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Abstract

Background and aim: Routine surveillance is increasingly recognised as central to multi-dimensional malaria
control efforts, especially for programme planning and impact assessment. Whilst it is global strategy to transform
surveillance into a core programmatic component, essential in-depth interpretation of routine surveillance data
remains limited, especially in higher transmission settings. | therefore aimed to explore utility of indicators of
uncomplicated malaria burden from routine health facility surveillance data in identifying and mapping high-risk

areas for malaria in Uganda.

Methods and data sources: To examine routine surveillance indicators of malaria burden, | first evaluated internal
consistency between measures from three national reference health facilities, comparing incidence and test
positivity rates over time and space. In addition, | examined impacts of control interventions on the age associated
burden of malaria, stratified by endemicity and intervention. | then extended this to compare routine reporting
data with concurrent community cohort incidence estimates across three sub-counties to evaluate potential
sources of bias. Finally, using four years of national health management information system (HMIS)-reported
confirmed malaria data in a Bayesian autoregressive analytical framework, | explored the space-time distribution

of malaria, and estimated adjusted national and local HMIS-based incidence rates.

Primary findings: At the health facility level, HMIS-based incidence and test positivity rates showed similar trends
and predicable relationships, with reduced transmission associated with increasing age of test confirmed malaria
cases. Comparison of HMIS and cohort data suggested that HMIS data could provide a relatively unbiased proxy
for true incidence - especially in lower-transmission, better performing surveillance systems settings. Lastly,
space-time modelling of national HMIS data revealed high-burden and high-risk areas within health facility
catchments, districts, and regions, highlighting the utility of routine surveillance data in identifying

programmatically relevant heterogeneities in malaria burden in Uganda.

Conclusion: This thesis highlights the potential viability of routine data in evaluating endemic malaria risk with
improved routine HMIS. This is shown by: similar trends of HMIS-based incidence with other measures; its
unbiased relationship with community cohort incidence; and, its capacity to identify high case rate locations. To
realize the potential of these data, coordinated efforts are needed towards high testing rates, complete and timely
recording and reporting, and multilevel feedback within national malaria control programme systems. Further
research opportunities include treatment or non-care seeking and non-reporting care alternatives impacts on

surveillance-based indicators of malaria burden.
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1 Background and Introduction

1.1 Background

Malaria remains a significant global public health challenge with sub-Saharan Africa and South East Asia as epi-
centres of the burden [1]. Global malaria control efforts are multi-dimensional and include: vector control,
effective malaria case management, vaccine development, preventive therapies, and above all, stakeholder

commitments [2, 3].

The WHO Global Technical Strategy for Malaria 2016-2030 aims to reduce incidence of malaria by at least 90%,
particularly by urging affected countries to make the most of available control tools and strategies [4]. Further, in
view of United Nations’ third sustainable development goal that seeks to ensure healthy lives and promote well-
being for all at all ages, one key target is to end the malaria epidemic by 2030 [5]. These targets were heavily
influenced by evidence of significant declines over the first 15 years of the 21 century and on this basis,
milestones were set to reduce case incidence by 40% and 75% by 2020 and 2025, respectively [3, 4].
Unfortunately, however, malaria burden declines have stalled since 2016 due to global or context specific causes
[6, 7]. Two of the identified possible causes that especially affect sub-Saharan Africa are: substandard performance
of health systems and weak surveillance, monitoring and evaluation with which capacity to identify program

coverage gaps or disease burden changes is diminished [4]. This thesis addresses the latter.

With strong evidence of the effectiveness of available control tools [8], to meet global targets, interventions need
to be prioritised to target areas of greatest need, aided by strategic transformation of surveillance into a core
intervention [4]. Routine health management information systems (HMIS) data is uniquely placed for this, given:
its central place in surveillance, its spatial scalability, and longitudinal dimension. Notably, however, several
studies have suggested these data to be imperfect and of limited utility [9-11]. This ongoing perception unwittingly
hinders the ability of malaria control programmes to use routine health systems data for effective resource
allocation or timely intervention impact evaluations. Whilst efforts have been undertaken to improve the most
notable drawbacks, especially accessibility, timeliness, and completeness [12-14], estimates of burden from these
data are not fully understood [15] and as such, neither have the prevailing perceptions been improved nor its

likely utility been widely investigated.

This thesis, therefore, focuses on exploring the utility of indicators of uncomplicated malaria burden from
routinely collected health facility data, using the high-burden example of Uganda. In this chapter, | provide an
initial background literature review describing the epidemiological and public health situation of malaria in
Uganda, as well as details on current diagnostics and control strategies for malaria. | then summarise the
distribution of malaria in Uganda and provide a critique of contemporary mapping approaches applied at global,
regional, and sub-national scales. Lastly, | provide an overview of how maps have historically been used in Uganda

towards policy guidance and decision making for malaria control, in relation to other countries in the region.
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1.2 Introduction to malaria

1.2.1 Global burden of malaria

Malaria is transmitted by female anopheline vectors carrying any of the four main Plasmodium parasite species
known to infect humans - P. falciparum, P. vivax, P. malariae, and P. ovale [16]. Notably, however, two of these
parasite species i.e. P. falciparum and P. vivax are responsible for the majority of global infections [3, 16]. While
these main parasite species are largely territorial, with P. falciparum predominating Africa and P. vivax East Asia,
mixed infections involving the two or one of these together with other less notable species are also common
across all endemic settings [3]. In 2018, 228 million malaria cases were estimated globally, 93% of these from
Africa alone [3]. Moreover, an estimated 405,000 fatalities from malaria were also reported globally, 94% of which

were from Africa, and 67% of the global total being among children under 5 years of age [3].

1.2.2 Epidemiology of malaria

Malaria transmission involves four vital contexts including: the host, which is primarily humans; the parasite of
which there are several species; the vector, which is the mosquito and there are many species of these; as well as
the environment within which all the first three exist. Factors that influence any of the four contexts may impact
the rate of transmission of malaria either independently or collectively, both favourably and otherwise. Successful
transmission involves all four contexts as follows. As illustrated in Figure 1, once a healthy vector, female
anopheline, takes a blood meal from a human and picks up gametocytes in that meal, gametocytes undergo
transformation within the vector from micro to macrogametes which in turn are transformed to the zygote and
then ookinete that penetrate the midgut of the vector [17]. Within the vector’s midgut, the ookinete is
transformed to oocysts which develop and burst into the salivary gland to produce sporozoites [18]. With a
sporozoite ready vector, a blood meal from a host is potentially infective of the host, which marks the start of the
parasite life cycle within the human host. Once sporozoites sufficiently circulate within the host’s blood, they are
transported to the liver where they develop into schizonts that later produce merozoites that are then introduced
back into the blood from the liver [19]. Merozoites attack the host’s red blood cells (RBCs) in order to reproduce
and then attack more RBCs though some merozoites develop into gametocytes that are known as the sexual stage
of the parasite. Once gametocytes are ingested by a viable vector, the cycle starts all over again within the vector

and continues the process of malaria transmission.
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Figure 1. Malaria parasite life cycle

Image obtained from the Johns Hopkins School of Public Health at http://ocw.jhsph.edu. Creative Commons BY-

NC-SA.

Environmental factors play a significant role particularly in supporting vector abundance and capacity [20, 21]. For
instance, rainfall in appropriate amounts and locations may enable the availability of vector breeding sites and
thereby foster vector density. On the other hand, temperature when conducive facilitates vector development,
adult survival and immunity, as well as parasite development within vector candidates (conducive within the range
of 16 to 35°C), thereby facilitating a competent vector for continued transmission [18]. Whilst rainfall,
temperature and humidity tend to have a direct influence, other factors such as vegetation, urbanization, altitude,
land use and cover may have secondary influence on vectors and vector capacity through their influence on direct
factors and facilitating vector-host contact [22]. Given the variability of environmental factors across space and
time, the unlimited interplay between multiple environmental factors facilitates and supports diversity in vector,

vector habitat and behaviour, which may influence heterogeneity of malaria transmission and risk [23].

Together, these factors influence the distribution of malaria burden through a non-linear interaction between:
environmental suitability for vector abundance and competence; host susceptibility to virulent parasites as well
as host infectivity to vectors; population-level control activities and subsequent adherence to these control
strategies; community population distribution; and, availability of, or accessibility to healthcare services and
adequacy of case management commodities. These are augmented by the implementation of systems to collect
timely, high quality and accessible routine data in synthesizable formats to support informed onward control
decisions.
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1.2.3 Detection and Diagnosis of malaria

Malaria diagnosis in endemic settings has undergone massive transformation over the years. For very long,
diagnosis of malaria was performed presumptively especially among children [24]. However, this approach was
increasingly associated with over-treatment of fever as malaria in many countries, including Uganda, due to the
non-specific nature of malaria related symptoms (particularly fever) that are often caused by myriad other
conditions [25]. Moreover, parasite resistance to antimalarials, particularly involving the fairly cheap and
previously highly effective drug Chloroquine, globally [26] and in Uganda [27], showed that trends in over-
treatment of fevers as malaria with newer antimalarials — ACTs, were a threat to the longevity of the high efficacy
of these much more tolerable drugs [28]. To this effect, global recommendations were made for the use of
diagnostic confirmation prior to treatment [29]. These facilitated the scale-up of research into diagnostic methods,

aimed at overcoming shortcomings in the pre-existing testing method of microscopy.

Whilst detection of malaria parasites had been possible for hundreds of years using blood slide microscopy, the
method is demanding, particularly for low resource settings. This gold-standard method requires a microscope,
electric power supply, slides, reagents, and importantly a skilled technician. With several of these requirements
being in short supply across the highest endemicity regions, diagnostic confirmation of malaria to scale using this
method was unattainable. Moreover, other molecular methods in existence such as polymerase chain reaction
(PCR), loop mediated isothermal amplification (LAMP), flow cytometry, and mass spectrometry, though highly
sensitive are far more expensive and therefore, not among feasible alternatives within clinical practice in these
settings [25]. Newer approaches involving rapid diagnostic methods of detecting malaria antigens were developed
and introduced. The four major categories of the rapid diagnostic tests for malaria (mRDTs) developed included:
P. falciparum specific histidine-rich protein 2 (HRP2); parasite lactate dehydrogenase (pLDH) that could be
produced for each of the four main parasite species, given that each has a distinct isomer of this enzyme;
Plasmodium aldolase, another that covers all the parasite species; and, another antigen specific to P. vivax that
has been used in combination tests for P. falciparum and P. vivax [30]. The ease of use of mRDTs even among
remote facilities and community health workers [31] has facilitated largescale implementation of the test and
treat global approach [29], that was later revised to the test, treat, and track policy for improved surveillance and

care or case management [32].

Until 2007 when mRDTs were introduced in Uganda, diagnostic testing for malaria depended on microscopy,
particularly among adults in hospitals and high-level health facilities, where laboratory services were functional
[33]. Among children under 5 years of age when febrile, presumptive diagnosis was highly encouraged and
functional laboratory services availability among lower level facilities was estimated at only 30% by 2009 [34].
National policy adoption of parasitological diagnosis using either microscopy or mRDT, was instituted in 2011 [35].
Consistent with policy, the national 2010-2015 malaria strategic plan set a target of 90% parasitological diagnostic

performance by 2015, and the country had attained 59% in a 2013 assessment [36]. Notably, however,
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performance reached 85% later on in 2018/2019 [37], suggesting very slow adoption of the national ‘test and
treat’ policy for management of suspected cases, regardless of age of patient or level and/or ownership of health
facility [38]. Additionally, interrupted commodity (drugs and diagnostic testing materials) distribution, disregard
of negative test results in the diagnosis of malaria, and insufficient support supervision still remain very concerning
for progress [36, 37]. However, poor mRDT performance due to Pf-HRP2/Pf-HRP3 gene deletions has also been
reported in the region, particularly given that Pf-HRP2-based mRDTs are the recommended test kits in Uganda
and these deletions lead to true cases turning out as false negatives [39-41]. The increasing use of mRDTs

therefore, may be associated with large-scale reduced sensitivity of diagnostic confirmation of malaria cases.

The increased availability and accessibility of parasitological diagnostic testing has facilitated improved capacity
to assess malaria burden from routine HMIS data with more reliable indicator accuracy. Whilst there are several
derivate indicators of malaria burden in use, how they relate each with the other remains unclear. Moreover, very
few studies have evaluated the effectiveness, utility, or relationships among HMIS-based indicators of malaria
burden pairs or between these and indicators from other data sources. One study examined the relationship
between current and lagged monthly HMIS-based incidence estimates to explore HMIS capacity for malaria
burden forecasting in Burundi’s regions with seasonal endemicity, using environmental covariates. Though it
included seven years (1997-2003) of routine data and found a strong association between monthly incidence and
maximum temperature in the previous month’s estimates, the study could only define incidence using
predominantly presumptive malaria cases, limiting the reliability of incidence rate estimates used [42]. Another
study compared health centre and community survey metrics including Plasmodium falciparum (P.f.) parasite and
gametocytes prevalence as well as seroprevalence among others, between wet and dry seasons in The Gambia.
They reported stronger correlation between facility and community parasite prevalence estimates in the wet than
dry seasons and noted versatility of and greater ease in collecting health facility than community survey data.
Importantly, study sites were spread across the Gambia from coast to hinterland and paired on opposite sides of
the national main river, providing good coverage of spatial diversity [43]. Yet another study described a weak link
between relative changes in slide positivity and incidence rates over time, from a four-year cohort of children in
Kampala - central Uganda. Though conducted at one site, the study straddled a duration of drastic changes in
malaria burden having reported significant declines in incidence of malaria from 0.93 to 0.39 episodes per person
per year from 2005 to 2009, respectively (p<0.001), therefore providing a good setting to understand temporal
changes in the metrics compared. Besides not being HMIS-based, however, this study reported an indeterminate
relationship between slide positivity and incidence rates - simply describing it as “neither linear nor proportional”
[44]. However, another study conducted at one site in Western Uganda revealed a non-linear temporal
relationship between test positivity rate (TPR) and HMIS-based incidence at a six-monthly temporal scale.
Importantly, this was the first description of this non-linear relationship, best explained by an exponential function

(compared to many other models fits) where correlation between the two indicators was stronger at higher
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transmission levels [45]. These few studies available underscore the dearth of knowledge of the indicators of

malaria burden derived from HMIS data though in wide use.

1.2.4 Malaria control strategies

Vector control has primarily involved the use of long-lasting insecticidal nets (LLINs), indoor residual spraying with
insecticide (IRS), and larval stage management (including larvicide use or habitat modification) [46]. Owing to
excessive parasite resistance to chloroquine that was widely used through the 1990’s, global policy on malaria
case management transitioned to other antimalarial monotherapies and then rapidly on to combination
therapies, following quick failure of the monotherapies [29]. As regards chemoprevention, however, vaccine trials
are in early stages in a few places like Ghana, Kenya and Malawi [46]; preventive therapies including mass drug
administration (MDA) to reduce the parasite reservoir in the community [29, 47] and intermittent preventive
treatment during pregnancy (IPTp) to address adverse birth outcomes due to malaria in both mother and new-
borns [48] are in use. Importantly also, stakeholder commitments and global initiatives have been instrumental in
achieving these multi-dimensional control efforts so far. These initiatives have included first, the global eradication
of malaria initiative of the 1950’s whose biggest success in Africa may have been the wide-scale availability of
chloroquine, an effective antimalarial that was associated with reduced malaria mortality in Africa [49]. Others
have included the Garki project, Roll back malaria, millennium - and later sustainable - development goals with
health at the centre, and the WHQO’s “high burden to high impact” initiative [2, 50]. Each of these either have been

or continue to be informed by available data, including surveillance data.

In Uganda, malaria is perennial and endemic in over 95% of the country, given prevalence of a diverse and versatile
composition of competent vectors [51]. The main vector species in the country are Anopheles gambiea and A.
funestus with some A. arabiensis [52-54] and predominant vector control methods have included LLINs in
universal distribution campaigns and IRS in selected districts [55]. These have been consolidated by effective case
management using artemisinin-based combination therapy (ACT) as first line treatment since 2004 [56, 57], on
top of IPTp using Sulphadoxine pyrimethamine (SP) since 2001 [58]. While malaria risk remains high and
widespread across the country, Uganda has reported considerable declines in malaria burden over time due to
these interventions. For instance, national prevalence estimates declined from 42% during the Malaria Indictor
Survey (MIS) of 2009 [59] to 9.1% from the most recent survey of 2018 (Figure 2), consistent with global and

regional reported downward trends.
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Figure 2. Parasite prevalence by microscopy among children 0-59 months of age based on the 2009, 2014 and
2018 Malaria indicator surveys.

The 2009 MIS was the first national malaria indicator survey conducted in Uganda covering ten defined regions of
the country. Results showed that prevalence of malaria parasitaemia by microscopy among children under five
years of age ranged from 5 to 63% in Kampala and Mid-Northern regions, respectively [59]. The 2014 MIS
suggested a reduction in the prevalence of malaria parasitaemia in the same age group ranging from <1 to 37%

in Kampala and East Central regions, respectively [60].

The 2018 MIS (third and most recent survey) covered 15 regions and recorded further declines in the prevalence of
malaria parasitaemia, ranging from <1 in Kampala and Kigezi to 34% in Karamoja [61]. There was a marked decline
in national parasite prevalence by microscopy from 42 to 19% for 2009 to 2014-15, respectively and then down to

9% during 2018-19.

Overall, whilst regional boundaries changed over time, reduction was still evident across all regions. For instance,
prevalence of malaria parasitaemia reduced in Kampala from 5 to <1% and in the mid-northern region from 63%

to a regional average of 13% between 2009 and 2018, respectively.

By WHO reports, Uganda ranked 3™ largest contributor of cases and 7™ of malaria related deaths by 2018 [3],
down from 4™ in terms of number of malaria cases and 11t in terms of number of malaria related deaths by 2015

and 2016 [62, 63]. Nevertheless, national HMIS-based reports have documented declines in incidence of
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confirmed cases down to 14 cases per 1000 population per year, in 2018/19 compared to 478 cases per 1000 in

2015/16 [37].

1.3 Understanding the distribution of malaria in Uganda

Geographical representation of the distribution of disease burden and/or risk is critical in understanding and
designing plans of action to minimise public health disease impact. Our understanding of the geographical
distribution of malaria in Uganda has been informed by various sources of data. Historically, these included data
from small available studies across the country coupled with expert opinion, which served a purpose in the
absence of robust national datasets to generate more representative maps [64]. These could only provide a
general overview of the distribution of malaria with very limited capacity to inform targeted control and therefore,
hardly put to known extensive use. More recently, data from large malaria indicator surveys (such as the 2009,
2014-15, and 2018-19 rounds) have been utilised for mapping the distribution of malaria, forming the primary
basis for geographical burden reference. These, however, may only reliably inform the coverage of previously
implemented interventions, treatment seeking practices among one high-risk group of children under five years
of age, and provide some indication of general malaria endemicity strata by region [61]. This limitation is
determined by the cluster-level sampling design (based on 10 to 15 regions of the country) of these infrequent

surveys, implying that results are principally limited to regional summaries, less helpful for local onward planning.

For on-going control activities within the Ministry of Health (MoH), HMIS was instituted with the objectives of
supporting evidence-based decision making, setting performance targets, and assessing health sector
performance [65, 66]. Data summaries in the form of trend plots and other dashboard summary outputs are
assessed within the district health information system (DHIS-2) framework, that provides the necessary data [14].
These are supplemented by reports and information from development partners and stakeholders such as: the
World Health Organization, the United States’ Centres for Disease Control/President’s Malaria Initiative
(CDC/PMI) [67], the Uganda malaria surveillance project (UMSP) conducting sentinel surveillance and providing
regular reports [68] and the USAID’s malaria action program for districts (MAPD) operational across a network of
districts through the convergence of a variety of expertise in Uganda to support MoH efforts in control and

diagnosis of malaria [69], among others.

The extensive focus on regional or district level assessments, coupled with reported disconnect between survey-
based and on-going HMIS reports [70, 71] indicates that presently, malaria control managers are without a reliable
source of fine-scale information. Consequently, the potential for important timely assessment of the spatial
distribution of malaria burden, using HMIS data, remains unappreciated, and opportunities for improved decision

making are missed.
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1.3.1 The use of maps in policy and decision-making

Historical use of malaria risk maps in Uganda is limited. Figure 3 below, for instance, was used for nearly a decade
in official malaria policy reports in Uganda, including multiple national malaria strategy documents [55, 72]. The
map (Figure 3) would have been generated in the early 2000’s from available data at the time. It was first used in
the 2005-2009 Malaria Strategic Plan by Ministry of Health referring to it as “most recent one based on available

data” [57, 72].

[ Very high (prevalence >60%;EIR >100/year)

0 Medium- high (prevalence 40-60%:; EIR 11-100/year)
I Low (prevalence 10-40%; EIR 1-10/year)

] Very low or no malaria (prevalence <10%; EIR <1/year)

Figure 3. Risk map used between 2005 and 2014 — adapted from Talisuna et al. [64]

This malaria risk map was generated using data availed from small studies, two of which were: (1) A drug efficacy
study under the East African Network for Monitoring Antimalarial Treatment (EANMAT) conducted in seven
locations including: Arua, Apac, Tororo, Mubende, Kabarole, Rukungiri and Jinja [73]. This study involved surveys
conducted between September and December 1999. (2) An entomological study that included the same EANMAT
sites, where 11 entomological surveys involving mosquito collections by human landing collection method, was
conducted between June 2001 and May 2002 [53]. Together with these data, other historical data from the 1960’s

were also used to inform the final output [64].

Subsequent risk maps used in MoH documents (Figure 4), however, were generated via geo-statistical models

with mean population adjusted Plasmodium falciparum parasite rates, among children aged 2 to 10 years old from

Page 24 of 267



surveys conducted between 2000 and 2010 across the country, together with a selection of climatic metrics as
explanatory variables [72]. The role of age in malaria transmission is highlighted here as being strongly associated
with parasite rates, attributable to acquired immunity [74, 75] due to manifold exposure. This approach of using
an age standardizing algorithm to control the effect of varied age ranges on detectable infection rates in a
particular age-range, is classical with risk mapping across the endemic world [74, 76], and is applied to both P.

falciparum and P. vivax wherever they predominate [77, 78].
A: Prevalence 2000 B: Prevalence 2010

Legend

<1%

1% to <5%
P 5% to 10%
I - 10% to 50%
B -50% to <75%
I 75% to 100%

Not predicted

Water

Figure 4. Malaria map in use by the Ministry of Health between 2014 and 2017, in multiple policy reports of

malaria risk representation in Uganda

While use and inclusion of malaria risk maps in official MoH documentation is increasing, maps in previous use
were seldom updated with a single risk map used across multiple years [72]. Moreover, these recent malaria risk
maps at these district spatial scales [79, 80] have been recognised as difficult to use for intervention
implementation, potentially due to masking of important fine-scale heterogeneity and thus undermining effective

response action [64].

However, progress in using routine data for risk maps is evident in the MoH’s national annual report of 2017/18
(Figure 5), which included HMIS-based incidence figures presented for comparative year-to-year progress [37].
Furthermore, the soon to be launched national Malaria strategic plan 2021 — 2025 for Uganda has proposed a
shift of focus from universal to targeted implementation of control interventions under the ‘High Burden to High
Impact’ initiative. Importantly, the included new map of district-level malaria incidence from 2019 routine
reported data was cited as a key input in this decision process. Here, districts were stratified by specific
combinations of control tools for intervention, in response to WHO advice in the national bid for malaria funding,
“to use strategic information to drive impact” (Figure 6) [81]. This provides an indication of recent utility of malaria

burden maps for decision support in Uganda.
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Figure 5. Map of malaria incidence rates in Uganda in use by 2017/18 from the first national annual malaria

report.

Cases per 1000

Figure 6. Malaria incidence rates by district as estimated from 2019 routine reported data.

This map provided some evidence of the distribution of malaria burden by district across the country, which was
reported as vital to the determination of district strata for targeted intervention approaches. These interventions
are intended for implementation during the 2021-2025 national malaria control strategies for Uganda supported

by Global Fund, among others.

Though challenging to evaluate fully, particularly for day-to-day activities, the use of risk maps for decision support
in Uganda may be otherwise demonstrated by the inclusion of these maps in national health reports and may also
suggest an increasing appreciation of geo-spatial output for malaria control in Uganda. However, for their viability

as an important tool for surveillance support, risk maps remain heavily underutilised.
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1.4 Contemporary mapping approaches
Population-based prevalence surveys: Maps of malaria risk support decision-making for control and intervention,

especially concerning geographical scope and feasibility. Typically, these maps are developed using population-
based surveys due to their simple and rapid representation of disease prevalence [82, 83]. Whilst these survey-
based estimates of burden are only generalizable to regional scales, often among very large regions [84], geo-
spatial modelling approaches have been developed and used to improve inference at finer spatial scales. In this
process, parasite rates are utilised together with environmental predictors (explanatory variables) in statistical
models that predict disease burden estimates associated with geographical variability, known as geo-statistical
models. From these models, parasite rates and other associated indicators are interpolated at un-sampled
locations, and often output as map surfaces or images. Explanatory variables can include rainfall, vapour pressure
or humidity, temperature, vegetation amounts, land use or land cover, land surface moisture, elevation, and their

derivatives [85, 86].

Using a comprehensive collection of survey data spanning decades, through formal and grey literature databases
and contacts with research scientists and officials globally, global malaria burden maps have been generated using
multiple derivative indicators within the malaria atlas project (MAP) [83]. These maps have provided valuable
information especially for global endemicity stratification overview and distribution of parasite specific burden,
which have aided large-scale intervention planning. A notable milestone of this work, for instance, was the
identification of regions where liver-stage infection clearing anti-malarial drugs like primaquine would be
beneficial or harmful due to prevalence of the Duffy negative blood group phenotype [87]. Whilst this blood group
variant largely confers protection against P. vivax infections where prevalence of the phenotype is high, individuals
are not totally immune to vivax infections that are characterised by relapses of malaria due to uncleared infections
in the liver [88, 89]. lll-advised treatment of these infections with this effective drug for liver stage parasite
clearance poses a risk among individuals with this blood group variant. The analyses showing spatial distribution
of this blood group variant, therefore, have been important in the design and implementation of region-
appropriate policies. These approaches have also been adopted in the Mapping Malaria Risk in Africa (MARA)
project, which implemented geostatistical models to generate point prevalence-based risk maps for the sub-
Saharan African region and provided survey data from across the region for similar studies [86, 90]. However,
limitations of geostatistical outputs, such as these, include: infrequency and sparsity of surveys —for instance only
eight countries provided 100 or more survey sites and a large majority of countries far fewer than 50; large
differences in timing and seasonality of the surveys; varied age of participants; design, size and generalizability of
surveys included; and, potential underrepresentation of specific parasite species surveys by region — for instance,

very few P. vivax-specific surveys in Africa or P. falciparum-specific surveys in South East Asia were included [82].

Whilst geostatistical approaches were historically computationally intensive for high precision of modelled

estimates, particularly with Markov Chain Monte Carlo simulations for Bayesian inference, increasingly, a more
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summarized and computationally efficient approach in integrated nested Laplace approximation (INLA) for
Bayesian inference has been adopted [91]. Besides lingering computational demands, however, the capacity to
incorporate maximum likelihood, prior information [92], and the neighbourhood structure through conditional
autoregression [93-95] for model estimates has not only facilitated identification of important environmental
factors for malaria risk assessment such as rainfall, temperature, and vegetation, but also the credible
presentation of geographical patterns of malaria risk from both survey data [92, 96, 97] and routine HMIS data

[98-101] across endemic settings for varied ages.

Additional robust but less common methods used with routine data for risk prediction include: (a) Plotting annual
parasite rates from routine reported data at as low spatial resolution as village-level in one district of Sri Lanka
between 1991 to 1998 [102]. (b) Generalised linear models (GLM) to predict the effects of environmental
predictors in Burundi using province-level monthly estimates of incidence from routinely reported malaria cases
between 1996 and 2007 [103]. (c) generalised additive mixed models (GAMM) that provide improved model
fitting, with similar results to, though more complex than GLM output, that is demanding to interpret [103].
Despite agreement between these two models, results also indicated that variables other than climate are also
very important and should be accounted for. (d) Using the same routine data from Burundi, geo-additive mixed
models suggested an improvement on GAMM owing to inclusion of more explicit spatial effects — both correlated
and un-correlated at provincial level [104]. (e) Seasonal autoregressive integrated moving average models were
used to forecast incidence using key environmental factors, particularly rainfall in Eritrea using monthly incidence

estimates from routine data between 2012 and 2016, with recommendations for small area assessments [105].

1.4.1 Mapping malaria burden using routine data

Despite the recent embrace of routine data for generating risk maps in Uganda, there is recent but rather sparse
precedent of use of this approach in the region. For instance, a report from Rwanda showed maps of malaria
positivity rates as well as incidence for 2010 and 2011 as shown in Figures 7 and 8, respectively [106], and one

from Mozambique showed reported inpatient incidence of malaria over the 2010-2012 duration (Figure 9) [107].
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Figure 7. Map of Rwanda malaria burden using test positivity rates for 2010 from PMI evaluation report of
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Figure 8. Map of Rwanda malaria burden using incidence rates by district for 2010 and 2011 from the PMI

evaluation report of 2016
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Figure 9. Map of malaria inpatient incidence rates for Mozambique by district for 2010, 2011, and 2012 from

the PMI evaluation report of 2016

Unsurprising with minimal utility of HMIS for risk mapping, HMIS-based risk maps have only previously been
compared with robust survey-based approaches in very few studies. One study from Malawi investigated the
importance of climatic, geographic, and socio-economic determinants of malaria between July-2004 and June-
2011 and reported one such methodological comparison [108]. HMIS-based “standardised morbidity ratio (SMR)”
of malaria and prevalence from the malaria atlas project (MAP) were compared by visual examination of a map
from each. Whilst the spatial distribution of SMR from this study largely reflected the prevalence distribution from
MAP for children under 5 years of age, the stark differences found between the two for those 5 years and older
may be due to additional effects of age on malaria transmission. These effects potentially remain unexplained
and/or unaccounted for in the current survey-based models of burden estimates heavily reliant on data collected
primarily from children under 5 years of age [109]. Finding one study that evaluated use of routinely collected
data for risk mapping, against more established mapping methods, points to a knowledge gap in fitness-of-
purpose of routine data, as a potential low-cost alternative for malaria risk assessment to support optimal

resource use.

Regardless of the data used, however, for any spatial temporal distribution of malaria identified to be beneficial,
it may need to address some important questions as proposed by Carter et al. These include: “1) Is it operationally
possible to reliably distinguish spatial clusters with markedly different malaria case incidence and to determine
the locations and extents of all the foci of malaria transmission in a locality? 2) If achieved, can the information be

exploited in order to conduct highly effective malaria control by the accurate targeting of an intervention? 3) What
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tools for control could be more effective using the generated spatial information? 4) In which situations of
endemic malaria is targeting practical and effective and in which is it not?” [110]. To aid disease burden monitoring
and control intervention implementation and/or targeting, however, if well understood HMIS data may be a great
choice to facilitate assessments that address most of these questions. In the following section therefore, | provide
a detailed discussion of HMIS data available in Uganda including the indicators reported, strengths and

weaknesses, and its use for impact assessment.

1.5 Routine surveillance and HMIS

1.5.1 Routine reporting of malaria indicators

The WHO has defined routine surveillance as continuous, systematic collection, analysis and interpretation of
health-related data for planning, implementation, and evaluation of public health practice [111]. Identified
benefits of surveillance include: serving as an early warning system for impending public health emergencies;
documentation of impact of intervention, or tracking progress towards specified goals; and, monitoring and
clarifying the epidemiology of health problems, to allow priorities to be set and thereby inform public health policy

and strategies [111].

Regularly submitted reports to the Ministry of Health that contribute towards malaria routine surveillance
emanate from sources such as: implementers of health-related activities like LLIN distribution campaigns;
supervision activities conducted by national malaria control programme (NMCP) managers; and, disease
surveillance reports from health facilities, all using standardised report formats [112]. Disease surveillance
through health facilities in Uganda includes several key activities. First, integrated disease surveillance and
response (IDSR), in which data on cases and deaths are reported on a weekly basis to facilitate epidemic detection
and/or preparedness [36, 113]. Second, sentinel surveillance programme whose primary objective is to monitor
trends using test positivity rates as a key indicator, along with increasing diagnostic testing [68]. Third,
demographic surveillance sites (DSS) that include two selected communities for monitoring defined populations
on demographic metrics such as births, deaths and migration [114]. Fourth, pharmacovigilance, although this has
largely been out of operation [36]. Lastly, outpatient department (OPD) monthly reporting on malaria cases
through HMIS form 105 that is central to this research, where malaria reporting primary includes: total monthly
reported and confirmed cases, and number of suspected malaria cases tested either by microscopy or mRDT, all

categorised into pre-determined age-groups [112].

Whilst there is evidence of use of HMIS data in spatial modelling to identify high burden locations [101, 115] and
HMIS data forms the basis of national day-to-day decision making in Uganda, it has not been adopted for national
risk mapping, particularly with small area approaches as described above. When considering its utility, it is

important to understand both the opportunities and challenges this data source provides.
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1.5.2 Contextual framework, Opportunities and Challenges of routine HMIS data
Optimal utility of HMIS data not only requires the identification and harnessing of its strengths as well as
identification and mitigation of its weaknesses but also full understanding of contextual factors influencing the

records within the HMIS.

Concerning the contextual factors, HMIS records may be assumed to be influenced at three main levels. These
levels interact in a predominantly hierarchical flow, though upward influences may also exist. They include: the
political system, health system, and community levels. Perceived relationships between these levels of influence,

as identified for this study, are presented in a summarised conceptual framework below (Figure 10).

Political system

Community

Health system

Health facility &
—p
health worker

ient

Health Record

Figure 10. Summary of proposed conceptual framework defining HMIS records.

Community

The major sources of influence that may affect or determine what gets recorded in the OPD or other HMIS registers
are broadly categorised into three sources of important factors including: the political, governance, and health
financing; health facility, health worker, or localised health system; community or catchment served by the

immediate health facility, and, the patients visiting a given health facility.

Additionally, the factors that may determine quality of records at the health facility, which are the basic building

blocks of HMIS data, are briefly described below under each of the identified levels of the contextual framework.
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The political system (highest level) is characterised by the political environment, healthcare policy, and health
financing factors and has overarching influences defining the working environment of the health facilities within
the health system. These determine the available services or resources at a given hospital and play a key role in
its functionality. At community level, influential factors may be due to the transmission setting, occupational
culture within the community, health seeking and community culture surrounding health care that may impact
on individual decisions, geographical attributes, and general community context. Proximal to the records, from
the community are individual patients that may also directly influence the data recorded, based either on their
perceived importance to providing good information to the health workers or their state of illness when they
visited. Also, proximal to the records is the health system level that may influence patient, health worker, and the
health facility itself. Heywood and Boone classified three levels of influence on health records characterised by
demand for and benefit from use of good health records [116]. These include: the beneficiary-level, involving
clinicians that need data to follow up patients and monitor their improvement; facility-level, where managers
need data for infrastructure and resource improvement; and system-level, where district and national leaders
need data to monitor and plan for services delivery. However, these seem to downplay the role of the community

which may influence records through community narratives on the available health system, among others.

Collective understanding of (1) the contextual factors influencing HMIS records that need consideration, (2)
available opportunities within HMIS data to be harnessed, and (3) prevailing challenges in HMIS to be mitigated,
is central to both HMIS improvement efforts and accurate interpretation of indicators of burden derived. This is
important for full implementation of the global strategy of transforming surveillance into a core intervention and

the ultimate realization of global 2030 malaria targets.

Below, | provide a more detailed breakdown of the opportunities and challenges of routine HMIS data, specifically

for malaria surveillance. The opportunities include:

e Scalable temporal and spatial resolution: Compared to many other sources of malaria case data, HMIS
provides unmatched temporal coverage for multiple purposes. For instance, the Uganda NMCP conducts
integrated disease surveillance and response (IDSR) using weekly reports to assesses disease epidemics and
routine surveillance using monthly OPD HMIS reporting to monitor general trends [36]. However, for any
practical purposes, temporal assessments are possible from daily to multi-year scales in HMIS unlike any other
study design. Considering spatial scales, HMIS affords both national and regional scales as with indicator
surveys. Moreover, given that routine interventions are currently conducted at district level making it the
focus in Uganda and elsewhere thus far [36], HMIS has been widely used at this scale [11, 13, 80]. Importantly
though, lower spatial scales’ assessments of disease burden are also possible with HMIS [102] and | explore
this further in Chapter 6 of the thesis.

e Comprehensive coverage of age: The most common assessments of malaria burden that use small-scale,

national cluster-level indicator, and demographic health survey data mainly focus on children under 5 years
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of age and seldom on the 5-15 or over 15 years of age if at all. These age-restricted estimates are either largely
assumed sufficiently indicative of the scope of malaria burden as seen from indicator surveys [61, 96] and
often, population-level estimates are modelled from these [1, 3, 12, 71, 83, 117]. This paradigm seems to
downplay any effects of age, particularly older age, in the epidemiology of malaria thereby under-estimating
burden [118] or its effects on control efforts and | address this further in Chapter 4. HMIS data, however,
covers the full community age distribution making it a richer source, likely to afford more balanced and/or
accurate estimates of burden or risk.

Multiplicity of proxy burden measures: \Whereas malaria incidence rate is primarily defined as number of new
cases per duration, divided by total person-time of population observation [119] using cohort studies, these
studies are costly. Several proxy measures from routine HMIS data are used for malaria mapping. These have
included: (a) Case numbers, either taken as a proportion of estimated population at the time [94, 101, 103,
104, 120-123], or a standardised morbidity ratio [108]; (b) malaria positive fraction (MPF), as a measure that
controls for differences in access to care [115, 124, 125]; (c) malaria cases as a proportion of treatment events
at a facility [125-128]; (d) case-control analysis of disease clustering defining confirmed malaria as cases, and
negatives as controls [129, 130]. Test positivity rate (TPR), though commonly reported in HMIS-based studies
has not been widely used for mapping, except in one evaluation report from Rwanda [106]. It has however
been used in combination with presumptive cases to generate malaria positive fraction [115, 124, 125] or to
adjust for over-estimation when presumptive diagnosis is high [115], as was common practice across sub-
Saharan Africa [13]. As a proxy measure of incidence, however, TPR is: (i) inexpensive relative to measuring
incidence, (ii) widely used to assess temporal trends, (iii) recommended by WHO [44], and (iv) easy to
incorporate and monitor in routine HMIS processes even at peripheral health facilities [44, 45]. The same
attributes, however, may hold for all the other commonly used metrics for measuring changes directly like
case totals or indicators derived and considered as indirect assessments [131].

Interoperability and systems strengthening: There are opportunities within HMIS to link multiple information
systems, such as: the patient health records system with logistics information systems to manage stockouts
and/or wastage; HMIS with regional or national demographics for health system strengthening; and,
conducting multi-disease assessments for enhanced decision making. Importantly, introduction of DHIS-2 in
2012 was associated with 49% increased report completeness and 55.2% increased submission timeliness
over the first year, providing greater accessibility to multi-department HMIS data [14]. HMIS data, therefore,
provides an evidence base to advance policy proposals from: management, expert opinion, task forces,
stakeholder engagements, community dialogues, trainings, investigative research, and field experiences
[132]. Evidence exists of triangulation of HMIS with pharmacy and other systems cited as pivotal to monitoring

new programs like the anti-retroviral drugs program to inform national HIV response in Kenya [133].
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Notwithstanding the great opportunities, several limitations of routine HMIS surveillance data are noteworthy

and may affect accuracy in estimates of malaria and/or disease burden derived.

e Incompleteness in health facility reporting: Nationwide reporting, though improving, may not be absolutely
prompt or complete and if completeness is low, assessments may underestimate the burden reported [134].
Contributing factors may include: shortage in staffing, infrequent data checking by in-charges, laborious HMIS
documentation along with lack of training, difficulty submitting hard copy reports, and sudden transfer of staff
without formal hand-over [135]. Whereas there have been improvements associated with the advent of
electronic web-based reporting [14], it remains unclear how factors associated with health care human
resources or health worker practices, impact on HMIS data completeness.

o Exclusion of close-to-community health services: Data from community health services, such as village health
teams (VHT) under integrated community case management (iCCM) programmes, are largely excluded from
regular reporting. Whilst expected from the entire district health services sector, reporting progress has
mostly impacted the formal health centre side. VHT reporting struggles with: inadequate supply of tools,
inconsistent and unreliable supervision, shortage of basic required training, and competing demands from
multiple implementing partners with a diversity of reporting tools in use [136]. Reports show that training has
been poorly attended by a few VHT members and even fewer for any comprehensive course [136]. Deficiency
in training, low education levels, and unclear supervision impacts on the quality of VHTs reports, if any.

o Health seeking behaviours and the private sector: Patient records from the private sector (private-for-profit
clinics, drug shops - major players, and pharmacies), said to cater for up to 53.2% of patients in Uganda [137],
are dismally captured through HMIS reporting. Preference of the sector is well documented in sub-Saharan
Africa citing good service as well as proximal and regular drug supply [138], relative to the public side.
Extensive drug shops use may signal high levels of self-medication, since artemisinin combination-based
therapy drugs (ACTs) are over the counter drugs [139]. One report indicated that 38% of caregivers first treat
fevers at home in Uganda, possibly aided by this drug availability [140]. Moreover, 59% of the children under
60 months of age sought advice or care from private facilities during their most recent fever episode in 2018
[61], an increase from 49% in the 2014 by MIS survey reports [60]. Other reports have indicated 42% versus
16.4% as seeking care from private versus public facilities, respectively, being their first of multiple care
options for an illness episode [140]. Moreover, where a single option was used, 68% vs. 27% used private vs.
public facilities, respectively [140]. Taken together, the majority [141] of the population seek care from the
private sector in Uganda and for effective disease monitoring and control, HMIS-based surveillance needs to
critically consider the private sector. Nonetheless, HMIS remains heavily biased to public health facilities to
date.

e Reliability of diagnosis: Testing practices are fairly differential due to health system-related challenges like:

disruptive or non-functional facilities, human resource shortages, little or no supervision, and varied health
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worker attitudes [142]. Diagnostic testing rates, if low, may reduce confirmed cases realised while
encouraging presumptive diagnosis and therefore, compromised accuracy of burden estimate [108].
Moreover, increased use of mRDTs, while curbing the irrational use of antimalarials through reduced
presumptive diagnoses, is also associated with: increase in false negative results due to low parasite densities
or deletion of target-gene within the parasite; low health worker trust of results; and, antibiotic overuse
especially with negative mRDT results [143, 144].

e Reliability of population denominators: Incidence rates rely on population estimates as the denominator.
However, neither the population within an attributed/assumed catchment nor the appropriate catchment of
a given health facility or group of facilities can be precisely defined. This may be compounded by: (i) non-
alignment of health facility catchments with administrative boundaries though often assumed, (ii)
unpredictable trends in population movements, especially with unstable political situations such as areas with
rampant refugee activity, or (iii) unreliable frequency of national population census updates and/or restrictive
levels of detail of these census data, when available. These factors, individually or collectively, undermine the

accuracy of estimates of disease incidence in these low resource settings.

Consequently, the burden of disease reported through routine data is heavily affected by the quality of records
generated at the health facilities [145]. As such, large areas of the malaria endemic world, especially sub-Saharan
Africa with HMIS classified as poor, still fall short on reporting true measures of disease burden given underutilised
routine systems, and alternative model-based sources being used instead [62, 146]. However, this is not the case
particularly in the lower transmission settings or where HMIS is reliable [62]. Nevertheless, there are many studies
within these high transmission areas that have exemplified the benefit of routine HMIS in mapping malaria,
documented from across sub-Saharan Africa [13, 80, 93-95, 101, 103-105, 108, 115, 120-130, 134, 147-157],
though minimal compared to other data sources. Therefore, the potential in improved routine reporting through

HMIS is great, especially for spatial risk assessment.

1.5.3 HMIS data for malaria impact evaluation

Competing interests on funding that has previously facilitated large-scale declines in malaria burden [158, 159],
necessitate renewed data-informed implementation and evaluation of the impact of available control
interventions [4, 160], owing to recent stalling in burden declines. Current intervention tools including LLINs, IRS,
artemisinin-based combination therapies, and low cost parasitological mRDTs have all long been proved effective.
However, following their implementation in routine or real-world settings, assessment of their impacts using
cluster randomised trail (CRT) study designs, have often found no impacts [161-163]. One study in Uganda, for
instance, successfully implemented a CRT where the intervention trained health workers in fever case
management using mRDTs (study introduced) and artemether lumefantrine (AL) but found no differences
between arms, in the prevalence of parasitaemia, anaemia, or other outcome [164]. Such designs in routine

settings are often overtaken by unexpected competing programs or uncontrolled implementation of other
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interventions with diluting effects beyond the confines of CRT design assumptions [161, 162]. Nevertheless,
HMIS’s spatial and temporal scope may provide the best coverage of real-world contextual changes enabling
assessments based on alternative quasi-experimental designs, such as interrupted time-series and dose-response
methods, to identify intervention associated impacts [162, 165, 166]. Temporal assessments using HMIS data in
Zanzibar — Tanzania, for example, showed declines in malaria incidence following the roll out of ACTs and further
declines during expanded vector control (LLIN and IRS), compared to pre-intervention periods [165]. These
approaches are fit for purpose because of their capacity to incorporate real-world conditions when carefully
applied to contextually comprehensive data such as routine HMIS data. Utilization of the spatial capacity of HMIS
data in evaluating impacts of control interventions on malaria burden, however, remains very limited. One study
that assessed the effect of case management and vector control on space-time patterns of malaria incidence using
HMIS data in Uganda, reported protective effects of ITN coverage among all age-groups, though significant only
among children under 5 years [80]. However, these were likely to be predominantly temporal effects, given that
no geo-spatial outputs were provided to this effect. Instead, the geo-spatial results reported, only confirmed
greater heterogeneity of malaria burden among children under 5 years of age than among those 5 years and older.
Taken together, this further highlights the need for improved understanding of the utility of routine HMIS data,
for identifying locations at high-risk of malaria in high transmission settings, and thereby its application in

evaluating the impact of control interventions in those areas.

1.6 Justification and Rationale

As indicated in previous sections, there are important knowledge gaps surrounding reliability of HMIS as a viable
data source, how indicators of malaria burden derived from HMIS relate to each other, their representativeness
of burden relative to gold standard estimates, and the potential use of these indicators in identifying high-risk
areas across spatial scales. Stalled reduction in malaria burden, coupled with recent strategies of targeted
application of well-known effective control interventions informed by surveillance, emphasises an urgent need
for improved understanding of routine surveillance systems and better interpretation of indicators of malaria
burden from these systems. A stronger understanding of routine surveillance data would improve identification
of weaknesses for surveillance system improvement, facilitate increased use of the data generated, foster
stronger health systems in low resources settings, and improve the allocation of resources for health in these
settings. Moreover, better interpretation of the data and/or indicators of burden from routine surveillance would
enable production of stronger evidence or basis for: optimal resource channelling; timely implementation of
control interventions; improved assessment of control interventions’ impacts; efficient and/or effective decision
making; and, sustainable, timely, accurate, and scalable monitoring of malaria burden in the low resource high-

burden areas, like Uganda.

My thesis will focus on understanding the HMIS-based indicators of malaria burden. | will particularly focus on

malaria incidence rates, both over time and space. As outlined in the previous sections, there are knowledge gaps

Page 37 of 267



surrounding relative magnitudes of these metrics in high circulation and/or frequent use. Extremely few studies
have examined the effectiveness, fitness, or utility of HMIS-based indicators, or relationships between and among
these or other indicators and none with their gold standard counterparts. Studies of HMIS routine indicators of
burden, exploring their inherent sources of bias, examining their representativeness of unbiased or true burden,
and assessing their capacity for identification of high-risk locations are needed to address the identified gaps in
knowledge on overall utility of routine data. Stronger understanding of relationships between these indicators,
their change with age over time, representativeness of unbiased burden and likely sources of bias could provide
valuable insights around impact and effectiveness of malaria control strategies. Moreover, increased
understanding of the spatial distribution of malaria burden may also inform appropriate scales for optimal
implementation and assessment of targeted interventions. Consequently, results will highlight the potential for
robust timely map production using HMIS data for target decision making and optimal resource allocation and
incentivise improved utility and uptake of risk maps across national malaria control fora. This work is highly timely
for the call to transform surveillance into an intervention under the global technical strategy for malaria 2016-

2030, and ultimately for the third sustainable development goal to be met [4, 5].

1.7 Thesis aim and objectives

The aim of my thesis is to investigate the utility of indicators of uncomplicated malaria burden from routinely
collected health facility data in describing the changing temporal and spatial distribution of malaria in Uganda.
Addressing this aim will provide evidence to guide strategic use of routine data for malaria control activities. This

aim will be reached through the following specific objectives:

1. To explore the relationship between alternative measures of uncomplicated malaria incidence generated

from sentinel surveillance data.

While several indicators of malaria burden have been derived from routine public health facility data and used
widely to estimate incidence, how they each relate to the other is unclear. Better understanding of this
relationship may help with interpretation of burden or risk derived and/or reported through their use. This study
objective, therefore, explores the relationship between several indicators of malaria burden (incidence estimates),

and will compare them across three transmission settings in Uganda.

2. To examine the impact of malaria control interventions on the age distribution of malaria cases using

routine sentinel surveillance data in four sites where LLIN and IRS campaigns have been conducted.

Whereas surveillance has predominantly focused on children under five years of age, a pattern of high-risk of
positivity among older children became apparent and raised concerns about the continuation of surveillance as
usual. This objective, therefore, explores the possible driver of this changing pattern to provide evidence that

supports this apparent trend or shift and highlight the vital role age plays in surveillance considerations.

Page 38 of 267



3. To investigate the association between incidence of uncomplicated malaria from routine surveillance data
and incidence from cohorts, across sites of different transmission intensities and identify and quantify

sources of bias in surveillance incidence to assess its reliability for monitoring burden of malaria.

Whilst routine HMIS data quality reports range from untimely, incomplete, and unreliable diagnoses to improved,
in Uganda and elsewhere [37, 167-169], goodness-of-fit of derivate estimates of malaria incidence to represent
unbiased burden, is unknown. This study objective, therefore, compared HMIS-based incidence with incidence
from community cohorts in three settings in Uganda, accounting for other associated factors, that are influential
on health facility data over time. It then evaluated the potential sources and quantities of bias in routine data to
assess reliability of its estimates of malaria burden.

4. To explore patterns and determinants of spatial variation of malaria from routine HMIS data at national

spatial scales and identify areas at high-risk of malaria.

Geostatistical analyses of malaria reliant on routine data have been limited to regions, district, and sub-district
spatial scales with limited data access. With increasing accessibility given the advent of DHIS-2, more fine-scale
assessments of malaria burden and risk may be possible. This study objective, therefore, explored multi-scale
spatial temporal patterns of incidence and risk using national routine HMIS data from geolocated health facilities,

accounting for known risk factors.

1.8 Thesis outline

To aid interpretation, Chapter 2 provides a detailed description of the multiple data sets pooled together to
address the different components of this research. Chapter 3 describes the relationship between test positivity
and incidence rates from enhanced HMIS surveillance across three sites of varied transmission intensity in Uganda.
Chapter 4 outlines the impacts of effective large-scale community control interventions on the age-specific burden
of confirmed malaria across four sites of varied transmission intensity in Uganda, stratified into ‘LLIN alone’ versus
‘LLIN plus IRS" intervention sites. Chapter 5 evaluates the relationship between HMIS- and cohorts-based
incidence of malaria, across three sites of varied transmission intensity around Uganda, and assesses the level of
bias from multiple factors of influence to HMIS recorded data. Chapter 6 presents a concurrent multi-scale
assessment of the spatial temporal distribution of incidence of malaria from national routine HMIS reporting,
accounting for environmental risk factors, identifying seasonality and high-risk clusters of malaria across the
country. These chapters have all been published (Chapters 3 to 5) or submitted (Chapter 6) to peer review journals.
Finally, Chapter 7 discusses the findings from this work and the conclusions drawn, limitations identified in this
research, and recommendations for policy and/or future research.

Other supportive information towards this work, including: (a) summary of the literature reviewed to assess the
use of routine HMIS data in malaria risk or burden mapping has been provided in Appendix 1; (b) Response to

reviewers’ comments for the published paper in Chapter 3, contained in Appendix 6; (c) Response to reviewers’

Page 39 of 267



comments for the published paper in Chapter 4, contained in Appendix 8; (d) Response to reviewers’ comments

for the published paper in Chapter 5, contained in Appendix 9.
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2 Data Overview

This thesis uses multiple complementary health management information system (HMIS) data sources that are
disjointed by study or program design. Consistent across most of these, was that they largely conducted
surveillance among the same populations but for independent and/or different study objectives. Together, these
datasets provided a unique opportunity to study estimates of malaria burden and factors associated with them.
This was possible through leveraging (1) patient-level details from health facilities including dedicated national
reference centres and community-based passive cohorts, and (2) a nation-wide network of HMIS reporting health

facilities. | thus provide a summary description of the various data sources and how they tie together.

Overall, three separate surveillance projects plus the national routine HMIS data system, provided data for this
work. In the following section, | introduce malaria in Uganda’s HMIS, after which, | provide a detailed description

of all the data sets used to conduct this research.

2.1 Study Data Sources

2.1.1 Malaria in the Uganda’s HMIS

Summary of the Uganda health system structure: The health system in Uganda, is a hierarchy comprising of:
National referral hospitals, Regional and other referral hospitals, and district health services, that each report to
the Ministry of Health’s Department of Health Information, through HMIS. The district health services, headed by
a district hospital, includes: health centre (HC) IV — providing emergency surgery, in-patient care, maternity, and
blood transfusion services; followed by mid-level HC Il — providing basic laboratory, maternity, and in-patient care
services; then the HC Il — providing outpatient and outreach services as the lowest formal care level with premises

[170].

Whereas public formal care stops at HC Il, other facilities include privately owned and a few government-run
special clinics. At the lowest level are community health workers or village health teams (VHT), comprising of
volunteers often trained under the integrated community case management (iCCM) strategy to diagnose and treat
malaria, pneumonia and diarrhoea in children under five years within communities [171]. Taking advantage of
tools like rapid diagnostic test kits for malaria (mRDTs), VHT where operational, provide extended reach of care

to communities though these do not consistently perform routine HMIS reporting [172].

Uganda has at least 7000 health facilities and counting to date [170]. Nationally, all public health facilities that
include Government owned and private not-for-profit (PNFP) and increasingly private for profit (PFP) health
facilities, provide regular (weekly/monthly) HMIS reports on burden of selected diseases and their management
to regional authorities, primarily the district medical team [173]. Introduced in 1997 as a paper-based reporting
system, HMIS reports are utilised by the Ministry of Health for national level health assessments [15, 173]. They
are the primary source of malaria cases data, informing the different Ministry of Health bodies including National

Malaria Control Program (NMCP), as an evidence base for decisions on control interventions and wider policy [43,
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173]. Since 2012 however, a web-based District Health Information System — version 2 (DHIS-2) was introduced
to enable easier access to reports from across the entire national health system, starting with the public sector

[14].

Malaria surveillance in Uganda, using standard HMIS, may be considered as conducted at two major levels. The
first, broader, and more general level is reporting through the district health services to the NMCP. As in many
malaria endemic countries, health facilities provide regular aggregated reports to governments for disease burden
assessment and these are entered into the DHIS-2 system, making them readily available to the NMCP(s) [14, 45,
174]. The second and more focal level is through sentinel sites (later known as reference centres) embedded
within the HMIS system in epidemiologically diverse settings, to strengthen the collection of high quality data
[175]. From these, data are evaluated at patient-level, rather than in aggregates, aiding more robust inferences
for control and early warning feedback, for possible epidemics and therefore, action. Reports from the sentinel

surveillance are generated monthly by the Uganda malaria surveillance project and made available to the NMCP.

Specific to this study were uncomplicated malaria cases, details of which are recorded in one of many HMIS
registers, the outpatient department (OPD) registers — per national policy. Uncomplicated malaria was defined as
any episode of malaria where the patient was not hospitalised but treated within the outpatient clinic. OPD
registers comprised the main source of data used in this study. In the next sections | describe the two categories
of HMIS data used, including patient level or aggregate HMIS data, and two additional data sets including cohorts

summarised in Table 1, and explanatory variables data.

Page 42 of 267



O A I Lakes &rivers

@ B [ | District boundaries

@ ¢ [ international boundary
@ D

Figure 11. Locations of study health facilities across Uganda, by study objective:

A — Sentinel health facilities included in the objective 1 study, three facilities in total - all being Level IV and
Government owned. The sub-county boundary around each was used to define the study area with a varied number
of villages per site; Nagongera had 45, Walukuba 21 and Kihihi 117 villages. The three sites were selected due to
the concurrent cohorts conducted there, for which epidemiological diversity of the sites was a key consideration in

the choice of sites for the cohorts.
B — Sentinel health facilities included in the objective 2 study, four facilities in total and all Government owned.

A & C— Sentinel and lower-level health facilities included in the objective 3 study, 15 facilities in total, with some
Government owned and others private not for profit. The sub-county boundary around each was used to define

the study area as in objective 1.
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D — Nation-wide HMIS reporting health facilities included in the objective 4 study, 3446 facilities, including national
and other referral or district and general hospitals, health centres, and clinics both Government and privately

owned.

Table 1. Summary of data sources, the respective study populations, and indicators of malaria burden, by

study objective.

Study population Indicator of malaria
Data source(s) Study period
age group burden

1. Exploring the relationship between alternative measures of uncomplicated malaria

Patient-level HMIS: 3 HCIV's (Malaria Oct-2011
Test positivity rate,
reference centres) in 3 sub-Counties Children <11 years to
Malaria incidence rate
including Nagongera, Walukuba, & Kihihi Jun-2016

2. Examining the impact of malaria control interventions on the case age distributions

Patient-level HMIS: 3 HCIV's & 1 HCIII

Jan-2009
(Malaria reference centres) in 4 sub- 3 categories: <5, 5-
Test positivity to
Counties including Nagongera, Walukuba, 15, 15-70 years
Jul-2018

Aduku, & Kasambya
3. Investigating associations between incidence of uncomplicated malaria from routine surveillance data
and cohorts

Patient-level HMIS: 3 HCIV's (Malaria

Oct-2011
reference centres), 2 HCIIl's, and 7 HCIl's Children 0.5-<11
Malaria incidence rate to
in 3 sub-Counties including Nagongera, years
Sep-2014
Walukuba, & Kihihi
Additional data source - Community
cohorts: 3 cohorts involving 100 Oct-2011
Children 0.5-<11
households from each of the 3 sub- Malaria incidence rate to
years
counties of Nagongera, Walukuba, & Sep-2014

Kihihi

4. Exploring patterns and determinants of spatial variation of malaria from routine HMIS data

National DHIS-2 aggregate HMIS: 3446

Jul-2015
health facilities in the national HMIS
All Malaria incidence rate to
including (Hospitals, HCIV, HCIII, HCII’s, &
Sep-2019

Clinics)

HC = Health centre
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2.1.2 Patient-level HMIS data

2.1.2.1 Sentinel surveillance data

In Uganda, sentinel surveillance for malaria has been conducted since 2006, under the Uganda malaria
surveillance project (UMSP) [68]. Against a backdrop of very low capacity for diagnostic testing in Uganda, six
sentinel health facilities with operational laboratory facilities and thus, capability to conduct diagnostic testing for
malaria using microscopy, were purposefully selected, considering geographical representativeness as
determined under the East African Network for Monitoring Antimalarial Treatment (EANMAT) [27]. These sentinel
sites were later upgraded to national malaria reference centres for the NMCP [64]. By the start of this PhD in 2017,
there were at least 21 operational malaria reference centres in Uganda. Of these, three centres were included in
objectives one and three, while four were included in objective two of this research with each centre located in

an independent sub-county and district.

At each outpatient (OPD) clinic of these health facilities, for every patient seen, presenting symptoms of illness
are assessed by the attending clinician. All suspected malaria cases are sent to the laboratory for a blood test for
malaria, by microscopy or mRDT. Based on the test results from the laboratory, appropriate action is then taken
by the clinician and all the details pertaining to this patient visit are recorded in the OPD register. These details
include age, sex, fever or history of fever, diagnostic test done, test results, diagnosis given, and treatment
prescribed, among others. Every month, these data are extracted by a UMSP supported staff at the clinic and
entered in a MS Access database (Microsoft Corporation Inc., Redmond WA. USA). The complete monthly data
are then sent to the UMSP data centre for cleaning and processing [68]. A detailed description of the data

management and processing within this study is provided in section 2.2 below.

2.1.2.2 Additional (non-sentinel) health facility data

To supplement the above sentinel site data and ensure comprehensiveness of HMIS data for the included study
sites, 12 non-sentinel health facilities, including level Il and lll facilities from three sub-counties (each hosting a
malaria reference centre) also provided patient-level data in objective three of this study. In keeping with the
sentinel facility data collection format, retrospective anonymised individual patient details were collected from
OPD registers of each facility, covering a three-year duration. To collect these data, | recruited a team of at least
seven research assistants (RA) at a time, per site, and evaluated them with a pre-training test on their basic data
and mathematics abilities. | then trained them on the principles of research and the study procedures that were
detailed in a standard operating procedure (SOP). Following several days of training, they were all tested using a
post-training quiz to evaluate their comprehension of the procedural aspects of the study. The RA’s then entered
the data from OPD registers into MS access databases, loaded on tablet computers. | provided fulltime supervision
of this activity in the field from site to site. On a daily basis, | backed up the data from each tablet and charged the
tablets at a central place, making them ready for the next day of work, since our field office — a rented primary

school classroom had no power supply.
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Also, some data from a cluster-randomised trial (CRT) conducted in several sub-counties of Tororo district
including Nagongera, among government-owned lower level health facilities, was included in this study [164]. The
CRT study aimed to evaluate the impact of enhanced health facility-based care for malaria and febrile illnesses in
children within the study area. With facilities randomised in two arms, the intervention that involved, among
others, training health workers on fever case management and use of mRDTs, as well as ensuring adequate
supplies of mRDTs and artemether-lumefantrine (AL) was evaluated using HMIS data from OPD registers in both
arms [164]. 3/20 facilities including Maundo, Were, and Katajula HCII’'s were in Nagongera sub-county and data
covering the duration between October-2011 and March-2013 for these facilities was obtained from the CRT and
included in this study. The primary data collection discussed above, collected the remaining 19 months of data to
ensure coverage of the full three-year study duration. Together, these data sets were used to address objective

three of this thesis.

2.1.3 National DHIS-2 aggregate HMIS data

From the Department of Health Information within the Uganda Ministry of Health, | obtained nation-wide HMIS
data from the DHIS-2 per year for all 128 districts of Uganda (as they were known by 2018) as excel spreadsheet
files, formatted as monthly health facility entries. These entries included totals of OPD malaria and OPD malaria
confirmed (by microscopy or mRDT) for each health facility, over the duration of January-2014 through

September-2019.

Following data review, the study duration was defined to cover July-2015 through September-2019, and these
data were compiled into a single database for all the 51 months of the study duration, to address objective 4 of

this study.

2.1.4 Additional data source - Community Cohorts

In addition to routine HMIS data, this thesis incorporated data from three enhanced passive cohort studies
conducted in Nagongera, Walukuba, and Kihihi sub-counties starting August-2011, under one of ten International
Centres of Excellence in Malaria Research (U19A1089674) [176]. The focus for the original project was to describe
malaria incidence and prevalence, providing a basis for further analyses on longitudinal trends and risk. For these
cohorts, all children aged 0.5-<11years were recruited from a random selection of 100 households, drawn from
full enumeration of all households in each sub-county. Being dynamic cohorts, any additional children in this age
group within each participating household were all eligible. Clinical assessments happened at enrolment and at 3
monthly scheduled visits using a standardised questionnaire, and a blood sample taken at each to assess for
malaria infection by microscopy. However, participants received free medical attention between scheduled

assessments throughout the study duration, at the study clinic that was open daily.
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For a three-year duration, data was obtained from these three passive community cohorts. Incidence of malaria
was estimated monthly, defined as the total number of incident cases of malaria divided by total person-time of

follow-up estimated in years, per month, by site.

Whereas the cohorts were used to provide a gold standard estimate of incidence of malaria per site,

advantages/strengths, and weaknesses of the data in consideration were identified as detailed in Table 2 below.

Table 2. Strengths and weaknesses of the Cohort data used to derive the 'gold standard' incidence rates

against which to evaluate the routine HMIS incidence rates.

Strength Weakness

Provided standard testing for all suspected malaria:
For ill participants at any visit, standard sick visit

procedures including measuring temperature and/or
Only 100 households included across each site:

recording history of fever in the previous 24 hours;
Though randomly selected, these 100 households

taking a finger prick to obtain smear and filter paper
accounted for very small proportions of the 9,881,

samples and if thick smear positive, the patient was
12,774, and 6,992 households in Walukuba, Kihihi, &

diagnosed with malaria and prescribed artemether-
Nagongera respectively and therefore, only sufficient

lumefantrine (AL), the recommended first-line
to provide a good site-level (sub-county) estimate of

therapy per national guidelines [35]. Moreover, the
incidence but proportions too small for parish or

study performed venepuncture on all nonill
village-level estimates.

participants at each clinic visit for a thick blood smear
to examine for asymptomatic parasitaemia, among
others.

Excluded children < 6months: Whilst infants may be
assumed to benefit from maternal immunity, sentinel

HMIS data showed that high proportions of infants <6

Captured cases every day of the week: Unlike
months of age had confirmed malaria including

standard of care at public health facilities where OPD
12.7%, 28.3%, and 23.2% in Walukuba, Kihihi, and

clinics may sometimes be closed, the cohort clinics
Nagongera respectively, over the same study

were open every day of the week to see participants.
duration. Excluding this group from the cohorts may
have limited the understanding of estimates of

incidence.

Consistent health worker practice: Given this
controlled experiment environment with multiple
levels of supervision of study activities, study

clinicians followed well documented standard

Differential loss to follow-up: Whilst the study
purposed to follow-up 100 households, there was
considerable loss to follow-up. For instance, by the

end of the study-period 21 households had dropped
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operating procedures as per ethically approved study out of the study in Nagongera due to; relocation,

procedures for every clinic visit and across all three inability to comply, and withdrawn consent, among

sites [177]. others [178].

Provided prompt treatment: With a clinic open on Passive follow-up: Whereas participants were free to

every day of the week, participants enjoyed the ideal come to the clinic for all febrile illness needs and

care provision with the highest likelihood of care alternative care seeking was minimised, the passive

availability within 24 hours of symptoms onset unlike nature of these cohorts could have caused some to

under non-study conditions. Under standard care, choose quicker alternatives. For instance, 0.1% of

delay may be caused by multiple limiting factors, participants were reported to have sought

especially financial or known unavailability of drugs at  inappropriate care in the first 24 months of the study

facilities. [177].

On the other hand, the financial motivation through

Reimbursed participants’ travel costs: Whilst cost or  travel cost reimbursements could have inflated case

financial challenges have been indicated as inhibiting  detection rates, to levels unlikely under standard care

to appropriate care access, the reimbursement of or routine surveillance. This is especially so in the

travel cost for participants provided good motivation  very high transmissions settings, where minor fevers

for clinic attendance and therefore, improved from other causes that would not have resulted in

likelihood of registering incident clinical cases of standard care clinic visits, may be coupled with highly

malaria likely asymptomatic parasitaemia leading to

confirmed malaria in this incentivised setting [32].

To assess the relationship between HMIS-based and cohort incidence, monthly estimates of cohort incidence were
included as an independent variable in the regression models used in the objective three study of this research,
results of which are presented in chapter 5 of this thesis. In the following section, | describe the data preparation

process by first, explaining the broad data preparation processes undertaken, followed by objective-specific data

assessment, with particular focus on the outcomes of interest.
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2.2 Outcome Data Management and Processing

2.2.1 Data preparation

2.2.1.1 Data cleaning process
| converted all data sets from the various projects to STATA. The majority of these data sets were already cleaned
from the primary analysis projects especially regarding the malaria outcome, diagnostic testing performed,

diagnostic test results, and age. This was not the case, however, for villages of residence, especially for the UMSP.

To merge these datasets into a single database, several variables, value definitions and value labels needed cross-
checking and alignment, which | conducted in STATA. For villages of residence, | used both my personal experience
gained through being involved in the household enumeration exercises, where | led the teams as a research
assistant and data officer with the projects during 2009-2011, and also referred to local knowledge. For the three
sites, therefore, | created a standard fully coded village names master list against which, to evaluate all incoming
data. The remaining list of unresolved named villages (without a match in the master list), | defined as unknown

within catchment areas (sub-county), while those with a missing record, | placed in the category of missing.

2.2.1.2 Population at risk of malaria (denominator)

At multiple levels in this research, | needed to generate or define the population at risk, which in turn defined the
denominator in estimating village or other defined resolution-level incidence rates per month. As such, the
intended resolution-level population estimates were derived using national population gridded surfaces, freely

provided by the Worldpop project (http://www.worldpop.org.uk). The main determinant for this choice was the

inaccessibility of national housing and population census data for 2014 from UBQS, as well as the unavailability of
these estimates at the spatial resolutions of interest in this study, particularly villages and health facility catchment
areas, as further discussed in chapters 3, 5, and 6 of this thesis. From the national gridded population surfaces,
estimates at the respective spatial resolution, particularly sub-Counties (described fully in Chapter 3) and health
facility catchment areas (described fully in chapter 6), were extracted using the ESRI ArcGIS 10.3 Zonal statistics

tool (ESRI 1995-2014I Redlands, CA. USA) for the objective respective study durations.

From the annual population counts, monthly population estimates were determined using a monthly growth rate
generated from national bureau of statistics’ (UBOS) 2002-2014 published census reports [179] for each
subcounty (in Chapter 3). Moreover, | used linear regression predictions for monthly population estimates within

health facility catchment areas, as discussed in Chapter 6.

2.2.1.3 Suspected malaria definition

As no explicit record was made in the HMIS OPD registers of patients with suspected malaria, these were defined
as all patients sent to the laboratory for a blood test for malaria, by microscopy or mRDT. Among those not sent
to the laboratory, however, suspected malaria cases were identified as those with a clinical diagnosis of malaria.
Whilst fever or history of fever in the last 48 hours is a key identifier of cases suspected to be malaria, the recording
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of this data or even the temperature taken at the clinic in all the HMIS studies involved was very low. For instance,
data from the three sentinel facilities of Walukuba, Kihihi, and Nagongera, between Oct-2011 through June-2016,
showed that fever recording among children <11 years of age ranged from 28.4 to 51.9%. Also, whilst a
temperature of >=37.5 °C was considered determinant of fever, this information was predominantly missing in
the HMIS databases. For example, in the three sentinel sites discussed above, a maximum of 34 participants had

a recorded temperature, as such, these data were not utilised as primary determinants of suspected malaria.

2.2.1.4 Attendance status

For each patient visit recorded in the OPD registers, it is expected that indication is made of whether that patient
visit was a new attendance (that is a new episode of illness) or re-attendance (implying a follow-up visit for an
illness episode that was previously recorded at the clinic). This was done to avoid possible counting of the same
episode of illness more than once as an incident case of malaria and would be applicable for any other illness
presented and/or recorded in OPD registers. All re-attendance cases were excluded from any analyses in this
study. For instance, though between 44.6 and 51.2% of participants had a missing record of attendance status
among the three sentinel facilities during Oct-2011 and June-2016 and were assumed new illness episodes,
between 0 and 4.2% of patients <11 years had visits classified as re-attendance, making them ineligible for
inclusion. Exclusion of re-attendance visits was not expected to impact on analyses in anyway, given that they had

been recorded in the data during their initial clinic visit, for the same illness episode.

In the following section, | provide a detailed description of the data included in addressing each individual study

objective, with an emphasis on evaluating those excluded from analysis.

2.2.2 Data description and summary by objective

2.2.2.1 Objective 1: To explore the relationship between alternative measures of uncomplicated malaria
incidence generated from sentinel surveillance data

Here, | examined data for the duration between October 2011 to June 2016, from three sites with a sentinel or

reference health facility, including Nagongera Health centre IV (HCIV) in Tororo, Walukuba HCIV in Jinja, and Kihihi

HCIV in Kanungu districts, as shown in Figure 11 above.

For study participant data preparation, attention was paid to villages of residence, age, test positivity and

diagnosis, and attendance status, each contributing to the inclusion criteria.
a) Exclusion from study based on village of residence:

Exclusively village of residence: Among suspected malaria cases under 11 years of age that were new attendance
visits, 44,875 (40.6%) were excluded based on a missing (61.9%) or unknown village of residence within the study
sites. Interestingly overall, all the excluded patients were suspected to be malaria cases. The majority of these,

had a malaria diagnostic test performed (94.9%) with 34.9% confirmed positive for malaria parasites, compared
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to 37.5% among those with known villages and therefore, included (Chi sq.=71.5, p<0.001). By site, however, two
sites showed significant differences including first, Nagongera where 32.0% of those excluded were confirmed
positive for malaria parasites compared to 38.2% among those included (Chi sq.=179.2, p<0.001). Second,
Walukuba where 33.0% of the excluded were confirmed positive cases compared to 24.2% among those included
(Chi sq.=260.2, p<0.001), but no significant differences in Kihihi (Chi sq.=1.8, p=0.185). With a similar distribution
of cases among the included and excluded participants in Kihihi, as well as a significantly higher proportion of
confirmed malaria cases among the included than the excluded in Nagongera, exclusions due to missing villages
of residence may not have impacted findings in this study, for these two sites. For Walukuba, however, the
significantly higher proportion of confirmed cases among those excluded may have led to underestimation of

indicators generated in this study for this site.

Age by villages of residence status: The majority of patients with recorded age <11 years, were under 5 years of
age in all sites, with: Walukuba (66.0%) among those included compared to (70.8%) among those excluded
(p<0.001); Kihihi (59.2%) among those included compared to 57.7% among those excluded (p<0.001); and,
Nagongera (79.1%) among those included compared to 81.2% among the excluded (p<0.001). Within the highest
transmission setting of Nagongera, 50% of the included participants were under 2 years of age compared to 54.9%

among those excluded (Table 3).

Table 3. Age distribution of study participants comparing included and excluded patients <11 years, by site.

<2 years 7,543 (35.9) 4,057 (37.3%)

Walukuba 4-<6 years 3,081 (14.7) 1,671 (15.4%) <0.001

8-<11 years 3,436 (16.4) 1,363 (12.5%)

2-<4 years 5,207 (20.5) 1,467 (20.1%)
6-<8 years 3,597 (14.2) 1,057 (14.5%)
<2 years 9,671 (50.0) 14,654 (54.9%)
Nagongera 4-<6 years 2,254 (11.7) 2,593 (9.7%) <0.001

8-<11 years 1,666 (8.6) 2,225 (8.3%)
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The data here showed that in Walukuba and Kihihi, a significantly smaller proportion of participants were excluded
due to missing villages by age across these age categories than were included in the study. As such, in these two
sites exclusion due to missing villages, may not have significantly impacted the effects of age within the indicators
derived. For Nagongera, however, the data showed that a significantly larger proportion of participants were
excluded due to missing village by age than were included, implying that participant exclusion due to missing
villages may have had a larger impact on age-related effects in the indicators of malaria burden derived for the

site.
b) Exclusion based on age

Very few patients (1,203), had a missing record of age from the data collected, and these were excluded from the
study. The distribution of these was 72.3, 18.6, and 9.1% in Walukuba, Kihihi, and Nagongera, respectively

indicating that Walukuba had the highest occurrence of missing age recording, though all together negligible.
c) Exclusion based on test positivity and diagnosis

Malaria cases were defined as participants that were diagnostically confirmed positive for malaria parasites.
Participants with a negative diagnostic test for malaria, but having a diagnosis for malaria given, did not qualify as
cases but as suspected malaria cases, and these were very few in the sentinel facilities data - a total of 716
participants with 12.2, 17.3, and 70.5% of them in Walukuba, Kihihi, and Nagongera, respectively. Moreover, 445
participants (37.1, 14.2, and 48.8% of these in Walukuba, Kihihi, and Nagongera) were presumptively diagnosed
with malaria and therefore, not considered as cases of malaria but as suspected malaria cases instead. However,
252 participants were registered having a positive diagnostic test for malaria, but without a diagnosis for malaria,
and were considered confirmed malaria cases in this study. Among study participants, a large majority of
diagnostic testing for malaria was performed using microscopy ranging from 90.9 to 98.7% in Walukuba and Kihihi,
respectively. A small proportion of diagnostic tests included rapid diagnostic tests, highest in Nagongera with 954

tests.

2.2.2.2 Objective 2: To examine the impact of malaria control interventions on the age distribution of malaria
cases using routine sentinel surveillance data in four sites where LLIN and IRS campaigns have been
conducted.

In this study objective, | included data from four sites with a sentinel or reference health facility each (two from

objective one above and an additional two), including Walukuba health centre IV (HCIV) in Jinja district of the

central Uganda, Kasambya HCIIl in Mubende district of mid-western Uganda, Aduku HCIV in Apac district of

northern Uganda, and Nagongera HCIV in Tororo district of eastern Uganda, with site locations shown in Figure

11 above, for the duration between January 2009 to July 2018.

The data from these health facilities was prepared and cleaned with particular focus on age, diagnostic tests and

test positivity, suspected malaria status, sex, and attendance status.
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Exclusion from the study

Age: Given a smaller number of much older patients seeking care, those over the age of 70 years were excluded
from the analyses, a total of 1,975 (0.6%), 1,442 (0.9%), 3,673 (1.9%), and 3,833 (1.7%) in Walukuba, Kasambya,

Aduku, and Nagongera, respectively. These were not expected to impact on our results in any significant way.

Sex: A very small number of eligible participants (at most 0.03% in a single site) had a missing record of sex in the
data and were excluded, given that sex was an important factor included in the analysis for this study objective.

However, these were not expected to impact on our findings in any way.

Diagnostic tests and test positivity: All cases confirmed by microscopy or mRDT were considered positive cases
and presumptive cases not counted. The exclusion of presumptive cases regardless of being few, is not expected
to have a definite effect on our analyses or results, given that the presumptive diagnosis process is highly
subjective and therefore indeterminate. Whilst majority of diagnostic testing was performed using microscopy
across all the four sites, a slightly larger majority of negative than positive test results were generated using
microscopy in Walukuba, Kasambya and Aduku, but not in Nagongera (Table 4). Notably, however, the highest

proportion of positive test results generated using mRDT’s were observed in Aduku at 28.1%.

Table 4. Proportions of test results, by diagnostic testing method per site.

Diagnostic
Test result Walukuba Kasambya Aduku Nagongera
method
Microscopy 40,548 (96.7%) 35,273 (84.3%) 26,648 (71.9%) 31,725 (90.2%)
Positive
mRDT 1,403 (3.3%) 6,583 (15.7%) 10,407 (28.1%) 3,438 (9.8%)
Microscopy 81,295 (97.5%) 55,464 (86.4%) 49,049 (85.4%) 73,175 (87.9%)
Negative
mRDT 2,112 (2.5%) 8,767 (13.7%) 8,393 (14.6%) 10,053 (12.1%)

Assessing potential impacts of diagnostic testing method showed no identifiable pattern, suggesting that the
diagnostic method used had very limited influence on the pattern of test results, as further discussed in Chapter

4.
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2.2.2.3 Objective 3: To investigate the association between incidence of uncomplicated malaria from routine
surveillance data and incidence from cohorts, across sites of different transmission intensities and,
identify and quantify sources of bias in surveillance incidence, to assess its reliability for monitoring
burden of malaria.

This study objective included HMIS data from which incidence of malaria was estimated, as well as community

cohort data that provided the comparative incidence estimates in the three study sites.

HMIS data: This was obtained from all 15 public health facilities located within the geographic administrative
boundaries of Nagongera sub-County in Tororo district (5 facilities); Walukuba sub-County in Jinja district (3
facilities); and, Kihihi sub-County in Kanungu district (7 facilities) as shown in Figure 11. The enrolled health
facilities included: Nagongera, Walukuba and Kihihi HCIV’s, in the respective sub-Counties; Matanda and
Nyamwegabira HCIIl’s, and Bihomborwa, Bushere, Kibimbiri and Nyakashure/Samaria HCIl’s, in Kihihi sub-County;
Were, Katajula, Maundo, and Pokongo HCII’s, in Nagongera sub-County; and, Masese Port and Masese 3 HCII’s, in
Walukuba sub-County. Whereas 16 health facilities were screened for inclusion in this study, one was excluded
based on its geo-location falling outside of the study site boundaries, besides the very few residents of the sub-
county (study site) who visited this facility for care. These HMIS data were obtained for the three-year duration

spanning October-2011 through September-2014.

After extraction from OPD registers, the data was cleaned with particular focus on village of residence, age,

diagnostic testing and diagnosis, and attendance status.
Exclusion from the study:

Village of residence: In this study objective, missingness of record of village of residence was corrected for in
computing confirmed cases, as later explained in Chapter 5. However, all patient records with villages that were
either unknown within the study site or unclear, were excluded. Nevertheless, these were not expected to impact
on our estimates of incidence, given that residence within the site boundaries was central to estimating site-
specific analysis outcomes. Notably though, there was a higher proportion of patients with unknown villages in
the lower-level facilities of Kihihi, which may be attributed to being at the border between Uganda and Democratic
republic of Congo (DRC), where sporadic influxes of refugees from DRC have been reported [180]. For instance,
Matanda health centre Il that is located within a designated refugee transit camp, contributed 41.2% of the
patient records with unknown village of residence in Kihihi. Nevertheless, at the time of data collection from this
health facility, the camp was unoccupied though the clinic was fully operational, possibly serving the more regular
resident users of the facility from nearby villages. Based on this, it can be assumed that the exclusion of
participants whose villages of residence were unknown within the site facilitated a more accurate estimate of

burden attributable to the site resident population.
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Age: To generate HMIS-based incidence estimates that would be comparable to estimates from community
cohorts, all patients aged 11 years and older were excluded from this analysis. These were unexpected to impact
on our results by virtue of being outside of age-groups of interest. Moreover, all patients with a missing record of
age were also excluded and assuming an equal distribution as those with known age and therefore included,

exclusion due to missing age was not expected to have considerable impact on incidence estimates.

2.2.2.4 Objective 4: To explore patters and determinants of spatial variation of malaria from routine HMIS
data at sub-/national spatial scales and identify areas at high-risk of malaria.

To address this objective, HMIS data was obtained from the national repository for routine HMIS via the DHIS-2

web-based system. Data from all health facilities expected to report through standard surveillance procedures,

including total attendance, re-attendance, OPD malaria cases, and confirmed cases (by Microscopy and mRDT)

were obtained for at least four years (51 months long).

A total of 3446 health facilities with associated geo-location coordinates, were included in this study (Figure 11).
These data were summarised on a monthly time scale for all age-groups combined, for each of the study health

facilities.
Exclusion from the study:

HMIS data from January-2014 through September-2019 were extracted and assessed for use in this study.
Notably, from January-2014 through June-2015 these data were inconsistent from month to month, with many
months of data missing. However, starting July-2015 the format of the data sets was markedly different from the
previous duration. The differences included the introduction of additional patient age categories that may have
been a consequence of undocumented but evident system revisions or improvements. Given this considerably
more complete and consistent data set, the duration of interest in this study was defined as spanning July-2015

through September-2019. Consequently, data from January-2014 through June-2015 was excluded.

For the geo-coding of health facilities, | obtained a database of public health facility geo-coordinates across Africa
that was published by the KEMRI-Wellcome Trust Research Programme [181]. Of the 3792 health facilities in the
database, 3448 (91.0%) were matched with the health facilities in the HMIS malaria cases database of 2015,
excluding all facilities with duplicate geo-coordinates. However, one was geo-located in the lake and another
outside the country boundaries, and therefore, both were excluded. A total of 3446 geolocated health facilities
that matched with the HMIS malaria cases database consisted the facilities that we defined as study health
facilities. Estimated impacts of the exclusion of data reported from health facilities that were not geo-coded per

district, are further discussed in Chapter 6 of this thesis.
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2.3 Ethical considerations

Two of the programmes that provided data, including Uganda Malaria Surveillance Project (UMSP) and the
National HMIS, were not required to have ethical approval as national surveillance programmes. However, the
two research projects that provided additional data had independent ethical approvals from the Makerere
University School of Medicine Research Ethics Committee (SOM-REC #2010-108 and #2011-167). This was the
local Institutional review board at the base of their research activities in Uganda, hosted by the Infectious Diseases
Research Collaboration (IDRC). In addition, they each received approval from the Uganda National Council for
Science & Technology (UNCST #HS 794 and #HS 1019), which is the national body that oversees research on the
Government’s behalf. Moreover, ethical approval for each was also obtained from the other collaborating
institutions involved in these studies, mainly including the London School of Hygiene & Tropical Medicine (LSHTM

#5943 and #5779) and the University of California San Francisco (UCSF).

Specific to the proposed work in this thesis with independent research objectives, separate ethical approval was
sought, obtained, and later renewed from SOM-REC, being the local IRB for this study in Uganda (Appendix 2a &
2b). Next, approval was sought and obtained from the UNCST for government approval (Appendix 3). With these
in place, ethical approval was sought, obtained, and later renewed from LSHTM research ethics committee

(Appendix 4a & 4b).

Also, an amendment was sought and obtained to use publicly available national HMIS data from the national
malaria control program to address the fourth objective of this research. For this, permission was sought and
obtained from the Ministry of Health (Appendix 5) and based on this, ethical approval was sought and obtained
for the proposed amendment from SOM-REC (Appendix 2c), and ultimately, approval was also obtained from

LSHTM research ethics committee (Appendix 4c).

Concerning the primary data collection directly from health facilities, other necessary levels of permission were
also required, and these included obtaining support letters from the district health officers (DHO) of each of the
three districts of Tororo, Jinja, and Kanunugu. With these on hand, permission was then sought and obtained from
health facility in-charges to access their stored registers within the respective facility HMIS offices. In two facilities
of one district, the in-charges expressed overwhelming reservations to providing access to their registers. These
necessitated lengthy explanations as well as additional written permission from other district officials (besides the
DHO) before they would permit access to their registers. However, even with these permissions on hand, these

two facilities also had both the most disorganised storage and poorest state of registers.
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Abstract. Test positivity rate (TPRj—confirmed cases per 100 suspacted cases tested, and test-confimmed malara
case rate (IR}—cases per 1,000 population, are common indicators used routinely for malada survallance. However, few
studies haveexplored relationships between these indicators over time and space. We studied the relationship bateesn
these indicators in children aged = 11 years presanting with suspected malaria to the outpatient depantments of leval [V
health centers in Nagongera, Kihihi, and Walukuba in Uganda from October 2011 to June 2016, We evaluated trends in
indicat ors over ime and space, and explored associations using multivariable regression models, Overall, 65,710 par-
ticipants visited the three clinics. Painsise comparisons of TPR and IR by month showed similar trends, panicularty for
TPRs < 50% and during low-transmission seasons, but by village, the relationship was complex. Village mean anmual
TPRs remained constant, whereas |Rs drastically declined with increasing distance from the health center. Villages that
wang furthest away from the health centers {fourth quartile for distance) had significantly lower |IRs than nearby villages
(first gquartila), withan incidence rate ratio of 0.40inNagongera (95 % Cl: 0.23-0.63; P=10.001), 0.55in Kihihi (0. 40-0.75; P<
0.001), and 0.25 in Walukuba {0.12-0.51; P < 0.001). Regression analysis results emphasized a nonlinear (cubic) re-
lationship betwesen TPR and IR, after accounting formonth, village, season, and demographic factors. Results show that
the two indicators ame highly relesant for monitoring malana burden. Howeyer, interpretation differs with TPR prirmariby
indicating demand for malaria treatment resources and IR indicating malada rsk among health facility catchrment

populations.

INTRODUCT 0N

Mational strategies for malada control and intervention plan-
ning typically rely on the edstence and strengths of national
health management information systems (HMIS's).! Strong
systemns that incorporate complete case notification and acou-
rate population data provide a firm basis for monitonng the
present burden and trends, and making future projections.
Howewver, in much of sub-Saharan Afica, HMIS data miss a
substantial number of malada cases from the community who
ait her do not seek diagnosis and’or treat ment throuwgh the health
system, or do but are not comectly reported.’ In addition,
catchment population data are not readily availableat the facility
level.® As a result, determining the true burden and intempneting
trends at local levels remain a challenge. Test positivity rate
(TPR) defined as the proporion of tested sispectad malana
cases that return a positve malaria result is an indicator gener-
ated from fadlity records. Swepectad malana cases are patients
presanting with fever or a history of fever in the last 48 hours,
without amy other recognizable case, sent to the laborat ory fora
malaria diagnostic test.* Those who have a positive test result
arae, thersfore, diagnosed with malaria The test positivity rate
overcomes the challenges of both denominators and numem-
tors by assuming that those seeking diagnosis and treat ment
with suspected malada make a representative sentinel pop-
uation, and is also recomimended by the WHO as a key sur-
valllanceindicator, > Imempretation of TPR s, however, affected
by the incidence or number of non-malana fevers by potentially
inflating the sentinel population jdencminator for TPR).* When
health facility catchiment populations areavailabbe, however, the

*Address comespondence to Simon P. Kigozi, London School of
Hygiena & Tropical Medicine, Kappel 5t., London WC1E THT, United
Kingdom. E-mail: skigozi@yahoo .com

test -confimed malaria cane rate orincidence rate (IR), defired as
the number of malada cases per 1,000 population at sk per unit
tima, may provide a batter indication of the burden of malara
than TPR. Wheneas TPR, owing to easier accessibility, is mone
commaonly reported than IR, ™'? the two indicators have been
complimentarly reported but with no expressed implication of
one indicator on the other.'"'" The relations hip between these
indicators, therefore, remains unclear, and to our knowledge,
vary few studies have addressed it.

Health fadlity-based survedllance forms the basis of malaria
burden reporting in Uganda. ™% Data ame reported through the
district haalth services to the Ministry of Health using regular
aggregated reports induding suspected malardia cases; cases
tasted and cases confirmed by age category (by milcroscopy
or mpid diagnostic test for malada [mROT]); and confirmed or
presumed cases treated with antimalarial medicing: among
others, and the indicat ors derived are used for disease burden
assessment ™ In addition, multiple reference centers that
warasalacted to cover diverse transmission intensities across
the country have been embedded within the HMIS to
strengthen thecollection of high-quality data.'® Usingthedata
frzm three of these malada reference centers, weinvestigated
the relationship between IR and TPR as indicators of malaria
burden at the facility level, accounting for important factors in
thiz relationship. The few previous studies that exploned ne-
lations hips batwesn incidence measures have predorminanthy
been limited to a single site—sither at the village level® or
provincial level,* with a general focus ona singledimension of
time. Here, we evaluate the relationship between the two in-
dicators and axplone the relatiorehip in both time and space,
providing additicnal detail to our understanding of the wtility
and representativenass of HMIS data for understanding the
changing malada burden in endamic settings.
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METHODS

Study setting. This study w=ed routing surveillance data
collected from three leval [V health facilities located in diffenant
malaria transmission settings in Uganda (Figure 1). Thesea fa-
dlities wame 1) Nagongera in Tororo distdict with an annual
antomologlical inoculation rate (aBEIR) of 562 infactive mos-
quito bites, 2) Walukuba in Jinja district with an aBElR of & and
Kihihi in K anungu district with an aEIR of & as parearty 2000's
assessments." The three fadlities formed part of a cohort
of malarda reference centers established by the Naticnal
Malarda Control Programme and led by the Uganda Malaria
Survedllance Project (UMSP). Leval |V health faciliies typi-
cally sarve a haalth subdistdct with an estimated popula-
tion of 100,000 people and ane run by a medical doctor. Each
of tha three sites has benefited from malada control activi-
tias, induding 1) the use of artemisinin-based combination
theraples—speacifical by aremethen urmef antrine, which is the
first-ling treatmant for uncomplicated malaria across the
country, and 2} distdbution of long-lasting insecticidal nets
aiming to achieve universal coverage, conducted during
Saptemnber to Nowember 2013 in Nagongera and Walukuba,

South Sudan

" F} NEm

and during December 2013 to February 2014 in Kihihi. In ad-
dition, Magongera recelved three rounds of indoor residual
spraying (IRS) with bendiocary durdng December 2014 to
February 2015, Juns to July 2015, and Novwember to Dacem-
ber 2015, and at least cneround of IR Swith pirimip hos-methyl
iActelic) durng June to July 2016, The three subcountieas of
Magongem, Walukuba, and Kihihi weremade up of 45,21, and
117 villages, respeactively, each identified by names as known
by district and subcounty officials. All these villages were lo-
cated, mapped, and uniquely identified dudng enumeration
surnvey's conducted at each site over 2009/2010, and ane fully
described elsewhens, 517

Study population. All patients aged less than 11 years,
prasanting with suspacted malaria, who were sean at the
outpatient department clinic of each facility during Octobar
2011 to June 2016, comprisad the study population. This age
group incledes both the agerange most at riskof the effects of
and most sensitive to changes in malanda transmission (< 5
yearg), %9 and theage range across which naturally acquired
imminity to malana is seen to develop (5=11 vears). ™ Monthily
TPR trends were similar between underfives and those
aged five to less than 11 years (over-fives). However, TPR in

Fewsz 1. Location of the thres sites of Nagongera (farthest east), Walukuba fcentral), and Kihihi southwest) in Uganda, with the respective
locations of the health facilities included. Red dots represent the site study health facilities, each being a level IV health center for the health
subdistrict to which the respective subcounty four catchment area) belongs—all shown on the inset map of Uganda in black Kihihi fin shades of

yelkow) is located southwest of Uigand

awith a 2002 estimated ann ualentomao logi calinnocul ation rate{aEIR) of & infactive bites perperson; it iz homea

to Queen Bizabsth Mational Park at the border between Uganda and Democratic Republic of Congo. Walukuba forang e ares) is located in the central
part of Uganda at the shores of Lake Victon awith an aEIR of 6, wheress Nagongera(light-gresn ares) is located far eastolose to theborder betwasan
Uganda and Kenya with an s8R of 562 . This figurs appears in color at www.ajtmhb.ong.
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under-fives was generally lower in the low-transmission sites
Walukuba and Kihihi) than in over-fives, and vice versa in the
high-transmission site of Magongera. The pattem in Nagon-
gera was consistent with findings previowsly reported from a
high-transmission site of Aduku in Uganda.® Members of
the study population whose dinic visit was classified as “re-
attendance,” referring to follow-up visits for a presviously
recorded episode, were adccluded. All members of the study
population with a new lliness episode wera included in tem-
poral trend assessments, whensas those whose village of
residence (VOR) was known to be within the fadlity=host
subcounty boundaries (catchment anrea) were included in
spatial-ternporal assessments. Those whosa VOR was ether
located outside the catchment amea or UNKNOWN Wens -
duded from the space=time evaluations (Figure 2).

Outcome measures. Outcome data for all out patients wens
extracted from health facility owtpatients' registers, which
recorded the presence of fever, diagnostic test results, di-
agnosis made, and treatment prescibed, as well as de-
mographic data, height, weight, and VOR. These data wamn
entered from the register into an MS Access database
Microsoft Corporation, Redmond, WA) at the facility and
regulady submitted to the UMSP data center, whene they weane
checked for inconsistencies and cleaned before transfer to
STATA (Stata Compaoration, College Station, TX) for analysis.
Detailed methods are further explained elsewhere, '™

The study primary outcomas wene the test-confirmed IR,
dafined as the numberof confimed primary malaria cases par
1,000 catchment study population of chikdren aged < 11 years
{by mBOT or microscopy), and TPR, defined as the proportion

Tl & palienrs seen
in Walskuba HOS

Tahe' ¥ patients seen
im Wmgomgern HETY
147.532

213,517

139

of patients (children aged < 11 years) presenting to the health
facility who were suspected to have malaria and tested with a

positive malarda test result by either mBDT or microscopy).
Suspected malarda was defined as patients with fever or a
history of fever in the past 48 hours, without any other ap-
parant cause. These are considersd aigible for a malara test
from which positive results determmine the confirmed malaria
cases, Because of inaccessible population estimates of our
study area from the most recent census, catchment study
populations were estimated using cartographic boundades
and a gridded population surface using the ArcMap geo-
graphic information system [ESRI, Inc., Redlands, CA), with
catographic boundades defined as the 2006 subcounty
boundary for each health facility. Subcounty total population
estimates for 2010 and 2015 were obtained from the
wordpop.org project data portal = The popul ation of children
aged lass than 11 years for each year frorm 2010 to 2016 was
estimated from the overall estimates using population pyra-
milds provided in the 2002 national census esults, available in
S-year age bins at the distdct level. It was assumed that the
proporicn of the population aged less than 11 years was the
sameforall subcounties within each district, the proportion of
population aged 10 years was one-fifth of the popuation aged
5-9 years, and the intercensal population growth rate was
3.0%, as published by the Naticnal Bureau of Statistics from
the pedod of 2002 to 2014.2 Per village study population
estimates wene thenderived based on the proportion of village
howseholds enumerated par village in each subcounty.
Analysis. The two outcome indicators wene summarized by
month and village, and examined for temporal and spatial

Toto! & panenrs seen
e KRl BV
179,639

' Mot under 11yrs (n=39,363)
—p. & »a 10yrs (p= B9 21E) BOLS%
| -memln-lulﬂ.lﬁ

e Re-attendance {n=62) 0.1%

Mot sspecbed malaia
® |n=12,063) 20.7%

= we= Ly o= 150,774) MESR

- He—athrnd“e [n=T19 1.2%

Mot siespected malanis
B in=20,300) 47,54

Mot under 11y [n=151,718)

!Hwnulpl.n-‘!ﬂri-'lﬂ.l-li-

]
Tate! ¥ under [ 2prs st @ svodler 11prs
58,164 51.

HNot under 11yrs {n=87 838}
[+ & == 1hyrs fn= BT 70) 67, 7%
* Missing age |n= 97} L.0%

| JMIMHM |

= Re-allendancs (n==81] 0.0%

Hﬂt suspeched ks
" In=0,085) 21. 7%

r_\
Fotal ¥ under 11y Towol £ waher 11975
45,043 1,861
g

C—nf—-
Fexdni & wncley T1pes
52675

= & Out of site |n= 12,800) 27.5%

| vOR notin she n=26,708 |
= ® Ot of site (= 3,054) 116 %

WOR nnl:-nyl:ﬂn lI:I BHP

| WO Pl i nite e T 30
Ve o Ot ol ine (= BO0) LEW
o iissirgg WOR [rvm B,505) 205K

| = Missing WOR = 13,905) 30.3% |

* Missing VOR = 7,178] 125% |

i
Tala! # from wifages withia
Mogongerg aoder 11yrs
[ansparcted maiarks]

19,344

[suspecred mehanal
0089

Fotal ¥ from villrges: within
Walwhata under 11yrs

Tars! & fram viinges sithin Casas for
Kihihi ymder 11y7s Spaze-time
fsuspcted malarie) analyses
25,377

Fiewmz 2. Trial profile indicating the participants included in the study and the exclusion criteria at the two levels of time and space—time

evalustionz. WVWOR = patients' village of residence.
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trends. Straight-line distance to the health facility from the VOR
wias estimated w=ing the ArcES point distance tool (ESRI, Inc)
batwesn the centrold point of the village and the coordinate
point of the haalth facility. Regressi onanabsees wene conducted
wing STATA versions 14 and 15 (Stata Comporation).

The pairwise rdationship between IR and TPR was visual-
zed wing scatter plots and approximated using locally
waighted scatterplot smoothing and guadmatic prediction
plots. As a measure of agreement between the indicators,
concordance analysis was parformed through evaluation of
thie Bland=-Altrman diagrams by site, with no predetermined
threchold for agreement.® Two of the thres sites wene found
to be digible for concordance evaluation based on an ap-
proximately normal distribution of the differences between
TPR and IR, thenby excluding Walukuba

Factors influencing the association between TPR and IR
per village per month wene explored using mixed-effects
Polsson regression models, with rando meffects at the village
and month levels, to account for dustering at both levels.
Model selection was perdormed using Akaike's information
criteria (AIC) from a list of linear, quadratic, cubic, and expo-
nantial fits. Explanatory variables considered were age (pro-
portion of the presenting population aged 5 years and mora),
gender (proportion of the presenting population that was
male), distance to the health facility (by quartile), and season
fdetemmined using the predominant annual patterns of rainy
March=May and Septernber<Movember] and dry [est of the
year] seasons inthe southem parts of Uganda). ™ Explanatory
vadables with P < 0.05 inthe unadjusted analysls wene con-
siderad for indusion in a fully adjusted multivariable model
using a step-down process and evaluated wing likelinood
ratio tests.

RESLILTS

Characteristics of the study population. A total of
161,754 patient visits by children aged less than 11 years wana
recorded for the three health facilities between October 2011

Tazs 1

and June 2016, accounting for 33% of all patient visits. Among
these, 110,585 (68%) were suspected malada cases. A
manthly mean of 346, 382, and 445 swepected malaria pa-
tients aged less than 11 years wene seen in Nagongera,
Walukuba, and Kihihd, respectively, over the study duration
{Figure 2). The respactive site mean (median) age in years
among these participants was 2.8 (2), 3.8 (3), and 4.2 (4), re-
spactively. In addition, the mean age of patiants less than 11
yvears was significantly higher for females than males, both
overall and within each of the three sites P < 0.001). No dif-
ferances wersobsared intrends of TPR betwean particip ants
induded or excluded based on the availability of VOR data,
hence the assumption of no conslderable impact on our m-
sults due to the exclusion. Additional participant chamcteds-
tics aredet ailed in Table 1 for those included in the space-time
A SRESTRNLS,

Trends in indic ators of malaria. Figure 3 shows the trends
in TPR and IR stratified by site over the study duration, on a
monthly time scale, suggesting that the two show similar
trends. In addition, there is evidence of good agreement ba-
twean these indicators through concordance analysis using
Bland-Altman's diagrams shown in Supplemeantal Figunas 1
and 2 in the Supplemental Information, for the two sites that
fulfilled Bland=-Altman's crterla of approximately nomnally
distrbuted differances.

Figura 4 shows the relationship between TPR and IR per
month, suggesting a tendency for months with low case da-
tection rates to also have low TPRs for all three sites. Ghean the
strong seasonal trends in trarsmission, this confirmed TPR as
a reasonable indicator for transmission intensity. Howeyer,
whean plotting TPR and IR by village, this relationship was lost
as sean in Supplemental Figure 3 in the Supplemental
Infermation. This suggests that factors other than intensity
of transmis sion wean influsncing the number of malaria cases
from each village that attend the health center for diagnosis
and/or treatrment. This was also confirmad through the spatial
distribution of IR compared with that of TPR by village shown
in Figure 5. Here, the highest IR i sean to cluster closer to the

Characteristics of study popula tion and distribution of suspected and clinically confirmed mialania cases for the duration of October 2011 through

Juna 2016, evaluated in the space-time analysis for this study

S Pagorgens, M (%) Walldoana, (%) Wik, 4 BE)
Participants: 19,544 20,283 25377
Gender
Male 0407 (0 %) 0,367 [@5%4) 12,003 [ T%)
Famals 9,937 {51 %) 11,622 (55%) 13,371 (53%)
Age (years), mean {50
All 2,74 2.61) 3TEQEM 417302
Mala 2062 2.a9) 354 243) 3aREAa3
Famals 204 2T 347 @O 434 (309
Testing rates
Driagnostic tests with recorded results {proportion of all participants who were tested)
Tested and results recorded 18,655 {06 %4) 19,140 {@1%) 25,048 [@9%)
Testing rates by the disgnostic method {proportion of all participants tested by the method)
Miicroscopy 17,701 @594 19,073 @9%) 25,043 [@9%g)
Rapid disgnostic test 454 [5%) &7 {09 5094
TPR 15,205 (3694 T.910 24%) 15,212 |@7T%)
TFR by gender, ie., proportion of tested blood slides that were positive for malaria
Izl 3,479 [3804) 2,120 25%) 5,600 [MB%4)
Famals 3,837 (3804) 2 506 24%) 6,107 [E%%)
Malaria disgnosis
Malaria disgnosed with a confirmatory test {proportion of all malaria disgnoses made that had a confimatory test)
Confimed positive 604 {07 3) 4, 554 {@7) 11,856 @9%4)

TFR = s pos BTy .
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Fouas 3. Trends in incidence and test postivity rates (TPRs) ovar time (monthhy), by site. In Figurs 3, the solid orange lins represents TPR,
wheraas the dashed red line represents incidence rate, both overiaid on bar plots oftotainumber of children < 11 years tasted formalaria permonth.
A scale of monthly numbers tested is shown on the left y axis, wheareas that for the two incidence measures (indicators) is on tha right y axis. The
green dotted line represents thetime of a universal long-la sting insecticidal-treated nat distribution campaign in eachsite, wheraas the purpledotted
linas represent the timing of indoor residual spraying in Nagongera. This figure appears in color at www ajtmh.org.

health facility and less so further away, whereas TPR has no increasing distance from the health facility in allthree settings.
distinguishable spatial varation. Moreover, results in Figure 6 The number of patients tested for malaria was not as highly
showed that there was no change in TPR with distance, varied by month as it was by village, although Walukuba
whereas in Figure 7, IR was considerably reduced with recorded steady decline across the study duration and
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Magongerm recorded the highest mean {@rithmetic) monthly
number of patients tested for malaria, as seen in Figure 3.
Kihihi recorded the highest mean number of patients tested for
malaria, by village, compansd with the other sites, and Walu-
kuba, the lowest for the same. The mean TPR per month
rarged from 28.9% to 45.7%, whemnas the village mean TPR
permonth ranged from 23.9% to 47.1% exduding outliers. In
ad dition, themean |Rrangad from 11.8 to 18.68casesper 1,000
children par month, whereas the village mean |R manged from
218 to 40.3 cases per 1,000 children per month.

Association between the TPR and IR. Univarableanalysis
of the association betwean IR and explanatory vardables
revealed significant associations with the proportion of the
presanting population aged more than 5 years, distance from
the health facility, and TPRin all three settings; and for season
in Magonger [see Supplemental Information). Model selec-
tionrevealed acubic fit for TPR as best in all settings, based on
AIC, compared withlinear, quadratic, and exponential fits {see
Supplemeantal Information).

In the final mutivariable models, |R was significantly lowerin
villages further from the health facility Table 2). Associations
with seasonal and population factors also varied by site. In-
cidence ratewas significantly lower durdng the miny season in
Magongerm only, whereas in Kihibd and Walukuba, when an
increasing proportion presenting were aged more than 5
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vaars, R stayed borderline significantly associated with age
(Table 2).

Companson of village and temporal random effects sug-
gested considerably mone uneeplained hetenogensity babwesan
villages than ower time (month). Aserage variability betwesan
villages was lowest in Kihibd and highest in Nagongera, al-
though this relationship was eversed when examining wn-
explained temporal variation, with Nagongera baing lowest.

DISCUSSION

This study took advantage of enhanced malana sureil-
lance, conducted at three health facilities in vaned malaria
transmission settings in Uganda. We investigated the ne-
lationship between two standard indicators of malana burden:
TPR and IR. Findings showed that these indicators strongly
agreed over time month) in all three settings, most notabhy
during perdods of low transmission. However, TPR remained
unchanged, whereas IR was drastically reduced with in-
creased distance from the health fadlity. This further pointsto
TPR as an appropriate proxy of traremission intensity me-
gardiess of the setting, but suggested that despite enhanced
reporting, 1R ks strongly influenced by faclity accessibility and’
or use by the catchment popuations wsing distance to the
health facility as a proxy.™ We demonstrated here that after

Walukuba

Moty GO el i ks i | SO0 o padidi 00

Foums 4.  Plots of test positivity rate {TPR) against test-confimed malana case rate with points as months and point sizes accounting for the
riurmiber tested formals s by month. Each red dot here represents & month during thestudy duration, and thesize of dots isrelstive to the numb.er of
suspected cases for independent episodes tested for mal ania within each month. The gray curve is the fitted curee of the estimated relatonship
betwesan the two messures of TPR and incidence rate. This figure appears in color at www ajtmb ong.
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Fouss5. Comparison of the spatial distribution ofincidencerate (IR) and test positivity rate (TP R) based on the village-level annual maan of each
indicator in the three sites of Kihihi, Nagongera, and Walukuba. Three sites of Kihihi, Nagongera, and Walukuba shown side by side to depict a
comparison between tha spatial distribution of the village mean annual TPR {eft) against IR {nght). Villags boundaries for each site are represented
with the gray linas, wharsas tha respective site study health facility location is represented by the black dot. A single legend parindicatoris placed at
the bottom on respective sides. This figure appears in color at www.ajtmh org.
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accounting for transmission via TPR, some varability in IR
remained unexplained both between villages and monthes.
This pointed to important systemic differences in access to
diagnosis and treatment within heafth facility catchments.

Trends in and concordance between these indicators over
time (month) showed patterns suggestive of stronger
agreement during low-transmission seasons. This was par-
ticularly evident in Nagongera during the period of intense |IRS
activity. This suggests that assessment of the trends overtime
in the two measures together may serve as a more sensitive
marker of drastic changes in transmission within low-
transmission settings and, thus, jointly provide an important
surveillance tool. Consistent with other studies, including one
in western Uganda,®” we demonstrated that the relationship
between TPR and IR was nonlinear, with both indicators in-
creasing steadily until TPR reached around 50% . This sug-
gested that either an inherent saturation point in TPR or that
dynamics in treatment-seeking and care practices masked
any further increase in TPR. It also reiterated the presence of
malaria heterogeneity within each site.

The three-level mixed-effects Poisson model results from this
study revealed that after controlling for the transmission in-
tensity (viaTPR), IR remained significant ly influenced by theage
of the patients, distance to the health facility from the VOR, and
climatic conditions represented by a wet or dry season of the
year. Studies have previously reported theinfluence of village or

“area of residence” and age on TPRE” as well as season™ on
mialaria through routine reporting. Consequently, age, distance,
village, and time (month) or season (rain versus dry) wene im-
portant factors in the assessment of malaria burden throuwgh
routing health facility-based surveillance. Concerning age, the
smiall but strongly significant association of increased |Rs with
age in Kihihi and Walukuba but not Nagongera coud be
explained by Nagongera having significantly lower mean age,
coupled with its historically significantly higher parasite preva-
lence in children than the other two sites.!” Distance to the
health facility, the increase of which was associated with a
significant decline in IR, is known to influence the care-seaking
behavior'™ for reasons such as cost™ and, thus, may be con-
sidered a proxy for accessibility 2 There were significant as-
spdations between distance and IR in all three settings. These
highlight a strong influence of access to health fadlity and
factors associated with access suchastheuseof drug shopsas
the first action, reported to be anmywhere between 25% in pa-
tients of all ages™' and 62.7% in children aged less than 5
vears, ™ in parts of Uganda Accessibility may also provide an
explanation for the reduced IR observed in Magongera during
the rainy season, given that floods, intense farming activity, and
inaccessible roads are common in this area during this time. It
should be noted that distance did not explain all betw een-village
variation, suggesting that otherfactors play an important role in
health fadlity accessibility and use.
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There were a number of limitations that should be ac-
knowledged. Incomplete records represent a major challenge
when interpreting health facility data. Howewver, an evaluation
of the greatest source of missing data (VOR) suggested
no systematic differences between the two populations.

Distance to the health facility could only be measured as a
straight-line distance between the health fadility and the
centroid of the village as more detailed information was un-
available within the confines of noutine passive surveillance. In
addition, given possible repeated measures on the individual

Taaes 2

Mixed-affects Poisson modal results jadjusted) assessing association betwsan incidence rate and TPR in Magongera, Kihihi, and Walukuba
controling for aga, distanca to the haalth facility in all sites, gandar, and saasonin Magongera and Kihihi as fixed effects and including random

effacts of village of residance and month of study year

Magongem Kihini Waliuna
Flomd afincs
Expoara PRy O ozl =R s O =R BRaLwsoh ol
Casa positivity Cubic TPR tam 1.00 {1.00-1.00) < 0,001 1.00 {1.00-1.00) <0.001 1.00 {1.00-1.00 <0001
Cluadratic TPR tam 0.98 {0.98-0.58) < 0,001 0.58 {0.98-0.98) <0.001 098 {28095 < 0,001
Linaar TPR tamm 1.11 (1.08-1.13) =< 0.001 118 (1.17-1.19) = 0,001 102 (1.00-1.05 0111
Agea Incraasing proportion 1.00 {0.97-1.02) 0.727 1.01 {1.00-1.02) <0043 1.03 {1.00-1.08) 0.058
of = 5 years
Distanca to 1=t quartila 1 Rafaranca 1 Rafaranca 1 Refaranca
health facility  2nd quartile 0.48 {0.28-0.83) 0.009 1.06 (0. 76-1.49) 0.723 070 D31-1.60) 0.385
3rd quartila 0.38 {0.22-0.67) 0.001 0.58 {0.49-0.94) 0.018 088 {043-1.79 0.718
4th quartila 0.40 {0.23-0.88) 0.001 0.55 {0.40-0.75) <0.001 025 {D12-0.51) < 0,001
Saazon Dinyfsunny 1 Rafaranca 1 Rafaranca 1 Refarance
Wt frain 0.86 {0.80-0.91) <0.001 MAA MSA MYA MNAA
Randomeffects  Village (standard amor) 0.3"75 {D.088) 0.305(0.045) 0.325(0.114)
Muonth {standard amor) 0.075 {D.009) 0.104 {0.008) 0105 (D.014)

TIRA - Inogeno re D 1ER = W RSty fenm; YA = nol appicaie.
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and household levels, there could be clustering at those levels
that remained unaccounted for in this analysis. Nevertheless,
repeated measures within the same episode of malaria were
minimized using visit dassification. Last, there are seweral
lower level facilities within the same catchment of each of our
study facilities that may influence the results observed, how-
ever, these data wene not available at the same level of quality
for inclusion in this study. Nevertheless, although lower level
facilities absorb many malardacases in theirproximity, they too
see patients from much farther away in a relatively similar form
to the higher level facilities {such as our study facilities) for
myrad reasons, which may undermine their influence on re-
sults in this study.

COMCLUSION

Strong nonlinear relationships between the two indica-
tors of TPR and IR emphasize their distinct relevance to
monitor malaria; however, caution is necessary in their
interpretation. Given the strong impact of the distance of
patients' residence from the health facility, a good proxy
for the care accessibility, on IR and none on TPR, burden
estimates in the assumed health facility catchment differs
from one indicator to the other. The influence of access
to health facility on IR depicts it as a good indicator for
malaria burden in the health facility catchment, whereas
the absence ofthe same effect ofaccess on TPR suggests
TPR as a good indicator for resource planning within the
health facility system. More information is needed, how-
ever, on how well IR reflects the true burden on well-
characterized catchments.
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3.1 Additional information for Paper 1

3.1.1 Concordance analysis
Concordance analysis results are presented by month in Figure 1 and by village in Figure 2 below. The included
two (Nagongera and Kihihi) of three sites are they that met the ‘normal distribution of differences’ criteria

required in Bland-Altman’s method, whereas Walukuba did not qualify and was therefore, excluded.

Figure 1. Bland-Altman diagram for Nagongera and Kihihi, assessing incidence estimates of TPR and IR at the

level of time (month).
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Each red dot represents a month of study year within each site, the dashed blue lines —the mean of
differences, and the dashed red lines — the 95% agreement limits at approximately two standard deviations

away from the mean.

The mean of differences for these monthly assessments (Figure 1) was much lower in Nagongera than Kihihi,
being 0.148 and 0.338 respectively, a higher than two-fold and significant difference (p<0.001) with the means
represented by the blue dashed line. However, the spread of limits of agreement was nearly the same for both

sites i.e. 0.154 and 0.158 respectively, indicated by the dark-red dashed lines. Thus, difference between TPR and

IR per month was less than 0.08 at both sites within 95% confidence bounds.
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Figure 2. Bland-Altman diagram for Nagongera and Kihihi, assessing TPR against IR at by village, stratified by

year of study.
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a four-year village average for each indicator for the respective site.

Concordance results (shown in Figures 1 and 2) revealed higher mean of differences between TPR and IR in Kihihi,
0.33 than Nagongera, 0.17 within 95% ClI, suggesting a similarly large average difference between the sites.

Furthermore, differences between TPR and IR by village were limited to 0.16 in either site and greater than
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differences by month that were limited to 0.08 within 95% Cl, pointing to greater heterogeneity between villages
than months. Consistency in the differences between TPR and IR for either site on the two dimensions of month
and village, provides further evidence in support of agreement between these indicators [182] regardless of
transmission setting. By village, TPR was on average 30% higher than IR for both sites and there was an apparent
relationship between variability in the two indicators and the quantity of each, with smaller differences observed
at lower quantities in each of the indicators and greater differences as well as uncertainty when these are larger,

that implies that there is greater agreement at lower transmission levels.

3.1.2 Relationship between TPR and IR
The relationship between the two indicators of TPR and IR by village, was explored using the mean annual value
of each indicator, for each village. Here, unlike the case of the same examination by month presented in Figure 4

in the paper, the relationship is unclear as seen in Figure 3 below.
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Figure 3. Scatter plot of village-level four-year average test positivity rate against annual test-confirmed malaria case rate, by site. Point sizes account for

number tested for malaria by village
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3.1.3 Univariable analysis

For each of the sites, explanatory variables including: sex or gender as 10% increments in the proportion of males
among the study participants; distance to the health facility first determined in kilometres and then transformed
to site specific quartiles; and, season determined using the predominant annual patterns of rain (March-May and
September-November) and dry (rest of the year) seasons in the southern parts of Uganda, [183] were evaluated.
For each site, age as 5% increments in the proportion of children 5 to under 11 years of age, was considered a
default variable for inclusion, given that the existence of significant association between age with risk of infection
is well known. [118, 184] Results from the univariate analysis are presented in Tables 1, 2, and 3 for Nagongera,

Kihihi, and Walukuba, respectively.

Table 1. Mixed effects Poisson model results (crude) assessing associations in Nagongera between IR and TPR,
age, gender, distance to health facility, and season as fixed effects; and, including random effects of village of

residence and month of study year.

Un-adjusted
Exposure Fixed effects Random effects
IRR (95% Cl) p-value Village (Std. Err.) Month (Std. Err.)
Case positivity TPR 1.14 (1.13-1.15) <0.001 0.759 (0.175) 0.172 (0.016)
Increasing
Age proportion of 0.97 (0.94-1.00) 0.042 0.748 (0.173) 0.398 (0.030)
>=5yrs
Increasing
Gender proportion of 1.01 (0.98-1.03) 0.595 0.721 (0.167) 0.395 (0.030)
Males
1st Quartile 1 Reference
Distance to 2nd Quartile 0.45 (0.23-0.86) 0.016
0.548 (0.128) 0.398 (0.030)
health facility 3rd Quartile 0.34 (0.17-0.65) 0.001
4th Quartile 0.33 (0.17-0.62) 0.001
Dry / Sunny 1 Reference
Season 0.743 (0.172) 0.387 (0.029)
Wet / Rain 0.83 (0.75-0.91) <0.001
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Table 2. Mixed effects Poisson model results (crude) assessing associations in Kihihi between IR and TPR, age,

and distance to health facility as fixed effects; and, including random effects of village of residence and month of

study year.

Un-adjusted

Exposure Fixed effects Random effects
IRR (95% Cl) p-value Village (Std. Err.) Month (Std. Err.)
Case positivity TPR 1.12 (1.11-1.13) <0.001 0.545 (0.079) 0.225 (0.013)
Increasing
Age proportion of 1.06 (1.04-1.07) <0.001 0.534 (0.079) 0.428 (0.021)
>=5yrs
Increasing
Gender proportion of 1.01 (0.99-1.02) 0.298 0.565 (0.082) 0.442 (0.022)
Males
1st Quartile 1 Reference
Distance to 2nd Quartile 1.16 (0.78-1.74) 0.467
0.459 (0.067) 0.442 (0.022)
health facility 3rd Quartile 0.66 (0.45-0.98) 0.041
4th Quartile 0.49 (0.33-0.72) <0.001
Dry / Sunny 1 Reference
Season 0.565 (0.082) 0.442 (0.022)
Wet / Rain 0.93 (0.88-0.99) 0.034
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Table 3. Mixed effects Poisson model results (crude) assessing associations in Walukuba between IR and TPR,
age, and distance to health facility as fixed effects; and, including random effects of village of residence and

month of study year.

Un-adjusted
Exposure Fixed effects Random effects
IRR (95% Cl) p-value Village (Std. Err.) Month (Std. Err.)
Case positivity TPR 1.14 (1.12-1.15) <0.001 0.671 (0.230) 0.285 (0.027)
Increasing
Age proportion of 1.09 (1.05-1.13) <0.001 0.594 (0.205) 0.481 (0.041)
>=5yrs
Increasing
Gender proportion of 1.03 (0.99-1.08) 0.088 0.645 (0.222) 0.494 (0.042)
Males
1st Quartile 1 Reference
Distance to 2nd Quartile 0.72 (0.32-1.62) 0.423
0.320 (0.115) 0.495 (0.042)
health facility 3rd Quartile 0.84 (0.45-0.98) 0.623
4th Quartile 0.25 (0.33-0.72) <0.001
Dry / Sunny 1 Reference
Season 0.646 (0.222) 0.494 (0.042)
Wet / Rain 0.92 (0.81-1.04) 0.202

3.1.4 Model selection

The best model fit was selected using the Akaike’s information criteria where the model with the lowest value is
considered better than others with higher values. This model can be considered as the model with maximum
precision using all the important covariates accounted for. In this study, four models were considered including
the linear, the quadratic, the exponential and the cubic. Results for each of these models considered are presented

in Table 4 below, indicating that the cubic was preferable.

Table 4. Akaike's information criteria values for the models each compared to the linear model to determine

significant improvement of the linear model to fit the relationship between TPR and IR

Model
Site X
Linear Quadratic Exponential Cubic
Nagongera 5847.68 5363.82 5650.67 5317.82
Kihihi 13298.93 11878.39 12399.11 11857.46
Walukuba 3828.50 3510.93 3710.12 3452.89

*The exponential model considered here was one that included a linear term of TPR given it was better than model that was

purely exponential and excluded a linear term
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3.1.5 Multi-variable analysis
The cubic fit of the model, as compared to the linear, quadratic, and exponential models was selected as best
based on AIC (Table 4). This fitted relationship from the multi-variable model was presented as a predicted plot

using values of all covariates in the model, fixed at their mean values in each of the three sites (Figure 4).
This relationship takes on the form of
y=ax3+bx’*+cx+p
Where y = village IR per month, x = village TPR per month, and a, b, & c are coefficients, while B is an error term.

The same relationship between TPR and IR was sustained at all three settings with one exception in Walukuba
where the linear term does not hold a significant effect. In all three settings, the fitted relationships between TPR
and IR suggested that observed IR were highest when TPR was above the site mean, although the nature of the
relationship had slight variations by site: in Nagongera, fitted IR peaked at 25% above the mean of TPR, whilst in
Walukuba this was at 10% above and in Kihihi at 50% above mean of TPR (Figure 4).
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Figure 4. Prediction plots for the relationship (cubic) between TPR and IR from the multi-variable mixed effects model for the sites of Nagongera,
Walukuba, and Kihihi.
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Abstract

Background: Malaria control using long-lasting insacticidal nets (LLINS) and indoor residual spraying of insecticide
(IRS) has been associated with reduced transmission throughout Africa. However, the impact of transmission reduc-
tion on the age distribution of malaria cases remains unclear.

Methods: Cver a 10-year period (January 2009 to July 2018), outpatient surveillance data from four health fadilities

in Uganda were used to estimate the impact of contral interventions on temporal changes in the age distribution of
malaria cases using multinomial regression. Interventions included mass distribution of LLIMs at all sites and IRS at two
sites.

Results: Cwerall, 896,550 patient visits were indluded in the study; 211,632 aged < 5 years, 171,166 aged 5-15 years
and 513,752 = 15 years. Over time, the age distribution of patients not suspected of malaria and those malaria negz-
tive either declined or remained the same across all sites. In contrast, the age distribution of suspected and confirmed
malaria cases increased across all four sites. In the two LLINs-only sites, the proportion of malaria cases in <5 years
decreasad from 31 to 16% and 35 to 25%, respectively. In the two sites receiving LUNs plus IRS, these proportions
decreased from 58 to 30% and 64 to 47%, respectively. Similarly, in the LLINs-only sites, the proportion of malaria
cases » 15 years increased from 40 to 61% and 29 to 39%, respectively. In the sites receiving LLINS plus IRS, these pro-
portions increased from 19 to 44% and 18 to 31%, respectively.

Conclusions: These findings demonstrate a shift in the burden of malaria from younger to older individuals follow-
ing implementation of successful control interventions, which has important implications for malaria pravention,
surveillance, case management and control strategies.

Keywords: Malaria, Routine surveillance, Age distribution, Reduced transmission, Burden shift

Background
In Africa, the burden of malaria has decreased signifi-
cantly, primarily through the scale-up of vector control
interventions, including long-lasting insecticidal nets
— (LLIMs), and indoor residual spraying of insecticide (IRS)
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therapy (ACT), and intermittent preventive therapy with
sulfadoxine-pyrimethamine for pregnant women [4, 5].
Whereas the impact of malaria control interventions is
generally measured in terms of changes in Plasmodinm
Sfalciparum infection prevalence and case numbers [1],
more evidence is needed on how interventions influ-
ence the age distribution of malaria cases, a vital marker
of progress in malaria control [6]. In high transmission
settings, younger children bear the brunt of the malaria
burden [7, 8], particularly for severe malaria and malaria
deaths [9, 10]. However, it is unclear how quickly and
to what extent the age distribution of uncomplicated
malaria cases may shift with changes in transmission,
following the successful implementation of control
interventions.

Malaria surveillance efforts have generally focused
on children under 5 years of age, a group that contrib-
utes the majority of reported cases [11] and are thus the
focus of control measures and research, in areas of stable
malaria transmission in sub-Saharan Africa. School-aged
children (5-15 vears) have received less attention due to
the lower morbidity and occurrence of severe outcomes
in this group [12]. However, older children often experi-
ence low-density asymptomatic infections and have been
identified as important contributors to the infection res-
ervoir for onward transmission [13]. Even less attention
is given to adults (over 15 years), except for pregnant
women [l4], despite documented high prevalence of
asymptomatic infections with high parasitaemia in adults
[15, 16].

Commitments to malaria control made at the Abuja
Summit in 2000 [17] led to World Health Organization
(WHO) recommendations of universal coverage with
LLIMs, beginning in 2007 [18]. In Uganda, access to
LLIMs increased gradually, first among pregnant women
and children under 5 years of age [19, 20]. This later cul-
minated in universal LLIN campaigns aimed at one LLIN
for every two household residents [21], with nationwide
distributions in 2013-2014 [22] and 2017-2018, Further-
more, IS was implemented in 10 districts effective 2010,
then shifted to 14 districts from 2014 onwards [23, 24].
In northern Uganda, integrated community case man-
agement ({CCM) of malaria began from 2016 to 2017 and
the 10 districts plus one also resumed IRS [25].

Following the scale-up of malaria control efforts in
Uganda, confirmed malaria cases reported from health
facilities declined by an average of 10.8% per wvear
between 2013 and 2015 before increasing in 2016 [26].
Moreover, malaria indicator surveys (MIS) showed that
parasite prevalence in children under 5 years of age
declined from 42% in 2009 to 19% in 20142015 [27, 28],
whilst malaria mortality reportedly decreased from 59 to
23 deaths per 100,000 between 2010 and 2017 [25].

Page2of 12

This study aimed to investigate the impact of control
interventions on the age distribution of malaria cases,
using high-quality malaria surveillance data from four
sites in Uganda, where mass LLIN distribution was con-
ducted at all four sites and IRS implemented at two, one
of which also received iCCM.

Methods

Malaria surveillance

The Mational Malaria Control Division (NMCD) of the
Ministry of Health has conducted surveillance through
the health management information system (HMIS)
since 2007. However, more detailed malaria surveil-
lance including collection of individual-level data has
been conducted in selected malaria reference centres
{MRCs) since 2006, MRCs are level III or IV health
facilities located across the country, representing varied
transmission settings as previously described [29, 30].
In summary, patients visiting these centres are assessed
at the outpatient department (OPD) and basic informa-
tion recorded using an OPD registry, including history
of fever, age, pender, malaria diagnostic test results, and
treatments prescribed. Individual visit-level OPD records
are then entered into an MS Access database (Micro-
soft Corporation, Redmond, WA, USA) and sent to the
Uganda Malaria Surveillance Programme (UMSP) data
centre and cleaned before transfer to STATA (Stata Cor-
poration, College Station, TX, USA) for analysis. Data
from these sites are used to generate monthly reports
that are shared and reviewed by the NMCD and other
stakeholders.

Study sites

Four MRECs were selected for this study including:
Walukuba in Jinja District, Kasambya in Mubende Dis-
trict, Aduku in Apac District, and MNagongera in Tororo
Distict (Fig. 1). These sites were purposively selected
because of their temporal representation of the malaria
indicators of interest, with data covering the period
of interest (January 2009 and July 2018), and have had
malaria control intervention activities implemented
in each of them. By transmission settings, Walukuba
and Kasambya had an estimated annual entomological
inoculation rate (aEIR) of less than 10 infective bites per
person per vear in the early 2000s, while in Aduku and

Magongera aEIR was in excess of 1500 and 550, respec-
tively [31].

Variable description

Records in the database were classified either as ‘sus-
pected malaria’ or ‘no suspected malaria’ Suspected
malaria was defined as patients who: (a) had a laboratory
test done for malaria (microscopy or rapid diagnostic test
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Fig. 1 5ite locations of the four study health faclities cateqorized by
the main intervention activity used

(RDT)} or, (b) were given a clinical diagnosis of malaria
in the absence of laboratory testing. All records that did
not meet this definition were classified as ‘no suspected
malaria!

Among suspected malaria cases, ‘malaria cases’ were
defined as all those patients with positive malaria diag-
nostic test results (microscopy or RDT). Moreover,
‘malaria negative cases’ were those who were tested
for malaria (microscopy or RDT) but had negative test
results,

Description of malaria control interventions at the study
sites

Using available information from the NMCD on when
specific interventions were implemented and/or inter-
rupted at each study site, calendar time was divided
into three to four different intervention periods per site
(Fig. 2). The first period for each site, before large-scale
interventions were implemented, is referred to as base-
line. During baseline periods, control activities were
largely limited to targeted distribution of insecticide-
treated nets (ITMs) to vulnerable populations such as
children under 5 years of age and pregnant mothers [32,
33]. The subsequent intervention periods were then used

Fage 3o0f12

to quantify the impact of interventions on the age-distri-
bution of test-confirmed malaria cases.

The main control interventions implemented in
Walukuba and Kasambya were two mass LLIN distribu-
tion campaigns conducted in 2013 and 2017 at both sites.
In addition to LLINs in the same time periods, Aduku
and Magongera also received IRS. The baseline period
in Aduku included one round of IRS with the pyrethroid
alphacypermethrin insecticide, which was not consid-
ered to be effective due to insecticide resistance [30].
This period in Aduku, was followed by nine rounds of IRS
with the carbamate bendiocarb insecticide approximately
every 6 months, as well as the first mass LLIN distribu-
tion campaign. IRS was stopped for 3 years and then a
single round of IRS with the organophosphate Actellic
insecticide was conducted, immediately followed by the
second mass LLIN distribution campaign. In Magongera,
the baseline period was followed by the first mass LLIN
distribution campaign and then a sustained period of IRS
including three rounds with the bendiocarb insecticide,
approximately every & months, followed by three rounds
with Actellic approximately every 12 months. A second
mass LLIN distribution campaign was also conducted in
MNagongera during the sustained period of IRS [34].

Statistical analysis

Data from patients with age missing (0.3%), age over
70 years (1.2%), and follow-up visits for any previously
recorded illness episode (0.7%) were excluded from the
analyses. First, data were explored by caleulating, for
each site and intervention period, the total number of
patients seen and the proportion of those that were sus-
pected, tested and classified as confirmed malaria cases.
To characterize changes in testing practices, proportion
of cases that were tested by microscopy vs RDT were cal-
culated. Test positivity rate {TPR) was defined as the pro-
portion of patients tested for malaria that tested positive,
a metric often considered a viable proxy for transmission
intensity [35].

Trends in the gender distribution of patients with or
without suspected malaria and malaria cases were also
explored across intervention periods using cross-tabula-
tion with Chi squared tests.

To characterize the impact of control interventions
on the age distribution of malaria cases, first, vio-
lin density plots were used to visnalize changes over
the intervention periods and compare the distribu-
tions of patients not suspected of malaria to those with
confirmed malaria. Second, scatter plots of age (as a
continuous variable) and test positivity, stratified by
intervention periods, per site were examined. Third,
multinomial logistic regression models were fit, by site.
The outcome in these models was ‘the age category of
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confirmed malaria cases’ (under 5 years, 5-15 years,
and over 15 years; three age categories being conveni-
ently defined), while the main predictor was the inter-
vention period. Models were adjusted for diagnostic
test used (microscopy vs RDT), as well as patient gen-
der. To validate the potential impact of increasing use
of RD'Ts across sites over time on these findings, the

multinomial regression models were fit with an inter-
action between diagnostic test and time. Using the full
maodels, adjusted proportions of malaria cases in each
of the age categories per intervention period were pre-
dicted. These marginal predictions were made at the
mean values of the variables included in the model and
analyses performed in R [36] and STATA 15 (Stata Cor-
poration 2017, College Station, TX, USA).
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Results

Patient composition and attendance by site

Between January 2009 and July 2018, the four health
facilities of Walukuba, Kasambya, Aduku, and Nagongera
recorded 896,550 patient visits in their outpatient depart-
ment clinic registers, with over half of them (53%) sus-
pected to be malaria cases. Walukuba recorded the
highest number of both patient attendance (323,856) and
suspected malaria cases (130,296), while Kasambya had
the lowest attendance at 153,811 (Table 1).

The highest annual mean number of patients seen was
in Walukuba (33,053) followed by Magongera (22,701),
then Aduku (20,079), and least in Kasambya (15.897).
Mean monthly patient attendance per year remained
fairly constant at all sites except Walukuba where this
value peaked in 2011 at 3400 and steadily declined to
1952 by 2018 (Fig. 51, Additional file 1). Mean monthly
attendance of patients not suspected of malaria per year
increased slowly over time at all sites with cyclic varia-
tions (Fig. 52, Additional file 1). From 2009 to 2018,
these increases were significant in Kasambya and Aduku
though not in Walukuba or Nagongera by Wilcoxon
rank-sum test (Table 51, Additional file 1). Conversely,
mean monthly attendance of suspected malaria cases per
year followed a general decline over time at all sites with
cyclic variations (Fig. 3, Additional file 1). From 2009 to
2018, these declines were significant in Walukuba, Aduku
and Magongera, but not in Kasambya (Table 51, Addi-
tional file 1).

The majority of non-suspected and suspected malaria
cases were female (67 and 63%, respectively). The differ-
ence between gender among confirmed malaria cases was

Fage 5af 12

smallest among children under 5 years of age (per cent
female: Aduku 49%, Nagongera 49%, Walukuba 54%, and
Kasambya 55%) and largest among patients over 15 years
of age (per cent female: Aduku 79%, MNagongera 75%,
Walukuba 63%, and Kasambya 66%). No observable trend
in gender overall was found across intervention periods.

Trends in diagnostic testing over time

Throughout the study period, the majority of labora-
tory testing for malaria was by microscopy (89%) and the
highest and lowest overall testing rates (percentage of
suspected malaria cases that received a diagnostic test for
malaria) were observed in Walukuba (97%) and Aduku
(93%), respectively. Across intervention periods however,
the proportion tested by RDT increased at all four sites
mostly in the last 4 years of study duration. By the last
period, 77% of cases were tested by RDT in Kasambya,
72% in Aduku, 40% in Magongera, and 25% in Walukuba
(Fig. 54, Additional file 1).

Test positivity rates
Although Aduku and Magongera were historically the
highest transmission settings, the highest TPR was
observed in Aduku followed by Kasambya, Nagongera
and Walukuba (Table 1). When considering only children
under 5 years of age, however, baseline TPR levels were
reflective of the historical transmission intensities. Base-
line TPR in this group was highest at NMagongera (64%)
and Aduku (63%), and lower in Kasambya (37%) and
Walukuba (31%).

In all four sites, control interventions were associ-
ated with moderate reduction in overall TPR with

Table 1 Malaria-associated demographics of study participants for each site, by intervention period

Site Intervention period Total observations® Suspected malaria  Tested for malaria Microscopy (%) Positive test result
(%) (o) )

Walukuba Jam 20090t 2013 183327 95,080 (51.5%) 92,784 (97 6%) 92,738 (99.9%) 30,785 (33.2%)
Mo 2013-May 20017 111,506 27 AB3 (24.7%) 26)051 (94.8%) 24360 (93.5%) 9239 (35.5%)
Jun 201 7-Jul 2018 29023 7733 (265%) TO24 (90.8%) 5237 (T4.4%) 2037 (29.0%)

Kasambya Jan 2009-MNow 2013 85200 65,768 (77.7%) 63479 (96.5%) GOUOT0 (46%) 24538 (38.7%)
Dec 2013-Mow 2017 50488 41,823 (69.1%) 38,328 (91.6%) 30,199 (FEE%) 15,996 (41.7%)
Dec 2017-Jul 2018 B123 5272 (54.9%) 5083 (96.4%) 1156 [22.7%) 1529 (30.1%;)

Aduku Jan 2009-Aug 2010 34595 19024 (55.0%) 17 57T (94.0%) 17877 (1005) 0921 (55.5%)
Sep 20010-Apr 2014 1329 40478 (H6.7%) 40,27 F (99.5%) 39056 (97100 0825 [24.4%)
May 207T4-May 2017 66,092 34 467 (52.79%) 20410 (B5.3%) 17 466 (59.4%) 15311 (52.1%;)
Jun 201 7-Jul 2018 25389 9013 35.5%) 5158 (90.5%) 2380 (FEI0w) 2189 (26.8%)

Magongera  Janm 2009-MNowv 2013 124711 B2 763 (65.4%) 76,915 (92.9%) 74,555 (97_5%) 27007 (35.1%)
Dec 2013-Jan 2015 24530 15,893 (H4.8%) 15,723 (98.9%) 14874 [24.6%) 3077 (25.3%)
Feb 2015-1ul 2018 72335 IT. 197 (37 E%) 27 064 (99.2%) 16213 (59.9%) 4309 (15.99)

* Patients seen at the health fadility excluding those with a missing record of age
! Testing for malaria includes bath microscopy and ADT
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acyclic secular trends in between. Larger reductions
were observed in the two sites where both LLINs and
IRS were implemented (Fig. 2). In these sites, the declin-
ing trend in TPR is consistent except in Aduku, during
the 3 years of withdrawn [RS, characterized by a sharp
increase. Between baseline and the last intervention
periods, TPR declined in Aduku from 56 to 27% and in
Magongera from 35 to 16%. In the two sites that received
LLINs only, a similarly (with acyelic secular but less nota-
bly) reducing trend was observed. Between baseline and
the last intervention periods, overall TPR decreased in
Walukuba from 33 to 29% and in Kasambya from 39 to
30% (Table 1).

Orwver time and in all four sites, test positivity was seen
to decline among the younger children while increasing
among older participants. In all sites, a shift in the peak
age of test positivity from the youngest to the older ages,
was observed between baseline and last intervention
period (Figs. 55 and 56, Additional file 1). Interestingly,
this pattern was reversed in Aduku during the 3 years
when IRS was withdrawn, further confirming the effect of

control interventions on test positivity with age (Fig. 56,
Additional file 1).

Differences in age distribution of malaria cases
between sites at baseline
Although the duration of baseline periods varied between
the sites due to the different timing of intervention activi-
ties, the age distribution of patients not suspected of
malaria was very similar between all four sites at baseline,
with median ages ranging from 23 to 25 years (Fig. 3). In
contrast, the age distributions of malaria cases varied sig-
nificantly between sites. These distributions were similar
between the highest transmission sites of Nagongera and
Aduku, with median ages of 2 and 3 years, respectively.
The distributions were also similar, but higher, between
the lower transmission sites, with median ages of 8 and
11 years for Kasambya and Walukuba, respectively.
Consistent with unadjusted analyses, results from the
final adjusted multinomial regression models {adjust-
ing for diagnostic test and gender of patient; evaluated
using Akaike’s information criteria and likelihood ratio
tests (Table 82, Additional file 1) for model selection; and,
using scatter plots with fitted lines for goodness of fit
(Fig. 87, Additional file 1) showed that the proportion of
malaria cases per age-group were significantly different
between sites at baseline. The majority of malaria cases
were among children under 5 years of age in the high-
est transmission sites (Aduku 58% and Nagongera 64%),
while the highest proportion of malaria cases was among

patients 5-15 years of age in Kasambya (35%), and over
15 years of age in Walukuba (31%) (Fig. 4).
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Changes in age distribution of non-suspected,
test-negative, and laboratory confirmed malaria cases

over time

The age of patients not suspected of malaria decreased
slightly over the study duration at all four sites. Moreo-
ver, for malaria negative patients, the age distribution
slightly shifted downwards and then upwards at all sites
except Magongera, where it shifted downwards across
the intervention periods. In contrast, the age distri-
bution of patients with laboratory confirmed malaria
shifted upwards over time at all four sites. Comparing
the last observation period to baseline, the median age
of patients with malaria increased from 8 (IQR: 2.5-19)
to 11 (IQR: 5-21) in Kasambya; 11 (IQR: 3.5-24) to 22
(IQR: 8-32) in Walukuba; 2 (IQR: 1.1-10) to & (IQR:
2-18) in Magongera; and 3 (IQR: 1.2-13) to 14 (IQR:
5-22) in Aduku (Fig. 3).

Across all sites, a progressive decline in the propor-
tion of malaria cases from the youngest age group and
a progressive increase in the proportion of cases from
the oldest age group were observed. Comparing the last
intervention period to baseling, the adjusted proportion
of malaria cases among children under 5 years of age
decreased from 58% (95% CI 57-59%) to 30% (95% CI
28-31%) in Adubku; 31% (95% CI 30-31%) to 16% (95% C1
15-17%) in Walukuba; 64% (95% CI 63-65%) to 47% (95%
CI 45-48%) in Nagongera; and 35% (95% Cl 34-36%)
to 25% (95% CI 23-27%) in Kasambya. Comparing the
same periods, the proportion of malaria cases among
patients over 15 years of age increased from 19% (95% CI
19-20%) to 44% (95% CI 42-46%) in Aduku; 40% (95%
CI 40-41%) to 61% (95% CI 59-64%) in Walukuba; 18%
(95% CI 17-18%) to 31% (95% CI 29-32%) in Nagongera;
and, 29% (95% CI 28-29%) to 39% (95% CI 37-41%) in
Kasambya.

The upward shift in the age distribution of malaria
cases occurred gradually thronghout the study peri-
ods in all sites except Aduku, where IRS was withdrawn
in 2014 for three years (defining the 3™ intervention
period) before another round was implemented in 2017.
In Aduku, during the intervals from the 2nd to the 3rd
intervention periods, the proportion of malaria cases
among children under 5 years of age increased from 38%
(95% CI 37-39%) to 44% (95% CI 43—44%), followed by
a decrease to 30% (95% CI 28-31%) following the last
round of IRS. At this site, the proportion of malaria cases
among patients over 15 years decreased from 35% (95%
CI 34-36%) during the 2nd to 30% (95% CI 29-31%) dur-
ing the 3rd intervention period, before increasing to 44%
(95% CI 42—46%) in the last period (Fig. 4).

The upward shift in age distribution of confirmed
malaria occurred consistently in both males and females
(Fig. 58, Additional file 1). Whilst the majority of all
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patients, non-suspected and suspected malaria cases
were female across the study durations, small differ-
ences were observed in age distribution between males
and females that were not suspected to be malaria cases
(Fig. 59, Additional file 1), but the age distribution of
females was older than that of males among malaria-
negative patients across all sites (Fig. 510, Additional
file 1). Moreover, models allowing an interaction between
gender and intervention period suggest greater increase
in proportion of males than females among confirmed

malaria cases over time (Fig. S11 and Table 53, Addi-
tional file 1).

Owerall, Aduku experienced the largest change in the
age distribution of malaria cases throughout the study
period. The odds of an upward shift in the age category
of confirmed malaria cases in the last relative to the base-
line intervention periods were 3.27 (95% CI 2.97-3.61) in
Aduku, 2.35 (95% CI 2.14-2.58) in Walukuba, 2.03 (95%
CI 1.90-2.17) in Nagongera, and 1.59 (95% CI 1.44-1.76)
in Kasambya (Table 2). Whereas the interaction between
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intervention time and diagnostic test used was significant
in Kasambya and MNagongera, the same did not notably
impact the overall effect observed (Table 54, Additional
file 1). Also, RDT use increased gradually at all sites,
reaching 20% only in the last three to four vears of the
study except Aduku (Fig. 54, Additional file 1).

Discussion
The impact of reductions in malaria transmission follow-
ing the scale-up of malaria control interventions on the
age distribution of malaria cases, was investigated using
routine surveillance data from four sentinel health facili-
ties in Uganda. The study included data from sites with
historically varied transmission intensity where large-
scale programmatic control interventions of either LLINs
alone or LLINs plus IRS were implemented over the
approximately 10-year study period.

Study findings provide empirical evidence of rapid
shifts in the malaria burden to older individuals, fol-

lowing implementation of effective malaria control

interventions. Over time, the proportion of test con-
firmed malaria cases progressively decreased in children
under 5 years of age while it progressively increased in
those over 15 years of age, irrespective of transmis-
sion settings. This is also reflected by subtle but greater
decline in TPR among children than adults. The absence
of similar changes in age patterns among patients not
suspected of malaria suggests that the primary drivers
of this shift were declines in malaria transmission inten-
sity associated with effective control interventions and
not changes in patient demographics. The reverse shift
observed in Aduku during a period of malaria resurgence
after three years of interrupted IRS [37] provides further
support for this conclusion.

Many factors may have contributed to the shift in age
distribution of malaria cases in this study. For many
endemic infections diseases, decreases in transmission
are expected to result in increased age of infection and
cases [38]. For pathogens like B falciparum, where par-
tial immunity develops gradually as a consequence of

Page 89 of 267



Kigodietal Malar)  (2020) 19:128

Table 2 Association between being malaria confirmed
within ages (<5, 5-15, =15 years) and control intervention
period

Factor Categories Odds  95%Cl P value
Walukuba
Gender Mzle 1 Ref
Fermale 134 1.25-13% <0001
Malaria test done Microscopy 1 Ref
ROT 211 061-726 0237
Intervention pericd  Baseline 1 Ref
First pericd 155 148-1462 <0001
Last period 2327 205-251 <0001
Kasambya
Gender Male 1 Ref
Femnale 139 1.34-145 <0001
Malaria test done Microscopy 1 Ref
RCT 09a 093-1.03 0368
Intervention pericd  Baseline 1 Ref
First pericd 139 134-1.44 <0001
Last period 159 1441756 <0001
Aduku
Gender Male 1 Ref
Female 264 254-275 <0001
Malaria test done Microscopy 1 Ref
ROT 1.26 1.19-132 <0001
Intervention pericd  Baseline 1 Ref
First pericd 223 211-235 <0001
Second period  1.78 168-1.89 <0001
Last period v 297-3461 <000
Magongera
Gender Male 1
Female 218 209-2.28 <000
Malaria test done Microscopy 1
ROT 1.24 1.15-1.34 <0001
Intervention pericd  Baseline 1
First pericd 1.19 L11-1.27 <000
Last period 203 190-217 <0001

repeated exposure, waning immunity due to decreased
infection rates may lead to reduced ability to control
parasites [39]. This waning immunity may result in a rela-
tive increase in the disease burden among adolescents
and adults [12, 40]. Concentration of the malaria burden
among older age groups following reduced transmission
has been predicted in other studies [8], and seen in chil-
dren for both severe and non-severe outcomes [10, 41].
Behavioural factors may have also contributed to rapid
shifts in the age distribution of malaria. A reduced pro-
portion of cases among children under 5 years of age
may have been due to an increased use of LLINs among

Fage 9of 12

this age group relative to older age groups [22, 41, 42]. In
adults, behavioural factors including travel, leisure and
social activities, and occupational activities such as agri-
culture or night-time work may have increased the risk
of exposure outside the household as compared to chil-
dren. Travel has been reported as a risk factor for B fal-
ciparum infection in East and Southern Africa [43, 44]
and for cases of imported malaria being older than those
not imported in Southern Africa [45]. Whereas occupa-
tional hazards were not evaluated in this study, consider-
able occupational risk of malaria has been documented
among mobile male workers in Asia [46, 47] and popula-
tions involved in agriculture in Africa [48, 49].

Results suggest that implementation of LLINs plus IRS
was associated with larger decreases in transmission and
larger shifts in age distribution of cases than LLINs alone.
However, among LLIN-only sites, Walukuba recorded
a much larger shift than Kasambya and in Walukuba
the magnitude of the shift was comparable to that of
Magongera, a site with both LLINs and IRS. This suggests
that other non-intervention factors for example urbani-
zation [50] may have contributed to the shifts, consistent
with other reported findings [38, 51].

Findings from this study showed that a significantly
higher proportion of females, as compared to males,
seem to seek care for febrile illnesses among the school
aged (5-15 years) and adults (over 15 years old) at all
sites. This is consistent with the generally older age dis-
tribution of females among both the confirmed and the
negative malaria cases, but similar age distribution of
males and females among those not suspected of malaria.
However, shifts in the age distribution of malaria cases
observed after control interventions seem to have dis-
proportionately affected males, suggesting a role of
gender-based occupational or behavioural differences.
MNevertheless, reported greater involvement of females in
agriculture in the region [52] than males, as well as docu-
mented associations between occupation and education
status of mothers and malaria infection risk of families
[53] may explain the prevailing significantly high propor-
tion of older females and hence the need for continued
interventions that address this vulnerable group.

This study had limitations. First, without well-defined
catchment populations for the study sites, it was not pos.
sible to estimate changes in malaria incidence over time
or effects of environmental factors within the catchment
areas and limiting the study to describing temporal shifts
in the age distribution of laboratory confirmed cases
of malaria. Additional research is necessary to deter-
mine impacts of reduced transmission on incidence of
malaria. Second, the increased use of RDTs over time,
may have influenced results from this study through var-
ied sensitivity [54]. Nevertheless, in regression analyses,
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diagnostic test used was accounted for. Moreover, pat-
terns seen among suspected and confirmed cases were
absent in the cases not suspected of malaria, suggesting
that the impact of diagnostic method would be mini-
mal. Third, inability to account for levels of uptake of the
interventions implemented at the four study sites could
have masked some important variations. However, the
community-wide benefit of reduced vector populations
[55]. coupled with the multiple rounds of interventions,
was believed to have mitigated this effect and thus its
impact on these results. Fourth, whereas fever or history
of fever in the past 48 h is the main indicator of suspected
malaria, this specific measure was not consistently
recorded in the health facilities, and so inconsistency in
consideration of the diagnosis may have impacted results
from this study. Nevertheless, other proxy indicators of
suspected malaria were also considered to ensure a fairly
complete capture of these cases. Lastly, having analysed
health facility surveillance data, this would only include
participants that seek care in the public health facilities.
As such community level interventions, especially iCCM
that target young children could have had an impact on
these findings. However, iICCM was limited to one of the
four sites and for less than 2 years.

Conclusions

The findings from this study have important implications
regarding targeted malaria control interventions that
have historically focused on children under 5 years of age.
Whereas these efforts need to continue, new strategies
may be necessary to address the shift in burden to older
age groups following the implementation of successful
malaria control interventions. For instance, extending
iCCM for malaria to older age groups after intensive IRS,
with the post-IRS duration often associated with malaria
resurgence. These findings also have implications for the
optimal allocation of health care resources for the diag-
nosis, treatment and control of malaria amidst changing
transmission. Further, they highlight the usefulness of
considering age distribution in surveillance and monitor-
ing change, and the role of surveillance in understanding
the epidemiology of malaria.

Supplementary Information

information accompanies this paper at https:doi.
org 1001 1846/51 2636-020-03196-7.

Additional file 1: Figure 51. Trends in mean monthiy overall patient
attendance per year, stratified by site. Figure 2. Trends in mean monthly
attendance of patients not suspected of malaria per year, by site. Figure
53. Trends in mean monthly suspected malaria patients per year, stratified
by site. Table 51. Changes in attendance of patients suspected varsus not
suspected of malaria over-time, comparing mean monthly attendance
between first and last calendar years of study duration. Figure 54, Age
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distribution of test confirmed malaria cases, by sex and site. Figure 55.
Age distribution of patients not suspected of malaria by sex and site.
Figure 56. Age distribution of patients that tested negative for malaria, by
sex and site. Figure 57. Adjusted marginal probability of test confirmed
malaria, by sex, intervention period, age, and site. Table 52. Multivariable
association between age (in three categories) and covanates of intenest
amang malaria confirmed cases, acoounting fior effect modification of
intervention periods on sex. Table 53. Association between age (in three
categories) and covarnates of interest amang malana confirned cases,
fitting an interaction between diagnostic test used (BY% va. ROT) and inter-
vention duration. Figure 58. Trends in the annual proportion of ROT use
amang tested participants, stratified by site. Figure 59. Scatter plot of age
with test positivity for LLINs only sites, stratified by intervention period.
Figure 510. Scatter plot of age with test positivity for (LLIM plus IRS) sites,
by intervention period.
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4.1 Additional information for Paper 2

4.1.1 Consideration of trends in attendance

Figure S1. Trends in mean monthly overall patient attendance per year, stratified by site.

All patients' attendance trends
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Time - year
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The years on the x-axes in Figures S1 to S4 are represented as 1 to 10 corresponding to the years 2009 to 2018

while the number of patients and/or cases on the y-axis represent monthly average number per year in the

study duration.

Page 94 of 267



Figure S2. Trends in mean monthly attendance of patients not suspected of malaria per year, by site
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Figure S3. Trends in mean monthly suspected malaria patients per year, stratified by site

Suspected malaria cases attendance trends

2500
w 2000
a
(1]
S
= 1500 .
2 1000 = - — =
£ P
< 500 T
0
1 2 3 4 5 b 7 8 9 10
Time - year
m——\Nalukuba == Kasambya === Nagongera Aduku

Page 95 of 267



Table S1. Changes in attendance of patients suspected versus not suspected of malaria over-time, comparing

mean monthly attendance between first and last calendar years of study duration.

Mean monthly attendance per Wilcoxon rank-

Site Patient category year (SD) sum test
2009 2018 P value
Not suspected of malaria 1418 (178) 1525 (257) 0.353
Walukuba
Suspected malaria 1452 (372) 427 (84) <0.001
Not suspected of malaria 268 (73) 360 (73) 0.023
Kasambya
Suspected malaria 722 (186) 692 (280) 0.866
Not suspected of malaria 761 (175) 1222 (156) <0.001
Aduku
Suspected malaria 915 (286) 512 (99) 0.003
Not suspected of malaria 846 (140) 965 (134) 0.108
Nagongera
Suspected malaria 1139 (157) 496 (183) <0.001

Figure S4. Trends in the annual proportion of RDT use among tested participants, stratified by site.

Trends in proportion being tested using RDT, by site
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There was little to no RDT use in the first five years of this study duration and most sites did not get to 20% use of

RDTs till after 2015 (year number 7 in Figure S4). The predominant diagnostic test used in this study therefore,

was microscopy.
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Figure S5. Scatter plot of age with test positivity for LLINs only sites, stratified by intervention period.
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In Figure S5, the x-axis represents the age of the participants (70 years and younger) and the y-axis, the test result
from malaria diagnostic tests performed. From these tests, 0 corresponds to a negative result while 1 represents
a positive result. The grey points are the (age, test result) coordinates of the scatter plot and the dashed curves
the relationship fitted using the Lowess smoother function. The red dashed curve represents the relationship of
the baseline period, the orange dashed curve — the first intervention period, and the blue dashed curve — the last
intervention period of the study duration. By the last intervention period, positivity among the youngest

participants was lower than during baseline and the largest shift was observed in Walukuba where in the last
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intervention period the peak age of malaria positivity was over 40 years compared to among under 5 years at

baseline.
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Figure S6. Scatter plot of age with test positivity for (LLIN plus IRS) sites, by intervention period.
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In this case (Figure S6), the x-axis represents the age of participants and the y-axis, the test result from malaria
diagnostic test performed. From these tests, 0 on the x-axis corresponds to a negative result while 1 represents a
positive result. The gray points are the (age, test result) coordinates of the scatter plot and the dashed curves the
relationship fitted using the Lowess smoother function. The red dashed curve represents the relationship for the
baseline period, the orange dashed curve — the first intervention period, and the blue dashed curve — the last
intervention period in Nagongera, but the second intervention period in Aduku. For Aduku, the green dashed

curve represents the last intervention period of the study duration.
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For all sites in Figure S6, larger decreases in test positivity among the younger children were observed compared
to the sites in Figure S5 above. When IRS was withdrawn in Aduku, however, a pattern similar to that during
baseline was observed (represented by the blue dashed curve). During the last intervention period, once IRS was
resumed and partly supplemented by integrated community case management iCCM for malaria, the pattern
(represented by the green dashed curve) was comparable to the first intervention period when intense IRS was

implemented (represented by the orange dashed curve).

4.1.2 Model evaluation for the adjusted multinomial regression
Table S2. Model selection for the final model based on performance with inclusion of the main exposure metric

of the intervention over time.

Site Model AIC Model 1 is nested in the final model

Model 1 89998.26

Walukuba Chi-sq. = 582.45; P<0.001
Model 2 (final) 89419.82
Model 1 91870.95

Kasambya Chi-sq. = 323.16; P<0.001
Model 2 (final) 91551.79
Model 1 76239.23

Aduku Chi-sg. = 1051.01; P<0.001
Model 2 (final) 75194.22
Model 1 64666.48

Nagongera Chi-sq. =417.42; P<0.001
Model 2 (final) 64253.06

Model 1 = The model adjusted for gender (male vs. female) and diagnostic test used (microscopy vs. RDT) only

Model 2 = Final model that was adjusted for gender and diagnostic test used, as well as intervention period. This
model was found to improve model 1 and therefore the final one based on both AIC and likelihood ratio test

evaluations.
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Figure S7. Evaluation of model goodness of fit by examining relationship between model predicted proportions of confirmed malaria cases by age

category (<5, 5-15, & >15years) adjusted for gender and diagnostic test used, and crude proportion of confirmed malaria cases across intervention

periods, by site.
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At all sites, multinomial models are seen to fit the data very well, best in Walukuba, Nagongera and Aduku and a little less so in Kasambya.
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4.1.3 Consideration of age distribution by gender of patients.

Figure S8. Age distribution of test confirmed malaria cases, by gender and site across intervention periods.
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Figure S9. Age distribution of patients not suspected of malaria, by gender and site across intervention periods.
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Figure $10. Age distribution of patients that tested negative for malaria, by gender and site across intervention periods.

Walukuba

60-

40 -

Age

20-

Walukuba

60-

Age

20-

0-

Jan 09-Oct 13 Nov 13-May 17 Jun 17-Jul 18

YA

Jan 09-Oct 13 Nov 13-May 17 Jun 17-Jul 18

Malaria negagive - Male
Kasambya Aduku

60- 60 -

40-
20-
13 13
o - 10}
7 6 L
() \ '
D-

Jan 09-Nov 13 Dec 13-Nov 17  Dec 17-Jul 18 Jan09-Aug10 Sep10-Apri4 May14-May17 Jun17-Jul18
Malaria negative - Female

Kasambya Aduku

60- 60 -

40-
22
18 19 1 20 20
T ol 20- . .
D_

Jan 09-Nov 13 Dec 13-Nov 17 Dec 17-Jul 18 Jan09-Aug10 Sep10-Apri4 May14-May17 Jun17-Jul18

Nagongera
60-
40-
20-
/ 4\
/ 2\
-
L]
0 -
Jan 09-Nov 13 Dec 13-Jan 15 Feb 15-Jul 18
Nagongera
60 -
40~
19
20- + 16
0 -

Jan 09-Nov 13 Dec 13-Jan 15 Feb 15-Jul 18

Page 104 of 267



Figure S11. Adjusted marginal probability of test confirmed malaria, by gender, intervention period, age, and site.
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The three age categories include: under 5 years, 5-15 years, and over 15 years in each site while intervention periods are arranged by dates.
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Table S3. Multivariable association between covariates of interest and age category of confirmed malaria cases

(<5,5—15, and >15 years) , accounting for effect modification of intervention periods on gender.

Covariate category Multi-variable OR 95% ClI P - value
Walukuba
B/S 1 Ref
Diagnostic test done
RDT 1.01 0.91-1.13 0.844
Male 1 Ref
Gender
Female 1.41 1.36-1.47 <0.001
Jan 2009 - Oct 2013 1 Ref
Intervention period Nov 2013 - May 2017 1.66 1.55-1.78 <0.001
Jun 2017 - Jul 2018 3.27 2.83-3.77 <0.001
(Jan 2009 - Oct 2013) x Female 1 Ref
Effect of gender by
(Nov 2013 - May 2017) x Female 0.87 0.79-0.95 0.002
intervention period
(Jun 2017 - Jul 2018) x Female 0.57 0.47-0.68 <0.001
Kasambya
B/S 1 Ref
Diagnostic test done
RDT 0.98 0.93-1.04 0.54
Male 1 Ref
Gender
Female 1.53 1.46-1.61 <0.001
Jan 2009 - Nov 2013 1 Ref
Intervention period Dec 2013 - Nov 2017 1.61 1.51-1.71 <0.001
Dec 2017 - Jul 2018 1.61 1.38-1.88 <0.001
(Jan 2009 - Nov 2013) x Female 1 Ref
Effect of gender by
(Dec 2013 - Nov 2017) x Female 0.78 0.73-0.84 <0.001
intervention period
(Dec 2017 - Jul 2018) x Female 0.97 0.80-1.17 0.75
Aduku
B/S 1 Ref
Diagnostic test done
RDT 1.25 1.19-1.32 <0.001
Male 1 Ref
Gender
Female 3.26 2.99 - 3.56 <0.001
Jan 2009 - Aug 2010 1 Ref
Intervention period
Sep 2010 - Apr 2014 2.4 2.19-2.63 <0.001
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May 2014 - May 2017 2.19 2.00-2.39 <0.001

Jun 2017 - Jul 2018 4.38 3.77-5.09 <0.001
(Jan 2009 - Aug 2010) x Female 1 Ref
Effect of gender by (Sep 2010 - Apr 2014) x Female 0.89 0.79-0.99 0.038
intervention period (May 2014 - May 2017) x Female 0.72 0.65-0.80 <0.001
(Jun 2017 - Jul 2018) x Female 0.63 0.53-0.76  <0.001
Nagongera
B/S 1 Ref
Diagnostic test done
RDT 1.25 1.16-1.34 <0.001
Male 1 Ref
Gender
Female 2.29 2.18-2.41  <0.001
Jan 2009 - Nov 2013 1 Ref
Intervention period Dec 2013 - Jan 2015 1.19 1.07-1.33 0.001
Feb 2015 - Jul 2018 2.35 2.13-2.60 <0.001
(Jan 2009 - Nov 2013) x Female 1 Ref
Effect of gender by
(Dec 2013 - Jan 2015) x Female 1 0.87-1.15 0.995
intervention period
(Feb 2015 - Jul 2018) x Female 0.79 0.70-0.89  <0.001

Results in Table S3 showed that after accounting intervention period and for the effect of gender, the same being
modified by intervention periods at all sites, diagnostic test used was only significantly associated with age
category of confirmed malaria cases (the outcome in the regression model) in Aduku and Nagongera but not in
Walukuba or Kasambya. Importantly however, the effect of gender across all sites is seen to significantly increase

in males, given its reduction in females by intervention periods relative to the baseline.
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4.1.4 Consideration of possible effect of changes in diagnostic testing methods
Table S4. Association between age (in three categories) and covariates of interest among malaria confirmed

cases, fitting an interaction between diagnostic test used (B/S vs. RDT) and intervention duration.

Factor Categories Coefficient 95% ClI P - Value

Gender Male 1 Ref

Malaria test done Microscopy 1 Ref

Intervention period Jan 2009 - Oct 2013 1 Ref

Jun 2017 - Jul 2018 2.27 2.05-251 <0.001

Interaction term

(Nov 2013 - May 2017) x RDT 0.45 0.13-1.56 0.208

Gender Male 1 Ref

Malaria test done Microscopy 1 Ref

Intervention period Jan 2009 - Nov 2013 1 Ref

Dec 2017 - Jul 2018 1.79 1.46-2.20 <0.001

Interaction term

(Dec 2013 - Nov 2017) x RDT 0.87 0.78 - 0.97 0.013

Gender Male 1 Ref

Malaria test done Microscopy 1 Ref

Intervention period Jan 2009 - Aug 2010 1 Ref
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Sep 2010 - Apr 2014 2.2 2.08-2.33 <0.001

May 2014 - May 2017 1.79 1.69-1.90 <0.001
Jun 2017 - Jul 2018 3.77 3.15-4.52 <0.001

(Jan 2009 - Aug 2010) x RDT 1 Ref
(Sep 2010 - Apr 2014) x RDT 1.46 1.13-1.87 0.003

Interaction term

(May 2014 - May 2017) x RDT 1.18 0.96-1.44 0.121

(Jun 2017 - Jul 2018) x RDT omitted N/A

Nagongera
Male 1 Ref
Gender

Female 2.18 2.09-2.28 <0.001

Microscopy 1 Ref

Malaria test done

RDT 1.03 0.91-1.16 0.649

Jan 2009 - Nov 2013 1 Ref
Intervention period Dec 2013 - Jan 2015 1.15 1.08-1.24 <0.001
Feb 2015 - Jul 2018 1.92 1.77 -2.08 <0.001

(Jan 2009 - Nov 2013) x RDT 1 Ref
Interaction term (Dec 2013 - Jan 2015) x RDT 1.48 1.17-1.86 0.001
(Feb 2015 - Jul 2018) x RDT 1.35 1.14-1.59 <0.001

Whereas diagnostic testing increasingly (in the last three years of the study) included RDT use, with the highest
increase observed in Kasambya, Aduku, and Nagongera and least in Walukuba (Figure S4), the potential impact of
this change in diagnostic testing method did not generally change the effect identified as due to control
intervention activities. The significant interaction in Kasambya and Nagongera provides some evidence of an effect
of change in diagnostic testing approach, however, after accounting for this effect, the impact of control
interventions on age distribution of confirmed malaria cases persists and remains strongly statistically significant
(Table S2). This, therefore, provides further evidence that given other factors at play, the upward shift from
younger to older age-groups of malaria cases following successful malaria control interventions is significantly

attributable to impacts of control interventions on malaria transmission.
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Abstract. Global malaria burden is reducing with effective control interventions, and surveillance is vital to maintain
progress. Health management information system (HMIS) data provide a powerful surveillance tool; however, its esti-
mates of burden need to be better understood for effectiveness. We aimed to investigate the relationship between HMIS
and cohort incidence rates and identify sources of bias in HMIS-based incidence. Malaria incidence was estimated using
HMIS data from 15 health facilities in three subcounties in Uganda. This was compared with a gold standard of repre-
sentative cohort studies conducted in children aged 0.5 to < 11 years, followed concurrently in these sites. Between
October 2011 and September 2014, 153,079 children were captured through HMISs and 995 followed up through
enhanced community cohorts in Walukuba, Kihihi, and Nagongera subcounties. Although HMISs substantially under-
estimated malariaincidence in all sites compared with data from the cohort studies, there was a strong linear relationship
between these rates in the lower transmission settings (Walukuba and Kihihi), but not the lowest HMIS performance
highest transmission site (Nagongera), with calendar year as a significant modifier. Although health facility accessibility,
avallability, and recording completeness were associated with HMIS incidence, they were not significartly associated
with bias in estimates from any site. Health management information systems still require improvements; however, its
strong predictive power of unbiased malaria burden when improved highlights the important role it could play as a cost-
effective tool for monitoring trends and estimating impact of control interventions. This has important implications for
malaria control in low-resource, high-burden countries.

INTRODUCTION Healtth Surveys, are often used as alternatives.® " Although
. , these surveys are valuable to estimate intervention coverage
Global burden of malaria has declined overthe past 20 years and enable detailed subnational comparisons, they cannot

pacause of implementaiian of wide-scale cpntml intgrygn— provide continuous information to support engoing decision-
tions and the effective treatment of cases using artemisinin- making as can HMISs.2

based combination therapy (ACT)."* Nevertheless, malaria A national HMIS was introduced in Uganda in 1997 to en-
remams a global public health challenge, ynth. more than 202 able priority disease surveillance atnational levels'2'® and has
million cases and 400,000 deaths occurring in 2018 alona. since expanded with the introduction of the District Health
Despits this high burden, case incidence has reduced sub- Information System version 2 web-based system in 2012."
stantially in at least 31 malaria-endemic cauntrl_es,_ including Specific to malaria, the HMIS was additionally supplemented
Uganda, and these are E“ track to_ reduce the |m:|dene_:e by by routine sentinel surveillance through malaria reference
40% or more by 2020." To sustain these cument gains in centers in different endemicity settings to enable a more de-

control and prevent future epidemics, malariasurveillanceis a . ) A . .
. ) S tailed understanding of transmission intensity and its temporal
core intervertion as was proposed in the 2016-2030 Global trends and improve HMIS data qua”ty_ﬁ These sentinel site

. M | ti .
Technical _Stratagy for Malaria. .TD be eff -tive, this strategy data have been used to evaluate the impact of control inter-
demands improved understanding of surveillance data. . . . —_

ventions and inform decisions on control and prevention in

Mational malaria control programs rely on data from health Uganda, and notable improvements in health service delivery

management information systems (HMISs) for malaria sur- T .
. i PP and utilization have also been reported as a result of improved
veillance and day-to-day decision-making.” Although there e of HMIS data elsewhers. 1817 Although the precision of

are extensive HMIS improvements through standardized data HMIS estimates requires further investigation, HMIS data are

formats and quality assessment tools,® among others, HMIS . ) . . .
data are still underused to provide rigorous evidence of program hghly att_racﬂve for “"’”""”’_’9 “.‘"“’”3 trends and suppar‘tlrjg
intervention programs, considering their temporal and spatial

effectiveness se of concerns about incompleteness, coverage, and cost-effective community representativeness
delayed reporting, data quality, and often low rates of definitive ' : . . S
diag!r('nsUc tast?r?g i) ng tyuenﬂy ther sources of DI.I.II‘I To our knowledge, no study in sub-Saharan Africa has in-
estimate, such as Malaria Indicator Surveys and Demographic vestigated how malaria incidence rates from HMIS data

compare with incidence rates from rigorous cohort studies.

Although cohorts are uncommon and nommnally small, they

* Address correspondence to Simon P. Kigozi, London School of provide a gold standard method for measuring the incidence

Hygiene & Tropical Medicine, Keppel St., London WG1E 7HT, United or risk of malaria in defined populations. Here, we quantified
Kingdom. E-mail: skigozi@yahoo.com the relationship between HMIS incidence and cohort
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incidence rates in three contrasting settings in Uganda. The
analysis sought to then use these data to explore potential
sources of bias in HMIS incidence relative to cohort incidence
and explain discrepancies between the two, providing im-
portant insight into the utility and representativeness of HMIS
estimates of malara burden compared with true population

burden.

METHODS

Study design. This was an evaluation study comparing two
longitudinal estimates of malaria burden. These estimates
were generated using 1) reports of uncomplicated malaria
from the HMISs in outpatient departments (OPD) of all public
health facilities in three sites and 2) community cohort studies
conducted over the same duration in these sites with passive

case detection in a dedicated clinic for each site.

KIGOZlI AND OTHERS

Study setting and population. The study used data col-
lected between October 2011 and September 2014 at three
varied transmission intensity sites, described in detail
elsewhere.'®'? In brief, these include the following. 1) Walu-
kuba subcounty in Jinja district, approximately 12.0 sg. kmin
size (Figure 1). Walukuba had approximately 9,800 house-
holds according to our enumeration and mapping survey of
2011. ltwas a peri-urban site of moderate-to-low transmission
intensity, with an estimated annual entomological inoculation
rate (aEIR) of approximately three infective bites per person
per year during this study duration.'® 2) Kihihi subcounty in
Kanungu district, =~ 186.0 sq. km with approximately 12,700
households, was a rural site of moderate-to-low transmission
intensity, with an aEIR of 32. 3) Nagengera subcounty In
Tororo district, =~ 81.0 sq. km with approximately 6,900
households, was a rural site of high transmission intensity,
with an aEIR of 310."

Nagongera

L. Victoria

Sub-County boundary L

- A
Health facility level I T 1
®  Health centre |1 N L 2
[ ' 1 .
o 3 & Kin @  Health centre [Il -«@.
H  Health centre IV ¥
Cohort household

]

Parish boundaries

Figure 1. Site map showing the sites and health facilities included. This figure appears in color at www.ajtmh.org.

Page 113 of 267



HMIS AND COMMUNITY COHORT-BASED MALARIA INCIDENCE RATES 3

This study encompassed two populations. The first com-
prised all children aged between 6 months and younger than
11 years living within the three sites considered for HMIS es-
timates. The second included all children aged between
6 months and younger than 11 years recruited into an en-
hanced passive community cohort in each of the three sites.
Cohort data were interpreted asthe unbiased monthly malara
incidence in the three communities.

Data sources. Health facilities’ HMISs. In Uganda, health
facilities receive and assess patients with uncomplicated ill-
ness through their OPD clinics. A full record is made, in a
standardized OPD register (HMIS Form 031), of patient de-
mographics, place of residence, presenting symptoms, di-
agnostic test performed, diagnosis made, and treatment
prescribed foreach patient seen. Here, we extracted data from
these registers, entered and cleaned it in a MS Access data-
base (Microsoft Corporation, Redmond, WA), and analyzed it
using Stata 15 (Stata Corporation, College Station, TX). This
involved three independent projects: the primary project in 12
facilities, and the Uganda Malaria Surveillance Program'® and
the ACT-PRIME project®® in three facilities each, to provide
additional HMIS data. All public health facilities (including
three level VI, two level lll, and 10 level ll) located within the
three subcounties provided the HMIS data for this study. Level
IV facilities serve == 50,000 people providing inpatient, labo-
ratory, and maternity services, whereas level lll facilities serve
== 20,000 with inpatient and laboratory services, and level |l
= 5,000 with basically outpatient and community outreach
services.”’

As a denominator in estimating HMIS incidence rates, es-
timates of participant population at risk per month were de-
rived, as explained elsewhere.'® In summary, gridded
population images for 2010 and 2015, from the world Pop
(www.worldpop.org) project, were used together with inter-
censual growth rates between the 2002 and 2014 censuses,
provided by the national bureau of statistics of Uganda.

Enhanced passive community cohorts. Part of the In-
ternational Centers of Excellence for Malaria Research, the
Program for Resistance, Immunclogy, Surveillance and
Modeling of malaria (PRISM) project, was conducted in
Uganda between October 2011 and June 2016. One key
compoenent of this project was cohorts conducted in Nagon-
gera, Walukuba, and Kihihi subcounties that comprised study
sites. Although details about the PRISM project are fully
explained elsewhere,’® the cohorts involved 100 randomly
selected households from each subcounty in which all resi-
dent children aged between 6 months and younger than 11
wears, with due consent, were enrolled.

Over time, follow-up was terminated for all children who
became 11 years old, whereas new children born into or
joining study households were considered for enroliment. At
enroliment, participants agreed to visit the cohort clinic for all
their treatment needs, thereby minimizing clinical visits to
other places. Participants were followed up at a dedicated
clinic at each site, open 7 days athe week, through regular
visits scheduled for once every 3months, in addition to interim
visits if they had illness and treatment needs. At each visit, a
blood specimen was assessed for malaria, and transport to
the clinic was reimbursed. If a participant was symptomatic
and tested positive for malaria parasites, treatment with
artemether—|lumefantrine was administered and data recorded
ina database. By these symptomatic diagnostically confirmed

infections, incident mal aria cases were identified, and person-
time of follow-up per participant per month was computed.

Qutcome and explanatory variables. The primary outcome in
this study was the monthly malaraincidence rate derived from
health facility HMIS OPD incident malaria cases data for
children aged between 6 months and younger than 11 years,
hereafter refered to as HMIS incidence. An incident case of
malaria was defined as an independent symptomatic episode
of malaria among participants seen at any study health facility
OPD clinic. Level Il and Il health facilities had very low testing
rates and predominantly diagnosed malada presumptively.
Assuming that the risk of malara for children aged between
6 months and younger than 11 years seen at each reference
facility was the same as for similar age children seen at the
respective lower level facilities each month, total monthly
presumptive malana cases from lower level facility sites were
corrected for test positivity using the monthly test positivity
rates from the respective site reference facility (evel IV). This
approach was also supported by alinear relationship between
the cohort fever incidence and HMIS clinical malaria incidence
suggesting case identification at facilities as a major factor
(Figure 1 in the additional file). Moreover, to optimize
catchment-sourced malara cases, cases with a missing vil-
lage of residence were corrected for nonresidence within
study site boundaries, using the facility monthly proportion of
participants with recorded villages of residence that were lo-
cated or known within the study sites. Notably, cases from
villages unknown within site boundaries were excluded. To
generate monthly HMIS incidence rates, the site-level sum of
incident cases of malaria among children aged between
6 months and younger than 11 years after accounting for
nontesting among presumptive cases, and for nonresidence
among those with missing data on village of residence, was
divided by the site estimated monthly population of children
aged younger than 11 years at risk of malaria.

Data from health facility clinic visits that were classified as
“reattendance” in the registers, referring to follow-up visits for
a previously recorded episode, were excluded from the
analyses.

The main explanatory variable was the monthly cohort in-
cidence rate, providing an indication of the level of community
transmission, and, thus, true burden. To generate monthly
cohort incidence rates, site total incident malaria cases per
month were divided by the total person-time of follow-up of
the respective site paricipants over that month. Incident
cases of malara in the cohort were determined as any
symptomatic participant visits, at least 2 weeks apart, that
were each diagnostically confirmed positive for malaria par-
asites using blood slide microscopy. Participants with
asymptomatic parasitemia at the time of assessment were not
included in case estimates. Preliminary analyses showed ev-
idence of bias in incidence because of age, which we attribute
to a growing difference in the age structure as the cohorts
aged over time. Consequently, we age-standardized in-
cidence estimates in the cohorts using six age categories
defined between 6 months and < 11 years, based on the initial
recruitment age distribution in these categories as the stan-
dard (as explained in section E in the additional file). Initial
recruitment into the cohorts was conducted primarily during
August and September 2011 for each site.

Regression model. After accounting for community trans-
mission using cohort incidence, we selected factors
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quantifiable from our data that may influence the reliability and
representativeness of the routine data, including both health-
seeking and health facility characteristics. Health seeking was
measured by health facility accessibility and health facility
avallability, whereas health facility characterstics were esti-
mated using health facility performance in recording patients’
diagnoses.

Accessibility between residence and health facility was
measured by proxy as monthly rainfall estimates (which in-
fluence agricultural demands and ease of road use to travel)
obtained from TAMSAT raster data described elsewhere™**
and extracted as site monthly mean estimates. On examining
monthly trends in rainfall and attendance, we observed a
general pattern of peaks in rainfall corresponding totroughs in
attendance for the same month and vice versa, suggesting
associations between rainfall and attendance and supporting
its use as proxy for accessibility (Figure 2 inthe additional file).
These also served as a proxy for seasonality, which is an im-
portant factor in malaria transmission dynamics.” It was as-
sumedthatthe higher the mean rainfall received per month the
less physically accessible the health facility is for the pop-
ulation that month. Mean rainfall estimates varied by site, with
Walukuba receiving 98.9 mm (SD = 45.2), Kihihi82.2 mm (SD=
40.3), and Nagongera 1052 mm (SD = 55.8) of rainfall per
month. For use in the analysis, however, this metric was
standardized around its mean to a mean of zero and SD of
one, to generate its z-score.

To account for health facility availability, measured as ease
of care availability at the facility, we generated the average
proportion of days per month that health facilities within each
site were open to see patients. The average proportion was
defined as the mean number of days a site's facilities were
open in a month divided by the respective calendar month's
total number of days. In this case, level IV facilities performed
best, with mean days open per month 25.8(SD = 4.0), followed
by level il with 24.8 days (SD = 4.1) and level || with 18.8 days
(SD=4.7). However, there was limited variation between sites,
with Walukuba recording the highest mean number of days
open per month 22.3 (SD = 2.4), followed by Kihihi with
21.5days (SD =2.3) and Nagongera with 21.0days (SD =1.9).
For inclusion in the regression as a covariate, the z-score of
this metric was generated.

To measure health facility performance at recording vital
patient information (recording completeness or performance),
we generated the average site health facility proportion of
patients seen per month that had no diagnosis recorded in the
OPD register. Here, level |l facilities performed the best, with
the lowest mean number of patients missing a diagnosis per
monthof 6.5 (5D = 24.6), followed by level IV with 19.7 patients
(5D =25.4) and then level lll with 20.9 patients (SD = 40.7). The
reciprocal of the proportion was derived so as to enable in-
tuitive interpretation of its trend as performance (high values
correspond to high performance and vice versa). This mea-
sure was varied by site: Walukuba scored lowest with a me-
dian of 89.9 (IQR, 38.3-125.5) points and then Kihihi with
124.1 (IOR, 64.3-178.0) points. Nagongera recorded both
highest performance and varabil ity over time, with 310.5(IQR,
193.2-496.2) points. This score was then standardized to its
z-score for inclusion in the analysis.

Overall, although Magongera had the highest recording
completeness, it had the lowest availability and least accessi-
bility, making it the lowest HMIS performance site of the three.

Statistical analysis. Relationship between HMIS and co-
hort incidence. We explored the relationship between HMIS
and cohort incidence among children aged between 6 months
and younger than 11 years on a monthly timescale, stratified
by site. First, we examined trends in monthly raw incidence
rates as cases per person-year at risk for both HMIS and co-
hort incidence, using line plots. Second, using monthly in-
cidence rates (standardized to their z-scores and hereafter
known as incidence rate z-scores), we examined the re-
lationship between HMIS and cohort incidence using scat-
terplots with fitted lines. Third, we examined trends in
incidence rate z-scores using line plots of calendar month
against incidence. And finally, we evaluated agreement be-
tween these rates using the Bland-Altman diagram approach
without a predetermined threshold of agreement.

Maoreover, using test positivity and nonresidence-corrected
HMIS incidence as primary outcome and age-standardized
cohort incidence of malaria as primary exposure, site-specific
Poisson regression models (with incident case counts as
outcome and population at risk as offset) were fit with health
facility accessibility, health facility availability, and health fa-
cility recording performance as the included explanatory
variables.

Potential drivers of the differences between HMIS and
cohort incidence (sources of bias). Significant factors in the
relationship between HMIS and cohort incidence were
assessed for viability as potential contributors to differences
between HMIS and cohort incidence (potential sources of
bias) using linear regression. Factors assessed included
monthly estimates of health facility accessibility, health facility
availability, and health facility recording performance esti-
mated as explained earlier. To investigate bias due to these
factors, we fit a simple linear regression mode! with the dif-
ference between corresponding pairs of incidence rate z-
scores per month as the primary outcome and the identified
factors as explanatory variables.

RESULTS

Study participants. Health management information
systems. From the 15 OPD clinics in public health facilities
located in Walukuba, Kihihi, and Nagongera subcounties en-
rolled in this study, 153,079 participants aged between
6 months and younger than 11 years were seen between
QOctober 2011 and September 2014, with a mean age of 4.14,
4.52, and 3.52 years, respectively (Table 1). Of these partici-
pants, 114,919(75.1%) had their village of residence knownto
be within site boundaries, whereas 1,840 (1.2%) had an un-
clear or no village record, and 36,320 (23.7%) were from a
village unknown in the study site. A small majority of partici-
pants seen at OPD clinics were female (53%). Suspected
malara cases comprsed the majority of participants seen
(70%), with Nagongera recording the highest proportion of
suspected malaria participants (83%), followed by Kihihi
(69%) and Walukuba (56%).

Cohorts. From the three sites, 995 children aged between
6 months and younger than 11 years were recruited (304, 357,
and 334 from Walukuba, Kihihi, and Nagongera, respectively)
in the study, 755 (76%) of them at the start of the study
(August-September 2011) (Table 2). Overall, 19,911 clinic
visits were made, of which 9,109 (46%) were by female par-
ticipants. Among all clinic visits, 8,954 (45%) of participants
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Tase 1
Summary of HMIS participant data from health facilities from October 2011 through September 2014

Cases of Test- Residence- Total
Total Wisits with Suspected malaria laboratary- Test Clinical cases of adjusted adjusted estimated
) - OPD suspactad with labor test confimed posit'r\r;?t malaria without clinical confimed cases of
Sita Health facility visits malaria®, n (36) done, m (%) malaria ratet (36) laboratory testing casest casesf malaria||
Nagongera Magongera 20,611 1B8,748(91) 18,380 (98) 8,014 4360 332 N/A
HCIV
Were HCII 8,054 7,138(89) 612(9) 494 N/A 6,499
Maundo HCII 8311 7,089(85) 1,143 (16) 999 5,931
Katajula HCII 10983 9,179(84) 5,520 (60) 3,724 3,655
Pokongo HCIl 12,582 7,891 (63) 1(0) 1 7,890
All 60,541 50,045(83) 25656 (51) 13,232 51.60 24307 8,770 10,190 18,960
Walukuba Walukuba HCIV 26,018 17,003 (65) 16,890 (99) 4,062 24.00 13 NAA
Masese port 5423 1,765(33) 134 (8) 34 N/A 1,631
HCII
Masese three 9,630 4,111 (43) 552 (13) 357 3,569
HCIHI
All 41,071 22,879 (56) 17576 (77) 4,453 2530 5303 912 3,972 4,884
Kihihi Kihihi HCIV 20,510 18,310(89) 18,300 (99) 8,875 48.50 10 NAA
Matanda HCIll 12,293 7,020 (57) o0 0 N/A 7,020
Nyamwegabira 5236 2,628 (50) 0(0) ] 2,628
HCIHI
Nyakashure 4930 2.320(47) 276 (12) 203 2,044
HCII
Bihomborwa 6334 3,448 (54) 0(0) 0 3,448
HCII
Bushere HCII 1,168 959 (82) 648 (68) 560 3N
Kibimbiri HCH 996 847 (85) 00 0 847
All 51467 35,532 (69) 19,224 (54) 9,638 50.10 16,308 3,079 8,979 12,058

OPD = putpatient departments.

* Patients sent to the laboratory for malaria testing or those given a clinical disgnosis of malaria without lsboratory testing.

1 Cases of laboratory-confimed malarnia/suspected malaria with |aboratory test performed.

§ Total monthly {clinical cases of malaria without laboratory testing = HCIV test positivity rate]).

& Cases of laboratory-confirmed malaria from known villages + residence adjusted laboratory-confimmed cases from mizging villages

|| Test-adjusted clinical cases ) + cazes of laboratory-confimme d malaria ().

were febrile, with the majority of them being male (55%).
Whereas Kihihi had the highest number of participants
recruited overall (36%) and Walukuba the lowest at 31%, the
majority of clinic visits when febrile (53%) were recorded in
Nagongera, the highest transmission site, followed by Kihihi
(45%) and Walukuba (29%). That being the case, Nagongera
had the highest mean menthly febrile visit frequency at 1.35
visits per individual per month, whereas Kihihi and Walukuba
were similar and lower at 1.21 and 1.20 visits per individual per
month, respectively.

Incidence rates. Health management information system
incidence rates. Across the study duration, a total of 4,884,
12,058, and 18,960 symptomatic test and residence-
corrected incident malaria cases (Table 1) were generated
among participants in Walukuba, Kihihi, and Nagongera,
respectively. The majority of incident cases of malariawere
registered from lower level (level Il) facilities in the highest
transmission site of Nagongera (79%), whereas in the lower

transmission settings of Walukuba and Kihihi, the majority
were recorded from the level IV facilities (53% compared
with level Il and 43% compared with levels Il and Ill,
respectively). Consistent with transmission strata of the
sites, mean monthly HMIS incidence rates were lowest
in Walukuba, followed by Kihihi, and highest in Nagongera
(Table 2).

Cohort incidence rates. Between October 2011 and Sep-
termber 2014, atotal of 189, 1,477, and 2,325 incident malaria
cases were recorded in the Walukuba, Kihihi, and Nagongera
cohorts, respectively (Table 2). From these, site mean monthly
incidence rates were derived and age-standardized. These
cohort incidence rates were found to be lowest in Walukuba,
followed by Kihihi, and highest in Nagongera, a pattern con-
sistent with HMIS incidence rates.

Trends in HMIS and cohort incidence rates. The monthly
HMIS and cohort incidence, expressed as raw estimates,
showed similar trends in Walukuba but were unclear in the

Tase 2
Summary of malaria incidence rates
HMIS Community cohort®
Parzon time in Total cases of Mean monthly incidence Number of Perzon timein Total cases of Mean monthly incidence
Sita Populstion yearsT malariat rate frange)§ participants years malaria rate frangs)
Walukuba 41,071 11,089 4,884 0.19(0.05-0.41) 304 600.80 189 0.33(0.02-1.15)
Kihihi 51467 22,428 12,058 0.26 (0.07-0.57) 357 847.34 1477 1.71(0.29-4.70)
Nagongera 60,541 15,907 18,960 0.46 (0.14-0.81) 334 781.68 2325 3.26(1.59-5.31)

HMIS = haalth management information systems.
* Age standardized to age structurs of cohort participants at recruitmeant.

T Population of children younger than 11 years per site at mid-point of study duration, (sverage for months of March and Aprl 2013).
1 Caszes comected for nonresidence within ste boundaries among those with mizsing villages, as well a= for test positivity among presumptive malaris cases.
4§ Incidence rates were comected for test podgtivity among presumptive cases and site nonresiden ce among missing villages.
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other sites (Figure 2). As the respective mean-standardized
scores, however, results showed similar trends in Walukuba
and Kihihi, except forthe first two months of study duration in
Kihihi (Figure 3, rdght column). In Nagongera, there was a
tendency for HMIS incidence to increase and peak during
February 2013, followed by a generally downward trend. The
cohort incidence, on the other hand, followed an increasing
trend before peaking during May 2014, and then sharply de-
clined through to September 2014.

Relationship between HMIS and cohort incidence rates.
Health management information system incidence estimates
were seentounderestimate the true [cohort) incidence rates in
all three sites, both as mean monthly estimates, by magni-
tudes of between 2 and 10 (Table 2), and from trends in
raw incidence estimates (Figure 2). Nevertheless, mean-
standardized rates (z-scores) showed the same trends over
time, particularly in Walukuba and Kihihi, but not clearly in
Nagongera (Figure 3, right column). The overall concordance
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Ficure 2. Trends in raw incidence rates per month. This figure appears in color at www.ajtmh.org.
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Ficure 3. Scatterplots and trends in health management information systems and cohort incidence rates on respective mean-standardized

scales (z-scores). This figure appears in color at www.aftmh.org.

between HMIS and cohort incidence rates was very good and
well within the 95% confidence bounds, by the Bland-Altman
criteria at all three sites (Figure 4). Only Kihihi had 2 months as
major outliers, consistent with other results observed, in-
cluding the trends.

Relationships explored using scatterplots of age-
standardized cohort incidence z-scores against HMIS in-
cidence z-scores with fitted lines showed a linear relationship
for two of the three sites. This relationship was strongest
in Walukuba (adjusted R-square = 0.6235), weaker in Kihihi
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(Adj. R-sq. = 0.4066), and not present in Nagongera (Adj. R-
sqg. = 0.0922), as shown in the first column of Figure 3 (and
Table 1 in the additional file).

Consistent with exploratory results, adjusted analysis re-
sults revealed a significant association between mean
monthly HMIS incidence and cohort incidence rates, with
varied but significant modifications to the associations by
year. In Walukuba, changes in cohort incidence had an in-
creasingly greater effect on HMIS incidence, with the adjusted
incidence rate ratio (alRR) increasing from 0.39 to 14.13 for
2011 to 2014, respectively. This was followed by Kihihi, with
reduction in the alBR from 7.18 to 1.39, respectively, and
Magongera, with the alRR increasing from 1.09 to 1.34, re-
spectively (Table 3). Factors controlled for were health facility
accessibility (rainfall estimates), health facility availability, and
health information recording completeness at each site.
Moreover, after accounting for the underying disease burden,
the HMIS incidence rate was significantly associated with
health facility accessibility, health facility availability, and
health information recording completeness in all sites, except
recording completeness in Nagongera. Results showed that
after accounting forthe community burden and year of study,
recording completeness was significantly associated with a
minimal increase in the HMIS incidence rate for Walukuba, and
a sizable decline in Kihihi (alRR =0.85, 95% Cl: 0.83-0.87, P <
0.001), but not in Nagongera (Table 3). By contrast, health
facility availability was significantly associated with a minimal
increase in the HMIS incidence rate in Nagongera and Kihihi,
but a decrease for Walukuba. Moreover, reduced health fa-
cility accessibility was significantly associated with declines in
the HMIS incidence rates at all sites, highest in Kihihi (alRR =
0.88, 95% Cl: 0.86-0.90, P < 0.001), and moderate in
MNagongera and Walukuba.

Motably, calendar year of study was a significant modifier
of this relationship, with statistically significant (P < 0.001)

TasLe 3
Association between health management information systems and cohortincidence rates, accounting for potential confounders in the relationship
Unadijusted Adjusted
Site Cowariate Yaar IRR 95% Cl P-wlue IRR 95% CI P-value
Walukuba Effect of cohort incidence® by year 201 1.01 0.42-2.40 < 0.001 0.39 0.13-1.19 < 0.001
2012 2.75 235321 2.67 223-320
2013 4.26 3.40-5.34 4.37 3.45-5.55
2014 21.26 10.62-42.56 14.13 6.70-29.78
Recording - - - 1.07 1.02-1.13 0.005
HF availability - - - 0.95 0.91-0.99 0.017
HF accessibility - - - 0.97 0.93-0.99 0.042
Kihihi Effect of cohort incidence® by year 201 3.07 2.38-397 0.017 7.18 5.38-9.58 < 0.001
2012 1.83 1.63-2.08 1.7 1.51-1.95
2013 1.45 1.40-1.50 1.50 1.44-1.55
2014 1.51 147-1.54 1.39 135143
Recording - - - 0.85 0.83-0.87 < 0.001
HF availability - - - 1.03 1.00-1.07 0.023
HF accessibility - - - 0.88 0.86-0.90 < 0.001
Magongera Effect of cohort incidence® by year 201 1.17 1.09-1.26 < 0.001 1.09 1.01-1.147 < 0.001
2012 1.14 1.10-1.18 1.22 117127
2013 1.46 1.40-1.52 1.33 1.27-1.39
2014 1.30 1.25-1.35 1.34 1.28-1.39
Recording - - - 1.01 0.99-1.03 0.256
HF availability = = - 1.09 1.07-1.11 < 0.001
HF accessibility = = - 0.93 0.91-0.94 < 0.001

IRR = incidence rate ratio.

* Cohort incidence rates were age-standardized using the site-specific recruitment population structure 2= standard populstion. Other covariates are standardized around their means to obtain

the comesponding z-score for each.
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interactions of calendar year with cohort incidence in all three
sites.

Factors that potentially influence differences (bias) between
HMIS and cohort incidence rates. The three factors evaluated
were found to be significant confounders in the association
between HMIS and cohort incidence rates in all three sites.
Given these independent associations with HMIS incidence
rates, health facility accessibility and availability, and health
information recording completeness were assessed as sus-
pected sources of bias in HMIS incidence relative to the gold
standard.

After accounting for calendar year of study, none of the
three factors was found to be significantly associated with the
difference between the incidence rates (Table 2 in the addi-
tional file).

DISCUSSION

In this analysis, we investigated the relationship between
routine HMIS incidence (health facility case detection and
reporting) and cohort incidence (burden in the community)
rates of malaria among children aged between 6 months and
younger than 11 years in three diverse sites in Uganda. We
found a strong relationship between the two measures in the
higher HMIS performance moderate-to-low endemicity sites
of Walukuba and Kihihi, with both data sources revealing
similar monthly trends, although this was not observed in
the lowest HMIS performance high-endemicity setting of
Nagongera. Although these findings suggest HMIS incidence
as aviable proxy for the true incidence of malaria in moderate-
to-low transmission settings,'®?® results also highlighted how
HMIS incidence substantially underestimates cohort in-
cidence at all sites, with subtle differences in cohort incidence
reflected by much larger changes in HMIS incidence after
controlling for confounders.

These findings are consistent with previous work that re-
ported HMIS incidence as a good measure for evaluating
trends in malaria burden within facility catchments, compared
with test positivity rates.'® Taken together, our findings sug-
gest that HMISs will become increasingly relevant as arobust,
cost-effective means of monitoring changes in malaria bur-
den, particularly as effective control interventions continue to
drive wide-scale reductions in malaria burden.'*

Our findings contrasted substantially between low-to-
moderate and high-transmission settings, suggesting impor-
tant differences in the proportion of malaria infected persons
recorded through passive surveillance. This is likely due to
variations both in treatment seeking among facility catchment
populations, driven by caregiver characteristics, accessibility,
and availability of healthcare resources,?®*” and by the quality
of diagnosis and reporting at facilities. It is not uncommon,
however, for people to move outside of their closest facility
catchment for care, for example, when traveling or because of
perceived better care. In those cases, clinical malaria cases
may not be registered for surveillance within the facility
catchment of origin or not at all, within the private sector.
Previous studies have suggested that most care seeking is
conducted in private health facilities in Uganda, including
private-for-profit hospitals/clinics, phammacies, and drug
shops®?®; however, private facilities were very few in our study
sites and therefore excluded. Also, prompt treatment is not yet
attainable outside of research settings, owing to care-seeking

characteristics and diversity. In the lower transmission set-
tings with better HMIS performance, most malaria cases were
collected from facilities with high diagnostic testing rates,
further improving the confirmation rates in those sites com-
pared with the high-transmission site.” This suggests that
these findings strongly depend on improved surveillance
systems and can be reliable in all transmission settings.

In addition, although treatment was free of monitory cost at
public health facilities, regular patient visits to the health fa-
cility still costed them in the form of transport cost and long
waiting times. Within the cohorts, however, transport was
reimbursed for every clinic visit made and waiting times min-
imized because of the dedicated clinics. This status quo may
have limited potential HMIS clinic visits and, thereby, con-
tributed to HMIS underestimating cohortincidence estimates.

To further explore the extent by which other factors may
systematically influence the representativeness of HMIS data,
we identified indicators that were quantifiable from our data
and explored their association with HMIS incidence. Our
findings are consistent with previous reports on reliability of
HMIS measures of burden being dependent on complete-
ness and accuracy of HMIS records, as well as healthcare
access,'™"" although results were not always consistent
across sites. For example, health facility accessibility, health
facility availability, and recording completeness were each
significantly associated with heterogeneous changes in HMIS
incidence after accounting for community burden. In Walu-
kuba, the site with highest availability according to the site
mean number of days facilities were open, improved recording
completeness was associated with the increased HMIS in-
cidence. For Kihihi, with the second highest availability,
however, increased recording completeness was associated
with the reduction of HMIS incidence, suggesting heteroge-
neous effects of the same factor in different locations. We
believe these effects may be due to variations in factors such
as resource availability and staffing or workload, but these
were not evaluated in this study.

For all three study sites, reduced health facility accessibility
represented by increasing monthly rainfall) was associated
with reduction in HMIS incidence, the largest impact being in
Kihihi, a hilly site with roads that can become impassable
when it rains. Moreover, increased rainfall in a given month is
also known to be inversely associated with mosquito abun-
dance in that month because offlushing of long-term breeding
sites.®®30 A lagged increase in rainfall that may not influence
access and, therefore, not considered here, however, is as-
sociated with increased mosquito abundance.*' Although
these findings confirm the perpetuation of emors in routine
HMIS data through health system factors, when assessed for
likelihood to be sources of bias in HMIS incidence relative to
cohort incidence, none qualified. Although health facility ac-
cessibility, availability, and recording completeness are vital
for accurate estimates of HMIS incidence and its reJiabiIity,B
the absence of their significant impact on the difference be-
tween HMIS and cohort incidence rates provides evidence
against claims of systematic bias in HMIS burden estimates
through these HMIS data drawbacks.”

Results revealed the calendar year of study to be a signifi-
cant modifier of the relationship between the rate of change in
HMIS incidence and cohort incidence. This effect may have
been due to seasonal or temporal variation in health system
factors, such as drugs or diagnostics stocks and staffing that
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were reportedly changing over this study duration.® it may
also be attributable to community campaign-based activities,
such as the distribution of long-lasting insecticidal nets in
2013-14 or urbanization.™** Moreover, variability in care
seeking for altematives such as self-medication, use of herbal
medicines or drug shops,®® and availability of diagnostics or
drugs® could also explain year-to-year impacts on this re-
lationship. These results provide some evidence that the
HMIS level of performance and treatment seeking are key
factors that drive the strength of the relationship between
HMIS incidence and cohort incidence.

This study had several limitations that could be catego-
rized as HMIS data and analytical limitations. First, from the
data side, low testing rates inlower level facilities could have
impact on the number of cases observed and, thus, on in-
cidence estimates. This may have been exemplified by the
lack of clear relationship and absence of clear trends in the
highest transmission site, where the majority of malaria
cases were recorded from lower level, low testing rate fa-
cilities. We did, however, adjust these presumptive cases by
reference facility positivity rates, which acted to reduce this
impact an incidence estimates. Second, not all facilities had
complete data for every month, with some registers missing
at the facilities, reducing the number of cases registered.
Third, the difference in diagnostic testing methods between
the cohort (microscopy) and health facilities (microscopy or
rapid diagnostic test) may have introduced some disparities
due to sensitivity and specificity differences in methods.
Fourth, being unable to access patient records from private
facilities may have impact on the true number of malaria
cases in each community. However, private facilities were
very few in each site, and results from unpublished data
showed that most private facilities that were expected to be
in the sites had closed. Fifth, being unable to account for
malaria commodity stock levels in health facilities may have
undermined HMIS incidence through reduced HMIS atten-
dance whenever there was aconsiderable stock-out season.
Sixth, health facility availability, accessibility, and recording
performance are more complex than this study proposed to
estimate them. This could have masked any potentially ob-
servable associations otherwise not found. Last, it is unclear
what proportion of patients with missing age would have
been participants in this study, and this too could have had
animpact on our resdults.

On the side of analytical limitations, first, we were unable
to obtain census estimates of the population for the health
facility catchments considered. Consequently, we esti-
mated the denominator for HMIS incidence, which may not
have been a precise measure of the catchment population at
risk. Second was the inability to directly account for bias due
to gender that was identified. However, the overall effect of
this bias was not expected tovary much over time, given that
gender does not change over time. Third, being limited to
three sites may imply that comparisons between them were
limited; however, the diversity of settings and transmission
provides important contributions of benefit to surveillance
and considerably generalizable findings in Uganda. Last,
there were limited data on covariates describing treatment
seeking, hospital characteristics, and governance factors,
which may have left several influences unaccounted for.
However, using the available data, considerable scope was
taken into account.

CONCLUSION

Findings from this study show that although HMIS sub-
stantially underestimates the cohort-based malaria incidence
rate, there is empirical evidence of a strong linear relationship
between these incidence rates in children living in high HMIS
performance moderate-to-low endemicity settings that dete-
riorates in a low HMIS performance very high-transmission
setting. This, coupled with similar trends in these rates and
good concordance, suggests that HMIS incidence rates may
constitute a reliable estimate of malaria burden and its trends
with improved HMISs. These findings have important impli-
cations for malaria risk assessment in low-resource settings
that bear most of the burden of malara, given improved in-
formation systems. Coupled with successful control inter-
ventions reported globally, the stronger predictive power of
HMIS incidence for the true burden with improving HMISs,
despite transmission settings, suggests a cost-effective
means of evaluating malaria risk for effective control.
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5.1 Additional information for Paper 3

5.1.1 Cohort fever and HMIS clinical malaria
We examined the relationship between cohort fever incidence per month and monthly clinical malaria case
incidence to evaluate the viability of our approach of using reference health facility test positivity rates to correct

for non-testing among lower-level facilities.

Scatter plots of HMIS clinically diagnosed malaria cases against cohort incident cases per month (Figure 1) indicate

a linear relationship between these metrics.
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Figure 1. Relationship between HMIS clinical case incidence and fever case incidence in the cohorts
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From the observed relationship in all three sites, there is evidence that the rate of change in HMIS clinical malaria
incidence is higher than the rate of change in cohort fever incidence (gentle slope). This suggests that within the
HMIS, identification of malaria cases would be exaggerated if it were based on clinical symptoms to be higher than

expected within a well characterised sample of the study population (cohorts) in the three sites.

5.1.2 Rainfall as a proxy for accessibility
We examined the viability of rainfall as a proxy for health facility accessibility using trends lines of rainfall and total
number of patients seen at all facilities within each site, which are total patients visiting public health facilities

within out study sites (Figure 2).
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Figure 2. Monthly trends in HMIS patient attendance compaared to rainfall estimates per site
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The trends in Figure 2 were estimated using site monthly total patient attendance on the left y-axis and rainfall
estimates (mm) of the right y-axis, with calendar month of study year on the x-axis by site. Orange trend-lines
represent rainfall while blue trendlines represent attendance. We observed in these trends that while they do not
track each other directly, for a large number of months in each site, rainfall peaks correspond to low patient
attendance and vice-versa. This provides some evidence of negative associations between monthly rainfall

amounts and monthly patient attendance at public health facilities. We assume therefore, that increased rainfall
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amounts facilitate reduced attendance at public health facilities, and this may be through agriculture involvement

or travel difficulties, among others.

5.1.3 Fitted relationship between cohort and HMIS incidence rates

Scrutinizing the linear relationship between HMIS-based incidence and cohort incidence, we used multi-variable
regression and examined each explanatory variable for the potential effect in improving model fit using the
coefficient of determinations, R-squared and R-squared adjusted. Results of this evaluation are summarised in

Table 1 below.

Table 1. Evaluation of linear relationship fit between cohort incidence and HMIS incidence rates by site,

involving three vital explanatory variables.

Explanatory variables in model

Recording
Coefficients of Recording
Site Cohort HF Recording +
determination Rainfall +
incidence Availability performance Availability
Availability
+ Rainfall
R-sq 0.6322 0.645 0.6322 0.6329
Walukuba N/A N/A
R-sqg (adj) 0.6214 0.6235 0.61 0.6107
R-sq 0.3222 0.323 0.3249 0.4405
Kihihi N/A N/A
R-sq (adj) 0.3022 0.282 0.284 0.4066
R-sq 0.0137 0.0577 0.0701 0.0991 0.1334 0.1959
Nagongera
R-sq (adj) -0.0153 0.0006 0.0138 0.0445 0.0521 0.0922

HF = Health facility

Owing to the fact that adjusted R-squared provides a measure of importance of any additional explanatory
variable in improving a model fit whereby once inclusion of the variable in the model leads to an increase in the
adjusted R-squared, the variable is considered vital in the association evaluated. This outcome of increased
adjusted R-squared implies that the added explanatory variable improved the model fit well enough above the

increase being an occurrence due to chance.

Walukuba: Results here showed that in Walukuba, adding rainfall (the proxy for accessibility) to the basic model
Improved the model fit, given the increase in adjusted R-squared from 0.6214 to 0.6235 (Table 1). However, the
same was not true for the addition of either health facility availability or recording performance in Walukuba. As
a result, it was not necessary to proceed with more complex models that would include health facility availability

and/or recording performance in addition to rainfall. Our results showed that after accounting for rainfall, the
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best fit for the linear relationship between HMIS and cohort incidence rates was such that variation in cohort

incidence explained up to 65% of the variation HMIS incidence rates in Walukuba.

Kihihi: Here, adding recording performance to the basic model Improved the model fit, given the increase in
adjusted R-squared from 0.3022 to 0.4066 (Table 1). However, the same was not true for the addition of either
health facility availability or rainfall in Kihihi. As a result, it was not necessary to proceed with more complex
models that would include rainfall and/or health facility availability in addition to recording performance. Our
results here showed that after accounting for health facility recording performance, the best fit model for the
linear relationship was such that at least 44% of variation in HMIS incidence rates was explained by variation in

cohort incidence rates in Kihihi.

Nagongera: Here, unlike the other two sites, results showed that all three explanatory variables of rainfall, health
facility availability, and health facility recording performance when added independently to the basic model,
improved the model fit as shown in Table 1 above. This, therefore, implied that there was need to proceed with
adding all explanatory variables and with every additional covariate, the model fit was improved as indicated by
progressive increase in adjusted R-squared. The model with all three covariates included provided the best fit for
this weak linear relationship with up to 20% variation in HMIS incidence explained by cohort incidence after

accounting for rainfall as well as health facility recording performance and availability.

5.1.4 Potential sources of bias in HMIS relative to cohort incidence rates

Evaluating the sources of bias in HMIS-based incidence of malaria (HMIS incidence) estimates relative to the gold
standard (cohort incidence), we considered factors that could be influential to the number of malaria cases that
end up being recorded at the health facility. These factors, estimated at site level on a monthly timescale, included;
health information recording performance, health facility availability, and rainfall estimates that represent both

seasonality and ease of access to the health facility from the patients’ viewpoint.
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Table 2. Regression results evaluating association between "difference between HMIS and Cohort incidence"

and potential sources of bias (important factor in recording malaria cases in health facilities) in HMIS incidence

Site Covariate Coefficient 95% CI P-value
HF Recording Performance 0.02480 -0.28632-0.33591 0.872
HF Availability 0.26672 -0.00903 — 0.54247 0.057
Nagongera
Rainfall estimate -0.21206 -0.48522 - 0.06110 0.124
Year of study -1.17198 -(1.49468 — 0.84927) <0.001
HF Recording Performance 0.04405 -0.206637 —0.29447 0.722
HF Availability -0.05617 -0.31409 - 0.20174 0.660
Walukuba
Rainfall estimate 0.15120 -0.08453 — 0.38692 0.200
Year of study 0.05992 -0.20033 - 0.32016 0.642
HF Recording Performance -0.21759 -0.55307-0.11789 0.196
HF Availability 0.18247 -0.12444 — 0.48938 0.234
Kihihi
Rainfall estimate -0.02498 -0.30566 — 0.25569 0.857
Year of study -0.57000 -(0.95522 - 0.18478) 0.005

HF = Health facility

Results here showed that the effect of the explanatory variables on the difference between HMIS and cohort
incidence were varied with recording performance, health facility availability and rainfall having no significant
association in Nagongera (Table 2) with or without controlling for calendar year of study. Similarly, for Walukuba,
neither of the three explanatory variables had a significant association with the difference between HMIS and
cohort incidence. In Kihihi, without accounting for calendar year of study, health facility recording performance
was significantly associated with the difference between HMIS and cohort incidence (p=0.004). In this case
improved recording performance was associated with reduced difference between the incidence estimates. That
being the case however, after accounting for calendar year of study, an important modifier of the relationship
between HMIS and cohort incidence, none of the three factors was associated the difference between incidence
estimates in Kihihi. While these factors are associated with HMIS incidence, these findings show that there is no

evidence that they contribute to biased HMIS incidence estimates relative to the true incidence.

5.1.5 Age standardizing the cohort incidence rates

Procedures

It was observed that there was bias due to age ostensibly resulting from differences between the health facility
and the cohort populations. Given further that age is a significant risk factor for malaria, in order to evaluate

relationship between health facility and cohort incidence, it is important to account for this bias.
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Two possible ways that | identified of doing this were: 1) adjusting for age in a binary outcome model at patient-
level & 2) Age standardization of the cohort incidence, given that the cohort is the more stringently held
population that differed from the normal population over time due to aging of participants, be it so slowly and

minimally over time.

The major drawback to approach 1 is that the patient-level analysis is limited to diagnostically tested cases, which
situation implies that one has much lower number of cases of malaria from the health facility system, given that
lower level facilities were not testing the majority of their suspected malaria cases. The benefit to this approach,
however, is that we can account for other known or identifiable sources of bias such as gender (that was identified

as a source of bias) and ultimately generate a model-based incidence that is corrected for bias.

The drawback to approach 2 is that there is no known standard population structure to fit the small rage of ages
included in this study as compared to known standard age structures that span a much wider age-range. However,
even with a small age-range, the ability to define finer age-categories provides the detailed effect of age that is

not obtainable when international standard populations with larger categories, are used.

The other drawback to approach 2 is being unable to account for other sources of bias as is the case in approach

1.

Taking approach 2

Having examined standard population structures, both international and national and not obtaining any that fits
a small range of ages i.e. 6months to under 11lyears old, we chose to use the age structure of the cohort
participants at the time of enrolment — a two months duration of August to September, 2011. Whereas the cohort
continued to recruit participants over the entire duration, the cohort generally grew older while at the same time

taking in a considerable number of children under lyear of age (children born into the cohort).

After obtaining the site specific ‘standard population’ we generated the age category-specific incidence rate, for
the six age categories created including [0.5-1yr], [>1-2yrs), [3-4yrs), [5-6yrs), [7-8yrs), [9-<11yrs], where the
notation for brackets implies that [ is bounded at the value, while ) implies unbounded at the value, we generated
the age-category or stratum incidence rates i.e. total age-category incident cases/ age category person time for

the month.

As explained in https://www.statcan.gc.ca/eng/dai/btd/asr as well as in Chapter 2 of Introduction to

Epidemiology p.27, age standardization is then achieved by multiplying each age specific incidence rate by the
proportion for each age-category from the recruitment age structure, known as the standard population weight
for each age category. These products are summed up for all the age categories per month to obtain site
monthly age-standardized incidence rates from the cohort. Note: Whereas there are two approaches to
standardization i.e. direct & indirect, we used direct standardization because we could generate age-specific

Page 130 of 267


https://www.statcan.gc.ca/eng/dai/btd/asr

rates for the age categories defined. Otherwise the indirect approach is applicable for situations where age-

specific rates are unknown or where the population under study is small (unlike in our case for both conditions)
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Abstract

Background. As global progress to reduce malaria transmission continues, it is increasingly important to track
changes in malaria incidence rather than prevalence. Risk estimates for Africa have largely underutilized available
health management information systems (HMIS) data to monitor trends. This study uses national HMIS data
together with environmental and geographical data, to assess spatial temporal patterns of malaria incidence at

facility catchment level in Uganda over a recent 5-year period.

Methods. Data reported by 3446 health facilities in Uganda, between July 2015 and September 2019 was
analysed. To assess the geographic accessibility of the health facilities network, a WHO tool for modelling
accessibility (AccessMod) was employed to determine a three-hour cost-distance catchment around each facility.
Using confirmed malaria cases and total catchment population by facility, an ecological Bayesian conditional
autoregressive spatial temporal Poisson model was fitted to generate monthly posterior incidence rate estimates,
adjusted for caregiver education, rainfall, land surface temperature, night-time light (an indicator of urbanicity),

and vegetation index.

Results. An estimated 38.8 million (95% Credible Interval [CI]: 37.9 — 40.9) confirmed cases of malaria occurred
over the period, with a national mean monthly incidence rate of 20.4 (95% Cl: 19.9 - 21.5) cases per 1000, ranging
from 8.9 (95% Cl: 8.7 —9.4) to 36.6 (95% Cl: 35.7 — 38.5) across the study period. Strong seasonality was observed,
with June-July experiencing highest peaks and February-March the lowest peaks. There was also considerable
geographic heterogeneity in incidence, with health facility catchment relative risk during peak transmission
months ranging from 0 to 50.5 (95% Cl: 49.0 — 50.8) times higher than national average. Both districts and health
facility catchments showed significant positive spatial autocorrelation; health facility catchments had global
Moran’s | = 0.3 (p<0.001) and districts Moran’s | = 0.4 (p<0.001). Notably, significant clusters of high-risk health

facility catchments were concentrated in Acholi, West Nile, Karamoja, and East Central — Busoga regions.

Conclusion. Findings showed clear countrywide spatial temporal patterns with clustering of malaria risk across
districts and health facility catchments within high-risk regions, which can facilitate targeting highest risk areas
with interventions. Moreover, despite high and perennial transmission, seasonality for malaria incidence

highlights the potential for optimal and timely implementation of targeted interventions.

Key words: Uganda, Malaria, Incidence, Relative risk, Routine surveillance, HMIS, Seasonality
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Background

The global burden of malaria has declined since 2000 primarily due to the scale up of control interventions
including long-lasting insecticidal nets (LLINs), indoor residual spraying with insecticide (IRS), and use of
artemisinin-based combination therapy (ACT) [1, 8, 71]. Nevertheless, incidence rates in sub-Saharan Africa
remained high at an estimated 219 cases per 1000 in 2017 — 2018 [71]. The incidence estimates used to monitor
trends across sub-Saharan Africa are typically generated using parasite prevalence in children 2-10 years fitted in
prevalence-to-incidence models [71]. Though informative, the surveys included happen infrequently [60] and may
be limited in scale. Derived burden estimates, therefore, cannot adequately support day-to-day monitoring for

decision making at national or sub-national levels [64].

National malaria control programmes typically depend on routine health management information systems
(HMIS) data to guide programme decisions in control and elimination efforts. With the advent and extended
access to web-based health information systems, such as the District Health Information System - version 2 (DHIS-
2), timely access to nation-wide HMIS data and quality of these data have been shown to have greatly improved
in sub-Saharan Africa [185, 186]. As such, the WHO has reiterated that timely and high-quality HMIS-based burden
estimates are achievable, and can be used to inform on-going decision making [4]. Despite this, HMIS remains
underutilized, especially for risk mapping, due to concerns over incompleteness and delayed reporting [71, 187,
188]. Whilst HMIS has had, and still needs, further improvement, substantial discrepancies between estimates of
burden from the current prevalence-to-incidence model approach and HMIS reports have been identified among
at least 30 high burden countries [71]. Thus, questions remain as to the reliability of HMIS estimates and their
corresponding representation of fine-scale spatial distribution of risk to support evidence-based decision making

by country-level programme managers.

Small area space-time disease models fitted to routinely reported data have been widely implemented to
accurately identify contextually important risk factors and unpack spatial temporal patterns of infectious diseases,
including tuberculosis and malaria [156, 189-192]. These models have the capacity to explain the spatial
autocorrelation in disease data, and can provide robust means of understanding ecological connectivity and
relationships [193] that are critical for control processes in high malaria or other disease burden countries.
Moreover, foci of high malaria risk or burden are pertinent to the principle of strategic information to drive impact
under the global “high burden to high impact” initiative, for effective targeting of interventions [160]. This study,
therefore, aims to investigate a pragmatic novel small-area space-time approach using a nationwide network of
health facilities in estimating malaria incidence from HMIS data, in order to identify areas of high malaria burden

and risk across Uganda and assess malaria seasonality.
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Methods

Study setting

Uganda was estimated to be the 3™ highest contributor of Plasmodium falciparum malaria cases globally in 2018,
with incidence rates of >250 cases per 1000 population at risk within a perennial transmission setting [3]. Located
between -1° and 4° latitudes, it covers a total area of 241,500 square kilometres that was divided into 15 non-
administrative regions (comprised of between one to 13 districts each) considered to be the malaria endemicity
zones under the Uganda Demographic and Health Survey (UDHS) Program by 2018 [61]. Nested within these
regions were 128 districts (as they were known in 2018), representing the second administrative level of

government.
Data and population

Health management information systems data: In Uganda, all health facilities are required to submit monthly
reports from their out-patients department (OPD) registers on all reported diseases to the Department of Health
information of the Ministry of Health (MoH). Health facilities are either private-for-profit (PFP) or public comprised
of the government owned and private-not-for-profit (PNFP) facilities. HMIS was introduced in 1997 as a paper-
based reporting system from each health facility to the Ministry of Health. In 2012, however, a web-based
reporting version, the DHIS-2, was implemented with full roll-out across the country in 2013 [14]. In this system,
health facility data is either entered directly among high-level facilities or sent as paper reports from lower-level

facilities to the districts for entry into the online system.

For this study, HMIS data consisted of monthly counts of all reported and confirmed malaria cases from study
facilities defined here as reporting facilities with available geo-coordinates. Reported malaria cases are defined as
all cases reported regardless of confirmation status while confirmed malaria are laboratory confirmed cases using
either blood slide microscopy (B/S) or rapid diagnostic test for malaria (RDT) — per national guidelines. Whereas
the recruited reporting facilities with available geo-coordinates represented 3453/7029 (49.1%) of all facilities
included within the DHIS-2, 2656/7029 (37.8%) neither reported nor were geolocated and were therefore not
recruited (Fig. S1, Additional file 1). Whilst majority of reporting geolocated facilities were publicly owned, the
majority of non-geolocated health facilities were private for profit (PFP) commonly located in urban areas and
these were excluded. Notably, the two districts of Kampala and Wakiso that together formerly comprised the
capital city, contributed 49% of these excluded facilities. All reporting facilities that were not geolocated or
geolocated facilities without a matching reporting health facility were excluded from this study. A total of 3446

geo-located health facilities constituted the study facilities for this work (Fig. 1).
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Fig 1. Map of Uganda showing locations of study health facilities within their defined catchment areas

Ancillary data: To define accessibility to health facilities, four categories of single timepoint ancillary data were
incorporated to develop a raster surface within which each pixel was assigned a time cost of travel across it and
is herein referred to as a cost-distance surface (Table 1). First, a digital elevation model (DEM) provided a measure

of penalty on travel speed depending on direction of travel along the elevation. Second, a land use and land cover
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raster data set from 2016 was used to define diversity of land cover across which, travel speed would be affected.

Third, wetlands, lakes, and rivers were identified as barriers for travel. Lastly, road networks were incorporated

categorized by feasible travel speed class.

Table 5. Description of ancillary data sets and the sources of these covariates

Data set Data type Data source

Single time point data sets

National geo-located health Vector https://figshare.com/articles/Public_health facilities in sub

facilities Saharan Africa/7725374 Accessed September-2019.

Digital elevation model Gridded https://www.rcmrd.org/ Accessed October-2019.

raster

Land use and land cover Gridded http://geoportal.rcmrd.org/layers/servir%3Auganda sentin

raster el2 lulc2016 Accessed October-2019.

National wetlands Vector http://maps.nema.go.ug/layers/geonode%3Augandawetlan
ds2008 Accessed September-2019.

Lakes and rivers Vector https://geodata.lib.berkeley.edu/catalog/stanford-
fh022bz4757 Accessed September-2019.

Road network Vector http://cod.humanitarianresponse.info/sites/default/files/ug
anda roads feb2009.zip Accessed September-2019 and
from KEMRI.

Multi-time point data sets

Land surface temperature Gridded

raster https://earlywarning.usgs.gov/fews/ewx/index.html?region

Normalized difference Gridded =af Accessed October-2019.

vegetation index (NDVI) raster

Rainfall Gridded https://www.tamsat.org.uk/data/archive Accessed

raster September-2019.

Night-light emissivity Gridded https://earthobservatory.nasa.gov/features/NightLights

raster Accessed November-2019.

Mean years of education for Gridded http://ghdx.healthdata.org/record/africa-educational-

women of childbearing age raster attainment-geospatial-estimates-2000-2015 Accessed

over 2000-2015

November-2019.
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To generate predicted incidence rates accounting for spatially variable risk factors, ancillary data sets at multi-
time points were considered and utilized (Table 1). Notably, whilst vegetation quantities (NDVI) were quantified
as the first ten days (dekad) per month and rainfall as monthly estimates, monthly night-light emissivity was
projected using 2012 and 2016 data sets, and the mean number of years in of attending school among childbearing

women published in [194] as a single estimate.

Health facility catchments: Currently, the HMIS is used to report malaria burden down to the district level, limiting
the ability to observe and act upon heterogeneity at finer spatial scales. In part, this is because of limited
information on health facility catchments. Considering proximity as the most important determinant of health
facility access and utility [138, 141], health facility catchments were defined based on a cost-distance surface
generated using a WHO supported tool known as AccessMod [195] as described in (Section E, Additional file 1).
This tool has been widely used in assessments for general and emergency care accessibility, and estimation of

care utilization for febrile illnesses, among others [196-198].

Using the cost-distance surface generated based on anisotropic (direction dependent) analysis with direction of
travel considered as ‘towards the health facility’ in the geographic accessibility model, three-hour travel
catchment buffers were generated for each health facility included in the study. To delineate each facility’s
catchment area, the intersection polygon between the three-hour travel buffer and a Thiessen polygon around
each health facility, generated using ESRI ArcGIS 10.5 Thiessen polygon tool (ESRI 1995-2016; Redlands, CA, USA),
was derived. This intersection polygon constituted the catchment area for each health facility covering majority

of the country.

Population data: Population estimates for the country were obtained from gridded population surfaces generated
by the WorldPop project whose estimates are based on national census estimates and other factors, accessible

from www.worldpop.org. Annual gridded population surfaces were obtained for the duration between 2014 and

2019 and population estimates per year extracted as summary statistics for each calendar year of the study
duration 2015 to 2019. These estimates were extracted using ESRI ArcGIS 10.5 Zonal Statistics tool at the level of
the defined catchment area for each study health facility, regardless of administrative boundaries, given that care

seeking is not restricted by these boundaries in Uganda.
Spatial, temporal, and spatial temporal analyses

The primary outcome in this analysis was monthly cumulative malaria incidence rate, derived from HMIS data as
the number of new confirmed cases per facility catchment divided by the total population of the catchment per

month.

Inherent spatial correlation of malaria infections is unexplained within classical regression approaches though

remains in the residuals and induces spatial autocorrelation in the response even after known available risk
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factors are accounted for [199]. Using spatial conditional autoregressive models, however, explains this
autocorrelation in the outcome using random effects within a Bayesian framework that uses prior distribution,

maximum likelihood, and neighbourhood to predict a more reliable outcome [200, 201].

A Beyesian space-time model employed here consisted of three segments, including: a data model that accounts
for data distribution; process model that accounts for spatial structure and trends; and, the parameter model

that accounts for prior distribution estimated and utilised [202].
The data model for incidence data in this study assumed a Poisson distribution and was defined by
Yit ~ Pois(Eiiit),

Where, Yi: was the incidence at time t for area i whose expected incidence was Ei: and relative risk pit. This
outcome variable Y is assumed to be conditionally independent across the spatial process defined by health

facility catchments in this study.

With the process model, a spatial temporal fit of a BYM (Besag, York and Mollie) conditional autoregressive
model with two random effects was implemented using integrated nested Laplace approximation (INLA)
(www.r-inla.org), fit to the monthly crude confirmed case rates in R (code presented in Appendix 10) [203].
Random effects included a structured and an unstructured spatial effect, as well as a structured and an

unstructured temporal effect. This spatial convolution model takes the form,

Log(ui) = 81+ Bxiz + ... + BpXjp + Si + Uj

Where s; is spatially structured and modelled using an inverse gamma process to enable smoothing among
neighbouring locations and u; is spatially unstructured and modelled using a Gaussian process to allow for
increased heterogeneity due to included covariates/risk factors [202, 204]. Within the parameter model,
structured random effects were assigned an inverse Gamma prior, while unstructured random effects were
assigned a Gaussian prior under the assumption of a normal distribution of noise. 8; denotes the overall risk
represented as a fixed intercept. x’s are explanatory spatial covariates including rainfall, land-surface
temperature, night-time light — proxy for social economic status, level of education for women of child-bearing
age — proxy for treatment seeking behaviour, and ... 8;to 8, are regression coefficients estimated to be constant

across catchment areas for fixed effects [205].

In this study, posterior estimates of incidence rates and the crude incidence rates were shown to be correlated
(Fig. S6 and Fig. S7, Additional file 1)). Moreover, to avoid overfitting, a time restriction using a random walk of

the first order was included.
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Candidate covariates had been used in other studies, given their association with malaria transmission including
rainfall, temperature, vegetation index, night-time lights (proxy for urbanicity), and caregiver education [191, 207-
209]. For inclusion in the final model, covariates quantities were evaluated for impact on a linear regression model
of crude incidence rates using Akaike’s information criteria values (Table S2, Additional file 1). The final covariate
list included catchments estimates of: mean years of education for women of childbearing age, mean of current
and three months’ lags for both rainfall and land surface temperature estimates, mean monthly night-time light
emissivity, and mean of current and one month’s lag of vegetation amounts. All these were significantly associated
with crude incidence estimates (Table S3, Additional file 1). Both 8 and b were assigned monthly informative
Gaussian distributions over the full 51 months length of the study duration. The full model was validated by
withholding 20% of data points at random and comparing the model predicted values with the actual observed

values using scatter plots and spearman’s correlation coefficients (Section G, Additional file 1).

Relative risk of malaria at district and health facility catchment levels was derived as the respective predicted
incidence rate divided by the overall predicted mean incidence rate at national level per month in the study
duration. All maps of the posterior estimates of incidence rates and relative risk of malaria were generated using

R.

Spatial clustering in the modelled outcome was further investigated using the global Moran’s Index statistic within
the spatial dependence (spdep) package of R and visually examined Moran’s scatter plots of incidence and risk
estimates at both district and health facility catchment resolutions. To identify cluster locations, the local Moran’s
Index using ESRI ArcGIS 10.5 Cluster and Outlier Analysis (Anselin Local Moran’s I) tool was used, set for first order

gueen contiguity, running 999 permutations and clusters evaluated at 0.01 level of significance.

Also, study model estimates of confirmed malaria cases were compared with estimates from both the WHO's
recent reports [3, 6, 71] and Malaria Atlas Project (MAP) estimates for the same period from

https://malariaatlas.org/trends/country/UGA (Section J, Additional file 1) and relationship between MIS regional

estimates of prevalence of malaria in children under five years [61] and estimated relative risk of malaria are
regional-level, examined using visual inspection of scatter-plots with results presented in supplementary

information (Fig. S13, Additional file 1).
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Results

Study population

The total population identified within the health facility catchment, considered at risk of malaria infection and
likely to seek care from the associated geo-located publicly reporting health facility, were considered the study
population of interest. The total population was estimated at 34.9 and 39.6 million in 2015 and 2019 respectively,

with the =2.8% located outside of the defined catchments (Section D, Additional file 1).
HMIS data summary

Between 62.2 and 88.7% of nationally reported cases of malaria annually were diagnostically confirmed cases in
2015 and 2019, respectively (Fig. S2, Additional file 1). Whilst these proportions increased across the 15 regions
of the country over time, Kampala recorded marginal improvements. Moreover, the majority of confirmed
malaria cases in Kampala (ranging from 61.8 to 81.0% in 2015 and 2018) were unaccounted for due to exclusion
of facilities, leaving only up to 38% of the burden in this metropolitan district estimated (Table S1, Additional file
1). Excluding Kampala, however, results showed that estimates accounted for between 67 to 96% of the routine
HMIS-based burden of malaria among the remaining 14 regions, over the study duration. Moreover, in these
regions, average annual proportion of reported confirmed cases excluded from the study ranged from 5.3 to
19.8% in Karamoja and Tooro, respectively. Diagnostic testing of suspected malaria cases across the country was

conducted either by microscopy or rapid diagnostic tests and reported as a single total.
Mean incidence rates, seasonality, and risk of malaria

Highest burden regions and districts also hosted health facilities with the highest number of confirmed malaria
cases reported. For instance, Bala health centre (HC) Ill in Kole district of the Lango region reported 3,317 cases
during November 2015, while Bira HCIl in Adjumani district of the West Nile region reported 6,697 cases during
June 2016. Moreover, Barakala HCIII (highest for two consecutive years) also from West Nile in Yumbe district,
reported 9,654 cases during October 2017 and 9,246 cases during July 2018. Lastly, Matany hospital in Napak

district of Karamoja region reported 8,089 confirmed cases during September 2019.

This study showed spatial and temporal variation in incidence rates between regions and districts in any given
region, as well as between health facility catchments within districts, both during the low (Fig. S9, Additional file

1) and high burden seasons (Fig. 2).
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Fig 2. Spatial distribution of malaria incidence rates during high burden months of study duration

Maps in column A show the regional boundaries (regional stratification of malaria in Uganda per 2018
MIS), Column B show district boundaries (the second government administrative level) and column C maps show

study defined health facility catchment area boundaries for the study health facilities.

National incidence rates: The model estimated 38.8 (95% Cl: 37.9 — 40.9) million confirmed malaria cases over
the study period of July, 2015 to September, 2019, highest in 2016 with 10.3 (95% Cl: 9.9 — 10.7) million cases and

lowest in 2018 with 6.5 (95% Cl: 6.4 — 6.9) million cases among complete calendar years (Table S4, Additional file
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1). Annual incidence rates reduced from 281.7 (95% Cl: 274.9 — 296.7) in 2016 to 170.0 (95% Cl: 165.9 — 178.8)
cases per 1000 in 2018.

Monthly incidence rates showed a general declining trend in the burden of malaria from 2015 to 2019, strongest
through 2018 followed by an increase in 2019 (Fig. 3). In all the years of the study, the incidence rates consistently
peaked in June and July, reaching a maximum of 36.6 (95% Cl: 35.7 — 38.5) cases per 1000 in June 2017 (Table S5,
Additional file 1). Conversely, low risk periods were less consistent, although often lowest in February and March,

reaching a minimum of 8.9 (95% CI: 8.7 —9.4) in February 2018.
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Fig 3. Trends in the national and regional monthly malaria incidence rates between July, 2015 — September, 2019

Spatial distribution of incidence rates across the country: Overall, mean monthly regional incidence rates were
highest in Acholi region (Northern Uganda) at 52.3 (95% Cl: 50.3 — 59.6) cases per 1000 per month and lowest in
Kigezi region (South Western Uganda) at 7.9 (95% Cl: 7.6 — 8.2) cases per 1000 per month (besides Kampala).

Consistent with national trend assessments, monthly trends in regional incidence rates showed the highest peaks
in June-July, highest in June, 2017 (Range: 13.4 — 95.6 cases per 1000) and July, 2019 (Range: 13.5 — 95.5 cases per

1000 in Kigezi and Acholi, respectively) and the lowest troughs in February-March of each calendar year (Fig. 3).
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These trends showed that Acholi, West Nile, Karamoja, East Central — Busoga, and Teso persistently recorded the
highest monthly incidence rates across the entire study duration. Moreover, the greatest variability in incidence
rates was also observed among these five highest burden regions of with respective estimated mean monthly

incidence rates of 52.3 (SD: 17.8), 43.3 (13.9), 30.3 (10.4), 26.3 (8.6), and 23.5 (8.0) cases per 1000 per month.

Within these regions, high burden and risk districts were also identified, both during the highest and lowest
burden months. During June 2017 district monthly incidence reached the maximum in Lamwo of Acholi, Moyo of
West Nile, Kaabong of Karamoja, Namayingo of East Central - Busoga, and Katakwi of Teso regions, at 167.6 (95%
Cl: 165.6 — 169.8), 192.5 (95% Cl: 189.9 — 195.1), 81.1 (95% Cl: 79.6 — 82.5), 73.1 (95% Cl: 71.9 — 75.0), 72.0 (95%
Cl: 70.9 — 73.1), cases per 1000 per month, respectively (Table S6, Additional file 1).

Monthly incidence rate trends among districts showed that Moyo, Lamwo, Adjumani, Pader, Nwoya, and Maracha
persistently recorded the highest monthly incidence rates across the study duration (Fig. 3). Moreover, higher
incidence rates were also associated with higher variability in monthly incidence rates with the mean monthly
estimate in Moyo at 115.8 (SD: 36.5) and lower rates less variability with Rubanda at 1.6 (SD: 0.5) cases per 1000
(Figs. S10 and S11, Additional file 1).

Within individual districts, a wide distribution of incidence rates was estimated among health facility catchments
both during the lowest and highest burden months. From the 3446 catchment areas identified across the country,
mean monthly incidence rate reached a maximum of 569.8 (95% Cl: 555.2 — 584.3) cases per 1000 per month in
Namayingo district of East Central — Busoga region and minimum of 0.13 (95% Cl: 0.10 — 0.17) cases per 1000 per
month in Rukungiri district of Kigezi region, excluding Kampala. Also, higher incidence rates within catchments
were associated with higher viability in monthly incidence rates and lower incidence rates with less variability (Fig.
$10, Additional file 1). Among health facility catchments, variability in incidence rates reached a maximum
standard deviation (SD)= 142.4 cases per 1000 in highest incidence rate catchment located in Namayingo and a

minimum SD= 0.1 among the lowest burden catchments in Arua and Kasese districts.

Spatial distribution of relative risk across the country: Consistent with incidence rates, relative risk of malaria was
highest among the highest burden regions of Acholi, West Nile, Karamoja, East Central — Busoga, and Teso, both
during the lowest and highest burden months, maintaining their rank of risk at both times (Table S7, Additional
file 1). During the highest burden month of June 2017, the relative risk of malaria among these regions ranged
from 1.18 (95% Cl: 1.17 — 1.19) to 2.6 (95% CI: 2.6 — 2.8)-times higher than national average in Teso and Acholi,
respectively. Moreover, while mean relative risk among districts within these regions was higher during the
highest burden month at 1.8 (95% Confidence Interval:1.5 — 2.1) than the lowest at 1.7 (95% Conf. I:1.4 — 2.0), the

difference was not significant (p= 0.676) by a two-sample t-test.
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Spatial and temporal variation in relative risk observed between regions, and districts within regions (largely
informative at programmatic or NMCP levels), was also present between catchments within districts (informative
for district health managers). Relative risk remained consistent among the 15 regions, between low and high
burden seasons, but showed additional variability among districts and health facility catchments across the two

seasons (Fig. 4).
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Fig 4. Spatial distribution of the relative risk of malaria during lowest and highest burden months of the study

duration
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Results showed that catchment risk ranged from 0 to 24.9 (95% Cl: 24.4 — 24.9) times higher than national average
during the highest burden month and from 0 to 50.5 (95% Cl: 49.0 — 50.8) during the lowest burden month.
Moreover, a non-linear association of catchment risk was observed between the lowest and highest burden
months further confirming this rising risk during lower burden months (Fig. S16, Additional file 1). However, the

highest risk catchments at the two time points were neither identical nor located in the same district or region.

Spatial clustering of risk: Assessment for spatial autocorrelation of incidence and/or risk showed consistent levels
of moderate global autocorrelation between both districts (Moran’s | range by month: 0.4 to 0.6, p<0.001) and
health facility catchments (0.3 to 0.5, p<0.001). Both during the highest (June-2017) and lowest (February-2018)
burden months, global autocorrelation between districts was very similar (Moran’s | = 0.5, p<0.001) (Figs. 18 and
19, Additional file 1) but slight difference between health facility catchments (Moran’s | = 0.4 and 0.3, p<0.001,
respectively) (Figs. S20 and S21, Additional file 1).

Analysis of local spatial autocorrelation at two levels of significance (p<=0.05 and p<=0.01) identified substantial
significant high-high clustering in Acholi and West Nile regions in the North, as well as East Central — Busoga region
in the South East of the country, both during the highest and lowest burden seasons (Fig. 5). Similarly, large low-
low clustering was identified in the Southern regions of the country. Moreover, outlier catchments typically had
significantly lower risk than their neighbours in the north, and higher risk than their neighbours in the rest of the
country. Significant monthly high-high clusters were comprised of between 191 health facility catchments during

February 2018 and 236 during June 2017 and 2019 (Fig. S22, Additional file 1).
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Discussion

Results from this innovative, large-scale, longitudinal observational study suggest that with improved HMIS
reporting, credible high-risk areas at both high and low spatial scales are identifiable. The study revealed distinct
monthly spatial distribution of malaria incidence across the fifteen regions of Uganda, in a concurrent multi-
resolution assessment including coarse (regional) down to fine (health facility catchment) spatial resolutions.
Moreover, whilst Uganda is considered a perennial transmission setting, this study revealed a nation-wide
seasonal pattern in incidence rates with two peaks (major and minor), the highest during June-July and the minor
peak during October. This approach may facilitate efficient implementation and optimization of targeted control
activities that can leverage existing health facility systems [210]. It may also improve managers’ understanding of
the heterogeneity and/or clustering of malaria burden within districts that currently form the lowest level of

malaria burden assessments, though acknowledged as difficult to use or unusable for planning control [64].

This study showed that the risk of malaria by regional rank among the highest and lowest risk regions had minimal
temporal variability, with these regions maintaining their status both during low and high burden seasons. These
findings were consistent with extant UDHS regional stratification of Uganda where Acholi, West Nile, and
Karamoja are among the highest transmission regions, and Ankole and Kigezi among the lowest. This stratification
supports tailored approaches for long-term malaria control efforts aiming at elimination, as advocated in the
global ‘high burden to high impact’ initiative [17] that was recently adopted as central to onward national malaria
control strategies for Uganda [38]. Whilst targeted interventions including IRS [211] and larval source
management [37] have been used, further emphasis is necessary [81, 160] with implementation taking greater
account of local context. Importantly however, temporal variability of risk among many regions highlights the
continued vital role of routine surveillance for planning and timely action towards control. Moreover, higher risk
among high burden locations during the lowest than highest burden seasons suggests persistent high-risk in these

locations, the identification of which could facilitate high precision targeted actions for effective control.

This study also identified several distinct clusters of high-risk health facility catchments, which were consistent
over time though largest during the highest burden seasons and smallest at the lowest. The largest high-risk
clusters were concentrated in the West Nile and Acholi regions in Northern Uganda, although smaller clusters
were noted in the recognised high transmission regions of Karamoja and East-Central Busoga [61]. Conversely,
the most notable low-risk health facility catchment clusters could be grouped into three categories: highland
regions (e.g. Kigezi, Ankole and Bugisu) [152, 212]; regions with recent intense targeted multi-year IRS activity
associated with high impacts on transmission (e.g. Bukedi, Teso, and Lango) [60, 61, 213, 214]; and, large urban
municipalities (e.g. Southern Buganda) with urbanization associated with reduced transmission [215, 216]. These
findings provide further evidence of identifiable candidate locations for targeted control interventions among the

high-risk clusters and an approach for assessment of possible impacts of previous interventions.
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Trends in annual confirmed malaria cases in Uganda declined between 2016 and 2018, despite increased reporting
and proportions of confirmed cases over time, consistent with MIS findings between 2014 and 2018 [60, 61],
before a sharp increase in 2019. Moreover, the relationship between regional relative risk and prevalence of
malaria (among children under five years of age from the 2018 MIS) showed that small changes in parasite
prevalence were associated with sharp increases in relative risk among regions at lower than national average
risk. However, large changes in parasite prevalence were associated with small changes in relative risk among
regions at higher than national average risk. This further confirms the variability of risk among many regions while
pointing to strong effects of age on malaria [217]. In addition to estimated confirmed cases being lower than
estimates reported by WHO and MAP per year (possibly due to study design of excluding some facilities), trends
were dissimilar with WHO and MAP cases increasing between 2016 and 2017 [3], unlike in this present study.
Nevertheless, such dissimilarities have been documented [71] and likely explained by the use in global assessment
for sub-Saharan Africa of prevalence surveys that are predominantly conducted among children [82]. With
estimates for the whole population generated from these surveys, despite shifts in malaria burden from children
to the older population following effective control interventions [217], the dynamic effects on burden may not be

adequately accounted for in the prevalence-to-incidence models used.

The observed seasonality with June-July peaks and February-March troughs was consistent with reports from
south western Uganda, where epidemics followed a regular July pattern except during El-nino in 1998 [64, 218]
and in Gulu district (Northern Uganda) where between 2006 and 2015 biannual peaks of malaria were reported
during June-July and October-November [219]. One study however, reported two peaks of malaria during April-
May and September-November in Northern Uganda following the rain seasons, though unsubstantiated [220].
Findings from this present study may inform optimal timing for control activities including IRS, mass drug
administration (MDA), or community mobilization campaigns towards increased malaria risk awareness for

control vigilance.

PFP facilities, a small majority of which do not report to the HMIS and were therefore excluded from this study,
limit the utility of focal analyses such as presented here. This highlights an important missed surveillance
opportunity. The limited capacity to detect outbreaks in settings largely served by PFP may exacerbate the severity
of malaria outcomes among their most vulnerable residents with increased case management costs [221]. There
are several possible initiatives to increase reporting in these facilities where a small majority seek care for febrile
illnesses [59-61]. First, provision of guarantees on exclusive use of data for public health not revenue monitoring,
may improve confidence and alleviate any fears of punitive intensions in their reporting. Second, ensured
availability of standardized reporting tools, may offset running costs of stationery in the private facilities while it

enables improved documentation of health records. Third, training of PFP managers and owners on the benefits
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of surveillance and/or reporting. Lastly, implementation of regular feedback mechanisms may provide a means of

continued evaluation that fosters risk and other assessments that are mutually beneficial.

Given that policymakers’ remediating responses as well as policy formulation processes are informed by pooled
information from diverse sources, including but not limited to research, political, and funding provisions, it is
unrealistic to expect these technocrats to be expert generators of the evidence from these multi-disciplinary
sources. Whilst there are no simple solutions to the implementation of analyses such as in this present study,
interpretation of contemporary outputs is nowhere nearly as demanding, highlighting the criticality of

partnerships between policy and research dimensions for malaria and other disease control efforts.

This study had limitations. First, the disproportionately low proportion of geolocated reporting private facilities
impacted on the estimates of malaria burden, especially among highly urban locations including Kampala and
Wakiso districts and others across the country. Results for the Kampala region (and Wakiso district) in this study,
represent only a small proportion of the burden and were excluded from results discussions. Moreover, exclusion
of non-geolocated reporting public health facilities (such as in Kitgum district), impacted on the estimates of
incidence due to unidentified catchments in those places. Nevertheless, there was wide coverage of health
facilities across the country with a small proportion of districts under-represented, minimizing effects of this
constraint. Second, the study did not account for level of health facility and other population level factors that
impact on differential health seeking behaviour, which may have inflated incidence rates and risk where a given
level or type of facility is preferred. However, in this analysis it was assumed that for uncomplicated malaria,
people attend the closest health facility and some important factors such as urbanicity and primary care giver
education were accounted for, though further research may be required to better understand impacts of level of
health facility on care seeking for uncomplicated malaria. Third, the study did not account for stock levels of
antimalarials or test kits, variations of which may impact on the number of cases recorded between seasons of
full stock versus stockouts. A better understanding of the linkage between logistics management and HMIS may
be required, given known associations between stockouts and increased under-five mortality or compromised
treatment practices like dosage rationing and use of less effective remedies [222]. Fourth, given that health facility
recruitment into the study was not dynamic, any increase in number of facilities reporting could have had impacts
on study findings. Moreover, the systematic exclusion of non-geolocated facilities, may have biased study results
towards more long-term established than newer health facilities, but duration of facility existence was beyond

the scope of this study.
Conclusion

Assessment of malaria burden and/or risk in high burden countries using routine surveillance data is highly

achievable. Using national routine data, this study provided needed evidence of vital concurrent assessment of
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malaria risk and burden among regions, districts, and health facility catchments with identifiable significant spatial
clustering of risk. Targeting hotspots as an intervention approach has been shown to yield modest and transient
impacts on malaria prevalence [223]. However, locations with persistently high-risk of malaria that are potential
candidates for health facility-based interventions such as community outreaches, provision of LLINs, mass drug
administration and enhanced case management were identified, an approach that may be beneficial beyond
isolated health facility catchments. Furthermore, whilst extensive geo-spatial analytical output with scales either
too large (region or district) or too fine (pixel or neighbourhood) may be challenging for control programmes to
use [224], this study provides evidence of HMIS-based assessments at practical scales for districts to implement
and assess intervention impacts. Moreover, in perennial settings, the identifiable strong seasonal patterns as seen
with June-July highest peaks and February-March lowest troughs in Uganda, provide vital information for
intervention timing. Taken together, these results show the potential in routine HMIS surveillance data for
pragmatic timely identification of high-risk areas and with further research assessments for optimal

implementation of targeted control activities and their impacts.

Page 153 of 267



List of Abbreviations

ACTs — Artemisinin-based combination therapies
AL — Artemether-lumefantrine

B/S — Blood slide microscopy

BYM — Besag, York and Mollie modelling approach
Cl — Credible Interval

DEM — Digital elevation model

DHIS-2 — District health information system — version 2
DHS — Demographic health survey

HMIS — Health management information system
INLA — Integrated Nested Laplace Approximation
IRS — Indoor residual spraying with insecticide
KEMRI — Kenya Medical Research Institute

LLIN — Long-lasting insecticidal net

MAP — Malaria Atlas Project

MIS — Malaria indicator survey

MoH — Uganda Ministry of Health

NDVI — Normalized Differences Vegetation index
NMCP — National Malaria Control Programme
OPD - Outpatient department

PFP — Private for profit

PNFP — Private not for profit

RDT — Rapid diagnostic test for malaria

UBOS — Uganda bureau of statistics

UTM — Universal Transverse Mercator coordinate system
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WGS — World Geodetic System of modelling earth

WHO — World Health Organization
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Figure legend

Fig. 1 Map of Uganda showing locations of study health facilities within their defined catchment areas

The orange points are the relative geo-locations of the study health facilities recruited from across the country,
each situated in a grey background representative of the exclusive catchment area for each facility. The catchment
areas were constituted using a three-hour cost distance surface towards each health facility. These are overlaid

with the regional boundaries (dark green) defining the 15 endemicity regions across the country.
Fig. 2 Spatial distribution of malaria incidence rates during high burden months of study duration

Columns A, B, and C represent regions, districts, and heath facility catchments respectively, while the rows
correspond to the respective highest burden month of each year. The lighter the shade of colour, the lower the

incidence rates within a region, district, or catchment and the darker the colour, the higher the incidence rates.
Fig. 3 National and regional trends in mean monthly malaria incidence rates July 2015 — September 2019

Trend plots of incidence rates (confirmed malaria cases / 1000) over study time (x-axis) — monthly. The top plot
shows the national mean incidence rates per month (blue line) with a linear trend-line (dotted red). The bottom

plot shows the trends for the 15 endemicity regions that comprise the country.

Fig. 4 Spatial distribution of the relative risk of malaria during lowest and highest burden months of the study

duration

The left column shows, from top to bottom, relative risk by region, district, and health facility catchment for the
lowest risk month of February 2018 while the right column shows a similar arrangement for the highest risk month

of June 2017. For each row, the same levels (region, district, or health facility catchment) are side-by-side.

Green areas are locations with relative risk of malaria lower than the national average where the darker the colour

the lower levels of risk below national average.

Red coloured areas are locations with relative risk of malaria higher than national average, where the darker the

colour the high the risk

Fig. 5 Spatially significant clusters of malaria risk for the highest and lowest burden months between 2015 and

2019, across Uganda

The map at the top represents the distribution of significant clusters of malaria risk across the 15 regions of the
country during the highest risk month of June 2017. The map at the bottom represents a similar distribution but

for the lowest risk month of February 2018.
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High-High Clusters: The black and dark red areas represent the clusters of high-risk health facility catchments that
are spatially located next to other high-risk catchments, with significant positive spatial autocorrelation at <=0.01

and <=0.05 levels of significance, respectively.

High-Low Outliers: These orange areas represent high-risk clusters that are significantly disparate from their

surrounding low-risk catchments. These outliers have significant negative spatial autocorrelation.

Low-High Outliers: These blue areas represent the low-risk clusters that are significantly disparate from their

surrounding high-risk catchments. These outliers also have significant negative spatial autocorrelation.

Low-Low Clusters: These green areas represent the clusters of low-risk health facility catchments that are spatially

located next to other low-risk catchments, with significant positive spatial autocorrelation.

Not significant: The light grey areas represent the health facility catchments that did not show any significant
spatial autocorrelation or clustering of either high, low or outlier distribution of risk of malaria. They are areas of

highly random spatial distribution of risk of malaria.
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6.1 Additional Information for Paper 4

6.1.1 Study health facilities’ selection

Health facilities were selected for inclusion in this study primarily in the basis of presence of geo-ordinates from
the publicly available database as well existence in the national routine HMIS data repository (DHIS-2) by 2015.
The geo-location database contained nearly half the number of entries as the reported malaria cases DHIS-2

database given that 50.9% were without a match in the geo-location database (Fig. S1).

Fig S1. Flow-diagram of the recruitment process for the study health facilities
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By 2015, there were at least 7029 health facilities (public and private) registered in the DHIS-2 database, in
anticipation of them submitting monthly malaria reports. Of these, 2656 (37.8%) did not submit any reports
through the year, though majority of these were private clinics that often do not comply with MoH reporting
requirements (Fig. S1). A total of 3663 health facilities with associated geo-coordinates were identified by name
and these comprised a health facility geolocation database. Comparing the two databases, identities of 3446, by

facility name, were matched and the same constituted the study health facilities for this work.

6.1.2 Diagnostic confirmation of malaria and reporting
Whereas diagnostic testing rates varied across the country, overall proportions of the reported malaria cases
confirmed by a diagnostic test increased nationally over time from 62.2 to 88.7% between 2015 and 2019 (Fig.

S2). These increases were observed across 14 of the 15 endemicity regions of the country, with the three best
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performing regions of Lango in Northern Uganda, Kigezi in South Western Uganda and Teso in Eastern Uganda,
increasing from 70.9 to 98.1%, 58.8 to 97.4% and 45.8 to 98.1% respectively. Notably however, Kampala in central
Uganda recorded declining performance, with the proportion of reported cases that were diagnostically
confirmed reducing from 62.0 to 16.0% between 2015 and 2017. Notably however, majority of excluded facilities,
were disproportionately concentrated in Kampala (the capital city and most urban district in the country) making
it an outlier. Along with the improved diagnostic testing, national reporting rates defined as the proportion of the
expected reports received within the DHIS-2 system per year recorded an 22.1% increase between 2015 and 2019

(Fig. S3).

Fig S2. Distribution of proportions of reported malaria cases that were test confirmed, by the 2018 MIS

endemicity regions and nationally.

Region 2015* 2016 2017 2018 2019*
Acholi 69.1% 73.3% 74.0% 73.1% 88.0%
Ankole 46.5% 52.2% 85.5% 83.2% 92.3%
Bugisu 49.5% 57.2% 56.9% 72.1% 86.8%
Bukedi 47.4% 52.7% 60.0% 80.3% 88.7%
Bunyero 73.3% 69.3% 73.0% 80.9% 87.2%
East Central - Busoga 64.2% 60.4% 63.6% 74.7% 86.4%
Kampala 62.0% 37.6% 17.9% 16.0% 21.1%
Karamoja 47.3% 47.4% 54.8% 67.7% 71.0%
Kigezi 60.0% 58.8% 77.3% 82.3% 97.4%
Lango 75.0% 70.9% 75.3% 83.6% 98.1%
North Buganda 72.8% 79.6% 81.3% 80.3% 90.2%
South Buganda 69.7% 68.1% 74.6% 79.8% 91.5%
Teso 52.0% 45.83% 50.4% 85.2% 98.1%
Tooro 80.2% 55.8% 72.3% 84.1% 92.9%
West Nile 65.6% 69.4% 78.5% 85.8% 88.6%
Nationally 62.2% 62.6% 70.4% 79.3% 88.7%

*Not complete calendar years, included July-December 2015 and January-September 2019

The red colours represent lowest performance of reporting test confirmed cases while the green colours,

improving performance

6.1.3 Reporting completeness and timeliness
Part of the output from the DHIS-2 system is an assessment of reporting completeness and timeliness of report
submission. Reports of national reporting were generated from the system for the study duration and these were

available by MIS regions of 2014 during which the country was divided into five regions. Fig. S3 below shows the
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trends in reporting rates, defined as the proportion of expected reports for a given year that were submitted from
regions. Notably however, reporting timeliness was lower than eventual submission indicating an area of much

needed improvement in HMIS reporting.

Fig S3. Proportion of expected HMIS reports that were submited, by the four regions and the overall national

trend
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The central region which includes Kampala and the other highly urbanized areas of the country showed the lowest
performance, consistent with findings from our analysis where urban areas with high proportions of PFP that

report the least. However, the region showed considerable improvement over the years.

6.1.4 Impact of study design on results

Whilst the study health facilities included in the analysis were only a proportion of the full list of health facilities
registered in the national data repository of surveillance data (DHIS-2), these were a good general representation
for the national distribution. This was supported by a general left skewed distribution with a median proportion
of 71.3% (IQR: 59.0 — 80.0) (Fig. S4) and three districts (Kampala and Wakiso - the most urban settings of the
country, plus Kitgum - a fairly rural district in the previously war ravaged Northern Uganda) presenting as outliers

with low proportions of registered health facilities included in the analysis (Figs. S4 & S5).
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Fig S4. Distribution of health facility inclusion in the analysis from amongst the list registered in the DHIS-2

database by 2015
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This distribution suggests a fairly good representation of routine surveillance data from across the country with

the exception of the three unique districts for which additional efforts would be required to improve their status.
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Fig S5. Geographical representation of the proportion of DHIS-2 health facilities included in this study by

district.
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We observed here that the mid-western region of the country is another that is fairly under-represented.
However, it’s not clear why in spite of the fairly good overage of catchments across this region, there is still a large
number of facilities unaccounted for. Interestingly however, the north-eastern region that had a sparse
distribution of catchments than the rest of the country presented some the highest representation districts.
Nevertheless, the population in this region leads a characteristically nomadic lifestyle with far-flung permanent

settlements among which health facilities would be viable.

To assess the impact of exclusion of facilities from the study on the basis of no geo-location information, however,
we examined the raw reported confirmed malaria cases by for each of the 15 endemicity regions. Here, we
assessed confirmed malaria cases from excluded regions as a proportion of overall regional confirmed malaria

cases reported over each calendar year of the study duration. Results showed that the proportion of confirmed
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cases among non-geolocated facilities increased slightly between 2015 and 2019 with the highest increase in
Tooro from 11.7 to 32.9%, followed by West Nile from 3.6 to 16.4% respectively (Table S1). Overall, the proportion
of malaria cases reported from non-study health facilities moderately increased between 2015 and 2019 from

11.7% to 16.1%, which may indicate an increase in reporting, especially from private facilities with time.

Page 165 of 267



Table S1. Comparison of observed raw (reported) confirmed malaria cases between study and non-study facilities by

region, per calendar year

2015* 2016 2017 2018 2019*
Region Includ Excluded Include Excluded Include Excluded Includ  Excluded Include Excluded
(%
ed (% Missed) d (% Missed) d (% Missed) ed (% Missed) d .
Missed)
Acholi 469,34 89,535 1,011,4 230,923 648,22 158,629 405,5 92,890 1,028,8 222,463
3 (16.0%) 20 (18.6%) 1 (19.7%) 19 (18.6%) 92 (17.8%)
Ankole 223,36 37,015 635,57 99,989 690,19 111,088 217,7 53,439 201,69 51,337
7 (14.2%) 7 (13.6%) 4 (13.9%) 62 (19.7%) 5 (20.3%)
Bugisu 121,62 15,058 299,72 35,663 316,75 44,194 199,3 35,895 242,37 42,895
2 (11.0%) 2 (10.6%) 2 (12.2%) 40 (15.3%) 4 (15.0%)
Bukedi 147,27 11,500 365,37 28,915 413,05 35,863 255,0 22,221 237,19 21,658
3 (7.2%) 4 (7.3%) 7 (8.0%) 22 (8.0%) 4 (8.4%)
Bunyoro 190,00 27,645 485,29 79,643 496,47 70,328 298,4 48,038 460,36 67,734
2 (12.7%) 0 (14.1%) 1 (12.4%) 54 (13.9%) 8 (12.8%)
f:::ittral 459,73 58,858 1,315,0 159,976 1,102,3 172,844 936,7 147,221 946,49 133,679
3 (11.3%) 82 (10.8%) 82 (13.6%) 40 (13.6%) 2 (12.4%)
Busoga
Kampala 63,481 118,693 107,817 25,24 107,912 96,983
R 39,321 65,791 44,852 29,196
(61.8%) (64.3%) (70.6%) 5 (81.0%) (76.9%)
Karamoj 123,95 5,676 228,29 11,836 261,32 14,978 309,4 14,427 300,31 23,727
a 1 (4.4%) g (4.9%) 1 (5.4%) 48 (4.5%) 4 (7.3%)
L 4,790 151,66 19,676 160,42 21,471 80,46 11,094 7,795
Kigezi 63,218 94,855
(7.0%) 3 (11.5%) 3 (11.8%) 6 (12.1%) (7.6%)
Lango 274,98 20,689 649,07 57,531 364,46 41,071 245,3 34,690 515,35 57,704
0 (7.0%) 1 (8.1%) 9 (10.1%) 98 (12.4%) 4 (10.1%)
North 359,74 37,244 899,17 104,118 1,075,6 126,180 598,1 80,623 806,89 104,170
Buganda 0 (9.4%) 2 (10.4%) 36 (10.5%) 92 (11.9%) 2 (11.4%)
South 339,56 50,641 857,37 132,875 924,70 180,585 446,7 124,387 511,24 114,152
Buganda 6 (13.0%) 9 (13.4%) 3 (16.3%) 11 (21.8%) 1 (18.3%)
Teso 250,83 27,289 610,96 58,393 406,33 53,759 478,0 57,421 495,77 57,500
4 (9.8%) 4 (8.7%) 7 (11.7%) 98 (10.7%) 8 (10.4%)
S 256,00 33,934 610,96 95,187 613,59 84,107 304,9 122,434 379,66 186,336
1 (11.7%) 4 (13.5%) 0 (12.1%) 32 (28.7%) 2 (32.9%)
WestNile 479,283 17,873 1,185,5 66,045 1,367,0 132,152 1,486, 140,520 1,445,54 283,897
(3.6%) 21 (5.3%) 89 (8.8%) 110 (8.6%) 1 (16.4%)
overall 3,798,2 501,228 9,371,2 1,299,463 8,885,4 1,355,066 6,287, 1,093,212 7,695,84 1,472,030
34 (11.7%) 89 (12.2%) 97 (13.2%) 437 (14.8%) 8 (16.1%)

*Incomplete calendar years included in study: July-December for 2015 and January — September for 2019

# Region comprised of one district
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Notably, the total predicted number of confirmed cases recorded during the nine months of 2019 included in the
study period were higher than the total for all of 2018 by at least 1.4 million cases indicating a major increase in

malaria burden and confirming 2018 as the lowest burden year between 2016 and 2019.

Population estimates: To determine incidence rates, total confirmed cases at either health facility catchment,
district or regional resolution provided the numerator while total population estimates at each respective
resolution provided the denominator. Population estimates were extracted from WorldPop gridded surfaces.
Compared to Uganda Bureau of Statistics’ (UBOS) national population projection for 2015 of approximately 35.5
million, this study’s estimated Uganda’s at 35.9 million in 2015 from WorldPop. The estimated total study
population of 34.9 million therefore, accounted for 97.2% of the 2015 national population estimate. Similarly,
whilst UBOS population projection for 2019 was 40.3 million, this study estimated 40.8 million. The study
population estimate of 39.6 million during 2019 therefore, accounted for 97.1% of the national population
estimate. Whilst the differences between UBOS and WorldPop estimates may be due to in model approaches,
differences between national total and study population are attributable to populations located beyond our

defined catchments and in locations where very few and sparse health facilities were geolocated.

6.1.5 Cost distance surface

Generally in Uganda, geographical catchment for each level of health facility have been conceptualized as level Il
serving a parish, level lll a sub-county, and level IV a group of sub-counties otherwise known as a health sub-
district (MoH), among others, though it may not be the case in actual practice. Treatment seeking for malaria has
been reported as influenced by multiple factors like: knowledge about malaria and its outcomes, severity of
disease, reputation of a health facility and affordability of its services, available alternative remedies, as well as
age of head of household [225-227]. However, proximity of a health facility may be one of the strongest influences
on treatment seeking, often cited in the rampant use of private versus public health facilities [141]. We, therefore,
defined health facility catchments under the assumption that people seek care for uncomplicated malaria from

the most proximal health facility, using the AccessMod tool supported by the WHO [195].

AccessMod is a web-enabled spatial analysis tool that provides extended ArcView 3.x functionality. Among others,
it is used for modelling catchment areas associated with geo-located sources of care as an estimate of physical
accessibility, using travel time [195]. Here, first we generated a cost-distance surface of the entire country, at a
100x100 meter pixel resolution. For this, several geographical covariates, within the WGS 1984 UTM Zone 36S
coordinate system under the Transverse Mercator projection, were included. Respective covariate classifications
were first assigned an intuitive characteristic speed of travel across them, taking into consideration the most likely
means of travel useable, to define an overall travel scenario. This scenario included most likely modes of travel
across different surfaces such as walking and cycling, driving and riding, as well as using a canoe or boat across

water surfaces. Along with these modes, average travel speeds across the respective surfaces or covariates were
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estimated. The covariates included: 1) a digital elevation model (DEM) of the country that defines the elevation
variability across the surface at a 100x100m resolution. This measure of slope per pixel in the DEM was used to
penalize the speed of crossing a pixel, particularly for walking and bicycle means, making direction of travel
important to define. With interest in access to the health facility in this study, direction of travel was chosen to be
towards the health facility. 2) Road network across the country classified as Primary, secondary, tertiary, and other
roads, were each considered to enable varied speeds of travel across them, ranging from 30 kilometres per hour
(Km/h) on other roads such as feeder or country roads to 100 Km/h on primary roads such as highways. 3) Land
use and land cover surface covariate, also at a 100x100 meter resolution, was defined in ten classifications of: tree
cover, shrub, grassland, cropland, aquatic vegetation, sparse vegetation or lichens-Mosses, bare ground, built-up,
open water, and no data areas. The predominant land cover type per pixel, was assigned a characteristic speed of
travel, ranging from a low of one Km/h such as across open water to ten Km/h across bare ground. 4) Lakes and
rivers. Whereas the first three covariates were classified to enable travel across them, lakes and rivers were
considered primarily as barriers with limited capability to cross them and no likelihood of being residential areas
for populations or locations for a health facility. Any health facility that would have its geo-coordinates within
water was excluded. This did not include health facilities on islands of which there were several. 5) Another barrier
considered in this cost-distance evaluation were swamps with limited likelihood of travel across them except if
there was a certain type of road network through them, assumed to likely be a bridge-type crossing. These too
were included in this process. Majority of country was within four hours (240 minutes) of travel time to the health
facility (Fig. S6) however, there were some outliers, especially far into the lakes and fairly high travel times in

parts of the country such as the North-Eastern areas, among others.
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Fig S6. Distribution of travel time to the health facility across the country in minutes from country-wide raster
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6.1.6 Model selection

To select the model covariates to include, time varied covariates including rainfall estimates, land surface
temperature and vegetation amounts quantified as NDVI were evaluated for selection between the current
monthly estimate and the mean of current monthly estimate and either one, two or three months’ lags using
akaike’s information criteria values of a multi-variate regression model of crude incidence rates as dependent
variable. While keeping all others constant, each covariate was varied to obtain its best quantity for inclusion in
the model and the choice of covariate quantity was based on the lowest value of AIC between each covariate’s

varied values as summarized in Table S2 below.
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Table S2. Akaike’s information criteria values with corresponding value of covariate included

Akaike's information criteria (AIC)

Covariate Land surface
Rainfall Vegetation (NDVI)
temperature
Current month's estimate -478514.4 -479,047.50 -481,472.60
Mean of current & 1 month’s lag -479,561.30 -479,232.40 -481,537.80
Mean of current & 2 months’ lag -480,403.10 -479,743.80 -481,127.30
Mean of current & 3 months’ lag -480,553.30 -480,553.30 -480,553.30

Best choice covariate AIC indicated with bold value

From the final selection of covariates including: years of education for women of childbearing age, nighttime light
emissivity, mean of current and three months’ lags for rainfall and land surface temperature, and mean of current
and one month’s lag of NDVI, it was clear that all except years of education for women of childbearing age were
significantly and positively associated with the outcome, while education was negatively but also significantly

(p<0.001) associated as shown in Table S3 below.

Table S3. Association between best fitted covariates and crude incidence rates from multi-variable regression

Regression
Covariate 95% Conf | p-value
coefficient
Education -0.007338 (0.007578 - 0.007099) <0.001
Nighttime light emissivity 0.000052 0.000042 - 0.000063 <0.001
Mean of current & 1 month’s lag (NDVI) 0.000477 0.000453 - 0.000501 <0.001
Mean of current & 3 months’ lag (Rainfall) 0.000128 0.000122 - 0.000135 <0.001
Mean of current & 3 months’ lag (Temperature) 0.001654 0.001584 -0.001725 <0.001

6.1.7 Bayesian model validation

The Bayesian model fit to generate the posterior estimates of malaria incidence accounted for four main
explanatory factors including: education of women of child-bearing age, the same being the predominant primary
care givers in homes; mean rainfall estimates over the current and three previous months; land surface
temperature; vegetation amounts, and nighttime emissivity. In order to validate this model, we randomly selected
20% of catchments to be withheld from the posterior estimates and re-run the model to thereafter compare
estimates generated from the model with 80% data to posterior estimates determined from the model with the

full data.
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Results showed that consistent with strong correlation between observed incidence rates and posterior estimates
for all data as shown in Fig. S7 below, out of 990 randomly selected catchments, posterior estimates for 942 were
within 95% credible interval of the full model prediction for the same. Moreover, there was high correlation

between these estimates with Spearman’s rho = 0.6988, P<0.001 also represented in Fig. S8 below.

Fig S7. Scatter plot of predicted against observed confirmed number of malaria cases from all 3446

catchments in the study
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Fig S8. Scatter plot of model predicted against observed confirmed malaria cases for a random sample of 990
catchments for validation of Bayesian model
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6.1.8 Distribution of catchment-level incidence rates

Consistent with the observed distribution of incidence rates during the high burden months of the study duration,
for all the low burden months, a distinct distribution was observed. In the latter like the former, highest burden
districts - potential drivers of their respective regional burden were identifiable. Similarly, highest burden
catchments — potential drivers of district burden were also identifiable as shown in Fig. S9 below. Moreover, the
pattern of reducing burden from 2016 through 2018, followed by a rebound in 2019 was also observable,

particularly among regions and districts.
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Fig S9. Spatial distribution of malaria incidence rates during low burden months of study duration
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Maps in column A represent the distribution of incidence rates by MIS regions (15 regions) of the country; B represent the

distribution of incidence rates by district (128 districts); while C represent the distribution of incidence rates by health facility

catchments (3446 catchments in all).

Examination of the association between mean and standard deviation (SD) of monthly incidence rates, considering
SD the coefficient of variation in these monthly incidence rates, showed that there was a strong linear association
between the two, both at district and health facility catchment levels. This was shown using scatter plots of the

coefficient of variation versus mean monthly incidence rates at each level as shown in Fig. S10 below as well as
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the heat-map of district monthly incidence rates in Fig. S11 below. Moreover, increase in mean monthly incidence

rates was associated with an increased coefficient of variation and therefore, variability.

Fig $10. Scatterplot for association between Standard deviation and Mean monthly incidence rates at district

and catchment levels
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Fig S11. Distribution of malaria incidence rates per month for the 128 districts in Uganda between July 2015 and September 2019
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A 296(9.7)
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BUTAMBALA 37.8(12.2)
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AGAGO 40.9(14.7)
OMORD 41.0(13.7)
BUSIA 47.2 (15.8)
KAABONG 48.2 (15.1)
MOROTO 50.5(15.6)
MARACHA 59.2 (18.4)
PADER 63.8(22.9)
NWOYA 54.1(22.2)
AMURU 66.1(22.9)
ADJUMANI 86.9(27.5)
LAMWO 95.6(32.5)
MOYO B 115.8(36.5)

2of2

Page 176 of 267



6.1.9 Trends in monthly incidence rates

Whilst clear and fairly strong trends in malaria incidence rates were observed at the national level with seasonality, similar trends and seasonality were

also reflected among regions and districts. The highest burden areas also sustained the highest levels of mean monthly incidence rates across the study

duration both at regional and also as shown among districts in Fig. S12 below.

Fig S12. Trends in the mean monthly incidence rates by the 128 districts of Uganda as of 2018
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Here, we observe two groups of districts with the highest incidence rates. The first comprised the three districts of Moyo, Lamwo, and Adjumani while the

second group included Amuru, Pader, Nwoya, and Maracha. Consistent with seasonality observed at national level, all districts both how and high burden,
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showed the same seasonality pattern with June-July as the highest incidence rates months and February-March

being the lowest incidence rates months across the study duration.

6.1.10 Annual estimates of confirmed malaria cases

National estimates of annual total confirmed malaria cases in Uganda are obtainable through routine surveillance
data. However, these are not fully utilized in global burden estimates of malaria for Uganda or other countries in
the region. To evaluate how HMIS-based estimates compared with global estimates, annual estimates for each
calendar year were compared with the most recent estimates reported in the WHO’s world malaria report 2019.
Given that global reports are provided in complete years, the respective calendar years for which data included in
our study was not from the entire 12 months of the year, the comparisons were considered not applicable. These

results are presented in Table S4 below.

Table S4. Estimated number of confirmed malaria cases from this study compared with estimates from the

WHO estimates

Estimated cases from

Confirmed malaria cases in WHO malaria report 2019 in
Year / duration Malaria atlas project in
millions (95% Cl) millions (95% Conf. 1)
millions (95% Conf. 1)

Jul-Dec, 2015 4.759 (4.642 -5.017) N/A N/A

Jan-Dec, 2016 10.151 (9.904 - 10.688) 10.876 (8.439 - 14.007) 12.070 (9.342 - 15.300)
Jan-Dec, 2017 9.439 (9.210-9.927) 11.096 (8.613 - 14.286) 13.863 (10.840 - 17.470)
Jan-Dec, 2018 6.527 (6.368 - 6.865) N/A 12.357 (7.623 - 18.970)
Jan-Sep, 2019 7.951 (7.760 - 8.362) N/A N/A

Cl — Credible interval

Conf. | — Confidence interval

Given that estimates from this study included only the health facilities that were geo-located across the country,
we argue that this may explain the lower estimates of confirmed malaria cases per year from this study compared
to WHO reported estimates as seen in Table S4. Notably however, the trend observed from this study with total
annual confirmed cases reducing between 2016 and 2018 is not observable from WHO reported estimates [3] or
with Malaria Atlas project estimates. From this study, 2016 registered the highest total confirmed number of cases
and 2018 the lowest of the three years, while the global reports indicated 2017 as the highest with 2016 the lowest
of the three years. This may be attributable to differences in the approaches used for the estimates reported

between these sources. Both MAP and WHO estimates, that showed an increase in cases from 2016 to 2017, were
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generated predominantly using survey-based data [3, 207] that may not capture nuances observed from routine

data that showed a clear downward trend in malaria cases between 2016 and 2018 from this study.

National monthly incidence rates: Examining monthly estimates of national mean incidence rates, results showed
that across the 51 months, June-July experienced the highest incidence rates for all the years, while the lowest
estimates were observed variably but mostly during February-March as shown in Table S5. For 2015 where only 7

months were included in this study starting from July, however, the lowest estimate was observed during October.

Table S5. National, regional and health facility catchment highest and lowest estimated monthly incidence

rates per study calendar year in Uganda

Peak monthly incidence rates Lowest monthly incidence rates
Annual duration
month IR (95% Cl) month IR (95% ClI)
Jul-Dec 2015 July 27.6(27.0-29.1) October 20.1(20.6 -21.7)
Jan-Dec 2016 June 32.1(31.3-33.8) March 17.2 (16.8 - 18.1)
Jan-Dec 2017 June 36.6 (35.7 - 38.5) December 12.3(12.0-13.0)
Jan-Dec 2018 June 18.9 (18.4-19.9) February 8.9(8.7-9.4)
Jan-Sep 2019 July 36.3 (35.4 - 38.1) February 12.7 (12.3-13.3)

Cl — Credible interval

IR — Incidence rate estimated

Further, the five highest risk regions both during the highest and lowest burden months being identified across
the country as Acholi, West Nile, Karamoja, East Central — Busoga, and Teso. Within these regions, the highest
burden districts were also identifiable, the highest four districts in each shown in Table S6 below between the two

seasons.
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Table S6. The four highest burden districts within the five highest risk regions across the country during July-

2017 and February-2018, the highest and lowest burden months of the study duration.

July 2017 (the highest burden month) February 2018 (the lowest burden month)

Region District IR (95% ClI) District IR (95% ClI)
Lamwo 167.6 (165.6 - 169.8) Lamwo 36.4 (35.9 - 37.0)
Amuru 122.5(118.4 - 138.0) Amuru 25.1(24.2 - 28.2)
Acholi
Nwoya 118.8 (117.2 - 120.3) Pader 24.3 (23.2 - 28.7)
Pader 117.3 (111.5-118.2) Nwoya 23.9(23.5-24.3)
Moyo 192.5 (189.9 - 195.1) Moyo 48.0 (47.2 - 48.8)
Adjumani 145.0 (143.5 - 146.4) Adjumani 35.2 (34.8-35.7)
West Nile
Maracha 100.8 (99.3 - 102.4) Maracha 24.4 (24.1 - 24.8)
Koboko 68.5 (67.8 - 69.3) Pakwach 17.2 (16.9-17.7)
Kaabong 81.1(79.6 - 82.5) Moroto 23.9 (23.4-24.4)
Moroto 80.2 (78.7 - 81.7) Kaabong 21.0(20.6 - 21.4)
Karamoja
Nakapiripirit 52.4 (51.5-53.3) Kotido 12.6 (12.4-12.9)
Abim 51.1(50.1-52.0) Nakapiripirit 11.1(10.9-11.3)
Namayingo 73.1(71.9 - 75.0) Namayingo 19.1(18.7 - 19.6)
Luuka 71.3(69.9 - 72.7) Luuka 17.2 (16.8 - 17.6)
East Central - Busoga
Iganga 58.5 (57.6 - 59.5) Iganga 15.1(14.9-15.4)
Bugweri 58.4 (57.5 - 59.4) Jinja 14.1 (13.5-16.0)
Katakwi 72.0(70.9 - 73.1) Katakwi 16.2 (15.9- 16.5)
Kumi 58.6 (57.7 - 59.5) Kumi 13.5(13.3-13.7)
Teso
Kapelebyong 57.5(56.5 - 58.5) Ngora 12.5(12.3-12.7)
Amuria 54.2 (53.4 - 55.1) Amuria 12.4(12.1-12.6)

To evaluate the estimated relative risk against other known estimates, a scatter plot of the regional prevalence of

malaria estimated among children 0-59 months of age tested by microscopy within the 2018 Malaria Indicator
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Survey [61], against the study estimated relative risk of malaria during December 2018, the month when the MIS
survey was conducted was plotted. Fig. S13 below shows a positive relationship between these two estimates and

indication of a positive association between the two.

Fig $S13. Relationship between the 2018 MIS regional prevalence of malaria and estimated relative risk of

malaria for December 2018
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The blue points represent the (prevalence, risk) coordinates and the red dotted line, the fitted curve for the
relationship. This observed relationship may provide some evidence of the important effect of age that is largely
precluded from evaluations of risk among all populations based on data from children. In these cases, low
transmission setting estimates of malaria burden may be under-estimated while being over-estimated in the high

transmission settings.

6.1.11 Malaria risk distribution

Given variability of risk of malaria through the spatial hierarchy, risk at the two higher levels (region and district)
was assessed and presented in Table S7 below. The results show regional risk of malaria relative to national

average, during the lowest and highest incidence rate months at national level as independent columns as
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evaluated through national trends in incidence rates. Additionally, for each region, the range of district risk of

malaria for the districts that comprise the respective region was also included

Table S7. Risk of malaria relative to national average, for the lowest and highest burden months between July-

2015 and September-2019, by region and district.

Lowest burden month Highest burden month
(February-2018) (June-2017)

Region Regional risk District risk range Regional risk District risk range
Acholi 2.2 15-41 2.6 19-46
Ankole 0.8 0.2-13 0.6 0.2-11
Bugisu 0.8 0.2-1.1 0.7 03-1.0
Bukedi 0.7 1.2-24 0.8 0.2-24
Bunyoro 0.8 04-15 0.9 05-1.7
East Central - Busoga 1.3 05-21 1.3 05-2
Kampala 0.2 N/A 0.2 N/A
Karamoja 1.4 0.6-2.7 1.4 0.7-2.2
Kigezi 0.4 0.1-1.0 0.4 0.1-0.8
Lango 0.8 03-15 0.9 0.3-1.6
North Buganda 1 07-14 1 08-14
South Buganda 0.7 0.3-2.0 0.7 03-19
Teso 1.1 04-18 1.2 0.4-20
Tooro 0.9 04-18 0.8 03-14
West Nile 1.9 1.2-54 2 1.3-53

With 15 regions define across the country, we assessed risk distribution by region and the consequent distribution
of risk across each region by district. For the low burden month of February-2018, the four highest risk regions in
descending order were Acholi, West Nile, Karamoja, and East Central — Busoga, each with greater than one times
the national average. Comparatively during the highest burden month of June-2017, the same regions maintained
their position in rank of risk (Table S7). On the other hand, the four lowest risk regions during the lowest burden
month in ascending order were Kampala, Kigezi, Bukedi, and South Buganda each at lower than national average
risk. However, during the highest risk month, the four lowest risk regions changed order to include (in ascending
order) Kampala, Kigezi, Ankole and Bugisu, implying that only Kampala and Kigezi maintained their lowest rank of
risk. The distribution of risk across districts within each region were further explored using scatter plots for both

the lowest and highest burden months as presented in Figs. S14 and S15 below.
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Fig S14

Relative risk of malaria among districts per region for February-2018
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Results showed Acholi and West Nile as the regions with districts that are at the highest risk of malaria, will all
their comprising districts at higher relative risk than national average regardless of season. However, while Kigezi
region was one of the lowest burden regions with four districts having the lowest risk, the region also had two

districts with notably higher risk of malaria than the rest in the region. This pattern is observable among all regions

and could play a role in identification of higher priority districts per region over any given observation period.

Notably, among districts within the two lowest risk regions of Kampala and Kigezi the mean relative risk was higher
during the lowest burden month at 0.4 (95% Conf. 1:0.0 — 0.7) than the highest at 0.3 (95% Conf. 1:0.1 — 0.6), but
with no significant difference (P=0.706). Similarly, for the middle-ranked risk regions, mean relative risk among
their districts was higher during the lowest burden month at 0.9 (95% Conf. 1:0.8 — 1.0) than during the highest at
0.8 (95% Conf. 1:0.7 — 0.9) with no significant difference (P=0.717).
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Fig S15.

Relative risk of malaria among districts per region for June-2017
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Furthermore, examining the relationship between catchment-level risk during lowest and highest burden months,
results showed that the catchments at highest risk were at disproportionately higher risk during lowest than

highest burden seasons of the year, as shown in Fig. S16 below.
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Fig S16. Relationship of catchment-level risk of malaria between Lowest and highest burden seasons
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A scatter plot of health facility catchment risk of malaria during the lowest burden month (Feb-2018, x-axis)
against the highest burden month (Jul-2017, y-axis) with a fitted smoother curve (blue) and 95% confidence
band (grey). The plot indicates that a large majority of locations maintain similar levels of risk of malaria both
between high and low burden seasons. However, the non-linear form of the relationship suggests that a few
locations bear a much higher risk of malaria during their lower than higher burden seasons, and these could be

identified through such small area assessments for further intervention.

6.1.12 Spatial autocorrelation of risk

Given the identifiable distribution of risk across the 15 regions of the country, we assessed for spatial
autocorrelation of risk at district and catchment levels so as to test for spatial randomness also known as
heterogeneity versus spatial clustering of risk of malaria at these scales. For these assessments, the global Moran’s
Index (Moran’s |) test was performed in R. At district-level, this included all 128 districts as they were known by
2018. However, owing to the requirement of contiguity among neighbours for this analysis, isolated catchment
areas without a neighbour with a shared border were excluded. Consequently, 27 catchments were excluded from
this assessment leaving 3419 (99.2%) catchments. Catchment neighbourhood was approximately normally
distributed as shown in Fig. S17 below, with the highest number of contiguous neighbours a single catchment had

being 11 and the least being one.
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Fig S17. Neighbourhood distribution among health facility catchment areas.
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This analysis was conducted for both the lowest and highest burden months of the study duration and results are
presented using Moran’s scatter plots for the two durations in Figs. S18 and S19 for the district level and Figs. S20

and S21 at the catchment level below.

The test statistics for spatial autocorrelation (Moran’s 1) showed that both at the catchment and district levels,
there was increased variability of clustering during the highest burden periods that were associated with increased
relative risk. Moreover, we observed higher relative risk among lower transmission areas during lower than higher
burden seasons. Together, these may provide some indication of disproportionately higher increase in burden
among highest risk locations than increases among the lowest burden areas when malaria upsurges occur. This
may be consistent with the notion of the 80:20 Pareto rule [228] indicating here that 20% of the population may

bear 80% of the burden of malaria infections.
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Fig $18. Moran's scatter plot for district-level risk of malaria during the lowest burden month of the study
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Fig $19. Moran's scatter plot for district-level risk of malaria during the highest burden month of the study
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Fig $20. Moran's scatter plot for catchment-level risk of malaria during the lowest burden month of the study
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Fig S21. Moran's scatter plot for catchment-level risk of malaria during the highest burden month of the study
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Whilst the location of HH clusters did not change much over time, the number of health facility catchments comprising the identified significant clusters
of high-high risk of malaria per month varied over time, showing larger numbers of health facility catchments during high burden seasons that reduced
during the low burden seasons (Fig. S22). The total number of health facility catchments was lowest during February 2018 (the lowest burden month) at

191 and highest during both June 2017 and 2019 at 236 health facility catchments.

Fig $22. Changes in number of catchments comprising monthly high-high clusters of malaria risk, identified using the Local Moran's | statistics

240
13
235 ;
245
230 | 2
225 |
E 3 3
o
=)
220 p
2 AS A 4o 5
<
L
o 215 |
- 4
B 2 . b 2
£ 210 | . ' )
=
=
205 | € 5
4
28
200 do
%
]
195
190 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIII
W W W W o o B8 W o WO e B W W8 W owm e M e e P B P R P o oo 88 o oo 60 6 8 8 6 8 oo o I ™
"'"."'."'.'F."'.'"."."'.'"."."'.'T‘T"T'TT"T'TT"T'T';‘_‘T‘T‘T"T‘T'T“T‘T'T"T‘T';_'T'F."'."'."."'."'."."'."'.'“.";“'.'“."'.""
3Wﬂﬂ}U£RLL}23ﬂﬂﬂ.ﬁ}Utﬂ‘-L Cihﬂﬂ.ﬂ}ut_ﬂ‘-h Ciﬂﬂﬂ.ﬂ:’UCDLL cgmu_
2380888323883 335382882832833333383238833338388:3¢833832333
Study month year

Page 191 of 267



7 Summary, General discussion, conclusion, and Recommendation

7.1 Summary

This thesis investigated the utility of routine HMIS estimates of malaria incidence through intra-system indicator
comparisons, evaluation of impacts of interventions, evaluation of bias, and identification of high burden
locations. It provided substantial evidence supporting HMIS data as a viable source of reliable indicators of malaria
trends and seasonality, incidence and/or burden, and ultimately risk. First, it showed agreement in trends
between HMIS incidence and test positivity rates - the current common metric in use, providing evidence of its
reliability for malaria trends evaluations. However, predictable change in incidence with distance of residence
from health facility, absent for TPR, could be evidence of its enhanced utility, compared with TPR. Second, this
research provided evidence on impact of control interventions on age distribution of malaria cases, indicating that
estimation of malaria burden based on a single age group such as children under 5 years to infer burden across
the full age spectrum, is likely to be a considerable source of bias. This may explain the widely acknowledged and
increasingly reported differences, between national reports and global estimates. This, therefore, points to the
need to strengthen routine surveillance and encourage use of this routine data for burden assessment, especially
in the low resource setting countries. Third in relation to strengthened HMIS, the rare evidence of a strong linear
relationship between enhanced HMIS incidence and the gold standard cohort incidence in this research setting,
further highlights the viability of HMIS to generate reliable estimates of malaria burden in similar locations. Lastly,
clear identification of seasonality, as well as areas of high incidence and high-risk in the perennial transmission
setting of Uganda using HMIS data, is profound testament to the vital role that routine national HMIS data can
play in providing low-cost indicators of malaria burden, and therefore, a vital resource for control efforts in similar

settings.

7.2 Discussion of findings

Malaria remains a heavy global health challenge that is responsible for 405,000 deaths globally, a significantly high
proportion of these (85%) being from the low income countries of sub-Saharan Africa as well as India [3].
Moreover, children under 5 years of age (67% of deaths in 2018) and pregnant women remain highly vulnerable
population groups that suffer the most severe outcomes. There is a growing body of evidence that not only the
global but also African burden reduced significantly over the first 15 of the past 20 years thanks to expanded
control activity [8, 229-233] but this decline then reportedly has stalled over the past few year [6, 7, 71]. These
intractable dynamics in malaria burden further emphasize the importance of routine surveillance and the
understanding of the data thereof, for malaria control for the following reasons. First, our understanding of the
common indicators of burden derived from routine data or their relationships with each other has been limited.
Second, impacts of the scaled-up control intervention activities and/or the subsequent changes in burden or

transmission levels have not been fully explored or adequately prospectively accounted for in estimating malaria
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burden, with important ramifications. Third, the indicators of malaria burden from routine surveillance data have
not been assessed for their representativeness or level of bias, as evaluated against their de facto gold-standard
estimates. Fourth, routine surveillance estimates of burden for monitoring and impact assessment have been
largely shunned, based on historical status of quality and instead, settled for less informative approaches.
Responding to these issues may not be sufficiently achieved in this one thesis, however, investigations into these
important subjects are vital for global public health, and especially for the low resource malaria endemic nations

of the world.

Evaluating the relationship between various indicators of malaria burden derived from routine surveillance data
isimportant in the interpretation of the burden. Test positivity rate (TPR), that is, the proportion of patients tested
that have a positive result for malaria - has been very widely used for estimation of malaria burden in endemic
settings, as recommended by WHO. However, other than for the low cost and ease of generating this indicator up
to the lowest level of health facility, there was no defined association between TPR and incidence of malaria or
other indicator [44, 45, 234]. TPR was therefore, a widely utilised indicator of burden, primarily based on
convenience, rendering estimates less likely to be epidemiologically understandable. Here, | undertook to study
the relationship between more common TPR and the less utilised but better understood indicator - malaria
incidence rate, all derived from enhanced routine surveillance data. The temporal relationship between TPR and
incidence is nonlinear and strongest when TPR values are lower than 50% [45] and this was also observed through
closer trends during low transmission seasons. My original contribution to knowledge was revealing that when
the spatial dimension was incorporated, the relationship was much more complex, owing to unparallel response
to spatial dimensions by the two indicators. With seasonal variations in endemic settings, some of which often
recording TPR’s higher than 50%, coupled with the non-specific nature of symptoms indicative of suspected
malaria [235], TPR has close dependence on extra-malarial factors, which may render it a less reliable indicator of
malaria burden. With limited such dependences, higher sensitivity to spatial variations, and therefore
environmental factors, incidence rate is a better measure of burden from routine surveillance data. Importantly,

incidence rate was also shown to be significantly influenced by age, after accounting for transmission intensity.

When considering age, major research activities and routine malaria burden assessments are predominantly
conducted in children, due to reported comparatively higher vulnerability to malaria and greater sensitivity to
changes in transmission within this group [93]. Whilst subsequent projections of burden estimates in entire
populations using these data are commonplace, particularly in sub-Saharan Africa, the impact of this approach on
the true burden is less well understood. These burden estimates, however, have not gone without criticism [71].
Here, | set out to investigate the possible impacts of malaria control interventions on age-specific burden of
malaria, using routine surveillance data from across diverse transmission settings. Interestingly, the risk of being

positive for malaria progressively increased with effective control activities in place, while reducing among
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children and vice versa. These findings are important in addressing the two vital malaria challenges including
stalled declines in malaria burden both in Plasmodium falciparum and vivax endemic areas [236, 237] and the
discrepancies between reported case estimates and data from individual high burden countries [71]. With
effective interventions reducing the burden among population groups central to malaria burden estimation
(children <5 years of age), progress may be duly registered. However, with the burden shifting to overlooked
population groups (older children and adults) within the same locations, onward transmission is likely to be
facilitated even among the vulnerable groups. This then sustains unintended outcomes such as high mortality
rates in children under 5 years of age at 26.8% in 2017 [238]. It may also explain the discordancy between model
estimates and routinely reported burden of malaria from among endemic countries [239]. My original
contribution to knowledge is the revelation that with effective large-scale interventions continued, surveillance
based on data from younger children may be misleading and consequently, interventions targeting these
vulnerable groups may be sub-optimal. From evidence provided, however, routine surveillance data may provide

a more reliable source of burden assessments.

Evaluating HMIS-based incidence rates against the gold-standard of incidence estimates from community cohort
studies, was considered a vital step in understanding its representativeness of the true burden, within
communities served by health facilities providing the HMIS data. By this, we could assess the level of bias in HMIS
indicators, a commonly cited limitation of HMIS, relative to their benchmarks. Whilst HMIS has seen extensive
quality improvement efforts associated with: improved neonatal clinical outcomes and decreased neonatal
mortality in Uganda [240]; improved recording of deaths in Viet Nam [241]; and, improved HIV service delivery
monitoring in Kenya [133], little has been done to evaluate HMIS indicators of burden for representativeness.
Here, | set out to evaluate the relationship between HMIS and community cohort incidence rates, as well as assess
bias in HMIS-based incidence due to factors associated with health facility data recording, to inform the
representativeness by HMIS of the true burden. My original contribution to knowledge was the revelation of a
strong linear and unbiased relationship between HMIS-based incidence and cohort incidence of malaria. This
provided evidence of representativeness of HMIS-based incidence of the true burden of malaria, in these high and

moderate Ugandan transmission settings.

For meaningful use of malaria control resources, the timely and continuous identification of high-burden or high-
risk locations may be the most important functions of surveillance. Nevertheless, this capacity is yet to be
exploited in the sub-Saharan African high transmission settings, where it is most needed and burden reduction
been slowest [242]. Using well established geostatistical models to analyse incidence of confirmed malaria cases,
high-burden locations were identified across the country. Whilst these approaches have been widely used and
reported from multiple studies as favourable [96, 100, 101, 243], my original contribution to knowledge is the use

of small area approaches to not only confirm regional stratification of malaria burden as estimated from malaria
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indicator survey data [244], but concurrently define fine-resolution spatial-temporal distribution of this burden,
within regions of interest across high transmission Uganda. More importantly, at this fine resolution of health
facility catchments, control programs can both assess and implement control interventions, providing an effective
surveillance-based approach to malaria control [102, 245]. In addition, my research revealed nation-wide strong
seasonality of malaria incidence amidst a perennial transmission setting. With renewed efforts in targeting
interventions for high impact [4, 160], this knowledge will facilitate improved use of surveillance data for
identification of multi-scale high-risk locations, an important resource for the achievement of malaria eradication

targets as we aim for elimination

7.3 Limitations

First, the limited number of sites included in the assessments performed under the first three objectives, may
have limited wider generalizability of these findings, given the heterogeneity of transmission across the country.
Moreover, whilst there were nearly five years of data available from community cohorts, in the assessment of the
relationship between HMIS-based incidence and cohort incidence, | was limited to only three years of data, owing
to available funding. This reduced, older dataset may have limited inferences amenable to the current status,

however, overall applications of findings in this thesis, transcend this indicated limitation.

Second, given the temporal frequency used in all the studies in this research as is required for estimating incidence
of malaria, some important metrics may have been excluded in this work. These may include, social economic
status, community-initiated malaria control interventions, research associated control interventions, or other
national health programs with secondary impacts on malaria transmission or burden over time. Though these may
not have varied from month to month or by location, estimates of these were not accessible at either scale or

duration considered in this study.

Third, the disproportionate under representation of private facilities, especially clinics and drug shops that are
active care providers for uncomplicated malaria but are not actively providing reports, may have impacted findings
in this research. Circumstantially, these facilities tend not to stay operational for very long for multiple reasons
but either close shop or may change locations over time as observed in our study. However, during their
operational time, be it limited, their routine reporting would nonetheless be beneficial for surveillance.
Particularly, this status quo may disadvantage the urbanized communities where private facilities are the main

care providers. Presently, therefore, routine HMIS estimates of burden in these locations remain unreliable.

Lastly, overarching influences from political and other governance associated factors were not at all accounted
for in this research. Whilst these could have had varied impacts from one location to another, they were beyond

the scope of this research and may have had unexplained impacts on finding in this thesis.
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7.4 Future direction for HMIS-based risk mapping

This research has been foundational in its assessment of indicators of malaria burden from routinely reported
health facility data, for spatial and/or temporal risk assessments. It builds on remarkable work from the malaria
research community in using many other sources of data to assess risk within endemic settings, since inception of
the Roll Back Malaria initiative. However, there is growing need to use timely data to inform optimal use of
available effective control tools. This is especially through the global technical strategy for malaria 2016-2030 pillar
of transforming surveillance into a core intervention, as well as the quest to address inconsistences in global
reports. Moving forward, research is needed first, in the full and regular evaluation of the quality of routine
surveillance data to facilitate assurances concerning the burden estimated from these data. Second, given findings
from this study, implementation of near real-time estimates of burden from routine data accessible to policy
makers as identified locations of highest burden or risk of malaria is not only necessary but possible. Such a system
would support their decision making and guided allocation of treatment and disease control resources. Third, with
these low-cost indicators of burden, the identification of seasonality of malaria even in perennial transmission
settings will inform vector control programs, among others, on optimal timing of interventions especially IRS,
which to date though most effective, is also most expensive and thereby limited. Further research on the
effectiveness of surveillance supported timing of known control interventions is therefore imperative. Fourth, the
increased understanding of indicators of burden and risk derived from routine data demands for additional studies
on control interventions impacts using these data. Fifth, research on impacts of regular feedback from district
health management offices to their respective reporting health facilities may foster increased capacity to use
routine data and facilitate improved HMIS data quality and timeliness of reporting. Lastly, approaches to estimate
the residual burden of malaria that is not reflected under current routine surveillance and is potentially
responsible for on-ward transmission, remain ununderstood. Studies addressing this gap may facilitate improved
understanding of surveillance and its utility to address these and other gaps that keep the burden of malaria high

and thereby support other innovative methods to reduce it.
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9 Appendices

9.1 Appendix 1: Summary of literature on HMIS use in geo-spatial assessments for malaria
Results from literature review: Following the review of literature to evaluate the use of routine health facility
data for mapping for malaria control, various categories of commonly used malaria data were identified, and

these are presented in table 1 below.

Table 1. Defined categories of subjects covered in malaria mapping for control and number of literature articles

found, covering Jan-1990 through Feb-2016

Category Number of articles found

HMIS 39

Active case detection (cohort & cross-sectional) 52

Aggregated & national (MIS/DHS) surveys 42
Malaria Mapping with:

LLINs 19

Modelling + import/export 18

Entomology and Mosquito density 201
Malaria studies non-spatial 13
GIS methodology 12
Severe malaria 8
Malaria Mortality 11
Reviews 7
Fever 1
Abstract and Full text of article not found 1
Global and continental malaria 14
Other 226
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Table 2. Breakdown of the literature reviewed for an evaluation of use of HMIS data in risk mapping for malaria in Sub-Saharan Africa

Author Year Location / study site Aim Data Age of
published participants
Describe relationship between seasonality and
Mabaso et al. 2005 Zimbabwe inci-dence of malalria. usi.ng environmental fact.ors to | Monthly malaria cases at district Under 5
define spatial variation in seasonality and derive level years
seasonality concentration index
Describe year to year variation in climatic risk
factors to support development of malaria earl . A
. . upp velop . ! y Monthly malaria cases at district Under 5
Mabaso et al. 2006 Zimbabwe warning systems and determine areas prone to level ears
climate-driven epidemics, using Bayesian spatio- ¥
temporal analysis
. . Study influence of climatic explanatory variables on | Monthly malaria cases at district
Zacarius et al. 2011 Mozambique L 0 -4 years
q malaria incidence level level (2007 & 2008) y
| tigat iation bet laria incid . L
) . nvestisate assoclation between ma.arla Inciaence Children visiting selected clinics Under 15
Krefis et al. 2011 Ashanti in Ghana and classes of land cover that could influence
. . over 2007-2008 (18months) years
vector abundance and human population density
Predict malaria incidence at second administrative
levels and
Alegana et al. 2013 Northern Namibia . . e . Jan-Dec 2009 All ages
& Adjust public health utilization rates to estimate &
catchment population by a novel approach
L. Detect purely spatial, temporal, and space-time -
Alemu et al. 2013 North-western Ethiopia o 2003-2012 district aggregates All ages
clusters at district levels
. e gy Determine temporal and spatial scales of case o Under 5
Bejon et al. 2014 Kilifi district - Coastal Kenya . . P p . . 9 years, not specified
clustering to inform targeting in malaria control years
Describe spatial and temporal variations in malaria
idemic risk in Ethiopi d ine fact
- ?pl emlc.rls n . |op'|a an. e?<am|ne actors Data from 50 out of 59 sectors over
Abeku et al. 2003 Ethiopia involved in relation to implications for early All ages
. . . . . Sep-1986 through Aug-1993
warning and interpretation of geographical risk
models
Describe spatial and temporal patterns of malaria
transmission and identify drivers of the spatio- Malaria case data in prospective
Alemu et al. 2014 North-western Ethiopia temporal patterns in high-altitude villages of survey at 4 clinics in the district for All ages
northwest Ethiopia with very low transmission Aug-2012 to May-2013
intensity
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Author Year Location / study site Aim Data Age of
published participants
Evaluate association between ITN program
Bennett et al. 2014 Zambia intensity and malaria incidence using a dose- District monthly data for 2009-2011 All ages
response ecological analysis
Calculate fraction of fevers due to malaria and
describe the space-time pattern of malaria
. Then identif f high -
Bisanzio et al. 2015 Coastal Kenya occurrence _en identify areas of high non Oct-2012 to Mar-2015 All ages
malaria fever illness and assess HMIS use to
capture short- and long-term effects of LLIN
distribution
Assess spatial patterns of malaria incidence and
Ernst et al. 2006 Western Kenya spatial distribution of ecological risk factors of Data from one clinic for 2001-2004 All ages
malaria in an epidemic prone highland area
District monthly data for 2009-
h f malaria i i 2014 All
Kamuliwo et al. 2015 7ambia Stud.yt ? byrde-n of ma '?ma in pregnancy, its 014, . pregnant
spatial distribution and risk factors in the country. And IPTp data from malaria women
indicator survey of 2012
Assess the association between urbanicity and .
D for 2012 fi 1
Frank et al. 2016 Ghana malaria and how this may influence development ata for 2012 from prospective Under 15
. . . . . ) survey years
of immunity on a micro-epidemiological level
| . ial distributi £ malaria usi
Kazembe et al. 2007 Northern Malawi .nv.estlgate spatial distribution of malaria using Jan-2002 to Dec-2003 Under 5
incidence data reported through HMIS years
Investigate the spatial & inter-annual variations in
. malaria morbidity & determine how much, if any, District level aggregates for Jul-
L I 201 Mal . L . . All
oweeta 013 atawl of the inter-annual variability is due to climatic 2004 to Jun-2011 ages
variability relative to other non-climatic factors
Quantify the spatial distribution of herbaceous
| hei L ith malari
Midekisa et al. 2014 Ambhara region - Ethiopia wet ant;ls .and test t. el assoua.ltlon with ma ?rla Outpatient cases for 2007-2009 All ages
transmission at regional scale in Amhara region of
Ethiopia
Highlands in Amhara region Assess the effect of satellite derived climate
Midekisa et al. 2015 & Ethiopia & variables summarised over different seasons of the | District aggregates for 2001-2009 All ages
P year
Investigate the association between climatic All ages for 6
7hou G. et al. 2004 7 east African highlands sites in | variability and number of monthly malaria 1978-1998 sites and <15

Kenya, Uganda, and Ethiopia

outpatients over 10-20 years in highlands where
epidemics have been reported.

years for one
site
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Author Year Location / study site Aim Data Age of
published participants
Assess the climatic factors that are highly Data from all over the country for
Nkurunziza H. et 2010 Burundi associated with monthly malaria incidence in 1996 to 2007. All ages
al. Burundi using two models generalised linear and Nearest neighbour method was
generalised additive mixed models used to fill in the 5% missing data
Identify important predictors and generate a District summaries from NMCP for
Zacarius O. et al. 2010 Mozambique malaria distribution map of Maputo using spatial 8 administrative districts with 92 All ages
statistical analysis of malaria incidence health facilities for 2001-2002
Use a geo-additive model to understand
Nkurunziza H. et 2011 Burundi dt'apen.clence qf malarifal cases on spatial effects and 12years' (1996-2007) monthly data All ages
al. climatic covariates (rain, temperature, and by province
humidity) in Burundi
Conduct spatial statistical analysis of malaria
Zacarius P. et al. 2011 Maputo proyince in incidence to identify i.mpc_)rte.znt predictor variables District summaries for 1999 to 2008 All ages
Mozambique and generate a malaria distribution map of Maputo
province
Assess consistency of indicators of temporal
Wimberly M.C. et 2012 Ethiopian highlands variability in malaria risk Monthly district summaries for All ages
al. Test for presence of spatial and temporal patterns 2001 to 2009
and their synchrony with variations in malaria
cases.
Create suitability maps through extension of State level aggregates for 2004-
Musa M. et al. 2012 Sudan Boolean logic called fuzzy logic that has no clear 2010 from 15 states All ages
outcome
159 administrative units’
Find evidence of changing spatial distribution of summaries for 1993-2005 in
Siraj A.S. et al. 2014 Ethiopia and Columbia malaria with varying temperature of 10 years in Ethiopia, and All ages
highland regions of Ethiopia and Columbia 124 municipalities' summaries for
1990-2005
Identify high-risk areas where interventions can be
Oesterholt M. et o . . . e . . . .
al. 2006 Msitu village in Tanzania focused, by identification of micro-environmental Clinic data for 2004 All ages
factors influencing malaria risk
Ndiath et at. 2015 Ndoffane district in Senegal Investigat.es malar.ia hotspots by’using Malaria qata for June-Dec 2013 in All ages
geographically weighted regression. prospective survey
Examine the effect on prediction accuracy of
Gething et al. 2007 Kenya extension of spatial-only to space-time prediction District summaries All ages
approach, and replacement of stationary space-
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Author

Year
published

Location / study site

Aim

Data

Age of
participants

time fandom function with a locally varying space-

time random function.
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Table 3. Summary of Results from literature that utilised routine HMIS data for malaria risk assessment

population i.e. population at risk

Author Case Response variable used Explanatory variables considered Analysis and modelling approach
definition
Rainfall, Min temperature, Poisson for predictor selection,
. Mean temperature, Max Mapping seasonality concentration index
Mabaso et al. | Confirmed + . ) P PRINg . y . .
. Incidence per capita temperature, Vapour pressure, Account for spatial and temporal correlation using random effects
(2005) Presumptive . . . . .
NDVI Regression parameters estimation using Markov Chain Monte
All lagged two months Carlo algorithm
. . Bayesian negative binomial for selection of predictors
Rainfall, Min temperature, y . g . P _ .
] Seasonality indexing approaches for year to year variations in data
Mabaso et al. | Confirmed + . Mean temperature, Max . . .
. Incidence rate per 1000 persons Account for spatial and temporal correlation using random effects
(2006) Presumptive temperature, Vapour pressure, . . . . .
NDVI Regression parameters estimation using Markov Chain Monte
Carlo algorithm
Bayesian hierarchical models in the presence of temporal and
Zacarius et Confirmed + Observed cases, and Rainfall, Min temperature, spatial correlations.
al. Presumptive Expected cases being district Mean Temperature, Max Account for spatial correlation using conditional autoregressive
(2011) P population each year Temperature, Humidity approach, and temporal correlation by random walk.
Consider lag between consecutive months
NDVI with Vegetation
classifications of: Banana, cocoa, | Poisson regression for predictor selection, then Spearman's rank
Krefis et al. ] Village-level Incidence per year per | palm, orange, swamp area, correlation for cross correlation between predictors.
Confirmed . . e L . -
(2011) 1000 water, deforested area, road, Poisson regression for sensitivity analysis with highly significant
built- up areas, and Population predictors included.
density
Annual mean enhanced
Confirmed + vegetation index, Monthly . . . .
. o Poisson regression for predictor selection.
Presumptive . . precipitation, Temperature . . . . .
Alegana et al. . Incidence as cases/population at Lt . Significant predictors were fed into a Bayesian spatio-temporal
adjusted for . suitability index, Proportion of . . . L
(2013) . risk . zero-inflated conditional autoregressive model using integrated
test positivity urban population. nested Lanlace aporoximation
rate All resampled to 1x1Km spatial P PP
resolution
Poisson model in Sat Scan using temporal, spatial and space-time
scan statistics.
Alemu et al Incidence for census tract polygons A circular window was used for spatial scan and a cylindrical
(2013) ’ Not specific as cases/estimated mid-year None window for space-time scans, as well as for purely time scans and

maximum likelihood indicated the most likely cluster verified by a
p-value. Scans identified both observed and expected observations
inside a window.
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Author Case Response variable used Explanatory variables considered Analysis and modelling approach
definition
Cases:
Confirmed . . .
. ’ . . . e . Bernoulli model in Sat Scan with full data
Bejon et al. Controls: Malaria positive fraction as number | LLIN use for within-identified . . sl oo
. . . . Re-analysed with children within identified hotspots.
(2014) febrile with of cases divided by febrile cases hotspots . . .
. Circular moving window centred at each homestead was used
negative
results
Epidemic status as log(cases) for Abnormal weather conditions
sector and month. defined for sector and month as
An epidemic was when log(cases) high, if value exceeds the Using Chi-square test with 1 degree of freedom.
Abeku et al. ] exceeded historical expected value | historical expected by one Testing weather presence of abnormal weather in 3months
Confirmed L - . . . . L .
(2003) by one standard deviation for at standard deviation and vice versa | preceding onset of epidemic or abnormally low incidence differed
least 3 consecutive months and low | for: from expected
incidence if it was less by the same Rainfall, Min temperature,
amount and duration. and Max temperature
Rain-precipitation, Temperature, . T
. . L : . A Poisson distribution was assumed for observed case counts.
Zacarius O. et | Confirmed + Humidity, Vegetation, Stationary

al. (2010)

Presumptive

Number of cases

water pools, Human vector
interaction

A conditional autoregressive model was used with inverse Gamma
distribution assumed for the priors.

Bennett et al.

Confirmed +

Number of malaria cases, and
Incidence as number of cases per

ITN coverage, Standardised
treatment seeking rates,
Standardised percentage
population 2hours from a facility,
Standardised monthly reporting

Poisson and negative binomial models to assess association
between ITN coverage per district and response variables.
Bayesian framework using integrated nested Laplace

(2014) Presumptive 1000 population summarised as rates, Standardised testing rates, . .
- . . approximation.
annual parasite index Standardised anomalies of: . . . . . o
L Model fit was compared using deviance information criteria
Enhanced vegetation index, Max
and Max temperature and
Rainfall
Clusters of high and low febrile illness prevalence identified using
Population size, Development Getis' local statistic.
category (more/less), Rainfall, Structured additive regression models used to quantify
. . - . . Mosquito abundance based on contribution of patient demographics, village environmental
Bisanzio et al. . Probability of a febrile case being d . . P .g P . g .
Confirmed . . select villages, characteristics, and seasonality to probability of a febrile case
(2015) positive for malaria

Gender, Distance to shoreline,
Presence of rice fields, and
Development

being malaria.

Linear predictors and interaction terms were included in the
model, as well as spatially correlated and unstructured random
effects.
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Author Case Response variable used Explanatory variables considered Analysis and modelling approach
definition
Risk ratio between highest and lowest incidence sub-units,
Cases: Sat Scan used to identify clusters with a Poisson model,
Ernst et al. Confirmed Age adjusted incidence for Elevation, GEE used in individual and household analyses adjusting for
(2006) Controls: hexagonal sub-units of area Distance to swamp correlation.
Others Explanatory variables were added one at a time and log-likelihood
test used to choose them
Maps for each year developed using cluster and outlier analysis
Kamuliwo et Confirmed + Number of cases of malaria in Water bodies, roads/railroads, and compared.
al. (2015) Presumptive pregnancy LLIN coverage Local Moran’s Index, z-score & corresponding p-value, as well as
the outlier type were generated
Collinearity assessed between all possible covariate pairs and
Total annual precipitation, where found, the least biologically viable covariate dropped.
total annual evapotranspiration, Poisson regression used to select candidate covariates.
Kazembe et Confirmed + . - . mean min annual temperature, Non-linear relation between malaria incidence and continuous
. Standardised incidence ratio . .
al. (2007) Presumptive mean max annual temperature, covariates assessed using scatter plots.
soil water holding capacity, SIR plotted to investigate spatial variation in risk, and smoothed
altitude estimates of SIR produced using conditional autoregressive
approach
Socio-economic factors,
Population density, urban . ) . . . . .
P . .y . Maximal fixed effects model in a negative binomial generalised
dwelling proportion, Proportion . .
) . e linear model framework was used to select explanatory variables
Lowe et al. Confirmed + Age stratified counts of cases per of health facilities, ITN ) )
. . Lags and polynomial terms were also included.
(2013) Presumptive month distribution, . ) o . o
. s . Stepwise model selection based on Akaike's information criteria
Housing, Sanitation and literacy . . . .
S and removing non-significant interaction terms
levels, Precipitation,
Temperature, Altitude
Rainfall estimate, Percent of herbaceous wetlands included to account for spatial
s . Incidence as a proportion of Land surface temperature, variability.
Midekisa et Confirmed + prop . p . y Lo .
al. (2014) Presumptive number of cases to total population | Enhanced vegetation index, Natural log of total population included to account for spatial
’ P per sub region Evapotranspiration, variability in the population.
Percent of herbaceous wetlands A conceptual model of cascading seasonal effects implemented
From residuals of number monthly t-test to compare average monthly min, max temperature, and
malaria cases (less effects of rainfall between two seasons of 1978-1988 and 1989-1998.
Zhou G. et al. - autocorrelation and seasonality), an . A two-step approach: 1) Climatic variability playing no role and
Not specific . . . y) Temperature, Rainfall . P app . ) . yP 'y & .
(2004) epidemic measure was derived at a using forward stepwise regression. 2) Accounting for predicted

threshold of the average over past
Syears + 2 standard deviations

effects of auto-regression and seasonality in monthly malaria cases
then performed stepwise multiple regression analysis.
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Author Case Response variable used Explanatory variables considered Analysis and modelling approach
definition
GLM: Metrics selected using Akaike's information criteria by
Monthly precipitation, Monthly stepwise algorithm.
Nkurunziza Incidence as a proportion of average maximum temperature, Regression coefficients estimated using Markov Chain Monte Carlo
H. etal. Not specific number of cases to total population | Monthly average maximum simulation,
(2010) per province humidity, Monthly average GAM: Metrics selected using Akaike's information criteria by
minimum humidity simultaneous selection of variables.
Interaction terms considered small and omitted
Generalised additive mixed model used for decision on
. Monthly cumulative explanatory variables
Nkurunziza . S L . ", . .
H. et al. Not specific InC|d.en<.:e as Numper of cases/Total preC|p|taF|on, Monthly average Full fmaly5|s implemented using Geo-additive model incorporating
(2011) provincial population max & min temperature, Monthly | spatial effects

max & min humidity

Spatial effect in two parts 1) structured or correlated and 2)
structured random effect

Zacarius P. et

Presumptive +

None defined

Monthly average maximum
temperature

Poisson model to choose explanatory variables.
Hierarchical model with 3 levels 1) using a simple Poisson model 2)

al. (2011) confirmed . Including environmental covariates and 3) including an intercept
Monthly average rainfall
term
Proportion of outpatients with
malaria as total malaria cases/ Likelihood ration tests used to determine significant seasonal and
total outpatient visits, confirmed inter-annual effects.
Number of cases . . . . . . . .
malaria cases, Proportion of Spatial autocorrelation was quantified using Moran's | statistic for
. confirmed cases that were P. each year.
Wimberly . .
M.C. et al Presumptive + falciparum
(2(')1'2) ' confirmed A mixed effects model was fitted with district, year and month as
District random effects.
’ Random effects plotted to determine time of greatest deviation
Log of total number of cases Year,
Month from global mean.
Spline correlogram used to measure spatially lagged correlation
between logs of cases time series at varied spatial scales.
Two maps were generated 1) Case rate by state using thin plate
Musa M. et Malaria case rate as Number of Interpolated quantities of: spline interpolation and 2) predictive map using a suitability
al. Not specific cases in a state/total state Rainfall, Temperature, Humidity climate model.
(2012) population from observation stations values | The two maps were compared using a condition that if 2/3 of area

is within 1/3 difference, then maps are fairly similar
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Author Case Response variable used Explanatory variables considered Analysis and modelling approach
definition

Negative binomial linear models were used to assess explanatory

Siraj A.S. et Temperature, variables,

al. Not specific Number of cases Season, Multiple models with different numbers of covariates and their

(2014) Altitude interaction terms were evaluated using Akaike's information
criteria

Oesterholt Rainfall, Temperature, Season

Confirmed b . ’ . e Logistic regression, t-test, and single-way ANOVA, among man
M. et al. microsco ¥ Incidence (3months), Distance to river, otﬁers & & ¥ & ¥
(2006) Py Housing condition, Age
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9.2 Appendix 2a: School of Medicine Research Ethics Committee Initial Approval
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UNIVERSITY

Phone: 256 414 533541

MAKERERE @

P.O. Box 7072 Kampala, Uganda
E-mail: rresearch9@gmail.com

COLLEGE OF HEALTH SCIENCES
SCHOOL OF MEDICINE

)

p SETEUND Fax: 256 414 541036/0414 532204

RESEARCH ETHICS COMMITTEE

September 20, 2017

Mzr. Simon Peter Kigozi
IDRC Category of Review
[X] Inigal review
[ ] Continuing review
[ ] Amendment
[ ] Termination of study
[ ] SAEs

Dear Mr. Kigozi,
Re: Approval of proposal #REC REF 2017-119

“Evaluating routine HMIS estimates of malaria incidence compared to cohort incidence for
malaria mapping in Uganda” Version 1.1

Thank you for submitting an application for approval of the above — referenced proposal. The
committee reviewed it and granted approval for one year, effective September 27, 2017, Approval
will expire on September 26", 2018.

Continuing Review

In order to continue work on this study (including data analysis) beyond the expiration date, the
School of Medicine Research and Ethics Committee must reapprove the protocol after conducting a
substantive, meaningful, continuing review. This means that you must submit a continuing report
form as a request for continuing review. To best avoid a lapse, you should submit the request six (6)
to eight (8) weeks before the lapse date. Please use the forms supplied by our office.

Amendments

During the approval period, if you propose any change to the protocol such as its funding source,
recruiting materials, or consent documents, you must seek School of Medicine Research and Ethics
Committee approval before implementing it.

Please summarize the proposed change and the rationale for it in a letter to the School of Medicine
Research and Ethics Committee. In addition, submit three (3) copies of an updated version of your
original protocol application- one showing all proposed changes in bold or ‘track changes,” and the
other without bold or track changes.
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Reporting

Other events which must be reported promptly in writing to the School of Medicine Research and
Ethics Committee include: Suspension or termination of the protocol by you or the grantor.
Unexpected problems involving risk to participants or others

Adverse events, including unanticipated or anticipated but severe physical harm to participants.

Do not hesitate to contact us if vou have any questions. Thank you for your cooperation and
commitment to the protection of human subjects in research.

Final approval is to be granted by Uganda National Council for Science and Technology.

Documents approved for use ‘110[15 with protocol:

o  Englishan
s Da amﬂc@ﬂétmgﬁ

ed consent forms
UNIVERS

F MEDIC iR
Ap INE
VALTS EK%L

Yours s1naere.l§

Vice Chairperson School of Medicine Research and Ethics Committee
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9.3 Appendix 2b: School of Medicine Research Ethics Committee Renewal Approval

MAKERERE 28 UNIVERSITY

y I/

P.O. Box 7072 Kampala, Uganda h , Phone: 256 414 533541
E-mail: rresearch9@gmail.com Egnil Fax: 256 414 541036/0414 532204
COLLEGE OF HEALTH SCIENCES
SCHOOL OF MEDICINE

RESEARCH ETHICS COMMITTEE

September ()7, 2018

Mr. Simon Peter Kigozi
IDRC Category of review
[ ] Initial review
[X] Continuing review
[ ] Amendment
[ ] Termination of study
[ ]8AEs

Dear Mr, Kigozi,
RE: REC REF No. 2017-119

Title: “Evaluating routine HMIS estimates of malaria incidence compared to
cohort incidence for malaria mapping in Uganda” Version 1,17

Renewal Approval Date: 07* September, 2018
Effective Date: 20" September, 2018
Project Expiration Date: 19" September, 2019

On behalf of the committee, | write to inform you that the proposed extension has been
approved.

The Makerere University School of Medicine Research and Ethics Committee (REC) initially
reviewed and approved the above-referenced protocol on September 20%, 2017. Previous
approval of this protocol expires on September 19", 2018

The review by the committee has found that your renewal is consistent with the continued
protection of the rights and welfare of human subjects which protection of human subjects is a
partnership between the Research and Ethics Committee (REC) and the investigators. We
look forward to working with you as we both fulfill our responsibilities.

Renewals: REC approval is valid until the expiration date given above. If you are continuing
your project, you must submit an Application for renewal at least six (6) to ecight (8) weeks
before the lapse date. If the project is completed, please submit an application for permanent
closure.

|
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Amendments: The REC must review any changes in the project, prior to initiation of the
change. Please submit an Application for Amendments to have your changes reviewed and
summarize the proposed change and the rationale for it in a letter to the School of Medicine
Research and Ethics Committee. If changes are made at the ame of renewal, please include an
Application for Amendments with the tenewal application.

[n addition, submit three (3) copies of an updated version of your original protocol
application- one showing all proposed changes in bold or ‘track changes’ and the other
without bald or track changes.

Adverse Events: If issues should arise during the conduct of the research, such as
unanticipated problems, severe adverse events or any other problem that may increase the risk
to the human subjects, notify the REC Chairman promptly. The forms are available to report
these issues.

Please use the REC REF number listed above on any forms submitted which relate to this
project/ study.

Good luck in your research. If we can be of further assistance, p!emt contact us at (+256)
0414 -533541 or via email at rese com. Thank you for

¥OUL cooperation. Wﬁw
’"‘FEE" OF MEDICINE

sCHOOL O
vAPLFIE?J‘g* 1s
o fosEP W K

"|'.'T[E|:
CARC H&\JHICS COMN

Yours Sincerel

ean:h and Ethics Committee
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9.4 Appendix 2c: School of Medicine Research Ethics Committee Amendment Approval

UNIVERSITY

Phone: 256 414 533541
Fax: 256 414 541036/0414 532204

COLLEGE OF HEALTH SCIENCES
SCHOOL OF MEDICINE

RESEARCH ETHICS COMMITTEE

MAKERERE

P.Q. Box 7072 Kampala, Uganda
E-mail: rresearch9@gmail

April 23, 2020

Mr. Simon Peter Kigozi
[IDRC
Category of review
[ ] Initial review
[ ] Continuing review
[X] Amendment
| Termination of stady

|

[ 1SAEs
Dear Mr. Kigozi,
Re: REC REF 2017-119

Title: “Evaluating routine HMIS estimates of malatia incidence compared to cohort
incidence for malaria mapping in Uganda.

Your proposal entitled “Evaluating routine HMIS estimates of malaria incidence compared to
cohort incidence for malaria mapping in Uganda™ was inially reviewed and approved by the
School of Medicine Research and Ethics committee on September 27, 2017,

On 20 Jamuary 2020, you requested for 1‘:c.1'missmn tor make some modificanons in the :xtu-;;l:,'
protocol; for objectve 5, to add the natonal HMIS surveillance data that has been made more readily
accessible due to the introduction of the district health information system — version 2 (DHIS-2). This
18 because considerable improvements have been made in nanonal disease surveillance through the
support of the on-line system known as DHIS-2. This improved accessibility as well as improved data
quality at national level, will provide a better framework for assessment of the burden of disease in the
commuruty through risk mapping, to inform policy makers towards more effective control.

The committee considered these changes on April 23, 2020, On behalf of the committee, T am glad to
inform you that these changes have been approved. You may now proceed with the study. Please
forward regular reports on your study to the committee.

: " MAKERERE UNIVERSITY ]
Yours sincerely, SCHOOL OF MEDICINE
AFPPROVED

% 7 3APR 20 %

Assoc, Prof. Ponsiano Ocama | RESEARCH & ETHICS COMMITTEE
Chairperson School of Medicihe ﬂggmhﬁﬂﬂﬁmﬁhn—mig ce
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9.5 Appendix 3: Uganda National Council for Science & Technology Initial Approval
Uganda National Council for Sceience and Technology

@ . (Established by Act of Parliament of the Republic of Uganda)
Our Ref: S5 4455 2™ January 2018
Mr. Simon Peter Kigozi
IDRC-Uganda
KAMPALA,
Re: Research Approval: Evaluation of Routine HMIS estimates of incidence compared with

cohort incidence for malaria mapping in Uganda

| am pleased to inform you that on 201212017, the Uganda National Council for Science and Technology
(UNCST) approved the above referenced research project. The Approval of the research project is for the period
of 20212017 to 20/12/2020.

Your research registration number with the UNCST is 88 4455. Please, cile this number in all your future

comrespondences with UNCST in respect of the above research project.

As Principal Investigator of the research project, you are responsible for fulfilling the following requirements of

approval:

7. All co-investigators must be kept informed of the status of the research.

8. Changes, amendments, and addenda to the research protocol or the consent form (where applicable) must
be submitted to the designated Research Ethics Committee (REC) or Lead Agency for re-review and
approval prior to the activation of the changes. UNCST must be notified of the approved changes within
five working days.

9. For clinical trials, all serious adverse events must be reported promptly tosthe designated local IRC for review
with copies to the National Drug Authority.

10. Unanticipated problems involving risks to research subjects/participants or other must be reported promptly
to the UNCST. New information that becomes available which could change the riskibenefit ratio must be
submitted promptly for UNCST review.

1. Only approved study procedures are to be implemented. The UNCST may conduct impromptu audits of all
study records,

12, Anannual progress report and approval letter of continuation from the REC must be submitted electronically
to UNCET. Failure to do so may result in kermination of the research project,

Below is a list of documents approved with this application:

Document Title | Language | Version | Version Date
1_| Research proposal | English 1.1 11 Aug 2017
|2 | Questionnaires _ - English 1.0 28 Feb 2017
L3 | Information Sheetand ConsentForm | English [ 11| 11 Aug 2017 ]
Yours sincerely,
Bath Mutumba

For: Executive Secretary
UGANDA NATIONAL COUNCIL FOR SCIENCE AND TECHNOLOGY

ce The Chair, School of Medicine Research Ethics Committee

LOCATIONCORRESPONDENCE COMMUNICATION

TEL: (256) 414 TOS500

FAX: (256) 414-234579

EMAIL: info@unest.go.ug
WEBSITE: http:/fwww.uncst.gm,ug

Plat & Kimera Road, Ntinda
F 0. Box 6884
KAMPALA, DGANDA
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Appendix 4a: London School of Hygiene & Tropical Medicine Research Ethics Committee
Initial approval

London School of Hygiene & Tropical Medicine | ( )NDON
Keppel Street, London WC1E THT SCHOOL Qf
United Kingdom )
Switchboard: +44 (0)20 7636 B636 E-]}l;%lp]iza%’ ﬁ

www.lshtm.ac.uk MEDICINE

Observational / Interventions Research Ethics Commilttes

M Simon Figosd
LEHT™

19 October 2017

Drear M Simon Figozi
Study Title: Evaluating routine HMIS estimates of malaria inddence compared to cohort inddencoe for malaria mapping in Uganda
LSHTM Ethics Ref: 17902

Thanik you for your applicticn for the above ressarch project which has now been constdered by the Observaticnal Committes via Chair's Action.
Confirmation of ethicl opinion

O bekalf of the Committes, | am plzased to confirm a Gvourable ethizl opinicn for the above ressarch on the basis descoribed inthe application form, protocol and supparting
documentation, subject to the conditons spedfied below.

Conditions of the favourable oplnion
Appraval is dependent on local etiical appraval having been received, where relevant.
Approved documents

The final list of doosments reviewed and approved is as follows:

Document Type File Name Date Version
Imvestigator OV MosesEantya bioskesch Malaria 14Feb2015 144022015 1
Imvestizstor V' CV_Joaniter Inmacuiate Manksbirwa_21 Sep 2016 210872016 1
Investigstor CV OV Sarsh Staedke 1112016 1
Tnformation APPEMDIY C - English Enformetion sheet 2800272017 10
Sheet

Protocal / Protocel_Simen P Eigor 240032017 1
Proposal

Protocal/ APEENDIC D-1 - English VHT Reporting Survey Qrestionnaire for District 2400372017 1
Proposal Health Service

Protocal / APEENDIC D-2 - English VHT Reparting Survey Questionnaire for Health 240032017 1
Imvestigator OV v Kigoad Simon Peter 244032017 0
Imvestigator OV CV_Rachel Pallan 050472017 1
Imvestigmor CV Dorsey MIH Bioskerch 050472017 1
Protocal / Protocel_Simon P Kigozi_vipt] with edit highlishts 11082017 11
Proposal

Protocal/ Protocal_Simon P Kigoi_v1ptl 10082017 11
Proposal

Tnfoemstion APDEMDIX C - English Informstion shest & Consent form_v1pt] 11082017 11
Sheet

Covering Letter  Cover letter - SPhizord 10082017 11
Tnformstion APPENDIX C - English Tnformation shest & Consent form_v1pt]-with edits 1L082017 11
Sheat

After ethical review

The Chief Imvestigatar (1) or delegate is responsible for informing the ethics committze of any subsequent changes to the application. These must be sshmitted to the committes for review
using an Amendment form. Amendmests must not be initdated before receipt of written favourable opinion from the committes.
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The €I or delegate is also required to notify the ethics committes of any protoon] viclations and for Swespected Unexpected Serious Adverse Reactions [SUSARs) which ocour during the project
by sshmitting a Serious Adverse Event form

An anrwal report should be submitted to the committee using an Ansual Report form on the anniversary of the approval of the study during the lifetime of the study.
Atthe end of the shady, the Cl or delegate must notify the committee using the End of Study form
All aforementioned forms are available on the ethics online ap plications wehsite and can anly be submitted to the committee via the website at httpe/ /lecshtmac uk.

Further information is available at waw shtmacukfethics.

Yours sincerely,

Professor [ohn DH Porter
Chalr

ethicei]shim.acuk
hitp:/ fwww. Ishtm.acuk fethics/

Improving health worldwide
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9.7 Appendix 4b: London School of Hygiene & Tropical Medicine Research Ethics
Committee Renewal approval

London School of Hygiene & Tropical Medicine | ( )NDON
Keppel Street, London WC1E THT SCH()()L Df‘

United Kingdom 1
Switchboard: +44 (0)20 7636 8636 E']YR%IP]%CI:I&L% ﬁ
www. Ishtm.ac.uk MPD]CTNF '

Observational / Interventions Research Ethics Committes

My Simon Kigoei

LEHTM

181042019

Diear Simon,

Praject Title: Evahuating routine FMIS estimates of malaria incidence compared to cohort incidence for malaria mapping in Uganda

Project ID: 138402

Tharik you fior your annual reportapplication for the condnuation of your research dated 12/04/2019 23:34 | which has now been considered by the Chair on bebalf of the Ethics Committes.

Conflrmation of ethicl oplnion

This application & approved by the comesittos for a farther year.

Conditons of the favourable oplnion

Approval is dependent on local ethicl approval having been received, where relevant.
After ethical review

Any changes to the application must be submitted to the committee via an Amendment form.

The Cl or delegate is alsa required to notify the ethics committes of any protoosl violations and/or Suspacted Unaxpeded Serious Adverse Reaction [SUSARs) which oocur during the project
by submitting a SUSAR and Protocol Wiclation farm.

An annual repart should be submitted to the committee using an Annwal Report form on the anniversary of the approval of the study during the lifetime of the study.
Atthe end of the study, the 1 or delegate must notify the committes wsing an End of Study form

All aforementioned forms are available on the ethics online applications website and can oaly be submitted to the committee via the website at http: f flealshtm.acuk:
Additional information is avaidlable at www.Ishtmaculkfethics.

Yours sincerely,

Profeszor [ohn DH Porter
Chair

ethicsi@lshtm.acuk
[ittpef fwwew Ishtmeac uk /ethics f

Improving health worldwide
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9.8 Appendix 4c: London School of Hygiene & Tropical Medicine Research Ethics Committee
Amendment approval

London School of Hygiene & Tropical Medicine LONDON

Keppel Street, London WC1E 7HT SCHOOLof
United Kingdom HYGI ENE

Switchboard: +44 ()20 7636 B636 S&TROPICAL

www,Ishtm.ac.uk MED ICINE

Ressarch Ethics Committes

Mr Simon Figoe
11 May 2020

Dear Simon
Study Title: Evabnating routine HMIS estimates of malara incidence compared to cobort mcidence for malans mepping in Tzanda

LSHTM Etnics ref: 13902 -1

Thank you for SUnmitng your amendment 17 the above rEsaanch project.

Yowr amendment Nas been assassed by the Reseanch Govemance & Integrity Ofce and has been approved as a non-substanilal change. The amendment does not require further
ethical approval from the obsenvational ethics commiltes.

List of dDCuments reviewed:

Dvocnment Type File Name Diate Version
Orther Protoce]l_Smmon P Eigez vipt?_Clean 29/01/2020 1.2
Orther Protocel_Simon P Eiged vipt?_tracked 29/01/2020 12
Orther DHIS-2 Permission LETTER. - MOH 297012020 1.2
Orther S0M-REC Amendment Approval Simon P Kigoz 297012020 12

Any subsaquent changes 1o the application must be submitied to the Commitiee via an Amendment form on e ethics online applications websie: ntipo!

Best of luck with your project.

Yiours sincarely,

Rebecca Carter

Research Governance Coordinator

Improving health worldwide
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9.9 Appendix 5: Ministry of Health Letter of Permission for National HMIS Data Access

Telephone: General Lines 256 — 417 -T12260
Permanent Secretary’s Office: 256 —417 - T1222]
Toll Free 0800100066

Ministry of Health
P. O Box 7272,
Plaot 6, Lourdel Road,

. Wandegeva

E-mail: ps@health.go.ug i &=
KaMPALA

Webgite! www_health go.ug UGANDA
AN

IN ANY CORRESPOMNDE ON

THIS SUBJECT PLEASE QUOTE no. ADM.386,/01

24" February, 2020

Mr. Simon P. Kigozi

PhD Student

Department of Disease Control,

London School of Hyglene and Tropical Medicine

RE: PERMISSION TO USE DHIS2 OPD DATA (2014-2019) FOR YOUR PHD
RESEARCH

Reference is made to your letter dated 12™ February 2020 requesting for permission to
use DHIS2 OPD data (2014-2019) for your PHD research.

The Ministry of Health hereby permits you to use outpatient malaria data from DHIS2
to conduct his research study tided “Evalnate routine HMIS estimates of malaria incidence

compared to cobort incidence for malaria mapping in Uganda’.

The Ministry of Health has provided you with access to variables including total
attendance, total malaria cases, and total confirmed malaria cases on a monthly basis
from all reporting health facilities overthg duration of 2014 — 2019,

INISTRY OF Hé"ﬁﬁ!@ﬂ

25 FEB 2020 *‘ﬁ;

|
ENERAL I—HEAL' I SERVICES
p. 0. BOX 7272, KAMEALL)
CC: Permanent Secretary

Drt. Olaro Charl
FOR: DIREC

CC: CHS/Policy and Planning Department
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9.10 Appendix 6: Evaluating sources of data on population estimates
The population estimates utilised in this research were obtained using Afripop data however, these estimates
were evaluated against national estimates provided by the national bureau of statistics (UBOS), at district level.

Afripop estimates were the preferred option given two specific properties:

e They were readily available and/or accessible,
e They allow for varied geographical scales such as the health facility catchment areas unlike the national
census estimates, details of which are restricted to administrative scales including districts, sub-Counties,

and parishes.

Whilst parishes are the lowest administrative units for which census population estimated summaries may be
available, finer and non-administrative geographical scales such as health facility catchments in the assessment
of incidence of malaria for this study, were not aligned with the population data in these administrative scales.

This, therefore, influenced the choice of Afripop data with the possible flexibility.

Nevertheless, estimates from Afripop were evaluated against national census projections for the years between
2015 and 2019 at district level. To do this, scatterplots were evaluated stratified by the 15 regions of the country
(Figure 1 below) and by year (Figure 2 below). In addition, the two population estimates were evaluated by
examining the root mean square error in a bivariate regression between Afripop and UBOS district estimates, both

among regions (Table 1) and years (Table 2).
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Fig 1. Relationship between district population estimates from Afripop and UBOS between 2015 and 2019, by

region.
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Both the evaluation by region and year showed a strong correlation between these two sources of population

data estimates.

Moreover, assessment of the differences between these Afripop estimates (predicted) versus the UBOS estimates
(observed) using the root mean squared error from a bi-variate regression between the two, showed very minimal

differences between these estimates.

Table 1. Root mean square deviation between district population estimates from UBOS and Afripop among

regions.

Acholi 3,209.5

Bugisu 2,420.5

Bunyoro 16,215

Kampala 864.8

Kigezi 3,345.4

North Buganda 8,239.3

Teso 8,933.5

West Nile 9,220.4

Results here showed that the differences between regional population estimates from Afripop and UBOS were

highest among districts in Bukedi, Bunyoro, and South Buganda regions and lowest in Kampala district/region.
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Table 2. Root mean square deviation between district population estimates from UBOS and Afripop per year

Year RMSE

2015 7,993.4
2016 8,783.6
2017 9,908.3
2018 11,324
2019 13,037

Notably over the years, differences between population estimates from the two approaches increased from year
to year, being lowest in 2015 and highest in 2019. Notably, these differences were smaller during the year closest

to the most recent census survey of 2014 and greatest further from that time.

9.11 Appendix 7: Response to reviewers in Paper 1

AJTMH-18-0901 — Response to reviewers

Malaria burden through routine reporting: relationships between incidence and test positivity rates

Reviewer #1:

Comments to the Author

The analysis presented here makes use of a rich dataset and provide findings which are of interest to all those
concerned with malaria control planning. Which metric to use to generate plans for control remains a perennial
qguestion. The results are interesting but are presented for a research audience. Some additional context or
clarification to put the outcomes in an operational context may improve the readership and uptake of the
findings.

Specific comments

a) Major

a. It is mentioned several times that the three sites used are different transmission settings, without explicit
mention of which site corresponds to what type of setting. Perhaps it could be labelled in Figure 1 or in the study
setting methods which site is considered highest, medium, lowest, etc transmission perhaps based on the previous
prevalence measures mentioned? This would help with the interpretation of the main findings.

Response: We have revised Figure 1 to include the historical annual entomological inoculation rates of the

three sites in the footnotes. In addition, we’ve indicated these details in the section on study settings.
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b. Line 114 — was the gridded population surface used also Worldpop? Outputs from Worldpop lack the
granularity needed at this resolution. If enumeration data were available, can a brief explanation be provided for
why that was not used to determine the population spatial pattern? Worldpop totals could be used if household
population counts did not accompany the enumeration data.

Response: We made several attempts to get access to population data from the national census bureau but
without much success and hence the decision to use the Worldpop that is accessible. We have clarified in the
text that this was due to inaccessible population estimates for our study area.

The enumeration data from our study was an enumeration of household without a full human census in those
households. This was helpful in estimating number of children (study population) based on the average

household size.

c. Theintroduction begins with mention of the importance of these types of metrics for control and intervention
planning, but the conclusions provided lack clarity for operational implementation. For example, ‘confirmed
malaria case rate that is sensitive to changes both in time and space, provides a better indicator of the burden of
malaria on the health facility catchment, as estimated from the health facility than test positivity rate.” It may not
be apparent to a program manager what burden in the health facility catchment, as estimated from the health
facility means.

Response: We have clarified further in the conclusion the operational impact of our findings on these indicators

for implementation purposes.

b) Minor

a. Inabstract line 28-29 — specify if the pairwise comparisons were done by month, village or both

Response: We have revised the abstract to clarify that pairwise comparisons were done first by month and then

by village

b. It makes sense that re-attendance episodes were excluded, but the mention in line 110 that CMCR is
confirmed primary cases per 1000

Response: We have revised the statement as suggested to “confirmed primary malaria cases per 1000”

c. Figure 2- define abbreviations used. What is VOR?

Response: We revised Figure 2 to include a full description of VOR as “village of residence” that was initially

omitted

Page 237 of 267



Reviewer #2:
Comments to the Author
Manuscript Title: Malaria burden through routine reporting: Relationship between incidence and test positivity

rate

Authors: Kigozi et al.

Overall Comments:

This article presents work comparing two metrics used as part of routine malaria surveillance, specifically focusing
on the temporal and spatial dynamics at 3 hospitals in Uganda. Comparing the more operational test positivity
rate with the ideal metric of malaria incidence rate is of interest to ensure that any decisions made based on the
available data can be done in a robust manner. The strength of this work lies in the large number of data points

available for analysis. However, | have some comments outlined below that would greatly improve this work.

Major Comments:

- The objectives of the work, including their significance is not very clear and lacks focus. The stated goal is to
compare the two metrics, but ultimately the regression analysis adjusts TPR with the incidence suggesting the
objective is to assess factors associated with TPR? A clearer focus should help clarify the main aims of the work,
but also identify the most appropriate analysis.

Response: The objective of this work was indicated as “to evaluate the relationship between IR and TPR both
on the time and space dimensions to aid further understanding of the representativeness of HMIS estimates of
burden” in the introduction.

The regression analysis was used given it’s the most well understood approach to evaluating relationships
between an outcome (IR) and an exposure (TPR) where there are other factors known or presumed to play a
role in the relationship being evaluated.

The regression approach was found to have been used in previous studies that formed the basis for our need

to study this relationship further, especially by including the dimension of space.

- If the objective is to assess the bias between the metrics including spatial and temporal trends, the metrics
should be on the same scale. This can be done by converting the metrics using established associations (e.g.
publications by the MAP group) or standardizing the two metrics and work with their z-score. This will impact the
scatter plots (and enable the line of concordance to be plotted), the Bland-Altman plots, etc.

Response: Given that neither indicator is a gold standard measure of the other, the objective was not to assess

bias between them
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o With the two metrics on a standard scale, the authors should consider using the difference between the
metrics as the main outcome for the regression analysis to assess factors associated with any bias between
metrics.

Response: While IR and TPR are both indicators of burden of malaria, they are distinguished by the approach
of generating them. As a result, we adjusted the IR scale to that of TPR, which is a proportion with limits of 0
to 1. No other valuable approach of standardizing these indicators to the same scale was found to our

knowledge.

o If once on the standardised scale, the Bland-Altman plots show similar patterns, there is a strong trend in
Kihihi suggesting non-normal differences in this site. This should be acknowledged and assessed.
Response: We have clarified the approach used in determining which sites fulfilled the Bland Altman criteria

and this was fully assessed.

- Based on the data presented, the authors are correct in that the association between the two metrics is non-
linear. Instead of relying on lowess models with assumptions of localized weighting etc., | suggest that the
authors explore non-linear forms of regression (e.g. log-linear) which can account for the observed association
while adjusting for covariates

Response: We have included quadratic prediction plots where Lowess was initially assumed sufficient and this
has particularly improved our plots.

However, regarding the final regression model, the multi-level mixed effect poisson model was chosen based
on it being non-linear regression approach for count data. This model sufficiently accounts for observed
associations while adjusting for covariates, in addition to addressing multi-level variability in the parameters

and in our case the two levels being month and village.

- The authors have justified why they have only considered hospital attendees <11 years of age from an
epidemiological perspective, but less so for the clinical perspective. Instead of ignoring data on the adults, if the
data is available, can all age results be assessed, adjusted for age? E.g. Are the trends similar when considering all
ages the same as <11? <5? Are the trends for adults only different? This is a very interesting question and
operationally relevant for surveillance programs in being able to accurately interpret their data.

Response: We have clarified further that trends of TPR were not different between <5 and 5-<11. Whereas the
data on the adults is available, for this work we sought and received approval to conduct this study among

study participants specified as children under 11 years with several other considerations made.
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Minor Comments:
- Why are you using the term CMCR instead of the more commonly used incidence rate (doing so would
improve clarity of this work)?

Response: We have revised this to incidence rate (IR) for the benefit indicated

- Are there other smaller level facilities or community health workers within the study areas that may absorb
some of the suspected malaria cases? If so, would this potentially bias the results?
Response: We have acknowledged among study limitations that there are other lower level facilities that

absorb some of the suspected malaria cases and this would impact our results

- What was the pre-determined threshold for agreement using the Bland-Altman plots?
Response: Other than the formal 95% confidence band, we had no pre-determined threshold of agreement in

place and we have acknowledged this in the text

- The temporal unit being assessed is not always clear with both monthly and annual scales being considered at
different points. Please include the unit when discussing the temporal results.

Response: We have included the units for further clarification

- The authors showed that both metrics are able to pick up seasonality, but one interesting question that could
be assessed with this data is whether the degree of bias changes between the high and low transmission seasons.
This could be done with a simple interaction term.

Response: Given that none of the metrics was a gold standard of the other, we did not consider bias however,
we intend to compare this incidence rate to incidence from cohorts at which point we’ll be in position to fully

evaluate bias

- LL146-154 is this referring to the total health care seeking population? Those suspected of malaria or those
testing positive for malaria?

Response: We have clarified these further in the text

- LL153: removing data with missing variables will impact the precision as there are fewer data points available
(e.g. make confidence bands wider). Do the authors mean accuracy (assuming non-differential missingness)?

Response: We have revised this to “no considerable impact on our results” in the text

- LL157: the authors state “suggesting agreement between them” when referring to plotting monthly TPR and

CMCR. A timeseries plot doesn’t test for agreement. Do they mean “show similar trends”?
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Response: We have revised this appropriately to indicate similarity of trends rather than agreement in the

text

- What is the case definition used by facilities for malaria? Who is supposed to be tested? (Also, note the
potential for detecting opportunistic malaria infections.)

Response: We have clarified this further in the outcome measures section

- Figure 2: currently ‘missing’ is not qualified. Can the key missing variable (e.g. age, village of residence) be
added to avoid confusion? Were all records complete with no missing diagnosis?
Response: We have revised Figure 2 accordingly to qualify the ‘missing’. In addition and importantly, there were

no records with missing diagnosis

- Figure 5: The figures suggest the mean annual figures are presented whereas the legend says 4-year mean.
Please clarify and be consistent in labeling. Also, the data is available for 4.75 years. Why was this not all used and
restricted only to the years with complete monthly data?

Response: We have revised these to include the full 4.75 years

- Figure 5: The color scales are all different which biases the visual interpretation when comparing between TPR
and CMCR as well as across sites. The best approach would be to plot the standardized units so the maps are all
directly comparable.

Response: We have standardized the units in Figure 5 and a revised version is now included

- Figure 7: Is a linear fit the best choice? Have any other forms been tested or residual diagnostics done?

o Fit for Walukuba extends beyond data.

- There are no confidence bands on any of the linear fits presented in plots.

Response: We have revised these plots to predicted quadratic plots that better explain the relationship;

corrected the plot in Walukuba; and, included confidence bands in all three as suggested.
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Reviewer #3:
Comments to the Author

Overall Comments:
This paper comparing test positivity rate and incidence rate | settings in Uganda is much improved. | however have

a couple of minor comments that should still be addressed before publication.

Minor Comments:

- Impact of lower-level facilities on results? Would you expect the trend with distance to be impacted if people
further away prefer the lower level facility for something as routine as malaria? It would be helpful to include this
in the discussion section. I’'m guessing the linear trend with distance is due to cases seeking care in the more local

lower-level facilities.

Response: Previous unpublished data that we looked at showed that lower level facilities have very similar
patterns of access with the higher-level facilities included in our study. All of them see patients as routine as
uncomplicated malaria, from near (majority) and farther away (fewer) in a very similar way. | would, therefore,
expect the crisscross swap of patients to minimize the potential effect of lower-level facilities on the results in

our study. We have therefore, indicated this position in discussion as suggested.

- Table 1: the denominators for testing rates and malaria diagnosis used for the proportions presented are not

clear. Can you include a statement similar to the one for the gender category?

Response: We have revised Table 1 to include clearer descriptions of sub-sections and the proportions

presented for further clarity as suggested.
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9.12 Appendix 8: Response to reviewer comments in Paper 2

MAL-D-19-00682 — Response to reviewers

Rapid shifts in the age-specific burden of malaria following successful control interventions in four regions of

Uganda

Reviewer #1:

Overall comment

This is an interesting manuscript presenting results from a 10-year analysis of the age shift of malaria infections
after vector control interventions in Uganda. Authors clearly present the methods and results and appropriately
acknowledge the limitations of the study. There is also a good balance between the information presented in the

main text and the information in the supplemental materials.

Response: We appreciate the reviewer’s overall comments on this work.

Main comments

However, it is surprising to see how one of the main results of the study was neglected in the discussion: the fact
that most malaria cases were diagnosed in women and that the percentage of confirmed malaria cases in women
increased significantly in the group over 15 years old. Even when there was not an observable trend in the gender
across intervention periods, data and figures showing these results could be included in the supplementary
document and the authors should comment about them in the Discussion. Authors should analyze these results,
present potential explanations for this, and discuss its implications for a vulnerable population group such as

women in childbearing age.

Response: We appreciate the reviewer’'s comments raised as concerns a key result that should have been
further emphasized. To address these comments, we analyzed the results on most malaria cases being
diagnosed in women as advised by the reviewer and included our findings in the results as indicated in line

numbers 245-253 (in the tracked changes version)

Further, figures 7 — 10 have also been included together with Table 2 in the additional file to document result

details of this analysis and/or findings.

Findings showed a consistently higher proportion of females across all intervention periods in all four sites, as

well as a consistent shift in age distribution of confirmed malaria cases between males and females. However,
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there was a disproportionately larger increase in the proportion of older males than females among confirmed

malaria cases across intervention periods.

A summary discussion of these results has been included as indicated in line numbers 303 — 313 (in the tracked

changes version) in the discussion section.
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Reviewer #2:

Overall summary

This paper presents findings from a study assessing the impact of control interventions on the age
distribution of malaria cases, using malaria surveillance data from 4 sites in Uganda. This is generally a
well written and presented paper, to a topic of importance to malaria epidemiology and impact
evaluations of standard control measures. Below are issues the authors should address to improve the
paper.

Response: Thank you so much for your opinion of work from this study. We appreciate your notice of

the importance of findings from this study

Compulsory Revisions

Introduction

*  Lines 37-43: this section should be qualified by the fact that children <5 contribute the most to
malaria cases (burden) and are thus the focus of control measures and studies, in areas of stable malaria
transmission in sub-Saharan Africa.

Response: Revised as proposed by adding the text “and are thus the focus of control measures and

studies, in areas of stable malaria transmission in sub-Saharan Africa”

* Line 52: can the authors please specify 'confirmed malaria cases' if this is the case.
Response: Revised as proposed by indicating the reported trends in ‘confirmed malaria cases’ from

the reference provided

Methods
* Line 134-135: can you please confirm the outcome was only 'confirmed malaria cases'. What does
‘conveniently defined' mean?

Response: Revised as proposed by precisely indicating ‘confirmed malaria cases’ and further
elaborating on the fact that the three age categories were conveniently defined

* Were any analyses of trends in confirmed malaria case incidence, by age, done, using OPD attendance
as an offset to account for treatment seeking? This would have been a very nice check on the results

and help interpret the multinomial model results.
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Response: Thank you for raising this important issue. However, OPD attendance was not considered
as an appropriate proxy for the population at risk to estimate confirmed malaria case incidence.
Whereas a good estimate of incidence would have been desirable to better understand these findings,
the same was not possible and we acknowledged this among the limitations of the study but would
consider or recommend this for future investigations among characterized populations. Nevertheless,
we believe that the quality and scope of the longitudinal data within the present confines of the study,

enables viable insights towards improved surveillance and control of malaria.

* How were data pooled across MRCs? Were the cases from the MRCs treated as a random effect, as
they should be, in the multinomial models?

Response: Given differing transmission settings of the four sites, data were not pooled across MRCs
but rather each site was analysed independently using the same approach for each. As such, site-
specific multinomial models were fit, and results interpreted comparatively rather than as a pooled

analysis.

* How was time dealt with in the multinomial models, within intervention periods?

Response: Given that the intervention period (defined by time) was the main exposure of interest, no
further adjustment for time were deemed necessary. Further adjustment for time was expected to
lead to controlling for the effect of ‘time given intervention’ that we were investigating as well as

overfitting of the models.

* How was suspected malaria (or TPR) dealt with in the final multinomial model? Was it included
somehow as a covariate?

Response: We did not expect any ecological association between being suspected for malaria and age
category of confirmed malaria cases. However, we assumed an effect of diagnostic test used and age
of confirmed cases and despite the predominance of microscopy (followed by gradual but gentle
increase in RDT use at all sites), this was accounted for in the multinomial models at each site.
Moreover, given the lack of variation in suspected malaria by age-category over time, it was assumed

unnecessary to include this as a covariate in the multinomial models.
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* Was any attempt made to account for other potential confounding factors on the primary outcome,
including MRC reporting completeness, rainfall patterns, seasonality, diagnostic stockouts, varying
intervention coverages over time and across sites, treatment seeking, and access to treatment? | know
these are difficult variables to ascertain, but there are a lot of publicly available sources for spatial
surfaces (over time) for some of these, and proxies can be used for others. If not, these potential
confounders (or influencing factors) should be discussed as a major limitation to the study in the
discussion section.

Response: We appreciate the insight raised in this comment and we have acknowledged in the
limitations that we were unable to account for other potential influencing factors for which data were
not available in our study. However, we have accounted for some of the factors listed in this comment.
First, varying intervention coverage over time was accounted for by defining intervention periods
based on the major large-scale control interventions programmatically implemented with high
coverage as well as broad community effects expected among the pockets that may not have received
these interventions. However, we agree that there could have been possible variation in intervention
coverage especially when control interventions were more targeted, for instance during baseline.
Nevertheless, we observed similar effects of the large-scale interventions across all sites, implying that
the differences between sites at baseline would have no significant impact on the main findings in our
study.

Second, by virtue of being MRCs that are continuously monitored, we have very high reporting
completeness rates with for instance, we reported that only 0.3% were missing a record of age
implying over 99% completeness that hardly varied between sites or over time.

Third, the spatial scope of the reference sites’ catchment areas was unknown. As such, evaluation of
spatial surfaces with an unclear spatial scope could have introduced inadvertent bias in our evaluation.
We have indicated this by stating in the limitations that without a well characterized population for

each site, we were unable to effectively evaluate these additional factors and/or their effects.

* For the final model for marginal predictions, can the authors please somehow well the model fit the
data (i.e. model fits), as these models can yield spurious results when models fir the data poorly.
Response: Thank you for this very thoughtful comment.

It is no clear to us what associations you would consider spurious. However, we have used two

approaches to address this
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First, in order to implement a goodness of fit for these multinomial models used for marginal
predictions, we would need to know the expected age-distribution of the confirmed cases across
intervention periods among the categories used to define the multinomial outcome. In this case we
posit that if there were no external influences on the age distribution of confirmed cases, the closest
distributions that confirmed cases may be expected to follow would be either the suspected malaria
cases or the general attendance age-distributions. Both crude and adjusted results from this showed
that these age distributions followed different patterns across intervention periods. In the interest of
this comment therefore, we used the null hypothesis that the age-distribution of confirmed malaria
cases would follow the same distribution as suspected malaria cases or as overall patient attendance.
We evaluated both of these but consistent with our findings, there was strong evidence to reject the
Null hypothesis in both cases.

In view of this, we strongly believe that whereas a possible effect of the limitations of multinomial
models as implied through this review comment may not be ruled out, there is no basis to assume that

it is the main driver of the findings from this study according to model goodness-of-fit evaluations.

Second, we conducted model evaluations, comparing the model with and without our defined
intervention periods and used the likelihood ratio test to determine whether including intervention
periods improved the model. In all cases, the model without intervention periods as a covariate was
found to be nested within the final model (one with the intervention period as covariate) which was
an improvement of the fit, based on Akaike’s information criteria. This is now shown in the table 2 in
the additional file and revised the text in results on page 15. Furthermore, we evaluated the
relationship between model predicted and crude proportions using scatter plots as indicated in Figure

7 in the additional file. Results showed that the multinomial models fit the data very well.
Results
* Lines 169-171: what was the lowest rate of microscopy testing during the period of observation?

Response: Revised as suggested to include the lowest overall testing rate.

* Lines 223-233: Are there statistical test results that should be presented, in addition to the 95% Cls,

for the observed declines and increases in age groups over time periods?
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Response: Give that the reported proportions are marginal estimates from the final multinomial
regression models whose results are reported in Table 2 with statistical test results included, we did

not consider it necessary to further include statistical test results here.

Discussion

* TPRis known to vary widely by treatment seeking patterns, over time and space, even within a given
transmission level. What is the authors interpretation of the reported trends in TPR given this known
bias?

Response: We appreciate the concerns raised in this comment and agree that TPR varies over time
and may be influenced by treatment seeking patterns. However, findings from our previously
published work that included three MRCs from differing transmission settings showed no
distinguishable patterns of TPR over space, regardless of endemicity but rather clear variations over
time. That being said, evaluations in this study were predominantly temporal given unknown facility
catchments’ spatial scope.

Concerning the influence of treatment seeking on TPR, we recognized that this study is limited to a
passive surveillance context where accuracy of transmission-level through this indicator may only be
limited to the population that seek care from the public health sector rather than that of a definite
population at risk. We further acknowledged in the limitations that we were unable to evaluate
changes in incidence in which case we’d have been able to characterize the population with an
improved understanding and/or reduced impact of changes in care seeking within a given site.

Thus far, TPR is considered an indicator for changes in transmission as recommended by the WHO,
especially with regards to temporal trends. Given that this study was investigating the effect of control
interventions (expected to act by reducing transmission) over time, changes in TPR over time were not

considered a source of bias in this study.

* How would the scale-up of iCCM have changed treatment seeking, and the main findings of the
results for TPR trends and the age distributions of confirmed malaria cases once it was scaled?

Response: The scale-up of iCCM may be expected to reduce patient attendance of children under 5
years (which is the target population of this approach) at the health facility within the site where it
was implemented. If this effect were to be strong, the age distribution of suspected and malaria

negative cases would have shifted upwards, consistent with confirmed cases. However, there was no
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evidence from our results that this was the case and this is compounded by the fact that no findings
have been published from this iCCM activity. Furthermore, the reported implementation of iCCM was
limited to one site and for a limited duration and despite this, the main findings from this study were
consistent across all sites suggesting that the expected effect of iCCM on treatment seeking did not
have a distinguishable effect on the findings in this study. Nevertheless, we acknowledged in the
limitations that this intervention may have had some additional favourable effect to our findings.

Concerning TPR, no particular change is expected in TPR trends as a result of iCCM scale-up, given that

it may not disproportionately affect the number of malaria than non-malaria febrile cases.

* Were any sensitivity analyses conducted on the time periods being defined by intervention roll-out
in the sites? What happened if the scale-up of LLINs, or iCCM, was expected to take longer to be fully
scaled and adopted?

Response: We appreciate this very insightful comment. However, the study was not powered to
conduct either per-protocol or intention-to-treat analyses with the interventions included and/or
evaluated here. These interventions were conducted programmatically, and we had no information

concerning variations of when or how long implementation would take.
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9.13 Appendix 9: Response to reviewer comments in Paper 3

AJTMH-19-0950 — Response to reviewers

Practical implications of a relationship between Health Management Information System and community cohort-

based malaria incidence rates

Reviewer #1:

Comments to the Author

General comments

This manuscript capitalises on a wealth of data from collaborative research sites to compare malaria incidence
estimates from passive cohort and routine HMIS datasets. Considering the current tension between advocacy
for increased use of surveillance data in decision making and lingering concerns over quality of HMIS data, this
paper is a useful addition to the literature. My suggested revisions below mainly relate to sections requiring
additional clarification or detail.

Response: We appreciate the reviewer’s opinion of this work and the suggestions for clarity provided.

Major revisions

1. Please clarify if the HMIS data were restricted to the same age range as the cohort. In the abstract (line 36)
you indicate that the focus was on children in HMIS data and in the methods (line 101) the HMIS population is
stated as 6 months to 11 years. However, the rest of the paper (including the definition on line 141) suggests that
HMIS data included all ages.

Response: As the reviewer suggested, we have revised the text as follows:

‘The primary outcome in this study was the monthly malaria incidence rate derived from health facility
HMIS OPD incident malaria cases data for children between 6 months and less than 11 years of age, ...’

(Methods, pg. 8, lines 144-145)
We also revised the text within the statistical analysis section as follows:

‘We explored the relationship between HMIS and cohort incidence among children between 6 months

and less than 11 years of age on a monthly timescale ...” (Methods, pg. 11, lines 218-219)

2. There is some ambiguity about whether cohort incidence malaria cases were symptomatic or not. Line 136
explains when treatment was provided (symptoms & positive slide), but an explicit statement on the incidence
malaria cases (infection only, or symptomatic infection) is needed earlier in the methods (I see there is a definition
on line 159, but this needs to be stated sooner).

Response: As the reviewer suggested, we have clarified the text as follows:
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‘By these symptomatic diagnostically confirmed infections, incident malaria cases were identified, ...

(Methods, pg. 8, lines 140-141)

3. Lines 144-146. | have some concerns about the assumptions used to estimate confirmed malaria cases in the
absence of diagnostic testing at several of the facilities. Do you have any evidence to suggest that test positivity
would be the same year-round at each of these sites? Do you expect the populations attending HCIV and HCII/III
to be similar in terms of their risk of malaria, and therefore the proportion of fevers which are attributable to
malaria? Any additional data or sensitivity analysis that can be provided to bolster your chosen approach to
dealing with lack of diagnostic testing at lower level health facilities would be useful, and would strengthen the
final conclusions you make about the comparison of HMIS data and cohort incidence. For example, did you explore
comparing the fever incidence (clinical malaria diagnosis) between cohort and HMIS — this could give you an idea
of whether HMIS is underestimating incidence due to lower health-seeking behaviour, or if the issue is with correct
identification of malaria once patients get to the facility.
Response: As far as each site is concerned, the only available reliable indication of the temporal level of
transmission was the indicator from the national reference centres hosted within each site. We did not assume
that test positivity would be the same all year round, however, we assumed that test positivity per month
within each site would be very close to the respective reference centre estimate. As the reviewer suggested,
we explored the relationship between monthly incident HMIS clinical malaria cases and monthly incident fever
cases in the cohort and have included the results in Figure 1 in the additional file. We have also revised the text
to indicate that these results provide further evidence supportive of the chosen approach to correct for
diagnostic testing as follows:

‘This approach was also supported by a linear relationship between cohort fever incidence and HMIS

clinical malaria incidence suggesting case identification at facilities as a major factor (Figure 1 in the

additional file).” (Methods, pg. 8-9, lines 152-154)

Minor revisions

1. Abstract lines 44-47. You state that HMIS data has a strong predictive power in lower transmission settings,
but then contradict this by closing the abstract with the statement that the findings have “important implications
for surveillance in low resource, high burden countries”. Do you mean that the implication is that HMIS is not
valuable to high burden settings and there needs to be effort to use other methods / heavily invest in HMIS
strengthening? Or do your findings are actually have relevance to all settings?

Response: These findings have relevance in all settings, more so when surveillance is strengthened, for instance
with improved testing of suspected cases and recording coupled with prompt reporting. We have revised the

text to reflect this stating as follows:
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‘HMIS still requires improvements, however its strong predictive power of unbiased burden when
improved, highlights the important role it could play as a cost-effective tool for monitoring trends and
estimating impact of control interventions. This has important implications for malaria control in low
resource, high burden countries.” (Abstract, pg. 3, lines 44-47)
2. Lines 59-61. This statement bothers me a little and doesn’t fully represent some of the progress made in this
area. There have been efforts in the last few years to increasingly use HMIS data in impact evaluation, supported
by substantial increases in access to confirmatory diagnosis in many settings following introduction of RDTs. While
these studies are still outnumbered in comparison to those using DHS/MIS, the developments in this area should
be briefly mentioned/referenced.
Response: We agree that we may have undersold recent progress and as such now acknowledge the progress
made and included reference to that effect. We also revised the text to emphasize the under-utilization of HMIS

data in spite of these improvements as follows:

‘Whilst there are extensive HMIS improvements through standardized data formats as well as quality
assessment tools, among others, HMIS data are still underutilized to provide rigorous...” (Background,
pg. 4, lines 59-61)
3. Lines 66-70. A brief mention of which of these systems/initiatives are multi-disease and which are malaria-
specific would be useful here. My expectation is that both DHIS2 and HMIS cover all priority diseases, but the
sentinel sites are focussed on malaria?
Response: We agree with the reviewer that DHIS-2 and HMIS cover all priority diseases but sentinel surveillance
is focused on malaria in this case. We have revised the text to clarify this difference as follows:
‘A national HMIS was introduced in Uganda in 1997 to enable priority diseases surveillance at national
levels ... Specific to malaria, the HMIS was additionally supplemented by routine sentinel surveillance ...’

(Background pg. 4, lines 67-69)

4. Line 71. Which data do you mean by “these data”? HMIS, DHIS2, or sentinel site data?

Response: As the reviewer suggested, we have clarified in the text as follows
‘These sentinel site data have been used to evaluate impact...’ (Background, pg. 5, line 72)

5. Line 83-84. | would argue that a comparison of HMIS and cohort incidence will tell you more about
representativeness of HMIS estimates of malaria burden compared to the true population burden, not about the
quality of HMIS data (which you’d find out about by doing records review, consultation observations etc.)

Response: As the reviewer suggested, we agree that this comparison informs representativeness of HMIS

estimates of the true population burden. We have revised the text to reflect this as follows:

‘... providing important insight into the utility and representativeness of HMIS estimates of malaria burden
compared to the true population burden ...” (Background, pg. 5, lines 84-85)
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6. Lines 109-111. Did you consider cross-referencing the OPD register with any laboratory registers? Depending
on patient flow, patients with confirmed malaria may be recorded in the lab register but only listed as ‘suspected’
in OPD registers. There is an interesting paper by Okello et al. that looks at the issues around resolving case count

estimates between different registers present in health facilities.

Response: We appreciate this important point raised; however, we did not consider other sources of data from
the health facility. That being said, we do not expect it to impact our results and if at, only minimally for the
following reasons.

a. Level Il facilities (majority in this study) do not have laboratory facilities and therefore have a single
point of care for uncomplicated malaria case management. As such, the OPD register captures most, if
not all the data in these facilities.

b. Whereas this may have affected level Il facilities, there was only two in the study with extremely
limited diagnostic testing done during the study period, which limits potential impact from this level.

c. Concerning level IV health facilities, this is not expected to have impacted the true case counts from
this level because these were national reference centres with rigorous monitoring for data capture and

quality

7. Line 115. What is meant by “some secondary data”? Other covariates that were considered for inclusion in

the models? Or additional case data?
Response: We have clarified in the text that it was
‘... additional HMIS data’ (Methods, pg. 7, line 116)

8. Line 116. 1 would recommend a brief statement (or reference) to explain the services provided by each health
centre level in Uganda and approximate population size served.
Response: We have revised the text to include population served and services offered at each level of facility
as follows:
‘Level IV facilities serve = 50,000 people providing in-patient, laboratory, and maternity services while
level llI's serve =20,000 with in-patient and laboratory services, and level Il =5,000 with basically

outpatient and community outreach services.’ (Methods, pg. 7, line 118-120)

9. | found the description of correcting for non-residence on lines 146-149 a little difficult to follow and may
need some rewording.

Response: We have reworded the text here to further clarify the description as follows:

‘Level 1l and Ill health facilities had very low testing rates and predominantly diagnosed malaria
presumptively. Assuming that risk of malaria for children between 6 months and less than 11 years seen

at each reference facility was the same as for similar age children seen at the respective lower level
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facilities each month, total monthly presumptive malaria cases from site lower level facilities ...’

(Methods, pg. 8, line 148-151)

10. Line 152. For clarity, | would suggest re-emphasising here that the estimated population at risk per month
was age-restricted rather than the whole population.

Response: We have revised the text as suggested indicating the age restriction as follows:

‘To generate monthly HMIS incidence rates, the site-level sum of incident cases of malaria among children
between 6 months and less than 11 years of age after ... was divided by the site estimated monthly

population of children under 11 years of age at risk of malaria.” (Methods, pg. 9, line 158-162)

11. Line 163. Could you provide some more information about how you age-standardised cohort incidence? Did
you check to make sure that the age groups captured by HMIS were comparable to the overall population
structure? In some settings, younger children and boys are more likely to be taken to health facilities than older
children and girls.

Response: We have provided a description of how we age-standardized cohort incidence rates in the additional

file (Section E). We have also revised the text in the manuscript to include a summary of this process as follows:

‘Consequently, we age-standardized incidence estimates using six age categories defined between 6
month and < 11 years, based on the initial recruitment age distribution in these categories as the
standard (as explained in section E of the additional file). Initial recruitment into the cohorts was
conducted primarily during August and September, 2011 for each site.” (Methods, pg. 9-10, lines 173-276)
Concerning comparison of age groups in HMIS with the overall structure, we did not find a reliable source of
the overall age-structure comparable to our participants age range. Instead, we assumed that the same age

structure within the HMIS would be maintained over the study duration.

12. Line 166. How did you account for community transmission? | would also suggest that you split this into a
new sub-section here, as you start to discuss model-building.
Response: We have revised the text to indicate how we account for community transmission “using cohort

incidence” and re-defined this subsection as “Regression model” in the text. (Methods, pg. 10, line 176-177)

13. Line 169. The last section of this sentence doesn’t quite make sense.

Response: We have revised to the text to further clarify the statement as follows:

‘... while health facility characteristics were estimated using-health facility performance in recording

patients’ diagnoses.’ (Methods, pg. 10, lines 181-182)

14. Line 170. Facility accessibility is surely a function of more than just rainfall. For example, whether roads are

tarmac or unsurfaced, local topography etc. Other studies have used or generated travel time surfaces to take a
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more nuanced look at health facility accessibility that includes hills, proximity to and quality of roads. Did you
consider any of these approaches?

Response: We did not take the other suggested approaches because we believe that the choice of rainfall as a
proxy in an agriculturally dependent society covers the fundamental aspects of accessibility, not to mention
seasonality. With regard to accessibility, rain seasons tend to draw families into cultivation activities as highest
priority and therefore dropping or delaying any other prospective activities, given the risk of missing the season.
Moreover, at the scale considered in this study where for instance there is no functional public transport, a
composite metric of accessibility that incorporates factors such as road network, land use and topography
among others, may not provide sufficient temporal or spatially variability. In addition, the suggested composite
metric of accessibility is most suitable for the definition of health-facility-most-likely catchment areas, which
was not the intention of using accessibility in this study. In this study, we perceive accessibility as an influence

on the possibility of malaria cases being recorded in the health facility registry.

15. Line 178. | was surprised that while you have a temporally variable indicator for accessibility (rainfall), you
seem to just use a single average for facility availability. Do facilities closed more often around certain times of
year (religious holidays, farming seasons etc)? Given that you had access to the OPD registers, are you able to
actually determine the number of days that each facility was open each month (based on dates when no-one was
registered at OPD)?

Response: The temporal unit for evaluating effects of change in all covariates by site, including facility
availability, was ‘month’ and not a single estimate.

As regards number of days that a facility was open, we examined the OPD registers of each health facility to
find which days had no patient records for each month. Here, like for accessibility, we generated a monthly site-
level proportion of the days of each month that facilities within that site were open. This proportion was
determined using a numerator = (average number of days site facilities were open in a month) and the calendar
month’s known number of days as denominator. Other than Christmas time when the majority would be closed
on Christmas day and boxing day as well as new years’ day, no other religious holidays or particular patterns
were observed. Of note also, it is not uncommon for health workers to be involved in district or research
organised trainings and/or meetings, besides personal engagements. For instance, level Il health facilities are
often run by a single health worker and if they are not available for whatever reason, the facility would be
closed. However, unavailability is not unique to level Il facilities. We have revised the text to further clarify how

site-level facility availability was defined, as follows:

‘To account for health facility availability, measured as ease of care availability at the facility, we generated
the average proportion of days per month that health facilities within each site were open to see patients.
The average proportion was defined as mean number of days a site’s facilities were open in a month,

divided by the respective calendar month’s total number of days.” (Methods, pg. 10-11, lines 195-198)
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16. Line 190. | don’t follow the justification for using the reciprocal of the proportion of OPD patients missing a
diagnosis, rather than just using the % missing a final diagnosis.
Response: The choice of taking the reciprocal of the proportion missing a diagnosis was so that as a measure of
performance, it can be interpreted intuitively as higher values corresponding to higher performance and lower
values corresponding to lower performance. We have revised the text to further clarify this as follows:
‘The reciprocal of the proportion was derived so as to enable intuitive interpretation of its trend as
performance (high values correspond to high performance and vice-versa).” (Methods, pg. 11, line 208-

209)

17. Lines 233-235. The term “participant recruitment” is a little confusing, particularly coming after a sentence
about clinic visits. Does this mean proportion of people eligible for inclusion in the cohort who consented? Or the
proportion of all cohort members recruited from each site?

Response: We have revised the text to clarify that this is the proportion all cohort participants from all the three

sites as follows:

‘Whereas Kihihi had the highest number of participants recruited overall (36%) and Walukuba the lowest
at 31%, ..." (Results, pg. 13, line 254-255)

18. Line 241. | suggest reemphasising here “symptomatic incident cases”.

Response: We have revised the text to clarify as follows:

‘Across the study duration, a total of 4,884, 12,058 and 18,960 symptomatic test and residence corrected
incident malaria cases (Table 1) were generated among participants in Walukuba, Kihihi, and Nagongera

respectively’ (Results, pg. 14, line 262-264)

19. Line 251. You state the number of incident cases that were recorded, but then refer to these as age-
standardized, suggesting that these are not the raw number of cases. In this case, the use of “recorded” is a little
misleading, and perhaps the raw number of cases could be reported, then the age-standardised count.

Response: The numbers reported were the raw incident cases recorded. Incidence rates were derived from

these and were age-standardized and now we have revised the text to clarify this as follows:

‘From these, site mean monthly incidence rates were derived and age standardized.’ (Results, pg. 14, lines

272-273)

20. Table 3. | suggest avoiding using the abbreviation “Cl” to mean two different things in the table, and just
write “cohort incidence”.

Response: We have revised the table as suggested

21. Line 328. Do you have any information on what type of private facilities these are - private not for profit
hospitals, pharmacies, clinics, drug shops? Since you mention a general preference for private sector in Uganda,
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is it feasible that a substantial proportion of malaria cases in these locations are being addressed by these private
facilities and additional ones outside your defined study area?

Response: We have revised the text to clarify the type of private facilities included, as follows:

‘Previous studies have suggested that the majority of care seeking is conducted in private health facilities
in Uganda including private-for-profit hospitals/clinics, pharmacies and drug shops’ (Discussion, pg. 18,

lines 347-349)

Notably, private-not-for-profit facilities are considered public in Uganda.

We acknowledged that people would have sought treatment outside of our study catchment area, but this
could not be fully quantified within our study. However, we do not expect a substantial number of malaria cases
to be addressed outside the defined study area in the case of uncomplicated malaria. Moreover, for two of the
three sites where we had permission to visit private facilities and look at their data for a limited duration, we

found one in each site and only one of these had accessible records.

Also, we expected the crossover of patients from one location to another to be highest in the peri-urban site,
given greater availability of options within towns. We examined records from a mid-level facility (level Ill) in a
town close to our study site but found extremely few patient visits from villages recognised as located within
our study site. This provided some evidence that a sufficiently high number of cases were being captured within

the expected catchment area.

22. Lines 341-344. Do you think that the overall workload (all cause OPD) at the facility could influence HMIS
completeness and quality? Do the HCIV have additional staff to support data management and reporting? Do you
have any data on the proportion of staff positions at each facility which were empty during the study period?

Response: We believe that overall workload influences completeness and quality of HMIS and considered
including this as metric in this study, however, having assessed data retrospectively, there were no records of
staff availability over our study duration. HCIV being referral facilities for the lower level counterparts, have
more resources including human resources such health information assistants (HIA). These HIA, however, are
not involved in the direct management of patients but rather management and handling of data. This handling
involves receipt of data reports from the HCIV where they are based and the lower level health facilities under
its supervision, as well as the forward submission of reports to the district authorities. We have revised the text
and indicated the factors that could potentially influence the observed heterogeneity across sites concerning

HMIS recording completeness as follows:

‘We believe these effects may be due to variations in factors such as resource availability and staffing

or workload, but these were not evaluated in this study.’ (Discussion, pg. 19, lines 372-373)
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23. Lines 361-363. | would be surprised if the population preferences for self-medication and herbal medicines
changed year-to-year, although it is feasible that these preferences could differ between sites. I’'m not sure the
reference cited here justified the statement about explaining year-to-year changes.

Response: We believe that choice of alternatives can vary year-to-year. One study in Kenya ! reported self-
treatment to be dependent on an interaction of affordability, acceptability and availability all of which can vary
with time. They report that affordability depends on seasonality of illness and income, transport costs and
unofficial payment. On the other hand, provider patient relationships and distrust in quality of care, among
others, were identified as influential to acceptability. Lastly, facility operating hours, drug and staff shortages
were reported to influence availability. As such, the three main facets that are thought to directly but
interactively influence choice of alternatives for care, are in turn directly influenced by factors that can change

from year to year.

Whereas we have revised the text for clarity on references (Discussion, pg. 19 & 20, lines 391-392)
we believe that preferences are not homogeneous within sites and due to these known drivers of change and

would thus argue that they do explain a great deal of year-to-year changes as earlier indicated.

24. Line 388. Do you feel that the findings from this study are generalisable to the rest of Uganda, given that you
captured three different epidemiological settings?

Response: Given the diversity of epidemiological settings, we feel quietly confident that these findings are
generalizable to most parts of Uganda, with some exceptions (such as areas with nomadic lifestyles). However,
a larger number of sites may provide further insights unattainable with just three. We have indicated the

generalizability of these findings by revising the text in the discussion as follows:

‘... the diversity of settings and transmission provides important contributions of benefit to surveillance

and considerably generalizable findings in Uganda.’ (Discussion, pg. 21, lines 419-421)

25. Iwould be interested to read in the discussion about any costs associated with malaria diagnosis & treatment
at the cohort clinics versus at the government health centres and if this could influence treatment-seeking
behaviours. Presumably the cohort clinics provided free treatment and subsidised travel or were close enough to
villages that there was no travel cost. Do patients have to pay any consultation fee at the health centres, even if
treatment is free?

Response: We have revised the discussion to include a summary paragraph indicating the difference in cost of

treatment for HMIS versus cohort participants, as follows:

‘In addition, while treatment was free of monitory cost at public health facilities, regular patient visits
to the health facility still costed them in the form of transport cost and long waiting times. Within the

cohorts however, transport was reimbursed for every clinic visit made and waiting times minimized due
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to the dedicated clinics. This status quo may have limited potential HMIS clinic visits and thereby
contributed to HMIS underestimating cohort incidence estimates.’ (Discussion, pg. 18, lines 356-360)
We argue that this would have reduced and/or delayed potential clinic visits within the HMIS population and

thereby contribute to HMIS underestimating cohort incidence estimates
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Reviewer #2:

Comments to the Author

Overall, this is manuscript presents a well-structured study with a clear objective and interesting results. The
figures are very well done, and the additional files were helpful to the reader to understand the analysis decisions
better. Below | offer few comments/suggestions mostly with regard to clarity of the results and conclusions
presented.

Response: We truly appreciate your opinion of this study and suggestions provided to further improve it.

Main Comments

e The authors have shown that there are similar trends and good concordance between the HMIS data and
cohort data and go further to suggest that HMIS may be a reasonable estimate the malaria burden in low to
moderate risk areas. The limitation is, of course, that this may only work in a highly effective health system or an
area where the health system has been augmented to provide better care due to ongoing research, and that this

assumption may not hold true where health systems are sub-optimal.

The manuscript would be stronger if this were to be mentioned somewhere. Specifically, as the authors state, this
could be used in low-resource settings, but many of those countries also have weak health systems.
Response: We agree with the suggestion made and have further emphasized the role of effective HMIS in better
estimating malaria burden with revised text as follows:
‘Overall, whilst Nagongera had the highest recording completeness, it had the lowest availability and
least accessibility making it the lowest HMIS performance site of the three.” (Methods, pg. 11, lines 214-

215)

Moreover, we’ve now revised the text in the discussion as follows:
‘This suggests that these findings strongly depend on improved surveillance systems and can be reliable
in all transmission settings.’ (Discussion, pg. 18, lines 354-355)

We’ve also revised the text in the conclusion as follows:

‘These findings have important implications for malaria risk assessment in low resource settings that bear
the majority of the burden of malaria, given improved information systems.’ (Conclusion, pg. 21, lines
432-433)
¢ | wondered about the use of rainfall as a proxy for access to the health facilities. Often access is considered a
patient accessing care. | wonder if there might be any data from national surveys on treatment-seeking and access,
which could be presented in comparison to using this indicator? It seems that rainfall may have impeded physical
access, but access may be more complex and contextual, so although not possible to capture, in this analysis, it

would help to speak to this complexity.
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Response: We have compared rainfall and patient attendance trends by site as indicated in Figure 2 in the
additional file. These trends show a general tendency for rainfall to be at peaks when attendance is at troughs
for many months at all sites. We have also revised the text to indicate this as follows:
‘... and extracted as site monthly mean estimates. On examining monthly trends in rainfall and
attendance, we observed a general pattern of peaks in rainfall corresponding to troughs in attendance
for the same month and vice-versa, suggesting associations between rainfall and attendance and
supporting its use as proxy for accessibility (Figure 2 in the additional file).” (Methods, pg. 10, lines 184-
188)
We've also clarified that rainfall may predominantly impede physical access in the revised text as follows:
‘It was assumed that the higher the mean rainfall received per month, the less physically accessible the
health facility for the population that month.” (Methods, pg. 10, lines 189-191)
Notably however, action of rain on physical access is the most important aspect of accessibility for this study,
due to interest in the role accessibility plays in malaria cases being recorded in health facility registers.
In addition, we have revised the text among limitations stating that the estimates used for health facility
performance, including accessibility, availability, and recording performance are but proxy measures as is, as

follows:

‘Sixth, health facility availability, accessibility and recording performance are more complex than this
study proposed to estimate them. This could have masked any potentially observable associations

otherwise not found.” (Discussion, pg. 20, lines 410-412)
However, this study was not in position to fully define or quantify them with our available data.

¢ Use of days open as a proxy for availability was okay, but as mentioned access to stock, data would have made
this stronger as a clinic may have been open but could not test or treat for malaria. This is definitely a limitation
to this indicator, although what you have is better than nothing. As availability may be more complicated than
just the number of days open, so this should be considered when considering these results.

Response: We agree with the suggestion made here and have revised the text to include a limitation concerning
data where we indicate that health facility performance factors are more complicated than our study proposed

to estimate them, which may have masked potentially observable associations. The text revision is as follows:

‘Sixth, health facility availability, accessibility and recording performance are more complex than this
study proposed to estimate them. This could have masked any potentially observable associations

otherwise not found.’ (Discussion, pg. 20, lines 410-412)

Minor points:
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1. Lines 242-245 in the results section should be moved to the methods section. “These were corrected for 1)
non-testing among presumptively diagnosed cases, and 2) non-residence among those whose village of residence
was missing. Also, cases from villages unknown within site boundaries were excluded.”

Response: We have revised the text as suggested by removing this section from the results section and leaving

it in the methods section only. We have also clarified the results as follows:

‘Across the study duration, a total of 4,884, 12,058 and 18,960 symptomatic test and residence corrected

incident malaria cases’ (Results, pg. 13, lines 262-263)
We’ve also revised the text in the methods as follows:

‘... villages of residence that were located or known within the study sites. Notably, cases from villages

unknown within site boundaries were excluded.” (Methods, pg. 9, lines 157-158)

2. Comments on Table 1.

a. It would have been helpful to include percentages in Table 1 to understand the proportion of patients who
are tested and positive.

Response: We have revised the table to include percentages for clarity as suggested

b. Also, the right three columns for Table 1 could be presented better.

i. First, a line to delineate the adjusted results from the other would have been helpful.

ii. Itis not clear if the adjusted numbers are for all health facilities, only HCII/HCIIL.

Response: We have revised the table for clarity as suggested.
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9.14 Appendix 10: INLA code for Spatial-autoregressive model in chapter 6

# Set working directory

setwd("F:/Analysis_INLA")

#Load libraries

#install.packages("spdep™)

library(spdep)

#install.packages("INLA", repos=c(getOption("repos"), INLA="https://inla.r-inla-
download.org/R/stable"), dep=TRUE)

library(INLA)

#install.packages("maptools™)

library(rgeos)

library(maptools)

#install.packages('spDatalarge’, repos="https://nowosad.qgithub.io/drat/", type="source’)
library(spDataLarge)

install.packages("bigmemory™)

library(bigmemory)

#*****************************************C I’eatl n g ne | g bo u rh ood

G raph**********************************

#Load County Shapefile
shape<-readShapePoly("./hfaccess3hrs_Catchment™,IDvar="idadj")
##plot(units)

#Create adjacency matrix

temp <- poly2nb(shape,queen=TRUE, row.names=shape$idadj)
#Convert the adjacency matrix into a file in the INLA format and save
nb2INLA("uganda.adj", temp)

#Visualize the graph and get summary
#g<-inla.read.graph("uganda.ad;")

#summary(g)

#****************************************** Load Data

*hkkkhhkkkhhkhkkhhkhkkhhkkhhhkkhhhkkhkhhkhhhkhkihkiik

#Read in the data
#datal<-read.csv("bugs_maindatal.csv")

library(haven)
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datal <- read_dta("bugs_maindatal.dta")
attach(datal)

roxRkkkkkkxk Introduce columns for space and time **kaxkakakakdbdakokdokdrdx
data2<-chind(datal,reg0=datal$idadj, regl=datal$idadj, reg2=datal$idadj)
data<-cbind(data2,timeO=data2$t, timel=data2$t, time2=data2$t)
# Display what the data set looks like with the new space and time variables included
head(data)
#Besag model with random spatial effect (i.e. BY M model) and structured (rw1l) +unstructured temporal
effects
hyper.besag <-list(prec=list(prior="loggamma", params=c(.1, .1)))
#hyper.besag <-list(prec=list(prior="loggamma", params=c(.5, .0005)))
hyper.iid<-list(prec=list(prior="loggamma", params=c(.001, .001)))
formula<-confirmed ~ 1 + rainfall + land_surface temperature + Night-time-light + education-level-for-
women + vegetation amounts + f(reg0,model="besag",graph="uganda.adj",hyper=hyper.besag)
+ f(regl, model="iid", hyper=hyper.iid)+

f(time0,model="rw1", constr = TRUE, scale.model = TRUE,hyper = list(prec = list(prior = "pc.prec",
param = ¢(1,0.01)))) +

f(timel, model = "iid", constr = TRUE) + f(time2,model="iid",
group=reg1,control.group=list(model="iid"),constr=TRUE)

starting.value <- inla(formula, family = "Binomial™, Ntrials=pop, data = data,
control.compute = list(cpo = T, dic = T), control.inla = list(diagonal = 100, strategy =
"gaussian”, int.strategy = "eb"),
control.predictor = list(compute=TRUE),
control.family=list(link="logit"),
control.fixed = list(prec.intercept = 0.001),
verbose = TRUE)
plot (starting.value$summary.fitted.values$mean,pfpr)
pfpr.final<- inla(formula,family = "Binomial”, Ntrials=pop, data = data,
control.inla = list(strategy = "simplified.laplace"),
control.predictor=list(compute=TRUE),
control.family=list(link="logit"),
control.mode = list(result = starting.value, restart = TRUE),
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verbose=TRUE)
summary(pfpr.final)

plot (pfpr.final$summary.fitted.values$mean,pfpr)

HiHH# Get fitted values #HHHHHHHHHTHHHTHHIHHHHT T H TR

## Predicted incidence value
predictedmean<-pfpr.final$summary.fitted.values$mean

# Write prediction to csv file
write.table(predictedmean,"pfpr_fitted.csv"”,row.names=T,sep=",")
## Predicted credible interval upper bound for incidence
predictedci97.5<-pfpr.final$summary.fitted.values$ 0.975quant™
write.table(predictedci97.5,"pfpr_fitted_u.csv"”,row.names=T,sep=",")
## Predicted credible interval lower bound for incidence
predictedci2.5<-pfpr.final$summary.fitted.values$ 0.025quant’

write.table(predictedci2.5,"pfpr_fitted_l.csv",row.names=T,sep=",")
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