines established by the University of Washington

Repository, and transported to the laboratory on LN2 on the day of thaw. PBMCs were quickly thawed in complete media with

50 U/ml benzonase (Millipore, Burlington, MA). Thirty-three had viability less than 30% as determined by trypan blue staining and

were excluded from analysis leaving aliquots from N = 235 participants (Table 1). Cells were counted and stained for flow cytometry

(including panels designed to assess T cell activation and Tregs, monocytes, dendritic cells, and B cells) and collected on a BD FAC-

Symphony X50 for analysis. Antibodies and clones are described in Table S2. Data files were analyzed using FlowJo v9.9.6 (BD,

Franklin Lakes, NJ), and gating trees are available in Figures S2–S4. Researchers were blinded to CD101 variant identities

throughout.

FAUST analysis
We additionally analyzed our flow cytometry data using the recently-described unbiased clustering strategy, Full Annotation Using

Shaped-constrained Trees (FAUST) to reveal potentially unexplored cell phenotypes of importance.14 Briefly, FAUST was applied to

the three staining panels as follows: 1) live lymphocytes (identified by manual gating) within the T cell panel; 2) live CD3-CD20- cells

(identified by manual gating) within the DC/monocyte panel; and 3) live lymphocytes with a CD3+CD4+CD25+CD127lo phenotype

(identified by manual gating) within the Treg panel. After tuning, FAUST selected multiple markers within each panel for the discovery

and annotation of phenotypes (Table S4). FAUST phenotypes were tested for association to compare phenotypes among individuals

withCD101 variants versus no functional variants using a binomial generalized linearmixed-effectsmodel with a subject level random

effect. In each panel, the set of hypotheses generated by this procedure were jointly adjusted for multiple comparisons using Bon-

ferroni correction at p = 0.05.

Sorting and stimulation assays
For functional assays, a second cryopreserved aliquot of PBMCswas retained from 100 individuals (Table S1) selected as a subset of

those analyzed for cellular phenotypes. These were used to specifically assess the impact of CD101 variation on conventional T cell

and Treg functional responses. Since only�10%of HIV-1 exposed individualsmaintain peripheral blood T cells that are responsive to

HIV-1 peptides,36 we sought to evaluate Treg function by measuring a more prevalent antiviral response, namely CD4+ and CD8+

T cell response to Epstein-Barr Virus (EBV) lysate, which we expected to be present in most individuals included in our cohort. Cry-

opreserved PBMCs were thawed as above with individual aliquots sorted via BD FacsAria II into three groups: whole live PBMCs

(including APCs and all lymphocytes); whole live PBMCs depleted of Tregs (as defined by CD3+CD4+CD25+CD127lo); and isolated

live CD3+ cells (T cells). Recovered cells were washed, resuspended in complete media with brefeldin A (eBioscience, San Diego,

CA), and plated for stimulation. Average cell counts were as follows i) sorted whole live PBMCs: 3.35 X 105; ii) Treg depleted PBMCs:

4.95 X 105, and iii) CD3+ T cells: 2.15 X 105. Sorted whole live PBMCs and PBMCs depleted of Tregs were stimulated with i) 60 mg/ml

EBV lysate (East Coast Bio, North Berwick, ME); ii) 100 mM glycine (EBV diluent) control; iii) anti-CD3 and CD28; or iv) media control.

Sorted live CD3+ T cells were stimulated with i) anti-CD3 and CD28 or ii) media. All cells were incubated in stimulation cocktails for 6

hours at 37�C. Following stimulation, cells were washed and stained for cytokine production. Samples were acquired on a BD FAC-

Symphony X50 flow cytometer and analyzed using FlowJo v9.9.6 (BD, Franklin Lakes, NJ).

RNA-seq Expression Analysis
For RNA-sequencing studies, PBMCaliquots were selected from 3 individuals with no functional variants inCD101, from 3 individuals

homozygous for CD101 Ig-like variant rs12093834, and from 3 individuals heterozygous for CD101 cytoplasmic variant rs34248572.

Cryopreserved PBMCs were thawed as above, stained with CD3, CD4, CD25, CD127, and CD8, and sorted via BD FacsAria II into

two groups: CD8+ T cells (CD3+CD8+) and conventional CD4+ T cells (CD3+CD4+CD25-). Recovered cells were used for RNA isola-

tion by QIAGEN kit.

RNA-seq libraries were prepared from total RNA using the SMART-Seq v4 Ultra Low Input RNA Kit (Clontech Laboratories, Inc.,

Mountain View, CA, USA) and the Nextera XT DNA Library Preparation Kit (Illumina, Inc., San Diego, CA, USA). Library size distribu-

tion was validated using an Agilent 4200 TapeStation (Agilent Technologies, Santa Clara, CA, USA). Additional library QC, blending of

pooled indexed libraries, and cluster optimization was performed using Life Technologies’ Invitrogen Qubit� 2.0 Fluorometer (Life

Technologies-Invitrogen, Carlsbad, CA, USA). RNA-seq libraries were pooled (18-plex) and clustered onto one SP flow cell.

Sequencing was performed using an Illumina NovaSeq 6000 employing a paired-end, 50 base read length (PE50) sequencing strat-

egy. Image analysis and base calling was performed using Illumina’s Real Time Analysis v3.4.4 software, followed by ‘demultiplexing’

of indexed reads and generation of FASTQ files, using Illumina’s bcl2fastq2 Conversion Software v2.20 (https://support.illumina.

com/downloads/bcl2fastq-conversion-software-v2-20.html).

STAR v2.7.134 with 2-pass mapping was used to align paired-end reads to human genome build hg38 and GENCODE gene anno-

tation V31. FastQC 0.11.8 and RSeQC 3.0.033 were used for QC including insert fragment size, read quality, read duplication rates,

gene body coverage and read distribution over different genomic regions. FeatureCounts32 in Subread 1.6.5 was used to quantify

gene-level expression by counting unstranded paired-end reads. Bioconductor package edgeR 3.26.831 was used to detect
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differential gene expression between genotypes. Geneswith low expression were excluded by requiring at least one count permillion

in at least N samples (N is equal to the number of samples in the smallest genotype group). The filtered expressionmatrix was normal-

ized by TMM method30 and subject to significance testing using GLM LRT method. Genes were deemed differentially expressed if

FDRs were less than 0.05. Bioconductor package GOseq v1.3629 was used to perform enrichment analysis on differentially ex-

pressed genes against GO Biological Processes (GO_BP_DIRECT from DAVID database; https://david.ncifcrf.gov/home.jsp).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
Phenotype analysis

We used a two-sample t test to compare prevalence of specific PBMCs phenotypes. Individuals were sampled based previously

defined CD101 genotype categories: a) those with no functional CD101 variants [N = 117], b) individuals having one of the three

more prevalent CD101 Ig-like domain variants (rs12093834, or rs17235773, or rs3754112) [N = 85], or c) individuals having one of

the two more prevalent CD101 cytoplasmic domain variants (rs150494742 or rs34248572) [N = 33] (Table S1).

Functional analysis

After stimulation, we characterized the intracellular T cell cytokine responses in the presence or absence of Tregs using archived

PBMCs from individuals with rs12093834 (Ig-like variant, N = 42), with rs34248572 (cytoplasmic variant, N = 18), or with no variant

(N = 40). In the Treg depletion analyses we dropped data from individual assays for batches that showed no variation across individ-

uals tested with that assay. We used a nonparametric rank regression test for this data as the data had outliers and the median ap-

peared to be a better measure of the central tendency than the mean (R package Rfit).25–28 The ‘‘unadjusted’’ analyses had only one

predictor variable: variant (1 or 0, ig-like or none, cytoplasmic or none). The ‘‘adjusted’’ analyses were a multivariate analysis the

included batch, gender, and age as control variables.

We used a nominal p = 0.05 as the threshold for statistical significance. Those markers in the phenotypic analysis that satisfied a

Bonferroni correction for 100 comparisons are indicated in the text. We treated the functional analysis as a hypothesis generating

effort, and as such did not correct for multiple comparisons.We do indicate functional analysis values that pass Bonferroni correction

for 250 comparisons.
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