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Abstract 

Background and aim: Routine surveillance is increasingly recognised as central to multi-dimensional malaria 

control efforts, especially for programme planning and impact assessment. Whilst it is global strategy to transform 

surveillance into a core programmatic component, essential in-depth interpretation of routine surveillance data 

remains limited, especially in higher transmission settings. I therefore aimed to explore utility of indicators of 

uncomplicated malaria burden from routine health facility surveillance data in identifying and mapping high-risk 

areas for malaria in Uganda. 

Methods and data sources: To examine routine surveillance indicators of malaria burden, I first evaluated internal 

consistency between measures from three national reference health facilities, comparing incidence and test 

positivity rates over time and space. In addition, I examined impacts of control interventions on the age associated 

burden of malaria, stratified by endemicity and intervention. I then extended this to compare routine reporting 

data with concurrent community cohort incidence estimates across three sub-counties to evaluate potential 

sources of bias. Finally, using four years of national health management information system (HMIS)-reported 

confirmed malaria data in a Bayesian autoregressive analytical framework, I explored the space-time distribution 

of malaria, and estimated adjusted national and local HMIS-based incidence rates. 

Primary findings: At the health facility level, HMIS-based incidence and test positivity rates showed similar trends 

and predicable relationships, with reduced transmission associated with increasing age of test confirmed malaria 

cases. Comparison of HMIS and cohort data suggested that HMIS data could provide a relatively unbiased proxy 

for true incidence - especially in lower-transmission, better performing surveillance systems settings. Lastly, 

space-time modelling of national HMIS data revealed high-burden and high-risk areas within health facility 

catchments, districts, and regions, highlighting the utility of routine surveillance data in identifying 

programmatically relevant heterogeneities in malaria burden in Uganda. 

Conclusion: This thesis highlights the potential viability of routine data in evaluating endemic malaria risk with 

improved routine HMIS. This is shown by: similar trends of HMIS-based incidence with other measures; its 

unbiased relationship with community cohort incidence; and, its capacity to identify high case rate locations. To 

realize the potential of these data, coordinated efforts are needed towards high testing rates, complete and timely 

recording and reporting, and multilevel feedback within national malaria control programme systems. Further 

research opportunities include treatment or non-care seeking and non-reporting care alternatives impacts on 

surveillance-based indicators of malaria burden. 
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1 Background and Introduction 

1.1 Background 

Malaria remains a significant global public health challenge with sub-Saharan Africa and South East Asia as epi-

centres of the burden [1]. Global malaria control efforts are multi-dimensional and include: vector control, 

effective malaria case management, vaccine development, preventive therapies, and above all, stakeholder 

commitments [2, 3]. 

The WHO Global Technical Strategy for Malaria 2016-2030 aims to reduce incidence of malaria by at least 90%, 

particularly by urging affected countries to make the most of available control tools and strategies [4]. Further, in 

view of United Nations’ third sustainable development goal that seeks to ensure healthy lives and promote well-

being for all at all ages, one key target is to end the malaria epidemic by 2030 [5]. These targets were heavily 

influenced by evidence of significant declines over the first 15 years of the 21st century and on this basis, 

milestones were set to reduce case incidence by 40% and 75% by 2020 and 2025, respectively [3, 4]. 

Unfortunately, however, malaria burden declines have stalled since 2016 due to global or context specific causes 

[6, 7]. Two of the identified possible causes that especially affect sub-Saharan Africa are: substandard performance 

of health systems and weak surveillance, monitoring and evaluation with which capacity to identify program 

coverage gaps or disease burden changes is diminished [4]. This thesis addresses the latter. 

With strong evidence of the effectiveness of available control tools [8], to meet global targets, interventions need 

to be prioritised to target areas of greatest need, aided by strategic transformation of surveillance into a core 

intervention [4]. Routine health management information systems (HMIS) data is uniquely placed for this, given: 

its central place in surveillance, its spatial scalability, and longitudinal dimension. Notably, however, several 

studies have suggested these data to be imperfect and of limited utility [9-11]. This ongoing perception unwittingly 

hinders the ability of malaria control programmes to use routine health systems data for effective resource 

allocation or timely intervention impact evaluations. Whilst efforts have been undertaken to improve the most 

notable drawbacks, especially accessibility, timeliness, and completeness [12-14], estimates of burden from these 

data are not fully understood [15] and as such, neither have the prevailing perceptions been improved nor its 

likely utility been widely investigated.  

This thesis, therefore, focuses on exploring the utility of indicators of uncomplicated malaria burden from 

routinely collected health facility data, using the high-burden example of Uganda. In this chapter, I provide an 

initial background literature review describing the epidemiological and public health situation of malaria in 

Uganda, as well as details on current diagnostics and control strategies for malaria. I then summarise the 

distribution of malaria in Uganda and provide a critique of contemporary mapping approaches applied at global, 

regional, and sub-national scales. Lastly, I provide an overview of how maps have historically been used in Uganda 

towards policy guidance and decision making for malaria control, in relation to other countries in the region. 
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1.2 Introduction to malaria 

1.2.1 Global burden of malaria 

Malaria is transmitted by female anopheline vectors carrying any of the four main Plasmodium parasite species 

known to infect humans - P. falciparum, P. vivax, P. malariae, and P. ovale [16]. Notably, however, two of these 

parasite species i.e. P. falciparum and P. vivax are responsible for the majority of global infections [3, 16]. While 

these main parasite species are largely territorial, with P. falciparum predominating Africa and P. vivax East Asia, 

mixed infections involving the two or one of these together with other less notable species are also common 

across all endemic settings [3]. In 2018, 228 million malaria cases were estimated globally, 93% of these from 

Africa alone [3]. Moreover, an estimated 405,000 fatalities from malaria were also reported globally, 94% of which 

were from Africa, and 67% of the global total being among children under 5 years of age [3]. 

1.2.2 Epidemiology of malaria 

Malaria transmission involves four vital contexts including: the host, which is primarily humans; the parasite of 

which there are several species; the vector, which is the mosquito and there are many species of these; as well as 

the environment within which all the first three exist. Factors that influence any of the four contexts may impact 

the rate of transmission of malaria either independently or collectively, both favourably and otherwise. Successful 

transmission involves all four contexts as follows. As illustrated in Figure 1, once a healthy vector, female 

anopheline, takes a blood meal from a human and picks up gametocytes in that meal, gametocytes undergo 

transformation within the vector from micro to macrogametes which in turn are transformed to the zygote and 

then ookinete that penetrate the midgut of the vector [17]. Within the vector’s midgut, the ookinete is 

transformed to oocysts which develop and burst into the salivary gland to produce sporozoites [18]. With a 

sporozoite ready vector, a blood meal from a host is potentially infective of the host, which marks the start of the 

parasite life cycle within the human host. Once sporozoites sufficiently circulate within the host’s blood, they are 

transported to the liver where they develop into schizonts that later produce merozoites that are then introduced 

back into the blood from the liver [19]. Merozoites attack the host’s red blood cells (RBCs) in order to reproduce 

and then attack more RBCs though some merozoites develop into gametocytes that are known as the sexual stage 

of the parasite. Once gametocytes are ingested by a viable vector, the cycle starts all over again within the vector 

and continues the process of malaria transmission. 
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Figure 1. Malaria parasite life cycle  

Image obtained from the Johns Hopkins School of Public Health at http://ocw.jhsph.edu. Creative Commons BY-

NC-SA. 

Environmental factors play a significant role particularly in supporting vector abundance and capacity [20, 21]. For 

instance, rainfall in appropriate amounts and locations may enable the availability of vector breeding sites and 

thereby foster vector density. On the other hand, temperature when conducive facilitates vector development, 

adult survival and immunity, as well as parasite development within vector candidates (conducive within the range 

of 16 to 350C), thereby facilitating a competent vector for continued transmission [18]. Whilst rainfall, 

temperature and humidity tend to have a direct influence, other factors such as vegetation, urbanization, altitude, 

land use and cover may have secondary influence on vectors and vector capacity through their influence on direct 

factors and facilitating vector-host contact [22]. Given the variability of environmental factors across space and 

time, the unlimited interplay between multiple environmental factors facilitates and supports diversity in vector, 

vector habitat and behaviour, which may influence heterogeneity of malaria transmission and risk [23]. 

Together, these factors influence the distribution of malaria burden through a non-linear interaction between: 

environmental suitability for vector abundance and competence; host susceptibility to virulent parasites as well 

as host infectivity to vectors; population-level control activities and subsequent adherence to these control 

strategies; community population distribution; and, availability of, or accessibility to healthcare services and 

adequacy of case management commodities. These are augmented by the implementation of systems to collect 

timely, high quality and accessible routine data in synthesizable formats to support informed onward control 

decisions. 

http://ocw.jhsph.edu/
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1.2.3 Detection and Diagnosis of malaria 

Malaria diagnosis in endemic settings has undergone massive transformation over the years. For very long, 

diagnosis of malaria was performed presumptively especially among children [24]. However, this approach was 

increasingly associated with over-treatment of fever as malaria in many countries, including Uganda, due to the 

non-specific nature of malaria related symptoms (particularly fever) that are often caused by myriad other 

conditions [25]. Moreover, parasite resistance to antimalarials, particularly involving the fairly cheap and 

previously highly effective drug Chloroquine, globally [26] and in Uganda [27], showed that trends in over-

treatment of fevers as malaria with newer antimalarials – ACTs, were a threat to the longevity of the high efficacy 

of these much more tolerable drugs [28]. To this effect, global recommendations were made for the use of 

diagnostic confirmation prior to treatment [29]. These facilitated the scale-up of research into diagnostic methods, 

aimed at overcoming shortcomings in the pre-existing testing method of microscopy. 

Whilst detection of malaria parasites had been possible for hundreds of years using blood slide microscopy, the 

method is demanding, particularly for low resource settings. This gold-standard method requires a microscope, 

electric power supply, slides, reagents, and importantly a skilled technician. With several of these requirements 

being in short supply across the highest endemicity regions, diagnostic confirmation of malaria to scale using this 

method was unattainable. Moreover, other molecular methods in existence such as polymerase chain reaction 

(PCR), loop mediated isothermal amplification (LAMP), flow cytometry, and mass spectrometry, though highly 

sensitive are far more expensive and therefore, not among feasible alternatives within clinical practice in these 

settings [25]. Newer approaches involving rapid diagnostic methods of detecting malaria antigens were developed 

and introduced. The four major categories of the rapid diagnostic tests for malaria (mRDTs) developed included: 

P. falciparum specific histidine-rich protein 2 (HRP2); parasite lactate dehydrogenase (pLDH) that could be 

produced for each of the four main parasite species, given that each has a distinct isomer of this enzyme; 

Plasmodium aldolase, another that covers all the parasite species; and, another antigen specific to P. vivax that 

has been used in combination tests for P. falciparum and P. vivax [30]. The ease of use of mRDTs even among 

remote facilities and community health workers [31] has facilitated largescale implementation of the test and 

treat global approach [29], that was later revised to the test, treat, and track policy for improved surveillance and 

care or case management [32]. 

Until 2007 when mRDTs were introduced in Uganda, diagnostic testing for malaria depended on microscopy, 

particularly among adults in hospitals and high-level health facilities, where laboratory services were functional 

[33]. Among children under 5 years of age when febrile, presumptive diagnosis was highly encouraged and 

functional laboratory services availability among lower level facilities was estimated at only 30% by 2009 [34]. 

National policy adoption of parasitological diagnosis using either microscopy or mRDT, was instituted in 2011 [35]. 

Consistent with policy, the national 2010-2015 malaria strategic plan set a target of 90% parasitological diagnostic 

performance by 2015, and the country had attained 59% in a 2013 assessment [36]. Notably, however, 
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performance reached 85% later on in 2018/2019 [37], suggesting very slow adoption of the national ‘test and 

treat’ policy for management of suspected cases, regardless of age of patient or level and/or ownership of health 

facility [38]. Additionally, interrupted commodity (drugs and diagnostic testing materials) distribution, disregard 

of negative test results in the diagnosis of malaria, and insufficient support supervision still remain very concerning 

for progress [36, 37]. However, poor mRDT performance due to Pf-HRP2/Pf-HRP3 gene deletions has also been 

reported in the region, particularly given that Pf-HRP2-based mRDTs are the recommended test kits in Uganda 

and these deletions lead to true cases turning out as false negatives [39-41]. The increasing use of mRDTs 

therefore, may be associated with large-scale reduced sensitivity of diagnostic confirmation of malaria cases. 

The increased availability and accessibility of parasitological diagnostic testing has facilitated improved capacity 

to assess malaria burden from routine HMIS data with more reliable indicator accuracy. Whilst there are several 

derivate indicators of malaria burden in use, how they relate each with the other remains unclear. Moreover, very 

few studies have evaluated the effectiveness, utility, or relationships among HMIS-based indicators of malaria 

burden pairs or between these and indicators from other data sources. One study examined the relationship 

between current and lagged monthly HMIS-based incidence estimates to explore HMIS capacity for malaria 

burden forecasting in Burundi’s regions with seasonal endemicity, using environmental covariates. Though it 

included seven years (1997-2003) of routine data and found a strong association between monthly incidence and 

maximum temperature in the previous month’s estimates, the study could only define incidence using 

predominantly presumptive malaria cases, limiting the reliability of incidence rate estimates used [42]. Another 

study compared health centre and community survey metrics including Plasmodium falciparum (P.f.) parasite and 

gametocytes prevalence as well as seroprevalence among others, between wet and dry seasons in The Gambia. 

They reported stronger correlation between facility and community parasite prevalence estimates in the wet than 

dry seasons and noted versatility of and greater ease in collecting health facility than community survey data. 

Importantly, study sites were spread across the Gambia from coast to hinterland and paired on opposite sides of 

the national main river, providing good coverage of spatial diversity [43]. Yet another study described a weak link 

between relative changes in slide positivity and incidence rates over time, from a four-year cohort of children in 

Kampala - central Uganda. Though conducted at one site, the study straddled a duration of drastic changes in 

malaria burden having reported significant declines in incidence of malaria from 0.93 to 0.39 episodes per person 

per year from 2005 to 2009, respectively (p<0.001), therefore providing a good setting to understand temporal 

changes in the metrics compared. Besides not being HMIS-based, however, this study reported an indeterminate 

relationship between slide positivity and incidence rates - simply describing it as “neither linear nor proportional” 

[44]. However, another study conducted at one site in Western Uganda revealed a non-linear temporal 

relationship between test positivity rate (TPR) and HMIS-based incidence at a six-monthly temporal scale. 

Importantly, this was the first description of this non-linear relationship, best explained by an exponential function 

(compared to many other models fits) where correlation between the two indicators was stronger at higher 
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transmission levels [45]. These few studies available underscore the dearth of knowledge of the indicators of 

malaria burden derived from HMIS data though in wide use. 

1.2.4 Malaria control strategies 

Vector control has primarily involved the use of long-lasting insecticidal nets (LLINs), indoor residual spraying with 

insecticide (IRS), and larval stage management (including larvicide use or habitat modification) [46]. Owing to 

excessive parasite resistance to chloroquine that was widely used through the 1990’s, global policy on malaria 

case management transitioned to other antimalarial monotherapies and then rapidly on to combination 

therapies, following quick failure of the monotherapies [29]. As regards chemoprevention, however, vaccine trials 

are in early stages in a few places like Ghana, Kenya and Malawi [46]; preventive therapies including mass drug 

administration (MDA) to reduce the parasite reservoir in the community [29, 47] and intermittent preventive 

treatment during pregnancy (IPTp) to address adverse birth outcomes due to malaria in both mother and new-

borns [48] are in use. Importantly also, stakeholder commitments and global initiatives have been instrumental in 

achieving these multi-dimensional control efforts so far. These initiatives have included first, the global eradication 

of malaria initiative of the 1950’s whose biggest success in Africa may have been the wide-scale availability of 

chloroquine, an effective antimalarial that was associated with reduced malaria mortality in Africa [49]. Others 

have included the Garki project, Roll back malaria, millennium - and later sustainable - development goals with 

health at the centre, and the WHO’s “high burden to high impact” initiative [2, 50]. Each of these either have been 

or continue to be informed by available data, including surveillance data. 

In Uganda, malaria is perennial and endemic in over 95% of the country, given prevalence of a diverse and versatile 

composition of competent vectors [51]. The main vector species in the country are Anopheles gambiea and A. 

funestus with some A. arabiensis [52-54] and predominant vector control methods have included LLINs in 

universal distribution campaigns and IRS in selected districts [55]. These have been consolidated by effective case 

management using artemisinin-based combination therapy (ACT) as first line treatment since 2004 [56, 57], on 

top of IPTp using Sulphadoxine pyrimethamine (SP) since 2001 [58]. While malaria risk remains high and 

widespread across the country, Uganda has reported considerable declines in malaria burden over time due to 

these interventions. For instance, national prevalence estimates declined from 42% during the Malaria Indictor 

Survey (MIS) of 2009 [59] to 9.1% from the most recent survey of 2018 (Figure 2), consistent with global and 

regional reported downward trends. 
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Figure 2. Parasite prevalence by microscopy among children 0-59 months of age based on the 2009, 2014 and 

2018 Malaria indicator surveys.  

The 2009 MIS was the first national malaria indicator survey conducted in Uganda covering ten defined regions of 

the country. Results showed that prevalence of malaria parasitaemia by microscopy among children under five 

years of age ranged from 5 to 63% in Kampala and Mid-Northern regions, respectively [59]. The 2014 MIS 

suggested a reduction in the prevalence of malaria parasitaemia in the same age group ranging from <1 to 37% 

in Kampala and East Central regions, respectively [60]. 

The 2018 MIS (third and most recent survey) covered 15 regions and recorded further declines in the prevalence of 

malaria parasitaemia, ranging from <1 in Kampala and Kigezi to 34% in Karamoja [61]. There was a marked decline 

in national parasite prevalence by microscopy from 42 to 19% for 2009 to 2014-15, respectively and then down to 

9% during 2018-19. 

Overall, whilst regional boundaries changed over time, reduction was still evident across all regions. For instance, 

prevalence of malaria parasitaemia reduced in Kampala from 5 to <1% and in the mid-northern region from 63% 

to a regional average of 13% between 2009 and 2018, respectively. 

By WHO reports, Uganda ranked 3rd largest contributor of cases and 7th of malaria related deaths by 2018 [3], 

down from 4th in terms of number of malaria cases and 11th in terms of number of malaria related deaths by 2015 

and 2016 [62, 63]. Nevertheless, national HMIS-based reports have documented declines in incidence of 
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confirmed cases down to 14 cases per 1000 population per year, in 2018/19 compared to 478 cases per 1000 in 

2015/16 [37]. 

1.3 Understanding the distribution of malaria in Uganda 

Geographical representation of the distribution of disease burden and/or risk is critical in understanding and 

designing plans of action to minimise public health disease impact. Our understanding of the geographical 

distribution of malaria in Uganda has been informed by various sources of data. Historically, these included data 

from small available studies across the country coupled with expert opinion, which served a purpose in the 

absence of robust national datasets to generate more representative maps [64]. These could only provide a 

general overview of the distribution of malaria with very limited capacity to inform targeted control and therefore, 

hardly put to known extensive use. More recently, data from large malaria indicator surveys (such as the 2009, 

2014-15, and 2018-19 rounds) have been utilised for mapping the distribution of malaria, forming the primary 

basis for geographical burden reference. These, however, may only reliably inform the coverage of previously 

implemented interventions, treatment seeking practices among one high-risk group of children under five years 

of age, and provide some indication of general malaria endemicity strata by region [61]. This limitation is 

determined by the cluster-level sampling design (based on 10 to 15 regions of the country) of these infrequent 

surveys, implying that results are principally limited to regional summaries, less helpful for local onward planning. 

For on-going control activities within the Ministry of Health (MoH), HMIS was instituted with the objectives of 

supporting evidence-based decision making, setting performance targets, and assessing health sector 

performance [65, 66]. Data summaries in the form of trend plots and other dashboard summary outputs are 

assessed within the district health information system (DHIS-2) framework, that provides the necessary data [14]. 

These are supplemented by reports and information from development partners and stakeholders such as: the 

World Health Organization, the United States’ Centres for Disease Control/President’s Malaria Initiative 

(CDC/PMI) [67], the Uganda malaria surveillance project (UMSP) conducting sentinel surveillance and providing 

regular reports [68] and the USAID’s malaria action program for districts (MAPD) operational across a network of 

districts through the convergence of a variety of expertise in Uganda to support MoH efforts in control and 

diagnosis of malaria [69], among others. 

The extensive focus on regional or district level assessments, coupled with reported disconnect between survey-

based and on-going HMIS reports [70, 71] indicates that presently, malaria control managers are without a reliable 

source of fine-scale information. Consequently, the potential for important timely assessment of the spatial 

distribution of malaria burden, using HMIS data, remains unappreciated, and opportunities for improved decision 

making are missed. 
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1.3.1 The use of maps in policy and decision-making 

Historical use of malaria risk maps in Uganda is limited. Figure 3 below, for instance, was used for nearly a decade 

in official malaria policy reports in Uganda, including multiple national malaria strategy documents [55, 72]. The 

map (Figure 3) would have been generated in the early 2000’s from available data at the time. It was first used in 

the 2005-2009 Malaria Strategic Plan by Ministry of Health referring to it as “most recent one based on available 

data” [57, 72]. 

 

 

Figure 3. Risk map used between 2005 and 2014 – adapted from Talisuna et al. [64] 

This malaria risk map was generated using data availed from small studies, two of which were: (1) A drug efficacy 

study under the East African Network for Monitoring Antimalarial Treatment (EANMAT) conducted in seven 

locations including: Arua, Apac, Tororo, Mubende, Kabarole, Rukungiri and Jinja [73]. This study involved surveys 

conducted between September and December 1999.  (2) An entomological study that included the same EANMAT 

sites, where 11 entomological surveys involving mosquito collections by human landing collection method, was 

conducted between June 2001 and May 2002 [53]. Together with these data, other historical data from the 1960’s 

were also used to inform the final output [64].   

Subsequent risk maps used in MoH documents (Figure 4), however, were generated via geo-statistical models 

with mean population adjusted Plasmodium falciparum parasite rates, among children aged 2 to 10 years old from 
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surveys conducted between 2000 and 2010 across the country, together with a selection of climatic metrics as 

explanatory variables [72]. The role of age in malaria transmission is highlighted here as being strongly associated 

with parasite rates, attributable to acquired immunity [74, 75] due to manifold exposure. This approach of using 

an age standardizing algorithm to control the effect of varied age ranges on detectable infection rates in a 

particular age-range, is classical with risk mapping across the endemic world [74, 76], and is applied to both P. 

falciparum and P. vivax wherever they predominate [77, 78]. 

 

Figure 4. Malaria map in use by the Ministry of Health between 2014 and 2017, in multiple policy reports of 

malaria risk representation in Uganda 

While use and inclusion of malaria risk maps in official MoH documentation is increasing, maps in previous use 

were seldom updated with a single risk map used across multiple years [72]. Moreover, these recent malaria risk 

maps at these district spatial scales [79, 80] have been recognised as difficult to use for intervention 

implementation, potentially due to masking of important fine-scale heterogeneity and thus undermining effective 

response action [64]. 

However, progress in using routine data for risk maps is evident in the MoH’s national annual report of 2017/18 

(Figure 5), which included HMIS-based incidence figures presented for comparative year-to-year progress [37]. 

Furthermore, the soon to be launched national Malaria strategic plan 2021 – 2025 for Uganda has proposed a 

shift of focus from universal to targeted implementation of control interventions under the ‘High Burden to High 

Impact’ initiative. Importantly, the included new map of district-level malaria incidence from 2019 routine 

reported data was cited as a key input in this decision process. Here, districts were stratified by specific 

combinations of control tools for intervention, in response to WHO advice in the national bid for malaria funding, 

“to use strategic information to drive impact” (Figure 6) [81]. This provides an indication of recent utility of malaria 

burden maps for decision support in Uganda. 
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Figure 5. Map of malaria incidence rates in Uganda in use by 2017/18 from the first national annual malaria 

report. 

 

Figure 6. Malaria incidence rates by district as estimated from 2019 routine reported data.  

This map provided some evidence of the distribution of malaria burden by district across the country, which was 

reported as vital to the determination of district strata for targeted intervention approaches. These interventions 

are intended for implementation during the 2021-2025 national malaria control strategies for Uganda supported 

by Global Fund, among others. 

Though challenging to evaluate fully, particularly for day-to-day activities, the use of risk maps for decision support 

in Uganda may be otherwise demonstrated by the inclusion of these maps in national health reports and may also 

suggest an increasing appreciation of geo-spatial output for malaria control in Uganda. However, for their viability 

as an important tool for surveillance support, risk maps remain heavily underutilised. 
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1.4 Contemporary mapping approaches  
Population-based prevalence surveys: Maps of malaria risk support decision-making for control and intervention, 

especially concerning geographical scope and feasibility. Typically, these maps are developed using population-

based surveys due to their simple and rapid representation of disease prevalence [82, 83]. Whilst these survey-

based estimates of burden are only generalizable to regional scales, often among very large regions [84], geo-

spatial modelling approaches have been developed and used to improve inference at finer spatial scales. In this 

process, parasite rates are utilised together with environmental predictors (explanatory variables) in statistical 

models that predict disease burden estimates associated with geographical variability, known as geo-statistical 

models. From these models, parasite rates and other associated indicators are interpolated at un-sampled 

locations, and often output as map surfaces or images. Explanatory variables can include rainfall, vapour pressure 

or humidity, temperature, vegetation amounts, land use or land cover, land surface moisture, elevation, and their 

derivatives [85, 86]. 

Using a comprehensive collection of survey data spanning decades, through formal and grey literature databases 

and contacts with research scientists and officials globally, global malaria burden maps have been generated using 

multiple derivative indicators within the malaria atlas project (MAP) [83]. These maps have provided valuable 

information especially for global endemicity stratification overview and distribution of parasite specific burden, 

which have aided large-scale intervention planning. A notable milestone of this work, for instance, was the 

identification of regions where liver-stage infection clearing anti-malarial drugs like primaquine would be 

beneficial or harmful due to prevalence of the Duffy negative blood group phenotype [87]. Whilst this blood group 

variant largely confers protection against P. vivax infections where prevalence of the phenotype is high, individuals 

are not totally immune to vivax infections that are characterised by relapses of malaria due to uncleared infections 

in the liver [88, 89]. Ill-advised treatment of these infections with this effective drug for liver stage parasite 

clearance poses a risk among individuals with this blood group variant. The analyses showing spatial distribution 

of this blood group variant, therefore, have been important in the design and implementation of region- 

appropriate policies. These approaches have also been adopted in the Mapping Malaria Risk in Africa (MARA) 

project, which implemented geostatistical models to generate point prevalence-based risk maps for the sub-

Saharan African region and provided survey data from across the region for similar studies [86, 90]. However, 

limitations of geostatistical outputs, such as these, include: infrequency and sparsity of surveys – for instance only 

eight countries provided 100 or more survey sites and a large majority of countries far fewer than 50; large 

differences in timing and seasonality of the surveys; varied age of participants; design, size and generalizability of 

surveys included; and, potential underrepresentation of specific parasite species surveys by region – for instance, 

very few P. vivax-specific surveys in Africa or P. falciparum-specific surveys in South East Asia were included [82].  

Whilst geostatistical approaches were historically computationally intensive for high precision of modelled 

estimates, particularly with Markov Chain Monte Carlo simulations for Bayesian inference, increasingly, a more 
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summarized and computationally efficient approach in integrated nested Laplace approximation (INLA) for 

Bayesian inference has been adopted [91]. Besides lingering computational demands, however, the capacity to 

incorporate maximum likelihood, prior information [92], and the neighbourhood structure through conditional 

autoregression [93-95] for model estimates has not only facilitated identification of important environmental 

factors for malaria risk assessment such as rainfall, temperature, and vegetation, but also the credible 

presentation of geographical patterns of malaria risk from both survey data [92, 96, 97] and routine HMIS data 

[98-101] across endemic settings for varied ages. 

Additional robust  but less common methods used with routine data for risk prediction include: (a) Plotting annual 

parasite rates from routine reported data at as low spatial resolution as village-level in one district of Sri Lanka 

between 1991 to 1998 [102]. (b) Generalised linear models (GLM) to predict the effects of environmental 

predictors in Burundi using province-level monthly estimates of incidence from routinely reported malaria cases 

between 1996 and 2007 [103]. (c) generalised additive mixed models (GAMM) that provide improved model 

fitting, with similar results to, though more complex than GLM output, that is demanding to interpret [103]. 

Despite agreement between these two models, results also indicated that variables other than climate are also 

very important and should be accounted for. (d) Using the same routine data from Burundi, geo-additive mixed 

models suggested an improvement on GAMM owing to inclusion of more explicit spatial effects – both correlated 

and un-correlated at provincial level [104]. (e) Seasonal autoregressive integrated moving average models were 

used to forecast incidence using key environmental factors, particularly rainfall in Eritrea using monthly incidence 

estimates from routine data between 2012 and 2016, with recommendations for small area assessments [105].  

1.4.1 Mapping malaria burden using routine data 

Despite the recent embrace of routine data for generating risk maps in Uganda, there is recent but rather sparse 

precedent of use of this approach in the region. For instance, a report from Rwanda showed maps of malaria 

positivity rates as well as incidence for 2010 and 2011 as shown in Figures 7 and 8, respectively [106], and one 

from Mozambique showed reported inpatient incidence of malaria over the 2010-2012 duration (Figure 9) [107]. 
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Figure 7. Map of Rwanda malaria burden using test positivity rates for 2010 from PMI evaluation report of 

2016 

 

Figure 8. Map of Rwanda malaria burden using incidence rates by district for 2010 and 2011 from the PMI 

evaluation report of 2016 
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Figure 9. Map of malaria inpatient incidence rates for Mozambique by district for 2010, 2011, and 2012 from 

the PMI evaluation report of 2016 

Unsurprising with minimal utility of HMIS for risk mapping, HMIS-based risk maps have only previously been 

compared with robust survey-based approaches in very few studies. One study from Malawi investigated the 

importance of climatic, geographic, and socio-economic determinants of malaria between July-2004 and June-

2011 and reported one such methodological comparison [108]. HMIS-based “standardised morbidity ratio (SMR)” 

of malaria and prevalence from the malaria atlas project (MAP) were compared by visual examination of a map 

from each. Whilst the spatial distribution of SMR from this study largely reflected the prevalence distribution from 

MAP for children under 5 years of age, the stark differences found between the two for those 5 years and older 

may be due to additional effects of age on malaria transmission. These effects potentially remain unexplained 

and/or unaccounted for in the current survey-based models of burden estimates heavily reliant on data collected 

primarily from children under 5 years of age [109]. Finding one study that evaluated use of routinely collected 

data for risk mapping, against more established mapping methods, points to a knowledge gap in fitness-of-

purpose of routine data, as a potential low-cost alternative for malaria risk assessment to support optimal 

resource use. 

Regardless of the data used, however, for any spatial temporal distribution of malaria identified to be beneficial, 

it may need to address some important questions as proposed by Carter et al. These include: “1) Is it operationally 

possible to reliably distinguish spatial clusters with markedly different malaria case incidence and to determine 

the locations and extents of all the foci of malaria transmission in a locality? 2) If achieved, can the information be 

exploited in order to conduct highly effective malaria control by the accurate targeting of an intervention? 3) What 
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tools for control could be more effective using the generated spatial information? 4) In which situations of 

endemic malaria is targeting practical and effective and in which is it not?” [110]. To aid disease burden monitoring 

and control intervention implementation and/or targeting, however, if well understood HMIS data may be a great 

choice to facilitate assessments that address most of these questions. In the following section therefore, I provide 

a detailed discussion of HMIS data available in Uganda including the indicators reported, strengths and 

weaknesses, and its use for impact assessment. 

1.5 Routine surveillance and HMIS 

1.5.1 Routine reporting of malaria indicators 

The WHO has defined routine surveillance as continuous, systematic collection, analysis and interpretation of 

health-related data for planning, implementation, and evaluation of public health practice [111]. Identified 

benefits of surveillance include: serving as an early warning system for impending public health emergencies; 

documentation of impact of intervention, or tracking progress towards specified goals; and, monitoring and 

clarifying the epidemiology of health problems, to allow priorities to be set and thereby inform public health policy 

and strategies [111].  

Regularly submitted reports to the Ministry of Health that contribute towards malaria routine surveillance 

emanate from sources such as: implementers of health-related activities like LLIN distribution campaigns; 

supervision activities conducted by national malaria control programme (NMCP) managers; and, disease 

surveillance reports from health facilities, all using standardised report formats [112]. Disease surveillance 

through health facilities in Uganda includes several key activities. First, integrated disease surveillance and 

response (IDSR), in which data on cases and deaths are reported on a weekly basis to facilitate epidemic detection 

and/or preparedness [36, 113]. Second, sentinel surveillance programme whose primary objective is to monitor 

trends using test positivity rates as a key indicator, along with increasing diagnostic testing [68]. Third, 

demographic surveillance sites (DSS) that include two selected communities for monitoring defined populations 

on demographic metrics such as births, deaths and migration [114]. Fourth, pharmacovigilance, although this has 

largely been out of operation [36]. Lastly, outpatient department (OPD) monthly reporting on malaria cases 

through HMIS form 105 that is central to this research, where malaria reporting primary includes: total monthly 

reported and confirmed cases, and number of suspected malaria cases tested either by microscopy or mRDT, all 

categorised into pre-determined age-groups [112]. 

Whilst there is evidence of use of HMIS data in spatial modelling to identify high burden locations [101, 115] and 

HMIS data forms the basis of national day-to-day decision making in Uganda, it has not been adopted for national 

risk mapping, particularly with small area approaches as described above. When considering its utility, it is 

important to understand both the opportunities and challenges this data source provides. 
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1.5.2 Contextual framework, Opportunities and Challenges of routine HMIS data 

Optimal utility of HMIS data not only requires the identification and harnessing of its strengths as well as 

identification and mitigation of its weaknesses but also full understanding of contextual factors influencing the 

records within the HMIS. 

Concerning the contextual factors, HMIS records may be assumed to be influenced at three main levels. These 

levels interact in a predominantly hierarchical flow, though upward influences may also exist. They include: the 

political system, health system, and community levels. Perceived relationships between these levels of influence, 

as identified for this study, are presented in a summarised conceptual framework below (Figure 10). 

 

Figure 10. Summary of proposed conceptual framework defining HMIS records.  

The major sources of influence that may affect or determine what gets recorded in the OPD or other HMIS registers 

are broadly categorised into three sources of important factors including: the political, governance, and health 

financing; health facility, health worker, or localised health system; community or catchment served by the 

immediate health facility; and, the patients visiting a given health facility. 

Additionally, the factors that may determine quality of records at the health facility, which are the basic building 

blocks of HMIS data, are briefly described below under each of the identified levels of the contextual framework. 
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The political system (highest level) is characterised by the political environment, healthcare policy, and health 

financing factors and has overarching influences defining the working environment of the health facilities within 

the health system. These determine the available services or resources at a given hospital and play a key role in 

its functionality. At community level, influential factors may be due to the transmission setting, occupational 

culture within the community, health seeking and community culture surrounding health care that may impact 

on individual decisions, geographical attributes, and general community context. Proximal to the records, from 

the community are individual patients that may also directly influence the data recorded, based either on their 

perceived importance to providing good information to the health workers or their state of illness when they 

visited. Also, proximal to the records is the health system level that may influence patient, health worker, and the 

health facility itself. Heywood and Boone classified three levels of influence on health records characterised by 

demand for and benefit from use of good health records [116]. These include: the beneficiary-level, involving 

clinicians that need data to follow up patients and monitor their improvement; facility-level, where managers 

need data for infrastructure and resource improvement; and system-level, where district and national leaders 

need data to monitor and plan for services delivery. However, these seem to downplay the role of the community 

which may influence records through community narratives on the available health system, among others. 

Collective understanding of (1) the contextual factors influencing HMIS records that need consideration, (2) 

available opportunities within HMIS data to be harnessed, and (3) prevailing challenges in HMIS to be mitigated, 

is central to both HMIS improvement efforts and accurate interpretation of indicators of burden derived. This is 

important for full implementation of the global strategy of transforming surveillance into a core intervention and 

the ultimate realization of global 2030 malaria targets. 

Below, I provide a more detailed breakdown of the opportunities and challenges of routine HMIS data, specifically 

for malaria surveillance. The opportunities include: 

• Scalable temporal and spatial resolution: Compared to many other sources of malaria case data, HMIS 

provides unmatched temporal coverage for multiple purposes. For instance, the Uganda NMCP conducts 

integrated disease surveillance and response (IDSR) using weekly reports to assesses disease epidemics and 

routine surveillance using monthly OPD HMIS reporting to monitor general trends [36]. However, for any 

practical purposes, temporal assessments are possible from daily to multi-year scales in HMIS unlike any other 

study design. Considering spatial scales, HMIS affords both national and regional scales as with indicator 

surveys. Moreover, given that routine interventions are currently conducted at district level making it the 

focus in Uganda and elsewhere thus far [36], HMIS has been widely used at this scale [11, 13, 80]. Importantly 

though, lower spatial scales’ assessments of disease burden are also possible with HMIS [102] and I explore 

this further in Chapter 6 of the thesis. 

• Comprehensive coverage of age: The most common assessments of malaria burden that use small-scale, 

national cluster-level indicator, and demographic health survey data mainly focus on children under 5 years 



  Page 34 of 267 

of age and seldom on the 5-15 or over 15 years of age if at all. These age-restricted estimates are either largely 

assumed sufficiently indicative of the scope of malaria burden as seen from indicator surveys [61, 96] and 

often, population-level estimates are modelled from these [1, 3, 12, 71, 83, 117]. This paradigm seems to 

downplay any effects of age, particularly older age, in the epidemiology of malaria thereby under-estimating 

burden [118] or its effects on control efforts and I address this further in Chapter 4. HMIS data, however, 

covers the full community age distribution making it a richer source, likely to afford more balanced and/or 

accurate estimates of burden or risk. 

• Multiplicity of proxy burden measures: Whereas malaria incidence rate is primarily defined as number of new 

cases per duration, divided by total person-time of population observation [119] using cohort studies, these 

studies are costly. Several proxy measures from routine HMIS data are used for malaria mapping. These have 

included: (a) Case numbers, either taken as a proportion of estimated population at the time [94, 101, 103, 

104, 120-123], or a standardised morbidity ratio [108]; (b) malaria positive fraction (MPF), as a measure that 

controls for differences in access to care [115, 124, 125]; (c) malaria cases as a proportion of treatment events 

at a facility [125-128]; (d) case-control analysis of disease clustering defining confirmed malaria as cases, and 

negatives as controls [129, 130]. Test positivity rate (TPR), though commonly  reported in HMIS-based studies 

has not been widely used for mapping, except in one evaluation report from Rwanda [106]. It has however 

been used in combination with presumptive cases to generate malaria positive fraction [115, 124, 125] or to 

adjust for over-estimation when presumptive diagnosis is high [115], as was common practice across sub-

Saharan Africa [13]. As a proxy measure of incidence, however, TPR is: (i) inexpensive relative to measuring 

incidence, (ii) widely used to assess temporal trends, (iii) recommended by WHO [44], and (iv) easy to 

incorporate and monitor in routine HMIS processes even at peripheral health facilities [44, 45]. The same 

attributes, however, may hold for all the other commonly used metrics for measuring changes directly like 

case totals or indicators derived and considered as indirect assessments [131]. 

• Interoperability and systems strengthening: There are opportunities within HMIS to link multiple information 

systems, such as: the patient health records system with logistics information systems to manage stockouts 

and/or wastage; HMIS with regional or national demographics for health system strengthening; and, 

conducting multi-disease assessments for enhanced decision making. Importantly, introduction of DHIS-2 in 

2012 was associated with 49% increased report completeness and 55.2% increased submission timeliness 

over the first year, providing greater accessibility to multi-department HMIS data [14]. HMIS data, therefore, 

provides an evidence base to advance policy proposals from: management, expert opinion, task forces, 

stakeholder engagements, community dialogues, trainings, investigative research, and field experiences 

[132]. Evidence exists of triangulation of HMIS with pharmacy and other systems cited as pivotal to monitoring 

new programs like the anti-retroviral drugs program to inform national HIV response in Kenya [133]. 
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Notwithstanding the great opportunities, several limitations of routine HMIS surveillance data are noteworthy 

and may affect accuracy in estimates of malaria and/or disease burden derived. 

• Incompleteness in health facility reporting: Nationwide reporting, though improving, may not be absolutely 

prompt or complete and if completeness is low, assessments may underestimate the burden reported [134]. 

Contributing factors may include: shortage in staffing, infrequent data checking by in-charges, laborious HMIS 

documentation along with lack of training, difficulty submitting hard copy reports, and sudden transfer of staff 

without formal hand-over [135]. Whereas there have been improvements associated with the advent of 

electronic web-based reporting [14], it remains unclear how factors associated with health care human 

resources or health worker practices, impact on HMIS data completeness. 

• Exclusion of close-to-community health services: Data from community health services, such as village health 

teams (VHT) under integrated community case management (iCCM) programmes, are largely excluded from 

regular reporting. Whilst expected from the entire district health services sector, reporting progress has 

mostly impacted the formal health centre side. VHT reporting struggles with: inadequate supply of tools, 

inconsistent and unreliable supervision, shortage of basic required training, and competing demands from 

multiple implementing partners with a diversity of reporting tools in use [136]. Reports show that training has 

been poorly attended by a few VHT members and even fewer for any comprehensive course [136]. Deficiency 

in training, low education levels, and unclear supervision impacts on the quality of VHTs reports, if any. 

• Health seeking behaviours and the private sector: Patient records from the private sector (private-for-profit 

clinics, drug shops - major players, and pharmacies), said to cater for up to 53.2% of patients in Uganda [137], 

are dismally captured through HMIS reporting. Preference of the sector is well documented in sub-Saharan 

Africa citing good service as well as proximal and regular drug supply [138], relative to the public side. 

Extensive drug shops use may signal high levels of self-medication, since artemisinin combination-based 

therapy drugs (ACTs) are over the counter drugs [139]. One report indicated that 38% of caregivers first treat 

fevers at home in Uganda, possibly aided by this drug availability [140]. Moreover, 59% of the children under 

60 months of age sought advice or care from private facilities during their most recent fever episode in 2018 

[61], an increase from 49% in the 2014 by MIS survey reports [60]. Other reports have indicated 42% versus 

16.4% as seeking care from private versus public facilities, respectively, being their first of multiple care 

options for an illness episode [140]. Moreover, where a single option was used, 68% vs. 27% used private vs. 

public facilities, respectively [140]. Taken together, the majority [141] of the population seek care from the 

private sector in Uganda and for effective disease monitoring and control, HMIS-based surveillance needs to 

critically consider the private sector. Nonetheless, HMIS remains heavily biased to public health facilities to 

date. 

• Reliability of diagnosis: Testing practices are fairly differential due to health system-related challenges like: 

disruptive or non-functional facilities, human resource shortages, little or no supervision, and varied health 
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worker attitudes [142]. Diagnostic testing rates, if low, may reduce confirmed cases realised while 

encouraging presumptive diagnosis and therefore, compromised accuracy of burden estimate [108]. 

Moreover, increased use of mRDTs, while curbing the irrational use of antimalarials through reduced 

presumptive diagnoses, is also associated with: increase in false negative results due to low parasite densities 

or deletion of target-gene within the parasite; low health worker trust of results; and, antibiotic overuse 

especially with negative mRDT results [143, 144]. 

• Reliability of population denominators: Incidence rates rely on population estimates as the denominator. 

However, neither the population within an attributed/assumed catchment nor the appropriate catchment of 

a given health facility or group of facilities can be precisely defined. This may be compounded by: (i) non-

alignment of health facility catchments with administrative boundaries though often assumed, (ii) 

unpredictable trends in population movements, especially with unstable political situations such as areas with 

rampant refugee activity, or (iii) unreliable frequency of national population census updates and/or restrictive 

levels of detail of these census data, when available. These factors, individually or collectively, undermine the 

accuracy of estimates of disease incidence in these low resource settings. 

Consequently, the burden of disease reported through routine data is heavily affected by the quality of records 

generated at the health facilities [145]. As such, large areas of the malaria endemic world, especially sub-Saharan 

Africa with HMIS classified as poor, still fall short on reporting true measures of disease burden given underutilised 

routine systems, and alternative model-based sources being used instead [62, 146]. However, this is not the case 

particularly in the lower transmission settings or where HMIS is reliable [62]. Nevertheless, there are many studies 

within these high transmission areas that have exemplified the benefit of routine HMIS in mapping malaria, 

documented from across sub-Saharan Africa [13, 80, 93-95, 101, 103-105, 108, 115, 120-130, 134, 147-157], 

though minimal compared to other data sources. Therefore, the potential in improved routine reporting through 

HMIS is great, especially for spatial risk assessment. 

1.5.3 HMIS data for malaria impact evaluation 

Competing interests on funding that has previously facilitated large-scale declines in malaria burden [158, 159], 

necessitate renewed data-informed implementation and evaluation of the impact of available control 

interventions [4, 160], owing to recent stalling in burden declines. Current intervention tools including LLINs, IRS, 

artemisinin-based combination therapies, and low cost parasitological mRDTs have all long been proved effective. 

However, following their implementation in routine or real-world settings, assessment of their impacts using 

cluster randomised trail (CRT) study designs, have often found no impacts [161-163]. One study in Uganda, for 

instance, successfully implemented a CRT where the intervention trained health workers in fever case 

management using mRDTs (study introduced) and artemether lumefantrine (AL) but found no differences 

between arms, in the prevalence of parasitaemia, anaemia, or other outcome [164]. Such designs in routine 

settings are often overtaken by unexpected competing programs or uncontrolled implementation of other 
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interventions with diluting effects beyond the confines of CRT design assumptions [161, 162]. Nevertheless, 

HMIS’s spatial and temporal scope may provide the best coverage of real-world contextual changes enabling 

assessments based on alternative quasi-experimental designs, such as interrupted time-series and dose-response 

methods, to identify intervention associated impacts [162, 165, 166]. Temporal assessments using HMIS data in 

Zanzibar – Tanzania, for example, showed declines in malaria incidence following the roll out of ACTs and further 

declines during expanded vector control (LLIN and IRS), compared to pre-intervention periods [165]. These 

approaches are fit for purpose because of their capacity to incorporate real-world conditions when carefully 

applied to contextually comprehensive data such as routine HMIS data. Utilization of the spatial capacity of HMIS 

data in evaluating impacts of control interventions on malaria burden, however, remains very limited. One study 

that assessed the effect of case management and vector control on space-time patterns of malaria incidence using 

HMIS data in Uganda, reported protective effects of ITN coverage among all age-groups, though significant only 

among children under 5 years [80]. However, these were likely to be predominantly temporal effects, given that 

no geo-spatial outputs were provided to this effect. Instead, the geo-spatial results reported, only confirmed 

greater heterogeneity of malaria burden among children under 5 years of age than among those 5 years and older. 

Taken together, this further highlights the need for improved understanding of the utility of routine HMIS data, 

for identifying locations at high-risk of malaria in high transmission settings, and thereby its application in 

evaluating the impact of control interventions in those areas. 

1.6 Justification and Rationale  

As indicated in previous sections, there are important knowledge gaps surrounding reliability of HMIS as a viable 

data source, how indicators of malaria burden derived from HMIS relate to each other, their representativeness 

of burden relative to gold standard estimates, and the potential use of these indicators in identifying high-risk 

areas across spatial scales. Stalled reduction in malaria burden, coupled with recent strategies of targeted 

application of well-known effective control interventions informed by surveillance, emphasises an urgent need 

for improved understanding of routine surveillance systems and better interpretation of indicators of malaria 

burden from these systems. A stronger understanding of routine surveillance data would improve identification 

of weaknesses for surveillance system improvement, facilitate increased use of the data generated, foster 

stronger health systems in low resources settings, and improve the allocation of resources for health in these 

settings. Moreover, better interpretation of the data and/or indicators of burden from routine surveillance would 

enable production of stronger evidence or basis for: optimal resource channelling; timely implementation of 

control interventions; improved assessment of control interventions’ impacts; efficient and/or effective decision 

making; and, sustainable, timely, accurate, and scalable monitoring of malaria burden in the low resource high-

burden areas, like Uganda. 

My thesis will focus on understanding the HMIS-based indicators of malaria burden. I will particularly focus on 

malaria incidence rates, both over time and space. As outlined in the previous sections, there are knowledge gaps 
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surrounding relative magnitudes of these metrics in high circulation and/or frequent use. Extremely few studies 

have examined the effectiveness, fitness, or utility of HMIS-based indicators, or relationships between and among 

these or other indicators and none with their gold standard counterparts. Studies of HMIS routine indicators of 

burden, exploring their inherent sources of bias, examining their representativeness of unbiased or true burden, 

and assessing their capacity for identification of high-risk locations are needed to address the identified gaps in 

knowledge on overall utility of routine data. Stronger understanding of relationships between these indicators, 

their change with age over time, representativeness of unbiased burden and likely sources of bias could provide 

valuable insights around impact and effectiveness of malaria control strategies. Moreover, increased 

understanding of the spatial distribution of malaria burden may also inform appropriate scales for optimal 

implementation and assessment of targeted interventions. Consequently, results will highlight the potential for 

robust timely map production using HMIS data for target decision making and optimal resource allocation and 

incentivise improved utility and uptake of risk maps across national malaria control fora. This work is highly timely 

for the call to transform surveillance into an intervention under the global technical strategy for malaria 2016-

2030, and ultimately for the third sustainable development goal to be met [4, 5]. 

1.7 Thesis aim and objectives 

The aim of my thesis is to investigate the utility of indicators of uncomplicated malaria burden from routinely 

collected health facility data in describing the changing temporal and spatial distribution of malaria in Uganda. 

Addressing this aim will provide evidence to guide strategic use of routine data for malaria control activities. This 

aim will be reached through the following specific objectives: 

1. To explore the relationship between alternative measures of uncomplicated malaria incidence generated 

from sentinel surveillance data. 

While several indicators of malaria burden have been derived from routine public health facility data and used 

widely to estimate incidence, how they each relate to the other is unclear. Better understanding of this 

relationship may help with interpretation of burden or risk derived and/or reported through their use. This study 

objective, therefore, explores the relationship between several indicators of malaria burden (incidence estimates), 

and will compare them across three transmission settings in Uganda. 

2. To examine the impact of malaria control interventions on the age distribution of malaria cases using 

routine sentinel surveillance data in four sites where LLIN and IRS campaigns have been conducted. 

Whereas surveillance has predominantly focused on children under five years of age, a pattern of high-risk of 

positivity among older children became apparent and raised concerns about the continuation of surveillance as 

usual. This objective, therefore, explores the possible driver of this changing pattern to provide evidence that 

supports this apparent trend or shift and highlight the vital role age plays in surveillance considerations.  
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3. To investigate the association between incidence of uncomplicated malaria from routine surveillance data 

and incidence from cohorts, across sites of different transmission intensities and identify and quantify 

sources of bias in surveillance incidence to assess its reliability for monitoring burden of malaria. 

Whilst routine HMIS data quality reports range from untimely, incomplete, and unreliable diagnoses to improved, 

in Uganda and elsewhere [37, 167-169], goodness-of-fit of derivate estimates of malaria incidence to represent 

unbiased burden, is unknown. This study objective, therefore, compared HMIS-based incidence with incidence 

from community cohorts in three settings in Uganda, accounting for other associated factors, that are influential 

on health facility data over time. It then evaluated the potential sources and quantities of bias in routine data to 

assess reliability of its estimates of malaria burden. 

4. To explore patterns and determinants of spatial variation of malaria from routine HMIS data at national 

spatial scales and identify areas at high-risk of malaria. 

Geostatistical analyses of malaria reliant on routine data have been limited to regions, district, and sub-district 

spatial scales with limited data access. With increasing accessibility given the advent of DHIS-2, more fine-scale 

assessments of malaria burden and risk may be possible. This study objective, therefore, explored multi-scale 

spatial temporal patterns of incidence and risk using national routine HMIS data from geolocated health facilities, 

accounting for known risk factors. 

1.8 Thesis outline 

To aid interpretation, Chapter 2 provides a detailed description of the multiple data sets pooled together to 

address the different components of this research. Chapter 3 describes the relationship between test positivity 

and incidence rates from enhanced HMIS surveillance across three sites of varied transmission intensity in Uganda. 

Chapter 4 outlines the impacts of effective large-scale community control interventions on the age-specific burden 

of confirmed malaria across four sites of varied transmission intensity in Uganda, stratified into ‘LLIN alone’ versus 

‘LLIN plus IRS’ intervention sites. Chapter 5 evaluates the relationship between HMIS- and cohorts-based 

incidence of malaria, across three sites of varied transmission intensity around Uganda, and assesses the level of 

bias from multiple factors of influence to HMIS recorded data. Chapter 6 presents a concurrent multi-scale 

assessment of the spatial temporal distribution of incidence of malaria from national routine HMIS reporting, 

accounting for environmental risk factors, identifying seasonality and high-risk clusters of malaria across the 

country. These chapters have all been published (Chapters 3 to 5) or submitted (Chapter 6) to peer review journals. 

Finally, Chapter 7 discusses the findings from this work and the conclusions drawn, limitations identified in this 

research, and recommendations for policy and/or future research. 

Other supportive information towards this work, including: (a) summary of the literature reviewed to assess the 

use of routine HMIS data in malaria risk or burden mapping has been provided in Appendix 1; (b) Response to 

reviewers’ comments for the published paper in Chapter 3, contained in Appendix 6; (c) Response to reviewers’ 
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comments for the published paper in Chapter 4, contained in Appendix 8; (d) Response to reviewers’ comments 

for the published paper in Chapter 5, contained in Appendix 9. 
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2 Data Overview 

This thesis uses multiple complementary health management information system (HMIS) data sources that are 

disjointed by study or program design. Consistent across most of these, was that they largely conducted 

surveillance among the same populations but for independent and/or different study objectives. Together, these 

datasets provided a unique opportunity to study estimates of malaria burden and factors associated with them. 

This was possible through leveraging (1) patient-level details from health facilities including dedicated national 

reference centres and community-based passive cohorts, and (2) a nation-wide network of HMIS reporting health 

facilities. I thus provide a summary description of the various data sources and how they tie together. 

Overall, three separate surveillance projects plus the national routine HMIS data system, provided data for this 

work. In the following section, I introduce malaria in Uganda’s HMIS, after which, I provide a detailed description 

of all the data sets used to conduct this research. 

2.1 Study Data Sources 

2.1.1 Malaria in the Uganda’s HMIS 

Summary of the Uganda health system structure: The health system in Uganda, is a hierarchy comprising of: 

National referral hospitals, Regional and other referral hospitals, and district health services, that each report to 

the Ministry of Health’s Department of Health Information, through HMIS. The district health services, headed by 

a district hospital, includes: health centre (HC) IV – providing emergency surgery, in-patient care, maternity, and 

blood transfusion services; followed by mid-level HC III – providing basic laboratory, maternity, and in-patient care 

services; then the HC II – providing outpatient and outreach services as the lowest formal care level with premises 

[170]. 

Whereas public formal care stops at HC II, other facilities include privately owned and a few government-run 

special clinics. At the lowest level are community health workers or village health teams (VHT), comprising of 

volunteers often trained under the integrated community case management (iCCM) strategy to diagnose and treat 

malaria, pneumonia and diarrhoea in children under five years within communities [171]. Taking advantage of 

tools like rapid diagnostic test kits for malaria (mRDTs), VHT where operational, provide extended reach of care 

to communities though these do not consistently perform routine HMIS reporting [172]. 

Uganda has at least 7000 health facilities and counting to date [170]. Nationally, all public health facilities that 

include Government owned and private not-for-profit (PNFP) and increasingly private for profit (PFP) health 

facilities, provide regular (weekly/monthly) HMIS reports on burden of selected diseases and their management 

to regional authorities, primarily the district medical team [173]. Introduced in 1997 as a paper-based reporting 

system, HMIS reports are utilised by the Ministry of Health for national level health assessments [15, 173]. They 

are the primary source of malaria cases data, informing the different Ministry of Health bodies including National 

Malaria Control Program (NMCP), as an evidence base for decisions on control interventions and wider policy [43, 
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173]. Since 2012 however, a web-based District Health Information System – version 2 (DHIS-2) was introduced 

to enable easier access to reports from across the entire national health system, starting with the public sector 

[14].  

Malaria surveillance in Uganda, using standard HMIS, may be considered as conducted at two major levels. The 

first, broader, and more general level is reporting through the district health services to the NMCP. As in many 

malaria endemic countries, health facilities provide regular aggregated reports to governments for disease burden 

assessment and these are entered into the DHIS-2 system, making them readily available to the NMCP(s) [14, 45, 

174]. The second and more focal level is through sentinel sites (later known as reference centres) embedded 

within the HMIS system in epidemiologically diverse settings, to strengthen the collection of high quality data 

[175]. From these, data are evaluated at patient-level, rather than in aggregates, aiding more robust inferences 

for control and early warning feedback, for possible epidemics and therefore, action. Reports from the sentinel 

surveillance are generated monthly by the Uganda malaria surveillance project and made available to the NMCP. 

Specific to this study were uncomplicated malaria cases, details of which are recorded in one of many HMIS 

registers, the outpatient department (OPD) registers – per national policy. Uncomplicated malaria was defined as 

any episode of malaria where the patient was not hospitalised but treated within the outpatient clinic. OPD 

registers comprised the main source of data used in this study. In the next sections I describe the two categories 

of HMIS data used, including patient level or aggregate HMIS data, and two additional data sets including cohorts 

summarised in Table 1, and explanatory variables data. 
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Figure 11. Locations of study health facilities across Uganda, by study objective:  

A – Sentinel health facilities included in the objective 1 study, three facilities in total - all being Level IV and 

Government owned. The sub-county boundary around each was used to define the study area with a varied number 

of villages per site; Nagongera had 45, Walukuba 21 and Kihihi 117 villages. The three sites were selected due to 

the concurrent cohorts conducted there, for which epidemiological diversity of the sites was a key consideration in 

the choice of sites for the cohorts. 

B – Sentinel health facilities included in the objective 2 study, four facilities in total and all Government owned. 

A & C – Sentinel and lower-level health facilities included in the objective 3 study, 15 facilities in total, with some 

Government owned and others private not for profit. The sub-county boundary around each was used to define 

the study area as in objective 1. 
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D – Nation-wide HMIS reporting health facilities included in the objective 4 study, 3446 facilities, including national 

and other referral or district and general hospitals, health centres, and clinics both Government and privately 

owned. 

Table 1. Summary of data sources, the respective study populations, and indicators of malaria burden, by 

study objective. 

 

Data source(s) 
Study population 

age group 

Indicator of malaria 

burden 
Study period 

1. Exploring the relationship between alternative measures of uncomplicated malaria 

Patient-level HMIS: 3 HCIV's (Malaria 

reference centres) in 3 sub-Counties 

including Nagongera, Walukuba, & Kihihi 

Children <11 years 
Test positivity rate, 

Malaria incidence rate 

Oct-2011 

to 

Jun-2016 

2. Examining the impact of malaria control interventions on the case age distributions 

Patient-level HMIS: 3 HCIV's & 1 HCIII 

(Malaria reference centres) in 4 sub-

Counties including Nagongera, Walukuba, 

Aduku, & Kasambya 

3 categories: <5, 5-

15, 15-70 years 
Test positivity 

Jan-2009 

to 

Jul-2018 

3. Investigating associations between incidence of uncomplicated malaria from routine surveillance data 

and cohorts 

Patient-level HMIS: 3 HCIV's (Malaria 

reference centres), 2 HCIII's, and 7 HCII’s 

in 3 sub-Counties including Nagongera, 

Walukuba, & Kihihi 

Children 0.5-<11 

years 
Malaria incidence rate 

Oct-2011 

to 

Sep-2014 

Additional data source - Community 

cohorts: 3 cohorts involving 100 

households from each of the 3 sub-

counties of Nagongera, Walukuba, & 

Kihihi 

Children 0.5-<11 

years 
Malaria incidence rate 

Oct-2011 

to 

Sep-2014 

4. Exploring patterns and determinants of spatial variation of malaria from routine HMIS data 

National DHIS-2 aggregate HMIS: 3446 

health facilities in the national HMIS 

including (Hospitals, HCIV, HCIII, HCII’s, & 

Clinics) 

All Malaria incidence rate 

Jul-2015 

to 

Sep-2019 

HC = Health centre 
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2.1.2 Patient-level HMIS data 

2.1.2.1 Sentinel surveillance data 

In Uganda, sentinel surveillance for malaria has been conducted since 2006, under the Uganda malaria 

surveillance project (UMSP) [68]. Against a backdrop of very low capacity for diagnostic testing in Uganda, six 

sentinel health facilities with operational laboratory facilities and thus, capability to conduct diagnostic testing for 

malaria using microscopy, were purposefully selected, considering geographical representativeness as 

determined under the East African Network for Monitoring Antimalarial Treatment (EANMAT) [27]. These sentinel 

sites were later upgraded to national malaria reference centres for the NMCP [64]. By the start of this PhD in 2017, 

there were at least 21 operational malaria reference centres in Uganda. Of these, three centres were included in 

objectives one and three, while four were included in objective two of this research with each centre located in 

an independent sub-county and district.  

At each outpatient (OPD) clinic of these health facilities, for every patient seen, presenting symptoms of illness 

are assessed by the attending clinician.  All suspected malaria cases are sent to the laboratory for a blood test for 

malaria, by microscopy or mRDT. Based on the test results from the laboratory, appropriate action is then taken 

by the clinician and all the details pertaining to this patient visit are recorded in the OPD register. These details 

include age, sex, fever or history of fever, diagnostic test done, test results, diagnosis given, and treatment 

prescribed, among others. Every month, these data are extracted by a UMSP supported staff at the clinic and 

entered in a MS Access database (Microsoft Corporation Inc., Redmond WA. USA). The complete monthly data 

are then sent to the UMSP data centre for cleaning and processing [68]. A detailed description of the data 

management and processing within this study is provided in section 2.2 below. 

2.1.2.2 Additional (non-sentinel) health facility data  

To supplement the above sentinel site data and ensure comprehensiveness of HMIS data for the included study 

sites, 12 non-sentinel health facilities, including level II and III facilities from three sub-counties (each hosting a 

malaria reference centre) also provided patient-level data in objective three of this study. In keeping with the 

sentinel facility data collection format, retrospective anonymised individual patient details were collected from 

OPD registers of each facility, covering a three-year duration. To collect these data, I recruited a team of at least 

seven research assistants (RA) at a time, per site, and evaluated them with a pre-training test on their basic data 

and mathematics abilities. I then trained them on the principles of research and the study procedures that were 

detailed in a standard operating procedure (SOP). Following several days of training, they were all tested using a 

post-training quiz to evaluate their comprehension of the procedural aspects of the study. The RA’s then entered 

the data from OPD registers into MS access databases, loaded on tablet computers. I provided fulltime supervision 

of this activity in the field from site to site. On a daily basis, I backed up the data from each tablet and charged the 

tablets at a central place, making them ready for the next day of work, since our field office – a rented primary 

school classroom had no power supply. 
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Also, some data from a cluster-randomised trial (CRT) conducted in several sub-counties of Tororo district 

including Nagongera, among government-owned lower level health facilities, was included in this study [164]. The 

CRT study aimed to evaluate the impact of enhanced health facility-based care for malaria and febrile illnesses in 

children within the study area. With facilities randomised in two arms, the intervention that involved, among 

others, training health workers on fever case management and use of mRDTs, as well as ensuring adequate 

supplies of mRDTs and artemether-lumefantrine (AL) was evaluated using HMIS data from OPD registers in both 

arms [164]. 3/20 facilities including Maundo, Were, and Katajula HCII’s were in Nagongera sub-county and data 

covering the duration between October-2011 and March-2013 for these facilities was obtained from the CRT and 

included in this study. The primary data collection discussed above, collected the remaining 19 months of data to 

ensure coverage of the full three-year study duration. Together, these data sets were used to address objective 

three of this thesis. 

2.1.3 National DHIS-2 aggregate HMIS data  

From the Department of Health Information within the Uganda Ministry of Health, I obtained nation-wide HMIS 

data from the DHIS-2 per year for all 128 districts of Uganda (as they were known by 2018) as excel spreadsheet 

files, formatted as monthly health facility entries. These entries included totals of OPD malaria and OPD malaria 

confirmed (by microscopy or mRDT) for each health facility, over the duration of January-2014 through 

September-2019. 

Following data review, the study duration was defined to cover July-2015 through September-2019, and these 

data were compiled into a single database for all the 51 months of the study duration, to address objective 4 of 

this study. 

2.1.4 Additional data source - Community Cohorts 

In addition to routine HMIS data, this thesis incorporated data from three enhanced passive cohort studies 

conducted in Nagongera, Walukuba, and Kihihi sub-counties starting August-2011, under one of ten International 

Centres of Excellence in Malaria Research (U19AI089674) [176]. The focus for the original project was to describe 

malaria incidence and prevalence, providing a basis for further analyses on longitudinal trends and risk. For these 

cohorts, all children aged 0.5-<11years were recruited from a random selection of 100 households, drawn from 

full enumeration of all households in each sub-county. Being dynamic cohorts, any additional children in this age 

group within each participating household were all eligible. Clinical assessments happened at enrolment and at 3 

monthly scheduled visits using a standardised questionnaire, and a blood sample taken at each to assess for 

malaria infection by microscopy. However, participants received free medical attention between scheduled 

assessments throughout the study duration, at the study clinic that was open daily. 
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For a three-year duration, data was obtained from these three passive community cohorts. Incidence of malaria 

was estimated monthly, defined as the total number of incident cases of malaria divided by total person-time of 

follow-up estimated in years, per month, by site. 

Whereas the cohorts were used to provide a gold standard estimate of incidence of malaria per site, 

advantages/strengths, and weaknesses of the data in consideration were identified as detailed in Table 2 below. 

Table 2. Strengths and weaknesses of the Cohort data used to derive the 'gold standard' incidence rates 

against which to evaluate the routine HMIS incidence rates. 

Strength Weakness 

Provided standard testing for all suspected malaria: 

For ill participants at any visit, standard sick visit 

procedures including measuring temperature and/or 

recording history of fever in the previous 24 hours; 

taking a finger prick to obtain smear and filter paper 

samples and if thick smear positive, the patient was 

diagnosed with malaria and prescribed artemether-

lumefantrine (AL), the recommended first-line 

therapy per national guidelines [35]. Moreover, the 

study performed venepuncture on all nonill 

participants at each clinic visit for a thick blood smear 

to examine for asymptomatic parasitaemia, among 

others. 

Only 100 households included across each site: 

Though randomly selected, these 100 households 

accounted for very small proportions of the 9,881, 

12,774, and 6,992 households in Walukuba, Kihihi, & 

Nagongera respectively and therefore, only sufficient 

to provide a good site-level (sub-county) estimate of 

incidence but proportions too small for parish or 

village-level estimates. 

Captured cases every day of the week: Unlike 

standard of care at public health facilities where OPD 

clinics may sometimes be closed, the cohort clinics 

were open every day of the week to see participants. 

Excluded children < 6months: Whilst infants may be 

assumed to benefit from maternal immunity, sentinel 

HMIS data showed that high proportions of infants <6 

months of age had confirmed malaria including 

12.7%, 28.3%, and 23.2% in Walukuba, Kihihi, and 

Nagongera respectively, over the same study 

duration. Excluding this group from the cohorts may 

have limited the understanding of estimates of 

incidence. 

Consistent health worker practice: Given this 

controlled experiment environment with multiple 

levels of supervision of study activities, study 

clinicians followed well documented standard 

Differential loss to follow-up: Whilst the study 

purposed to follow-up 100 households, there was 

considerable loss to follow-up. For instance, by the 

end of the study-period 21 households had dropped 



  Page 48 of 267 

operating procedures as per ethically approved study 

procedures for every clinic visit and across all three 

sites [177]. 

out of the study in Nagongera due to; relocation, 

inability to comply, and withdrawn consent, among 

others [178]. 

Provided prompt treatment: With a clinic open on 

every day of the week, participants enjoyed the ideal 

care provision with the highest likelihood of care 

availability within 24 hours of symptoms onset unlike 

under non-study conditions. Under standard care, 

delay may be caused by multiple limiting factors, 

especially financial or known unavailability of drugs at 

facilities. 

Passive follow-up: Whereas participants were free to 

come to the clinic for all febrile illness needs and 

alternative care seeking was minimised, the passive 

nature of these cohorts could have caused some to 

choose quicker alternatives. For instance, 0.1% of 

participants were reported to have sought 

inappropriate care in the first 24 months of the study 

[177]. 

Reimbursed participants’ travel costs: Whilst cost or 

financial challenges have been indicated as inhibiting 

to appropriate care access, the reimbursement of 

travel cost for participants provided good motivation 

for clinic attendance and therefore, improved 

likelihood of registering incident clinical cases of 

malaria 

On the other hand, the financial motivation through 

travel cost reimbursements could have inflated case 

detection rates, to levels unlikely under standard care 

or routine surveillance. This is especially so in the 

very high transmissions settings, where minor fevers 

from other causes that would not have resulted in 

standard care clinic visits, may be coupled with highly 

likely asymptomatic parasitaemia leading to 

confirmed malaria in this incentivised setting [32]. 

To assess the relationship between HMIS-based and cohort incidence, monthly estimates of cohort incidence were 

included as an independent variable in the regression models used in the objective three study of this research, 

results of which are presented in chapter 5 of this thesis.  In the following section, I describe the data preparation 

process by first, explaining the broad data preparation processes undertaken, followed by objective-specific data 

assessment, with particular focus on the outcomes of interest.  
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2.2 Outcome Data Management and Processing 

2.2.1 Data preparation 

2.2.1.1 Data cleaning process 

I converted all data sets from the various projects to STATA. The majority of these data sets were already cleaned 

from the primary analysis projects especially regarding the malaria outcome, diagnostic testing performed, 

diagnostic test results, and age. This was not the case, however, for villages of residence, especially for the UMSP. 

To merge these datasets into a single database, several variables, value definitions and value labels needed cross-

checking and alignment, which I conducted in STATA. For villages of residence, I used both my personal experience 

gained through being involved in the household enumeration exercises, where I led the teams as a research 

assistant and data officer with the projects during 2009-2011, and also referred to local knowledge. For the three 

sites, therefore, I created a standard fully coded village names master list against which, to evaluate all incoming 

data. The remaining list of unresolved named villages (without a match in the master list), I defined as unknown 

within catchment areas (sub-county), while those with a missing record, I placed in the category of missing. 

2.2.1.2 Population at risk of malaria (denominator) 

At multiple levels in this research, I needed to generate or define the population at risk, which in turn defined the 

denominator in estimating village or other defined resolution-level incidence rates per month. As such, the 

intended resolution-level population estimates were derived using national population gridded surfaces, freely 

provided by the Worldpop project (http://www.worldpop.org.uk). The main determinant for this choice was the 

inaccessibility of national housing and population census data for 2014 from UBOS, as well as the unavailability of 

these estimates at the spatial resolutions of interest in this study, particularly villages and health facility catchment 

areas, as further discussed in chapters 3, 5, and 6 of this thesis. From the national gridded population surfaces, 

estimates at the respective spatial resolution, particularly sub-Counties (described fully in Chapter 3) and health 

facility catchment areas (described fully in chapter 6), were extracted using the ESRI ArcGIS 10.3 Zonal statistics 

tool (ESRI 1995-2014l Redlands, CA. USA) for the objective respective study durations. 

From the annual population counts, monthly population estimates were determined using a monthly growth rate 

generated from national bureau of statistics’ (UBOS) 2002-2014 published census reports [179] for each 

subcounty (in Chapter 3). Moreover, I used linear regression predictions for monthly population estimates within 

health facility catchment areas, as discussed in Chapter 6. 

2.2.1.3 Suspected malaria definition 

 As no explicit record was made in the HMIS OPD registers of patients with suspected malaria, these were defined 

as all patients sent to the laboratory for a blood test for malaria, by microscopy or mRDT. Among those not sent 

to the laboratory, however, suspected malaria cases were identified as those with a clinical diagnosis of malaria. 

Whilst fever or history of fever in the last 48 hours is a key identifier of cases suspected to be malaria, the recording 

http://www.worldpop.org.uk/
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of this data or even the temperature taken at the clinic in all the HMIS studies involved was very low. For instance, 

data from the three sentinel facilities of Walukuba, Kihihi, and Nagongera, between Oct-2011 through June-2016, 

showed that fever recording among children <11 years of age ranged from 28.4 to 51.9%. Also, whilst a 

temperature of >=37.5 0C was considered determinant of fever, this information was predominantly missing in 

the HMIS databases. For example, in the three sentinel sites discussed above, a maximum of 34 participants had 

a recorded temperature, as such, these data were not utilised as primary determinants of suspected malaria. 

2.2.1.4 Attendance status 

For each patient visit recorded in the OPD registers, it is expected that indication is made of whether that patient 

visit was a new attendance (that is a new episode of illness) or re-attendance (implying a follow-up visit for an 

illness episode that was previously recorded at the clinic). This was done to avoid possible counting of the same 

episode of illness more than once as an incident case of malaria and would be applicable for any other illness 

presented and/or recorded in OPD registers. All re-attendance cases were excluded from any analyses in this 

study. For instance, though between 44.6 and 51.2% of participants had a missing record of attendance status 

among the three sentinel facilities during Oct-2011 and June-2016 and were assumed new illness episodes, 

between 0 and 4.2% of patients <11 years had visits classified as re-attendance, making them ineligible for 

inclusion. Exclusion of re-attendance visits was not expected to impact on analyses in anyway, given that they had 

been recorded in the data during their initial clinic visit, for the same illness episode. 

In the following section, I provide a detailed description of the data included in addressing each individual study 

objective, with an emphasis on evaluating those excluded from analysis. 

2.2.2 Data description and summary by objective 

2.2.2.1 Objective 1: To explore the relationship between alternative measures of uncomplicated malaria 

incidence generated from sentinel surveillance data 

Here, I examined data for the duration between October 2011 to June 2016, from three sites with a sentinel or 

reference health facility, including Nagongera Health centre IV (HCIV) in Tororo, Walukuba HCIV in Jinja, and Kihihi 

HCIV in Kanungu districts, as shown in Figure 11 above. 

For study participant data preparation, attention was paid to villages of residence, age, test positivity and 

diagnosis, and attendance status, each contributing to the inclusion criteria. 

a) Exclusion from study based on village of residence: 

Exclusively village of residence: Among suspected malaria cases under 11 years of age that were new attendance 

visits, 44,875 (40.6%) were excluded based on a missing (61.9%) or unknown village of residence within the study 

sites. Interestingly overall, all the excluded patients were suspected to be malaria cases. The majority of these, 

had a malaria diagnostic test performed (94.9%) with 34.9% confirmed positive for malaria parasites, compared 
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to 37.5% among those with known villages and therefore, included (Chi sq.=71.5, p<0.001). By site, however, two 

sites showed significant differences including first, Nagongera where 32.0% of those excluded were confirmed 

positive for malaria parasites compared to 38.2% among those included (Chi sq.=179.2, p<0.001). Second, 

Walukuba where 33.0% of the excluded were confirmed positive cases compared to 24.2% among those included 

(Chi sq.=260.2, p<0.001), but no significant differences in Kihihi (Chi sq.=1.8, p=0.185). With a similar distribution 

of cases among the included and excluded participants in Kihihi, as well as a significantly higher proportion of 

confirmed malaria cases among the included than the excluded in Nagongera, exclusions due to missing villages 

of residence may not have impacted findings in this study, for these two sites. For Walukuba, however, the 

significantly higher proportion of confirmed cases among those excluded may have led to underestimation of 

indicators generated in this study for this site. 

Age by villages of residence status: The majority of patients with recorded age <11 years, were under 5 years of 

age in all sites, with: Walukuba (66.0%) among those included compared to (70.8%) among those excluded 

(p<0.001); Kihihi (59.2%) among those included compared to 57.7% among those excluded (p<0.001); and, 

Nagongera (79.1%) among those included compared to 81.2% among the excluded (p<0.001). Within the highest 

transmission setting of Nagongera, 50% of the included participants were under 2 years of age compared to 54.9% 

among those excluded (Table 3). 

Table 3. Age distribution of study participants comparing included and excluded patients <11 years, by site. 

Site Age category Patients Included (%) Patients Excluded (%) P-value 

Walukuba 

<2 years 7,543 (35.9) 4,057 (37.3%) 

<0.001 

2-<4 years 4,580 (21.8) 2,679 (24.6%) 

4-<6 years 3,081 (14.7) 1,671 (15.4%) 

6-<8 years 2,349 (11.2) 1,102 (10.1%) 

8-<11 years 3,436 (16.4) 1,363 (12.5%) 

Kihihi 

<2 years 7,496 (29.5) 2,135 (29.3%) 

<0.001 

2-<4 years 5,207 (20.5) 1,467 (20.1%) 

4-<6 years 4,425 (17.4) 1,122 (15.4%) 

6-<8 years 3,597 (14.2) 1,057 (14.5%) 

8-<11 years 4,652 (18.3) 1,517 (20.8%) 

Nagongera 

<2 years 9,671 (50.0) 14,654 (54.9%) 

<0.001 

2-<4 years 4,354 (22.5) 5,567 (20.9%) 

4-<6 years 2,254 (11.7) 2,593 (9.7%) 

6-<8 years 1,399 (7.2) 1,666 (6.2%) 

8-<11 years 1,666 (8.6) 2,225 (8.3%) 
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The data here showed that in Walukuba and Kihihi, a significantly smaller proportion of participants were excluded 

due to missing villages by age across these age categories than were included in the study. As such, in these two 

sites exclusion due to missing villages, may not have significantly impacted the effects of age within the indicators 

derived. For Nagongera, however, the data showed that a significantly larger proportion of participants were 

excluded due to missing village by age than were included, implying that participant exclusion due to missing 

villages may have had a larger impact on age-related effects in the indicators of malaria burden derived for the 

site. 

b) Exclusion based on age 

Very few patients (1,203), had a missing record of age from the data collected, and these were excluded from the 

study. The distribution of these was 72.3, 18.6, and 9.1% in Walukuba, Kihihi, and Nagongera, respectively 

indicating that Walukuba had the highest occurrence of missing age recording, though all together negligible. 

c) Exclusion based on test positivity and diagnosis 

Malaria cases were defined as participants that were diagnostically confirmed positive for malaria parasites. 

Participants with a negative diagnostic test for malaria, but having a diagnosis for malaria given, did not qualify as 

cases but as suspected malaria cases, and these were very few in the sentinel facilities data - a total of 716 

participants with 12.2, 17.3, and 70.5% of them in Walukuba, Kihihi, and Nagongera, respectively. Moreover, 445 

participants (37.1, 14.2, and 48.8% of these in Walukuba, Kihihi, and Nagongera) were presumptively diagnosed 

with malaria and therefore, not considered as cases of malaria but as suspected malaria cases instead. However, 

252 participants were registered having a positive diagnostic test for malaria, but without a diagnosis for malaria, 

and were considered confirmed malaria cases in this study. Among study participants, a large majority of 

diagnostic testing for malaria was performed using microscopy ranging from 90.9 to 98.7% in Walukuba and Kihihi, 

respectively. A small proportion of diagnostic tests included rapid diagnostic tests, highest in Nagongera with 954 

tests. 

2.2.2.2 Objective 2: To examine the impact of malaria control interventions on the age distribution of malaria 

cases using routine sentinel surveillance data in four sites where LLIN and IRS campaigns have been 

conducted. 

In this study objective, I included data from four sites  with a sentinel or reference health facility each (two from 

objective one above and an additional two), including Walukuba health centre IV (HCIV) in Jinja district of the 

central Uganda, Kasambya HCIII in Mubende district of mid-western Uganda, Aduku HCIV in Apac district of 

northern Uganda, and Nagongera HCIV in Tororo district of eastern Uganda, with site locations shown in Figure 

11 above, for the duration between January 2009 to July 2018. 

The data from these health facilities was prepared and cleaned with particular focus on age, diagnostic tests and 

test positivity, suspected malaria status, sex, and attendance status. 
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Exclusion from the study 

Age: Given a smaller number of much older patients seeking care, those over the age of 70 years were excluded 

from the analyses, a total of 1,975 (0.6%), 1,442 (0.9%), 3,673 (1.9%), and 3,833 (1.7%) in Walukuba, Kasambya, 

Aduku, and Nagongera, respectively. These were not expected to impact on our results in any significant way. 

Sex: A very small number of eligible participants (at most 0.03% in a single site) had a missing record of sex in the 

data and were excluded, given that sex was an important factor included in the analysis for this study objective. 

However, these were not expected to impact on our findings in any way.  

Diagnostic tests and test positivity: All cases confirmed by microscopy or mRDT were considered positive cases 

and presumptive cases not counted. The exclusion of presumptive cases regardless of being few, is not expected 

to have a definite effect on our analyses or results, given that the presumptive diagnosis process is highly 

subjective and therefore indeterminate. Whilst majority of diagnostic testing was performed using microscopy 

across all the four sites, a slightly larger majority of negative than positive test results were generated using 

microscopy in Walukuba, Kasambya and Aduku, but not in Nagongera (Table 4). Notably, however, the highest 

proportion of positive test results generated using mRDT’s were observed in Aduku at 28.1%. 

Table 4. Proportions of test results, by diagnostic testing method per site. 

Test result 
Diagnostic 

method 
Walukuba Kasambya Aduku Nagongera 

Positive  
Microscopy 40,548 (96.7%) 35,273 (84.3%) 26,648 (71.9%) 31,725 (90.2%) 

mRDT 1,403 (3.3%) 6,583 (15.7%) 10,407 (28.1%) 3,438 (9.8%) 

Negative 
Microscopy 81,295 (97.5%) 55,464 (86.4%) 49,049 (85.4%) 73,175 (87.9%) 

mRDT 2,112 (2.5%) 8,767 (13.7%) 8,393 (14.6%) 10,053 (12.1%) 

Assessing potential impacts of diagnostic testing method showed no identifiable pattern, suggesting that the 

diagnostic method used had very limited influence on the pattern of test results, as further discussed in Chapter 

4. 
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2.2.2.3 Objective 3: To investigate the association between incidence of uncomplicated malaria from routine 

surveillance data and incidence from cohorts, across sites of different transmission intensities and, 

identify and quantify sources of bias in surveillance incidence, to assess its reliability for monitoring 

burden of malaria. 

This study objective included HMIS data from which incidence of malaria was estimated, as well as community 

cohort data that provided the comparative incidence estimates in the three study sites. 

HMIS data: This was obtained from all 15 public health facilities located within the geographic administrative 

boundaries of Nagongera sub-County in Tororo district (5 facilities); Walukuba sub-County in Jinja district (3 

facilities); and, Kihihi sub-County in Kanungu district (7 facilities) as shown in Figure 11. The enrolled health 

facilities included: Nagongera, Walukuba and Kihihi HCIV’s, in the respective sub-Counties; Matanda and 

Nyamwegabira HCIII’s, and Bihomborwa, Bushere, Kibimbiri and Nyakashure/Samaria HCII’s, in Kihihi sub-County; 

Were, Katajula, Maundo, and Pokongo HCII’s, in Nagongera sub-County; and, Masese Port and Masese 3 HCII’s, in 

Walukuba sub-County. Whereas 16 health facilities were screened for inclusion in this study, one was excluded 

based on its geo-location falling outside of the study site boundaries, besides the very few residents of the sub-

county (study site) who visited this facility for care. These HMIS data were obtained for the three-year duration 

spanning October-2011 through September-2014. 

After extraction from OPD registers, the data was cleaned with particular focus on village of residence, age, 

diagnostic testing and diagnosis, and attendance status. 

Exclusion from the study: 

Village of residence: In this study objective, missingness of record of village of residence was corrected for in 

computing confirmed cases, as later explained in Chapter 5. However, all patient records with villages that were 

either unknown within the study site or unclear, were excluded. Nevertheless, these were not expected to impact 

on our estimates of incidence, given that residence within the site boundaries was central to estimating site-

specific analysis outcomes. Notably though, there was a higher proportion of patients with unknown villages in 

the lower-level facilities of Kihihi, which may be attributed to being at the border between Uganda and Democratic 

republic of Congo (DRC), where sporadic influxes of refugees from DRC have been reported [180]. For instance, 

Matanda health centre III that is located within a designated refugee transit camp, contributed 41.2% of the 

patient records with unknown village of residence in Kihihi. Nevertheless, at the time of data collection from this 

health facility, the camp was unoccupied though the clinic was fully operational, possibly serving the more regular 

resident users of the facility from nearby villages. Based on this, it can be assumed that the exclusion of 

participants whose villages of residence were unknown within the site facilitated a more accurate estimate of 

burden attributable to the site resident population. 
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Age: To generate HMIS-based incidence estimates that would be comparable to estimates from community 

cohorts, all patients aged 11 years and older were excluded from this analysis. These were unexpected to impact 

on our results by virtue of being outside of age-groups of interest. Moreover, all patients with a missing record of 

age were also excluded and assuming an equal distribution as those with known age and therefore included, 

exclusion due to missing age was not expected to have considerable impact on incidence estimates. 

2.2.2.4 Objective 4: To explore patters and determinants of spatial variation of malaria from routine HMIS 

data at sub-/national spatial scales and identify areas at high-risk of malaria. 

To address this objective, HMIS data was obtained from the national repository for routine HMIS via the DHIS-2 

web-based system. Data from all health facilities expected to report through standard surveillance procedures, 

including total attendance, re-attendance, OPD malaria cases, and confirmed cases (by Microscopy and mRDT) 

were obtained for at least four years (51 months long). 

A total of 3446 health facilities with associated geo-location coordinates, were included in this study (Figure 11). 

These data were summarised on a monthly time scale for all age-groups combined, for each of the study health 

facilities. 

Exclusion from the study: 

HMIS data from January-2014 through September-2019 were extracted and assessed for use in this study. 

Notably, from January-2014 through June-2015 these data were inconsistent from month to month, with many 

months of data missing. However, starting July-2015 the format of the data sets was markedly different from the 

previous duration. The differences included the introduction of additional patient age categories that may have 

been a consequence of undocumented but evident system revisions or improvements. Given this considerably 

more complete and consistent data set, the duration of interest in this study was defined as spanning July-2015 

through September-2019. Consequently, data from January-2014 through June-2015 was excluded. 

For the geo-coding of health facilities, I obtained a database of public health facility geo-coordinates across Africa 

that was published by the KEMRI-Wellcome Trust Research Programme [181]. Of the 3792 health facilities in the 

database, 3448 (91.0%) were matched with the health facilities in the HMIS malaria cases database of 2015, 

excluding all facilities with duplicate geo-coordinates. However, one was geo-located in the lake and another 

outside the country boundaries, and therefore, both were excluded. A total of 3446 geolocated health facilities 

that matched with the HMIS malaria cases database consisted the facilities that we defined as study health 

facilities. Estimated impacts of the exclusion of data reported from health facilities that were not geo-coded per 

district, are further discussed in Chapter 6 of this thesis. 
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2.3 Ethical considerations 

Two of the programmes that provided data, including Uganda Malaria Surveillance Project (UMSP) and the 

National HMIS, were not required to have ethical approval as national surveillance programmes. However, the 

two research projects that provided additional data had independent ethical approvals from the Makerere 

University School of Medicine Research Ethics Committee (SOM-REC #2010-108 and #2011-167). This was the 

local Institutional review board at the base of their research activities in Uganda, hosted by the Infectious Diseases 

Research Collaboration (IDRC). In addition, they each received approval from the Uganda National Council for 

Science & Technology (UNCST #HS 794 and #HS 1019), which is the national body that oversees research on the 

Government’s behalf.  Moreover, ethical approval for each was also obtained from the other collaborating 

institutions involved in these studies, mainly including the London School of Hygiene & Tropical Medicine (LSHTM 

#5943 and #5779) and the University of California San Francisco (UCSF). 

Specific to the proposed work in this thesis with independent research objectives, separate ethical approval was 

sought, obtained, and later renewed from SOM-REC, being the local IRB for this study in Uganda (Appendix 2a & 

2b). Next, approval was sought and obtained from the UNCST for government approval (Appendix 3). With these 

in place, ethical approval was sought, obtained, and later renewed from LSHTM research ethics committee 

(Appendix 4a & 4b). 

Also, an amendment was sought and obtained to use publicly available national HMIS data from the national 

malaria control program to address the fourth objective of this research. For this, permission was sought and 

obtained from the Ministry of Health (Appendix 5) and based on this, ethical approval was sought and obtained 

for the proposed amendment from SOM-REC (Appendix 2c), and ultimately, approval was also obtained from 

LSHTM research ethics committee (Appendix 4c). 

Concerning the primary data collection directly from health facilities, other necessary levels of permission were 

also required, and these included obtaining support letters from the district health officers (DHO) of each of the 

three districts of Tororo, Jinja, and Kanunugu. With these on hand, permission was then sought and obtained from 

health facility in-charges to access their stored registers within the respective facility HMIS offices. In two facilities 

of one district, the in-charges expressed overwhelming reservations to providing access to their registers. These 

necessitated lengthy explanations as well as additional written permission from other district officials (besides the 

DHO) before they would permit access to their registers. However, even with these permissions on hand, these 

two facilities also had both the most disorganised storage and poorest state of registers.  
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3.1 Additional information for Paper 1 

3.1.1 Concordance analysis 

Concordance analysis results are presented by month in Figure 1 and by village in Figure 2 below. The included 

two (Nagongera and Kihihi) of three sites are they that met the ‘normal distribution of differences’ criteria 

required in Bland-Altman’s method, whereas Walukuba did not qualify and was therefore, excluded. 

Figure 1. Bland-Altman diagram for Nagongera and Kihihi, assessing incidence estimates of TPR and IR at the 

level of time (month).  
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Each red dot represents a month of study year within each site, the dashed blue lines – the mean of 

differences, and the dashed red lines – the 95% agreement limits at approximately two standard deviations 

away from the mean. 

The mean of differences for these monthly assessments (Figure 1) was much lower in Nagongera than Kihihi, 

being 0.148 and 0.338 respectively, a higher than two-fold and significant difference (p<0.001) with the means 

represented by the blue dashed line. However, the spread of limits of agreement was nearly the same for both 

sites i.e. 0.154 and 0.158 respectively, indicated by the dark-red dashed lines. Thus, difference between TPR and 

IR per month was less than 0.08 at both sites within 95% confidence bounds. 

  



  Page 72 of 267 

Figure 2. Bland-Altman diagram for Nagongera and Kihihi, assessing TPR against IR at by village, stratified by 

year of study. 

 

 

The mean of differences by village is represented by the red dashed line for both sites. Also, spread of the 

limits of agreement by village is indicated by the area between green dashed lines, which mark the 95% 

confidence interval limits, at approximately two standard deviations from the mean. Each circle represents 

a four-year village average for each indicator for the respective site. 

Concordance results (shown in Figures 1 and 2) revealed higher mean of differences between TPR and IR in Kihihi, 

0.33 than Nagongera, 0.17 within 95% CI, suggesting a similarly large average difference between the sites. 

Furthermore, differences between TPR and IR by village were limited to 0.16 in either site and greater than 
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differences by month that were limited to 0.08 within 95% CI, pointing to greater heterogeneity between villages 

than months. Consistency in the differences between TPR and IR for either site on the two dimensions of month 

and village, provides further evidence in support of agreement between these indicators [182] regardless of 

transmission setting. By village, TPR was on average 30% higher than IR for both sites and there was an apparent 

relationship between variability in the two indicators and the quantity of each, with smaller differences observed 

at lower quantities in each of the indicators and greater differences as well as uncertainty when these are larger, 

that implies that there is greater agreement at lower transmission levels. 

3.1.2 Relationship between TPR and IR 

The relationship between the two indicators of TPR and IR by village, was explored using the mean annual value 

of each indicator, for each village. Here, unlike the case of the same examination by month presented in Figure 4 

in the paper, the relationship is unclear as seen in Figure 3 below.
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Figure 3. Scatter plot of village-level four-year average test positivity rate against annual test-confirmed malaria case rate, by site. Point sizes account for 

number tested for malaria by village 

 

 

  

 

 

 

 

 

 

Each red point or circle corresponds to a village within the site 

presenting the annual averages of the indicators TPR and IR. The size of 

points is relative to number of suspected malaria cases tested for 

independent episodes of illness from the respective villages over the 

duration. 
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3.1.3 Univariable analysis 

For each of the sites, explanatory variables including: sex or gender as 10% increments in the proportion of males 

among the study participants; distance to the health facility first determined in kilometres and then transformed 

to site specific quartiles; and, season determined using the predominant annual patterns of rain (March-May and 

September-November) and dry (rest of the year) seasons in the southern parts of Uganda, [183] were evaluated. 

For each site, age as 5% increments in the proportion of children 5 to under 11 years of age, was considered a 

default variable for inclusion, given that the existence of significant association between age with risk of infection 

is well known. [118, 184] Results from the univariate analysis are presented in Tables 1, 2, and 3 for Nagongera, 

Kihihi, and Walukuba, respectively.  

Table 1. Mixed effects Poisson model results (crude) assessing associations in Nagongera between IR and TPR, 

age, gender, distance to health facility, and season as fixed effects; and, including random effects of village of 

residence and month of study year. 

Exposure 

Un-adjusted 

Fixed effects Random effects 

IRR (95% CI) p-value Village (Std. Err.) Month (Std. Err.) 

Case positivity TPR 1.14 (1.13-1.15) <0.001 0.759 (0.175) 0.172 (0.016) 

Age 

Increasing 

proportion of 

>=5yrs 

0.97 (0.94-1.00) 0.042 0.748 (0.173) 0.398 (0.030) 

Gender 

Increasing 

proportion of 

Males 

1.01 (0.98-1.03) 0.595 0.721 (0.167) 0.395 (0.030) 

Distance to 

health facility 

1st Quartile 1 Reference 

0.548 (0.128) 0.398 (0.030) 
2nd Quartile 0.45 (0.23-0.86) 0.016 

3rd Quartile 0.34 (0.17-0.65) 0.001 

4th Quartile 0.33 (0.17-0.62) 0.001 

Season 
Dry / Sunny 1 Reference 

0.743 (0.172) 0.387 (0.029) 
Wet / Rain 0.83 (0.75-0.91) <0.001 
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Table 2. Mixed effects Poisson model results (crude) assessing associations in Kihihi between IR and TPR, age, 

and distance to health facility as fixed effects; and, including random effects of village of residence and month of 

study year. 

Exposure 

Un-adjusted 

Fixed effects Random effects 

IRR (95% CI) p-value Village (Std. Err.) Month (Std. Err.) 

Case positivity TPR 1.12 (1.11-1.13) <0.001 0.545 (0.079) 0.225 (0.013) 

Age 

Increasing 

proportion of 

>=5yrs 

1.06 (1.04-1.07) <0.001 0.534 (0.079) 0.428 (0.021) 

Gender 

Increasing 

proportion of 

Males 

1.01 (0.99-1.02) 0.298 0.565 (0.082) 0.442 (0.022) 

Distance to 

health facility 

1st Quartile 1 Reference 

0.459 (0.067) 0.442 (0.022) 
2nd Quartile 1.16 (0.78-1.74) 0.467 

3rd Quartile 0.66 (0.45-0.98) 0.041 

4th Quartile 0.49 (0.33-0.72) <0.001 

Season 
Dry / Sunny 1 Reference 

0.565 (0.082) 0.442 (0.022) 
Wet / Rain 0.93 (0.88-0.99) 0.034 
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Table 3. Mixed effects Poisson model results (crude) assessing associations in Walukuba between IR and TPR, 

age, and distance to health facility as fixed effects; and, including random effects of village of residence and 

month of study year. 

Exposure 

Un-adjusted 

Fixed effects Random effects 

IRR (95% CI) p-value Village (Std. Err.) Month (Std. Err.) 

Case positivity TPR 1.14 (1.12-1.15) <0.001 0.671 (0.230) 0.285 (0.027) 

Age 

Increasing 

proportion of 

>=5yrs 

1.09 (1.05-1.13) <0.001 0.594 (0.205) 0.481 (0.041) 

Gender 

Increasing 

proportion of 

Males 

1.03 (0.99-1.08) 0.088 0.645 (0.222) 0.494 (0.042) 

Distance to 

health facility 

1st Quartile 1 Reference 

0.320 (0.115) 0.495 (0.042) 
2nd Quartile 0.72 (0.32-1.62) 0.423 

3rd Quartile 0.84 (0.45-0.98) 0.623 

4th Quartile 0.25 (0.33-0.72) <0.001 

Season 
Dry / Sunny 1 Reference 

0.646 (0.222) 0.494 (0.042) 
Wet / Rain 0.92 (0.81-1.04) 0.202 

3.1.4 Model selection 

The best model fit was selected using the Akaike’s information criteria where the model with the lowest value is 

considered better than others with higher values. This model can be considered as the model with maximum 

precision using all the important covariates accounted for. In this study, four models were considered including 

the linear, the quadratic, the exponential and the cubic. Results for each of these models considered are presented 

in Table 4 below, indicating that the cubic was preferable. 

Table 4. Akaike's information criteria values for the models each compared to the linear model to determine 

significant improvement of the linear model to fit the relationship between TPR and IR 

Site 
Model 

Linear Quadratic Exponential * Cubic 

Nagongera 5847.68 5363.82 5650.67 5317.82 

Kihihi 13298.93 11878.39 12399.11 11857.46 

Walukuba 3828.50 3510.93 3710.12 3452.89 

*The exponential model considered here was one that included a linear term of TPR given it was better than model that was 

purely exponential and excluded a linear term  
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3.1.5 Multi-variable analysis 

The cubic fit of the model, as compared to the linear, quadratic, and exponential models was selected as best 

based on AIC (Table 4). This fitted relationship from the multi-variable model was presented as a predicted plot 

using values of all covariates in the model, fixed at their mean values in each of the three sites (Figure 4). 

This relationship takes on the form of 

𝑦 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝛽 

Where y = village IR per month, x = village TPR per month, and a, b, & c are coefficients, while β is an error term. 

The same relationship between TPR and IR was sustained at all three settings with one exception in Walukuba 

where the linear term does not hold a significant effect. In all three settings, the fitted relationships between TPR 

and IR suggested that observed IR were highest when TPR was above the site mean, although the nature of the 

relationship had slight variations by site: in Nagongera, fitted IR peaked at 25% above the mean of TPR, whilst in 

Walukuba this was at 10% above and in Kihihi at 50% above mean of TPR (Figure 4).  
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Figure 4. Prediction plots for the relationship (cubic) between TPR and IR from the multi-variable mixed effects model for the sites of Nagongera, 

Walukuba, and Kihihi. 

 

 

  

 

Predicted relationship between TPR and IR, with TPR centered around 

the mean of its 5% increments as fitted in the multi-variable model, and 

IR centered around its mean incidence rate ratio (IRR), by site. All three 

settings maintained a cubic relationship with slightly varied slopes, as 

well as peaks of IR.  
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4.1 Additional information for Paper 2 

4.1.1 Consideration of trends in attendance 

Figure S1. Trends in mean monthly overall patient attendance per year, stratified by site. 

 

The years on the x-axes in Figures S1 to S4 are represented as 1 to 10 corresponding to the years 2009 to 2018 

while the number of patients and/or cases on the y-axis represent monthly average number per year in the 

study duration. 
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Figure S2. Trends in mean monthly attendance of patients not suspected of malaria per year, by site 

 

Figure S3. Trends in mean monthly suspected malaria patients per year, stratified by site 
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Table S1. Changes in attendance of patients suspected versus not suspected of malaria over-time, comparing 

mean monthly attendance between first and last calendar years of study duration. 

Site Patient category 

Mean monthly attendance per 

year (SD) 

Wilcoxon rank-

sum test 

2009 2018 P value 

Walukuba 
Not suspected of malaria 1418 (178) 1525 (257) 0.353 

Suspected malaria 1452 (372) 427 (84) <0.001 

Kasambya 
Not suspected of malaria 268 (73) 360 (73) 0.023 

Suspected malaria 722 (186) 692 (280) 0.866 

Aduku 
Not suspected of malaria 761 (175) 1222 (156) <0.001 

Suspected malaria 915 (286) 512 (99) 0.003 

Nagongera 
Not suspected of malaria 846 (140) 965 (134) 0.108 

Suspected malaria 1139 (157) 496 (183) <0.001 

 

Figure S4. Trends in the annual proportion of RDT use among tested participants, stratified by site. 

 

There was little to no RDT use in the first five years of this study duration and most sites did not get to 20% use of 

RDTs till after 2015 (year number 7 in Figure S4). The predominant diagnostic test used in this study therefore, 

was microscopy. 

  



  Page 97 of 267 

Figure S5. Scatter plot of age with test positivity for LLINs only sites, stratified by intervention period. 

 

In Figure S5, the x-axis represents the age of the participants (70 years and younger) and the y-axis, the test result 

from malaria diagnostic tests performed. From these tests, 0 corresponds to a negative result while 1 represents 

a positive result. The grey points are the (age, test result) coordinates of the scatter plot and the dashed curves 

the relationship fitted using the Lowess smoother function. The red dashed curve represents the relationship of 

the baseline period, the orange dashed curve – the first intervention period, and the blue dashed curve – the last 

intervention period of the study duration. By the last intervention period, positivity among the youngest 

participants was lower than during baseline and the largest shift was observed in Walukuba where in the last 
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intervention period the peak age of malaria positivity was over 40 years compared to among under 5 years at 

baseline. 
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Figure S6. Scatter plot of age with test positivity for (LLIN plus IRS) sites, by intervention period. 

 

In this case (Figure S6), the x-axis represents the age of participants and the y-axis, the test result from malaria 

diagnostic test performed. From these tests, 0 on the x-axis corresponds to a negative result while 1 represents a 

positive result. The gray points are the (age, test result) coordinates of the scatter plot and the dashed curves the 

relationship fitted using the Lowess smoother function. The red dashed curve represents the relationship for the 

baseline period, the orange dashed curve – the first intervention period, and the blue dashed curve – the last 

intervention period in Nagongera, but the second intervention period in Aduku. For Aduku, the green dashed 

curve represents the last intervention period of the study duration. 
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For all sites in Figure S6, larger decreases in test positivity among the younger children were observed compared 

to the sites in Figure S5 above. When IRS was withdrawn in Aduku, however, a pattern similar to that during 

baseline was observed (represented by the blue dashed curve). During the last intervention period, once IRS was 

resumed and partly supplemented by integrated community case management iCCM for malaria, the pattern 

(represented by the green dashed curve) was comparable to the first intervention period when intense IRS was 

implemented (represented by the orange dashed curve). 

4.1.2 Model evaluation for the adjusted multinomial regression  

Table S2. Model selection for the final model based on performance with inclusion of the main exposure metric 

of the intervention over time. 

Site Model AIC Model 1 is nested in the final model 

Walukuba 
Model 1 89998.26 

Chi-sq. = 582.45; P<0.001 
Model 2 (final) 89419.82 

Kasambya 
Model 1 91870.95 

Chi-sq. = 323.16; P<0.001 
Model 2 (final) 91551.79 

Aduku 
Model 1 76239.23 

Chi-sq. = 1051.01; P<0.001 
Model 2 (final) 75194.22 

Nagongera 
Model 1 64666.48 

Chi-sq. = 417.42; P<0.001 
Model 2 (final) 64253.06 

Model 1 = The model adjusted for gender (male vs. female) and diagnostic test used (microscopy vs. RDT) only 

Model 2 = Final model that was adjusted for gender and diagnostic test used, as well as intervention period. This 

model was found to improve model 1 and therefore the final one based on both AIC and likelihood ratio test 

evaluations. 
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Figure S7. Evaluation of model goodness of fit by examining relationship between model predicted proportions of confirmed malaria cases by age 

category (<5, 5-15, & >15years) adjusted for gender and diagnostic test used, and crude proportion of confirmed malaria cases across intervention 

periods, by site. 

  

  

At all sites, multinomial models are seen to fit the data very well, best in Walukuba, Nagongera and Aduku and a little less so in Kasambya. 
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4.1.3 Consideration of age distribution by gender of patients. 

Figure S8. Age distribution of test confirmed malaria cases, by gender and site across intervention periods. 
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Figure S9. Age distribution of patients not suspected of malaria, by gender and site across intervention periods. 
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Figure S10. Age distribution of patients that tested negative for malaria, by gender and site across intervention periods. 
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Figure S11. Adjusted marginal probability of test confirmed malaria, by gender, intervention period, age, and site. 

 

The three age categories include: under 5 years, 5-15 years, and over 15 years in each site while intervention periods are arranged by dates. 
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Table S3. Multivariable association between covariates of interest and age category of confirmed malaria cases 

(<5, 5 – 15, and >15 years) , accounting for effect modification of intervention periods on gender. 

  Covariate category Multi-variable OR 95% CI P - value 

Walukuba 

Diagnostic test done 
B/S 1 Ref  

RDT 1.01 0.91 - 1.13 0.844 

Gender 
Male 1 Ref  

Female 1.41 1.36 - 1.47 <0.001 

Intervention period 

Jan 2009 - Oct 2013 1 Ref  

Nov 2013 - May 2017 1.66 1.55 - 1.78 <0.001 

Jun 2017 - Jul 2018 3.27 2.83 - 3.77 <0.001 

Effect of gender by 

intervention period 

(Jan 2009 - Oct 2013) x Female 1 Ref  

(Nov 2013 - May 2017) x Female 0.87 0.79 - 0.95 0.002 

(Jun 2017 - Jul 2018) x Female 0.57 0.47 - 0.68 <0.001 

Kasambya 

Diagnostic test done 
B/S 1 Ref  

RDT 0.98 0.93 - 1.04 0.54 

Gender 
Male 1 Ref  

Female 1.53 1.46 - 1.61 <0.001 

Intervention period 

Jan 2009 - Nov 2013 1 Ref  

Dec 2013 - Nov 2017 1.61 1.51 - 1.71 <0.001 

Dec 2017 - Jul 2018 1.61 1.38 - 1.88 <0.001 

Effect of gender by 

intervention period 

(Jan 2009 - Nov 2013) x Female 1 Ref  

(Dec 2013 - Nov 2017) x Female 0.78 0.73 - 0.84 <0.001 

(Dec 2017 - Jul 2018) x Female 0.97 0.80 - 1.17 0.75 

Aduku 

Diagnostic test done 
B/S 1 Ref  

RDT 1.25 1.19 - 1.32 <0.001 

Gender 
Male 1 Ref  

Female 3.26 2.99 - 3.56 <0.001 

Intervention period 
Jan 2009 - Aug 2010 1 Ref  

Sep 2010 - Apr 2014 2.4 2.19 - 2.63 <0.001 
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May 2014 - May 2017 2.19 2.00 - 2.39 <0.001 

Jun 2017 - Jul 2018 4.38 3.77 - 5.09 <0.001 

Effect of gender by 

intervention period 

(Jan 2009 - Aug 2010) x Female 1 Ref  

(Sep 2010 - Apr 2014) x Female 0.89 0.79 - 0.99 0.038 

(May 2014 - May 2017) x Female 0.72 0.65 - 0.80 <0.001 

(Jun 2017 - Jul 2018) x Female 0.63 0.53 - 0.76 <0.001 

Nagongera 

Diagnostic test done 
B/S 1 Ref  

RDT 1.25 1.16 - 1.34 <0.001 

Gender 
Male 1 Ref  

Female 2.29 2.18 - 2.41 <0.001 

Intervention period 

Jan 2009 - Nov 2013 1 Ref  

Dec 2013 - Jan 2015 1.19 1.07 - 1.33 0.001 

Feb 2015 - Jul 2018 2.35 2.13 - 2.60 <0.001 

Effect of gender by 

intervention period 

(Jan 2009 - Nov 2013) x Female 1 Ref  

(Dec 2013 - Jan 2015) x Female 1 0.87 - 1.15 0.995 

(Feb 2015 - Jul 2018) x Female 0.79 0.70 - 0.89 <0.001 

Results in Table S3 showed that after accounting intervention period and for the effect of gender, the same being 

modified by intervention periods at all sites, diagnostic test used was only significantly associated with age 

category of confirmed malaria cases (the outcome in the regression model) in Aduku and Nagongera but not in 

Walukuba or Kasambya. Importantly however, the effect of gender across all sites is seen to significantly increase 

in males, given its reduction in females by intervention periods relative to the baseline. 
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4.1.4 Consideration of possible effect of changes in diagnostic testing methods 

Table S4. Association between age (in three categories) and covariates of interest among malaria confirmed 

cases, fitting an interaction between diagnostic test used (B/S vs. RDT) and intervention duration. 

Factor Categories Coefficient 95% CI P - Value 

Walukuba 

Gender Male 1 Ref  

 Female 1.34 1.29 - 1.39 <0.001 

Malaria test done Microscopy 1 Ref  

 RDT 2.11 0.61 - 7.26 0.237 

Intervention period Jan 2009 - Oct 2013 1 Ref  

 Nov 2013 - May 2017 1.55 1.48 - 1.62 <0.001 

 Jun 2017 - Jul 2018 2.27 2.05 - 2.51 <0.001 

Interaction term (Jan 2009 - Oct 2013) x RDT 1 Ref  

 (Nov 2013 - May 2017) x RDT 0.45 0.13 - 1.56 0.208 

 (Jun 2017 - Jul 2018) x RDT 0.56 0.16 - 1.98 0.372 

Kasambya 

Gender Male 1 Ref  

 Female 1.4 1.35 - 1.45 <0.001 

Malaria test done Microscopy 1 Ref  

 RDT 1.08 0.99 - 1.18 0.101 

Intervention period Jan 2009 - Nov 2013 1 Ref  

 Dec 2013 - Nov 2017 1.41 1.36 - 1.47 <0.001 

 Dec 2017 - Jul 2018 1.79 1.46 - 2.20 <0.001 

Interaction term (Jan 2009 - Nov 2013) x RDT 1 Ref  

 (Dec 2013 - Nov 2017) x RDT 0.87 0.78 - 0.97 0.013 

 (Dec 2017 - Jul 2018) x RDT 0.79 0.62 - 1.00 0.055 

Aduku 

Gender Male 1 Ref  

 Female 2.64 2.54 - 2.75 <0.001 

Malaria test done Microscopy 1 Ref  

 RDT 1.05 0.87 - 1.28 0.603 

Intervention period 
 

Jan 2009 - Aug 2010 1 Ref  
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Sep 2010 - Apr 2014 2.2 2.08 - 2.33 <0.001 

May 2014 - May 2017 1.79 1.69 - 1.90 <0.001 

Jun 2017 - Jul 2018 3.77 3.15 - 4.52 <0.001 

Interaction term 
 

(Jan 2009 - Aug 2010) x RDT 1 Ref  

(Sep 2010 - Apr 2014) x RDT 1.46 1.13 - 1.87 0.003 

(May 2014 - May 2017) x RDT 1.18 0.96 - 1.44 0.121 

(Jun 2017 - Jul 2018) x RDT omitted N/A  

Nagongera 

Gender 
Male 1 Ref  

Female 2.18 2.09 - 2.28 <0.001 

Malaria test done 
Microscopy 1 Ref  

RDT 1.03 0.91 - 1.16 0.649 

Intervention period 

Jan 2009 - Nov 2013 1 Ref  

Dec 2013 - Jan 2015 1.15 1.08 - 1.24 <0.001 

Feb 2015 - Jul 2018 1.92 1.77 - 2.08 <0.001 

Interaction term 

(Jan 2009 - Nov 2013) x RDT 1 Ref  

(Dec 2013 - Jan 2015) x RDT 1.48 1.17 - 1.86 0.001 

(Feb 2015 - Jul 2018) x RDT 1.35 1.14 - 1.59 <0.001 

Whereas diagnostic testing increasingly (in the last three years of the study) included RDT use, with the highest 

increase observed in Kasambya, Aduku, and Nagongera and least in Walukuba (Figure S4), the potential impact of 

this change in diagnostic testing method did not generally change the effect identified as due to control 

intervention activities. The significant interaction in Kasambya and Nagongera provides some evidence of an effect 

of change in diagnostic testing approach, however, after accounting for this effect, the impact of control 

interventions on age distribution of confirmed malaria cases persists and remains strongly statistically significant 

(Table S2). This, therefore, provides further evidence that given other factors at play, the upward shift from 

younger to older age-groups of malaria cases following successful malaria control interventions is significantly 

attributable to impacts of control interventions on malaria transmission.  
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5.1 Additional information for Paper 3 

5.1.1 Cohort fever and HMIS clinical malaria 

We examined the relationship between cohort fever incidence per month and monthly clinical malaria case 

incidence to evaluate the viability of our approach of using reference health facility test positivity rates to correct 

for non-testing among lower-level facilities. 

Scatter plots of HMIS clinically diagnosed malaria cases against cohort incident cases per month (Figure 1) indicate 

a linear relationship between these metrics. 
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Figure 1. Relationship between HMIS clinical case incidence and fever case incidence in the cohorts 
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From the observed relationship in all three sites, there is evidence that the rate of change in HMIS clinical malaria 

incidence is higher than the rate of change in cohort fever incidence (gentle slope). This suggests that within the 

HMIS, identification of malaria cases would be exaggerated if it were based on clinical symptoms to be higher than 

expected within a well characterised sample of the study population (cohorts) in the three sites. 

5.1.2 Rainfall as a proxy for accessibility 

We examined the viability of rainfall as a proxy for health facility accessibility using trends lines of rainfall and total 

number of patients seen at all facilities within each site, which are total patients visiting public health facilities 

within out study sites (Figure 2). 
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Figure 2. Monthly trends in HMIS patient attendance compaared to rainfall estimates per site 

 

The trends in Figure 2 were estimated using site monthly total patient attendance on the left y-axis and rainfall 

estimates (mm) of the right y-axis, with calendar month of study year on the x-axis by site. Orange trend-lines 

represent rainfall while blue trendlines represent attendance. We observed in these trends that while they do not 

track each other directly, for a large number of months in each site, rainfall peaks correspond to low patient 

attendance and vice-versa. This provides some evidence of negative associations between monthly rainfall 

amounts and monthly patient attendance at public health facilities. We assume therefore, that increased rainfall 
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amounts facilitate reduced attendance at public health facilities, and this may be through agriculture involvement 

or travel difficulties, among others. 

5.1.3 Fitted relationship between cohort and HMIS incidence rates 

Scrutinizing the linear relationship between HMIS-based incidence and cohort incidence, we used multi-variable 

regression and examined each explanatory variable for the potential effect in improving model fit using the 

coefficient of determinations, R-squared and R-squared adjusted. Results of this evaluation are summarised in 

Table 1 below. 

Table 1. Evaluation of linear relationship fit between cohort incidence and HMIS incidence rates by site, 

involving three vital explanatory variables. 

Site 
Coefficients of 

determination 

Explanatory variables in model 

Cohort 

incidence 
Rainfall 

HF 

Availability 

Recording 

performance 

Recording 

+ 

Availability 

Recording 

+ 

Availability 

+ Rainfall 

Walukuba 
R-sq 0.6322 0.645 0.6322 0.6329 

N/A N/A 
R-sq (adj) 0.6214 0.6235 0.61 0.6107 

Kihihi 
R-sq 0.3222 0.323 0.3249 0.4405 

N/A N/A 
R-sq (adj) 0.3022 0.282 0.284 0.4066 

Nagongera 
R-sq 0.0137 0.0577 0.0701 0.0991 0.1334 0.1959 

R-sq (adj) -0.0153 0.0006 0.0138 0.0445 0.0521 0.0922 

HF = Health facility 

Owing to the fact that adjusted R-squared provides a measure of importance of any additional explanatory 

variable in improving a model fit whereby once inclusion of the variable in the model leads to an increase in the 

adjusted R-squared, the variable is considered vital in the association evaluated. This outcome of increased 

adjusted R-squared implies that the added explanatory variable improved the model fit well enough above the 

increase being an occurrence due to chance. 

Walukuba: Results here showed that in Walukuba, adding rainfall (the proxy for accessibility) to the basic model 

Improved the model fit, given the increase in adjusted R-squared from 0.6214 to 0.6235 (Table 1). However, the 

same was not true for the addition of either health facility availability or recording performance in Walukuba. As 

a result, it was not necessary to proceed with more complex models that would include health facility availability 

and/or recording performance in addition to rainfall. Our results showed that after accounting for rainfall, the 
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best fit for the linear relationship between HMIS and cohort incidence rates was such that variation in cohort 

incidence explained up to 65% of the variation HMIS incidence rates in Walukuba. 

Kihihi: Here, adding recording performance to the basic model Improved the model fit, given the increase in 

adjusted R-squared from 0.3022 to 0.4066 (Table 1). However, the same was not true for the addition of either 

health facility availability or rainfall in Kihihi. As a result, it was not necessary to proceed with more complex 

models that would include rainfall and/or health facility availability in addition to recording performance. Our 

results here showed that after accounting for health facility recording performance, the best fit model for the 

linear relationship was such that at least 44% of variation in HMIS incidence rates was explained by variation in 

cohort incidence rates in Kihihi. 

Nagongera: Here, unlike the other two sites, results showed that all three explanatory variables of rainfall, health 

facility availability, and health facility recording performance when added independently to the basic model, 

improved the model fit as shown in Table 1 above. This, therefore, implied that there was need to proceed with 

adding all explanatory variables and with every additional covariate, the model fit was improved as indicated by 

progressive increase in adjusted R-squared. The model with all three covariates included provided the best fit for 

this weak linear relationship with up to 20% variation in HMIS incidence explained by cohort incidence after 

accounting for rainfall as well as health facility recording performance and availability. 

5.1.4 Potential sources of bias in HMIS relative to cohort incidence rates 

Evaluating the sources of bias in HMIS-based incidence of malaria (HMIS incidence) estimates relative to the gold 

standard (cohort incidence), we considered factors that could be influential to the number of malaria cases that 

end up being recorded at the health facility. These factors, estimated at site level on a monthly timescale, included; 

health information recording performance, health facility availability, and rainfall estimates that represent both 

seasonality and ease of access to the health facility from the patients’ viewpoint. 
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Table 2. Regression results evaluating association between "difference between HMIS and Cohort incidence" 

and potential sources of bias (important factor in recording malaria cases in health facilities) in HMIS incidence 

Site Covariate Coefficient 95% CI P-value 

Nagongera 

HF Recording Performance 0.02480 -0.28632 – 0.33591 0.872 

HF Availability 0.26672 -0.00903 – 0.54247 0.057 

Rainfall estimate -0.21206 -0.48522 – 0.06110 0.124 

Year of study -1.17198 -(1.49468 – 0.84927) <0.001 

Walukuba 

HF Recording Performance 0.04405 -0.206637 – 0.29447 0.722 

HF Availability -0.05617 -0.31409 – 0.20174 0.660 

Rainfall estimate 0.15120 -0.08453 – 0.38692 0.200 

Year of study 0.05992 -0.20033 – 0.32016 0.642 

Kihihi 

HF Recording Performance -0.21759 -0.55307 – 0.11789 0.196 

HF Availability 0.18247 -0.12444 – 0.48938 0.234 

Rainfall estimate -0.02498 -0.30566 – 0.25569 0.857 

Year of study -0.57000 -(0.95522 – 0.18478) 0.005 

HF = Health facility 

Results here showed that the effect of the explanatory variables on the difference between HMIS and cohort 

incidence were varied with recording performance, health facility availability and rainfall having no significant 

association in Nagongera (Table 2) with or without controlling for calendar year of study. Similarly, for Walukuba, 

neither of the three explanatory variables had a significant association with the difference between HMIS and 

cohort incidence. In Kihihi, without accounting for calendar year of study, health facility recording performance 

was significantly associated with the difference between HMIS and cohort incidence (p=0.004). In this case 

improved recording performance was associated with reduced difference between the incidence estimates. That 

being the case however, after accounting for calendar year of study, an important modifier of the relationship 

between HMIS and cohort incidence, none of the three factors was associated the difference between incidence 

estimates in Kihihi. While these factors are associated with HMIS incidence, these findings show that there is no 

evidence that they contribute to biased HMIS incidence estimates relative to the true incidence. 

5.1.5 Age standardizing the cohort incidence rates 

Procedures 

It was observed that there was bias due to age ostensibly resulting from differences between the health facility 

and the cohort populations. Given further that age is a significant risk factor for malaria, in order to evaluate 

relationship between health facility and cohort incidence, it is important to account for this bias. 
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Two possible ways that I identified of doing this were: 1) adjusting for age in a binary outcome model at patient-

level & 2) Age standardization of the cohort incidence, given that the cohort is the more stringently held 

population that differed from the normal population over time due to aging of participants, be it so slowly and 

minimally over time. 

The major drawback to approach 1 is that the patient-level analysis is limited to diagnostically tested cases, which 

situation implies that one has much lower number of cases of malaria from the health facility system, given that 

lower level facilities were not testing the majority of their suspected malaria cases. The benefit to this approach, 

however, is that we can account for other known or identifiable sources of bias such as gender (that was identified 

as a source of bias) and ultimately generate a model-based incidence that is corrected for bias. 

The drawback to approach 2 is that there is no known standard population structure to fit the small rage of ages 

included in this study as compared to known standard age structures that span a much wider age-range. However, 

even with a small age-range, the ability to define finer age-categories provides the detailed effect of age that is 

not obtainable when international standard populations with larger categories, are used. 

The other drawback to approach 2 is being unable to account for other sources of bias as is the case in approach 

1. 

Taking approach 2 

Having examined standard population structures, both international and national and not obtaining any that fits 

a small range of ages i.e. 6months to under 11years old, we chose to use the age structure of the cohort 

participants at the time of enrolment – a two months duration of August to September, 2011. Whereas the cohort 

continued to recruit participants over the entire duration, the cohort generally grew older while at the same time 

taking in a considerable number of children under 1year of age (children born into the cohort). 

After obtaining the site specific ‘standard population’ we generated the age category-specific incidence rate, for 

the six age categories created including [0.5-1yr], [>1-2yrs), [3-4yrs), [5-6yrs), [7-8yrs), [9-<11yrs], where the 

notation for brackets implies that [ is bounded at the value, while ) implies unbounded at the value, we generated 

the age-category or stratum incidence rates i.e. total age-category incident cases/ age category person time for 

the month. 

As explained in https://www.statcan.gc.ca/eng/dai/btd/asr as well as in Chapter 2 of Introduction to 

Epidemiology p.27, age standardization is then achieved by multiplying each age specific incidence rate by the 

proportion for each age-category from the recruitment age structure, known as the standard population weight 

for each age category. These products are summed up for all the age categories per month to obtain site 

monthly age-standardized incidence rates from the cohort. Note: Whereas there are two approaches to 

standardization i.e. direct & indirect, we used direct standardization because we could generate age-specific 

https://www.statcan.gc.ca/eng/dai/btd/asr
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rates for the age categories defined. Otherwise the indirect approach is applicable for situations where age-

specific rates are unknown or where the population under study is small (unlike in our case for both conditions) 
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Abstract 

Background. As global progress to reduce malaria transmission continues, it is increasingly important to track 

changes in malaria incidence rather than prevalence. Risk estimates for Africa have largely underutilized available 

health management information systems (HMIS) data to monitor trends. This study uses national HMIS data 

together with environmental and geographical data, to assess spatial temporal patterns of malaria incidence at 

facility catchment level in Uganda over a recent 5-year period. 

Methods. Data reported by 3446 health facilities in Uganda, between July 2015 and September 2019 was 

analysed. To assess the geographic accessibility of the health facilities network, a WHO tool for modelling 

accessibility (AccessMod) was employed to determine a three-hour cost-distance catchment around each facility. 

Using confirmed malaria cases and total catchment population by facility, an ecological Bayesian conditional 

autoregressive spatial temporal Poisson model was fitted to generate monthly posterior incidence rate estimates, 

adjusted for caregiver education, rainfall, land surface temperature, night-time light (an indicator of urbanicity), 

and vegetation index. 

Results. An estimated 38.8 million (95% Credible Interval [CI]: 37.9 – 40.9) confirmed cases of malaria occurred 

over the period, with a national mean monthly incidence rate of 20.4 (95% CI: 19.9 - 21.5) cases per 1000, ranging 

from 8.9 (95% CI: 8.7 – 9.4) to 36.6 (95% CI: 35.7 – 38.5) across the study period. Strong seasonality was observed, 

with June-July experiencing highest peaks and February-March the lowest peaks. There was also considerable 

geographic heterogeneity in incidence, with health facility catchment relative risk during peak transmission 

months ranging from 0 to 50.5 (95% CI: 49.0 – 50.8) times higher than national average. Both districts and health 

facility catchments showed significant positive spatial autocorrelation; health facility catchments had global 

Moran’s I = 0.3 (p<0.001) and districts Moran’s I = 0.4 (p<0.001). Notably, significant clusters of high-risk health 

facility catchments were concentrated in Acholi, West Nile, Karamoja, and East Central – Busoga regions. 

Conclusion. Findings showed clear countrywide spatial temporal patterns with clustering of malaria risk across 

districts and health facility catchments within high-risk regions, which can facilitate targeting highest risk areas 

with interventions. Moreover, despite high and perennial transmission, seasonality for malaria incidence 

highlights the potential for optimal and timely implementation of targeted interventions. 

 

Key words: Uganda, Malaria, Incidence, Relative risk, Routine surveillance, HMIS, Seasonality  
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Background 

The global burden of malaria has declined since 2000 primarily due to the scale up of control interventions 

including long-lasting insecticidal nets (LLINs), indoor residual spraying with insecticide (IRS), and use of 

artemisinin-based combination therapy (ACT) [1, 8, 71]. Nevertheless, incidence rates in sub-Saharan Africa 

remained high at an estimated 219 cases per 1000 in 2017 – 2018 [71]. The incidence estimates used to monitor 

trends across sub-Saharan Africa are typically generated using parasite prevalence in children 2-10 years fitted in 

prevalence-to-incidence models [71]. Though informative, the surveys included happen infrequently [60] and may 

be limited in scale. Derived burden estimates, therefore, cannot adequately support day-to-day monitoring for 

decision making at national or sub-national levels [64].  

National malaria control programmes typically depend on routine health management information systems 

(HMIS) data to guide programme decisions in control and elimination efforts. With the advent and extended 

access to web-based health information systems, such as the District Health Information System - version 2 (DHIS-

2), timely access to nation-wide HMIS data and quality of these data have been shown to have greatly improved 

in sub-Saharan Africa [185, 186]. As such, the WHO has reiterated that timely and high-quality HMIS-based burden 

estimates are achievable, and can be used to inform on-going decision making [4].  Despite this, HMIS remains 

underutilized, especially for risk mapping, due to concerns over incompleteness and delayed reporting [71, 187, 

188]. Whilst HMIS has had, and still needs, further improvement, substantial discrepancies between estimates of 

burden from the current prevalence-to-incidence model approach and HMIS reports have been identified among 

at least 30 high burden countries [71]. Thus, questions remain as to the reliability of HMIS estimates and their 

corresponding representation of fine-scale spatial distribution of risk to support evidence-based decision making 

by country-level programme managers. 

Small area space-time disease models fitted to routinely reported data have been widely implemented to 

accurately identify contextually important risk factors and unpack spatial temporal patterns of infectious diseases, 

including tuberculosis and malaria [156, 189-192]. These models have the capacity to explain the spatial 

autocorrelation in disease data, and can provide robust means of understanding ecological connectivity and 

relationships [193] that are critical for control processes in high malaria or other disease burden countries. 

Moreover, foci of high malaria risk or burden are pertinent to the principle of strategic information to drive impact 

under the global “high burden to high impact” initiative, for effective targeting of interventions [160]. This study, 

therefore, aims to investigate a pragmatic novel small-area space-time approach using a nationwide network of 

health facilities in estimating malaria incidence from HMIS data, in order to identify areas of high malaria burden 

and risk across Uganda and assess malaria seasonality. 

 



Page 137 of 267 
 

Methods 

Study setting 

Uganda was estimated to be the 3rd highest contributor of Plasmodium falciparum malaria cases globally in 2018, 

with incidence rates of >250 cases per 1000 population at risk within a perennial transmission setting [3]. Located 

between -10 and 40 latitudes, it covers a total area of ≈241,500 square kilometres that was divided into 15 non-

administrative regions (comprised of between one to 13 districts each) considered to be the malaria endemicity 

zones under the Uganda Demographic and Health Survey (UDHS) Program by 2018 [61]. Nested within these 

regions were 128 districts (as they were known in 2018), representing the second administrative level of 

government. 

Data and population 

Health management information systems data: In Uganda, all health facilities are required to submit monthly 

reports from their out-patients department (OPD) registers on all reported diseases to the Department of Health 

information of the Ministry of Health (MoH). Health facilities are either private-for-profit (PFP) or public comprised 

of the government owned and private-not-for-profit (PNFP) facilities. HMIS was introduced in 1997 as a paper-

based reporting system from each health facility to the Ministry of Health. In 2012, however, a web-based 

reporting version, the DHIS-2, was implemented with full roll-out across the country in 2013 [14]. In this system, 

health facility data is either entered directly among high-level facilities or sent as paper reports from lower-level 

facilities to the districts for entry into the online system. 

For this study, HMIS data consisted of monthly counts of all reported and confirmed malaria cases from study 

facilities defined here as reporting facilities with available geo-coordinates. Reported malaria cases are defined as 

all cases reported regardless of confirmation status while confirmed malaria are laboratory confirmed cases using 

either blood slide microscopy (B/S) or rapid diagnostic test for malaria (RDT) – per national guidelines. Whereas 

the recruited reporting facilities with available geo-coordinates represented 3453/7029 (49.1%) of all facilities 

included within the DHIS-2, 2656/7029 (37.8%) neither reported nor were geolocated and were therefore not 

recruited (Fig. S1, Additional file 1). Whilst majority of reporting geolocated facilities were publicly owned, the 

majority of non-geolocated health facilities were private for profit (PFP) commonly located in urban areas and 

these were excluded. Notably, the two districts of Kampala and Wakiso that together formerly comprised the 

capital city, contributed 49% of these excluded facilities. All reporting facilities that were not geolocated or 

geolocated facilities without a matching reporting health facility were excluded from this study. A total of 3446 

geo-located health facilities constituted the study facilities for this work (Fig. 1). 
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Fig 1. Map of Uganda showing locations of study health facilities within their defined catchment areas 

Ancillary data: To define accessibility to health facilities, four categories of single timepoint ancillary data were 

incorporated to develop a raster surface within which each pixel was assigned a time cost of travel across it and 

is herein referred to as a cost-distance surface (Table 1). First, a digital elevation model (DEM) provided a measure 

of penalty on travel speed depending on direction of travel along the elevation. Second, a land use and land cover 
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raster data set from 2016 was used to define diversity of land cover across which, travel speed would be affected. 

Third, wetlands, lakes, and rivers were identified as barriers for travel. Lastly, road networks were incorporated 

categorized by feasible travel speed class. 

Table 5. Description of ancillary data sets and the sources of these covariates 

Data set Data type Data source 

Single time point data sets 

National geo-located health 

facilities 

Vector https://figshare.com/articles/Public_health_facilities_in_sub

_Saharan_Africa/7725374 Accessed September-2019. 

Digital elevation model Gridded 

raster 

https://www.rcmrd.org/ Accessed October-2019. 

Land use and land cover Gridded 

raster 

http://geoportal.rcmrd.org/layers/servir%3Auganda_sentin

el2_lulc2016 Accessed October-2019. 

National wetlands Vector http://maps.nema.go.ug/layers/geonode%3Augandawetlan

ds2008 Accessed September-2019. 

Lakes and rivers Vector https://geodata.lib.berkeley.edu/catalog/stanford-

fh022bz4757 Accessed September-2019. 

Road network Vector http://cod.humanitarianresponse.info/sites/default/files/ug

anda_roads_feb2009.zip Accessed September-2019 and 

from KEMRI. 

Multi-time point data sets 

Land surface temperature Gridded 

raster https://earlywarning.usgs.gov/fews/ewx/index.html?region

=af Accessed October-2019. Normalized difference 

vegetation index (NDVI) 

Gridded 

raster 

Rainfall Gridded 

raster 

https://www.tamsat.org.uk/data/archive Accessed 

September-2019. 

Night-light emissivity Gridded 

raster 

https://earthobservatory.nasa.gov/features/NightLights 

Accessed November-2019. 

Mean years of education for 

women of childbearing age 

over 2000-2015 

Gridded 

raster 

http://ghdx.healthdata.org/record/africa-educational-

attainment-geospatial-estimates-2000-2015 Accessed 

November-2019. 

https://figshare.com/articles/Public_health_facilities_in_sub_Saharan_Africa/7725374
https://figshare.com/articles/Public_health_facilities_in_sub_Saharan_Africa/7725374
https://www.rcmrd.org/
http://geoportal.rcmrd.org/layers/servir%3Auganda_sentinel2_lulc2016
http://geoportal.rcmrd.org/layers/servir%3Auganda_sentinel2_lulc2016
http://maps.nema.go.ug/layers/geonode%3Augandawetlands2008
http://maps.nema.go.ug/layers/geonode%3Augandawetlands2008
https://geodata.lib.berkeley.edu/catalog/stanford-fh022bz4757
https://geodata.lib.berkeley.edu/catalog/stanford-fh022bz4757
http://cod.humanitarianresponse.info/sites/default/files/uganda_roads_feb2009.zip
http://cod.humanitarianresponse.info/sites/default/files/uganda_roads_feb2009.zip
https://earlywarning.usgs.gov/fews/ewx/index.html?region=af
https://earlywarning.usgs.gov/fews/ewx/index.html?region=af
https://www.tamsat.org.uk/data/archive
https://earthobservatory.nasa.gov/features/NightLights
http://ghdx.healthdata.org/record/africa-educational-attainment-geospatial-estimates-2000-2015
http://ghdx.healthdata.org/record/africa-educational-attainment-geospatial-estimates-2000-2015
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To generate predicted incidence rates accounting for spatially variable risk factors, ancillary data sets at multi-

time points were considered and utilized (Table 1). Notably, whilst vegetation quantities (NDVI) were quantified 

as the first ten days (dekad) per month and rainfall as monthly estimates, monthly night-light emissivity was 

projected using 2012 and 2016 data sets, and the mean number of years in of attending school among childbearing 

women published in [194] as a single estimate. 

Health facility catchments: Currently, the HMIS is used to report malaria burden down to the district level, limiting 

the ability to observe and act upon heterogeneity at finer spatial scales. In part, this is because of limited 

information on health facility catchments. Considering proximity as the most important determinant of health 

facility access and utility [138, 141], health facility catchments were defined based on a cost-distance surface 

generated using a WHO supported tool known as AccessMod [195] as described in (Section E, Additional file 1). 

This tool has been widely used in assessments for general and emergency care accessibility, and estimation of 

care utilization for febrile illnesses, among others [196-198]. 

Using the cost-distance surface generated based on anisotropic (direction dependent) analysis with direction of 

travel considered as ‘towards the health facility’ in the geographic accessibility model, three-hour travel 

catchment buffers were generated for each health facility included in the study. To delineate each facility’s 

catchment area, the intersection polygon between the three-hour travel buffer and a Thiessen polygon around 

each health facility, generated using ESRI ArcGIS 10.5 Thiessen polygon tool (ESRI 1995-2016; Redlands, CA, USA), 

was derived. This intersection polygon constituted the catchment area for each health facility covering majority 

of the country. 

Population data: Population estimates for the country were obtained from gridded population surfaces generated 

by the WorldPop project whose estimates are based on national census estimates and other factors, accessible 

from www.worldpop.org. Annual gridded population surfaces were obtained for the duration between 2014 and 

2019 and population estimates per year extracted as summary statistics for each calendar year of the study 

duration 2015 to 2019. These estimates were extracted using ESRI ArcGIS 10.5 Zonal Statistics tool at the level of 

the defined catchment area for each study health facility, regardless of administrative boundaries, given that care 

seeking is not restricted by these boundaries in Uganda. 

Spatial, temporal, and spatial temporal analyses 

The primary outcome in this analysis was monthly cumulative malaria incidence rate, derived from HMIS data as 

the number of new confirmed cases per facility catchment divided by the total population of the catchment per 

month. 

Inherent spatial correlation of malaria infections is unexplained within classical regression approaches though 

remains in the residuals and induces spatial autocorrelation in the response even after known available risk 

http://www.worldpop.org/
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factors are accounted for [199]. Using spatial conditional autoregressive models, however, explains this 

autocorrelation in the outcome using random effects within a Bayesian framework that uses prior distribution, 

maximum likelihood, and neighbourhood to predict a more reliable outcome [200, 201]. 

A Beyesian space-time model employed here consisted of three segments, including: a data model that accounts 

for data distribution; process model that accounts for spatial structure and trends; and, the parameter model 

that accounts for prior distribution estimated and utilised [202]. 

The data model for incidence data in this study assumed a Poisson distribution and was defined by 

Yit ~ Pois(Eitµit), 

Where, Yit was the incidence at time t for area i whose expected incidence was Eit and relative risk µit. This 

outcome variable Yit is assumed to be conditionally independent across the spatial process defined by health 

facility catchments in this study. 

With the process model, a spatial temporal fit of a BYM (Besag, York and Mollie) conditional autoregressive 

model with two random effects was implemented using integrated nested Laplace approximation (INLA) 

(www.r-inla.org), fit to the monthly crude confirmed case rates in R (code presented in Appendix 10) [203]. 

Random effects included a structured and an unstructured spatial effect, as well as a structured and an 

unstructured temporal effect. This spatial convolution model takes the form,  

Log(µi) = β1 + β2xi2 + … + βpxip + si + ui 

Where si is spatially structured and modelled using an inverse gamma process to enable smoothing among 

neighbouring locations and ui is spatially unstructured and modelled using a Gaussian process to allow for 

increased heterogeneity due to included covariates/risk factors [202, 204]. Within the parameter model, 

structured random effects were assigned an inverse Gamma prior, while unstructured random effects were 

assigned a Gaussian prior under the assumption of a normal distribution of noise. β1 denotes the overall risk 

represented as a fixed intercept. x’s are explanatory spatial covariates including rainfall, land-surface 

temperature, night-time light – proxy for social economic status, level of education for women of child-bearing 

age – proxy for treatment seeking behaviour, and … β2 to βp are regression coefficients estimated to be constant 

across catchment areas for fixed effects [205]. 

In this study, posterior estimates of incidence rates and the crude incidence rates were shown to be correlated 

(Fig. S6 and Fig. S7, Additional file 1)). Moreover, to avoid overfitting, a time restriction using a random walk of 

the first order was included. 
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Candidate covariates had been used in other studies, given their association with malaria transmission including 

rainfall, temperature, vegetation index, night-time lights (proxy for urbanicity), and caregiver education [191, 207-

209]. For inclusion in the final model, covariates quantities were evaluated for impact on a linear regression model 

of crude incidence rates using Akaike’s information criteria values (Table S2, Additional file 1). The final covariate 

list included catchments estimates of: mean years of education for women of childbearing age, mean of current 

and three months’ lags for both rainfall and land surface temperature estimates, mean monthly night-time light 

emissivity, and mean of current and one month’s lag of vegetation amounts. All these were significantly associated 

with crude incidence estimates (Table S3, Additional file 1).  Both β and b were assigned monthly informative 

Gaussian distributions over the full 51 months length of the study duration. The full model was validated by 

withholding 20% of data points at random and comparing the model predicted values with the actual observed 

values using scatter plots and spearman’s correlation coefficients (Section G, Additional file 1).  

Relative risk of malaria at district and health facility catchment levels was derived as the respective predicted 

incidence rate divided by the overall predicted mean incidence rate at national level per month in the study 

duration. All maps of the posterior estimates of incidence rates and relative risk of malaria were generated using 

R. 

Spatial clustering in the modelled outcome was further investigated using the global Moran’s Index statistic within 

the spatial dependence (spdep) package of R and visually examined Moran’s scatter plots of incidence and risk 

estimates at both district and health facility catchment resolutions. To identify cluster locations, the local Moran’s 

Index using ESRI ArcGIS 10.5 Cluster and Outlier Analysis (Anselin Local Moran’s I) tool was used, set for first order 

queen contiguity, running 999 permutations and clusters evaluated at 0.01 level of significance. 

Also, study model estimates of confirmed malaria cases were compared with estimates from both the WHO’s 

recent reports [3, 6, 71] and Malaria Atlas Project (MAP) estimates for the same period from 

https://malariaatlas.org/trends/country/UGA (Section J, Additional file 1) and relationship between MIS regional 

estimates of prevalence of malaria in children under five years [61] and estimated relative risk of malaria are 

regional-level, examined using visual inspection of scatter-plots with results presented in supplementary 

information (Fig. S13, Additional file 1). 

  

https://malariaatlas.org/trends/country/UGA
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Results 

Study population 

The total population identified within the health facility catchment, considered at risk of malaria infection and 

likely to seek care from the associated geo-located publicly reporting health facility, were considered the study 

population of interest. The total population was estimated at 34.9 and 39.6 million in 2015 and 2019 respectively, 

with the ≈2.8% located outside of the defined catchments (Section D, Additional file 1). 

HMIS data summary 

Between 62.2 and 88.7% of nationally reported cases of malaria annually were diagnostically confirmed cases in 

2015 and 2019, respectively (Fig. S2, Additional file 1). Whilst these proportions increased across the 15 regions 

of the country over time, Kampala recorded marginal improvements.  Moreover, the majority of confirmed 

malaria cases in Kampala (ranging from 61.8 to 81.0% in 2015 and 2018) were unaccounted for due to exclusion 

of facilities, leaving only up to 38% of the burden in this metropolitan district estimated (Table S1, Additional file 

1). Excluding Kampala, however, results showed that estimates accounted for between 67 to 96% of the routine 

HMIS-based burden of malaria among the remaining 14 regions, over the study duration. Moreover, in these 

regions, average annual proportion of reported confirmed cases excluded from the study ranged from 5.3 to 

19.8% in Karamoja and Tooro, respectively. Diagnostic testing of suspected malaria cases across the country was 

conducted either by microscopy or rapid diagnostic tests and reported as a single total.  

Mean incidence rates, seasonality, and risk of malaria 

Highest burden regions and districts also hosted health facilities with the highest number of confirmed malaria 

cases reported. For instance, Bala health centre (HC) III in Kole district of the Lango region reported 3,317 cases 

during November 2015, while Bira HCII in Adjumani district of the West Nile region reported 6,697 cases during 

June 2016. Moreover, Barakala HCIII (highest for two consecutive years) also from West Nile in Yumbe district, 

reported 9,654 cases during October 2017 and 9,246 cases during July 2018. Lastly, Matany hospital in Napak 

district of Karamoja region reported 8,089 confirmed cases during September 2019. 

This study showed spatial and temporal variation in incidence rates between regions and districts in any given 

region, as well as between health facility catchments within districts, both during the low (Fig. S9, Additional file 

1) and high burden seasons (Fig. 2). 
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Fig 2. Spatial distribution of malaria incidence rates during high burden months of study duration 

Maps in column A show the regional boundaries (regional stratification of malaria in Uganda per 2018 

MIS), Column B show district boundaries (the second government administrative level) and column C maps show 

study defined health facility catchment area boundaries for the study health facilities. 

National incidence rates: The model estimated 38.8 (95% CI: 37.9 – 40.9) million confirmed malaria cases over 

the study period of July, 2015 to September, 2019, highest in 2016 with 10.3 (95% CI: 9.9 – 10.7) million cases and 

lowest in 2018 with 6.5 (95% CI: 6.4 – 6.9) million cases among complete calendar years (Table S4, Additional file 



Page 145 of 267 
 

1). Annual incidence rates reduced from 281.7 (95% CI: 274.9 – 296.7) in 2016 to 170.0 (95% CI: 165.9 – 178.8) 

cases per 1000 in 2018. 

Monthly incidence rates showed a general declining trend in the burden of malaria from 2015 to 2019, strongest 

through 2018 followed by an increase in 2019 (Fig. 3). In all the years of the study, the incidence rates consistently 

peaked in June and July, reaching a maximum of 36.6 (95% CI: 35.7 – 38.5) cases per 1000 in June 2017 (Table S5, 

Additional file 1). Conversely, low risk periods were less consistent, although often lowest in February and March, 

reaching a minimum of 8.9 (95% CI: 8.7 – 9.4) in February 2018.  

 

Fig 3. Trends in the national and regional monthly malaria incidence rates between July, 2015 – September, 2019 

Spatial distribution of incidence rates across the country: Overall, mean monthly regional incidence rates were 

highest in Acholi region (Northern Uganda) at 52.3 (95% CI: 50.3 – 59.6) cases per 1000 per month and lowest in 

Kigezi region (South Western Uganda) at 7.9 (95% CI: 7.6 – 8.2) cases per 1000 per month (besides Kampala). 

Consistent with national trend assessments, monthly trends in regional incidence rates showed the highest peaks 

in June-July, highest in June, 2017 (Range: 13.4 – 95.6 cases per 1000) and July, 2019 (Range: 13.5 – 95.5 cases per 

1000 in Kigezi and Acholi, respectively) and the lowest troughs in February-March of each calendar year (Fig. 3). 
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These trends showed that Acholi, West Nile, Karamoja, East Central – Busoga, and Teso persistently recorded the 

highest monthly incidence rates across the entire study duration. Moreover, the greatest variability in incidence 

rates was also observed among these five highest burden regions of with respective estimated mean monthly 

incidence rates of 52.3 (SD: 17.8), 43.3 (13.9), 30.3 (10.4), 26.3 (8.6), and 23.5 (8.0) cases per 1000 per month. 

Within these regions, high burden and risk districts were also identified, both during the highest and lowest 

burden months. During June 2017 district monthly incidence reached the maximum in Lamwo of Acholi, Moyo of 

West Nile, Kaabong of Karamoja, Namayingo of East Central - Busoga, and Katakwi of Teso regions, at 167.6 (95% 

CI: 165.6 – 169.8), 192.5 (95% CI: 189.9 – 195.1), 81.1 (95% CI: 79.6 – 82.5), 73.1 (95% CI: 71.9 – 75.0), 72.0 (95% 

CI: 70.9 – 73.1), cases per 1000 per month, respectively (Table S6, Additional file 1). 

Monthly incidence rate trends among districts showed that Moyo, Lamwo, Adjumani, Pader, Nwoya, and Maracha 

persistently recorded the highest monthly incidence rates across the study duration (Fig. 3).  Moreover, higher 

incidence rates were also associated with higher variability in monthly incidence rates with the mean monthly 

estimate in Moyo at 115.8 (SD: 36.5) and lower rates less variability with Rubanda at 1.6 (SD: 0.5) cases per 1000 

(Figs. S10 and S11, Additional file 1). 

Within individual districts, a wide distribution of incidence rates was estimated among health facility catchments 

both during the lowest and highest burden months. From the 3446 catchment areas identified across the country, 

mean monthly incidence rate reached a maximum of 569.8 (95% CI: 555.2 – 584.3) cases per 1000 per month in 

Namayingo district of East Central – Busoga region and minimum of 0.13 (95% CI: 0.10 – 0.17) cases per 1000 per 

month in Rukungiri district of Kigezi region, excluding Kampala. Also, higher incidence rates within catchments 

were associated with higher viability in monthly incidence rates and lower incidence rates with less variability (Fig. 

S10, Additional file 1). Among health facility catchments, variability in incidence rates reached a maximum 

standard deviation (SD)= 142.4 cases per 1000 in highest incidence rate catchment located in Namayingo and a 

minimum SD= 0.1 among the lowest burden catchments in Arua and Kasese districts. 

Spatial distribution of relative risk across the country: Consistent with incidence rates, relative risk of malaria was 

highest among the highest burden regions of Acholi, West Nile, Karamoja, East Central – Busoga, and Teso, both 

during the lowest and highest burden months, maintaining their rank of risk at both times (Table S7, Additional 

file 1). During the highest burden month of June 2017, the relative risk of malaria among these regions ranged 

from 1.18 (95% CI: 1.17 – 1.19) to 2.6 (95% CI: 2.6 – 2.8)-times higher than national average in Teso and Acholi, 

respectively. Moreover, while mean relative risk among districts within these regions was higher during the 

highest burden month at 1.8 (95% Confidence Interval:1.5 – 2.1) than the lowest at 1.7 (95% Conf. I:1.4 – 2.0), the 

difference was not significant (p= 0.676) by a two-sample t-test. 
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Spatial and temporal variation in relative risk observed between regions, and districts within regions (largely 

informative at programmatic or NMCP levels), was also present between catchments within districts (informative 

for district health managers). Relative risk remained consistent among the 15 regions, between low and high 

burden seasons, but showed additional variability among districts and health facility catchments across the two 

seasons (Fig. 4). 

 

Fig 4. Spatial distribution of the relative risk of malaria during lowest and highest burden months of the study 

duration 
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Results showed that catchment risk ranged from 0 to 24.9 (95% CI: 24.4 – 24.9) times higher than national average 

during the highest burden month and from 0 to 50.5 (95% CI: 49.0 – 50.8) during the lowest burden month. 

Moreover, a non-linear association of catchment risk was observed between the lowest and highest burden 

months further confirming this rising risk during lower burden months (Fig. S16, Additional file 1). However, the 

highest risk catchments at the two time points were neither identical nor located in the same district or region. 

Spatial clustering of risk: Assessment for spatial autocorrelation of incidence and/or risk showed consistent levels 

of moderate global autocorrelation between both districts (Moran’s I range by month: 0.4 to 0.6, p<0.001) and 

health facility catchments (0.3 to 0.5, p<0.001). Both during the highest (June-2017) and lowest (February-2018) 

burden months, global autocorrelation between districts was very similar (Moran’s I = 0.5, p<0.001) (Figs. 18 and 

19, Additional file 1) but slight difference between health facility catchments (Moran’s I = 0.4 and 0.3, p<0.001, 

respectively) (Figs. S20 and S21, Additional file 1). 

Analysis of local spatial autocorrelation at two levels of significance (p<=0.05 and p<=0.01) identified substantial 

significant high-high clustering in Acholi and West Nile regions in the North, as well as East Central – Busoga region 

in the South East of the country, both during the highest and lowest burden seasons (Fig. 5). Similarly, large low-

low clustering was identified in the Southern regions of the country. Moreover, outlier catchments typically had 

significantly lower risk than their neighbours in the north, and higher risk than their neighbours in the rest of the 

country. Significant monthly high-high clusters were comprised of between 191 health facility catchments during 

February 2018 and 236 during June 2017 and 2019 (Fig. S22, Additional file 1). 
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Fig 5. Spatially significant clusters of malaria risk for the highest and lowest burden months between 2015 and 2019, 

across Uganda 
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Discussion 

Results from this innovative, large-scale, longitudinal observational study suggest that with improved HMIS 

reporting, credible high-risk areas at both high and low spatial scales are identifiable. The study revealed distinct 

monthly spatial distribution of malaria incidence across the fifteen regions of Uganda, in a concurrent multi-

resolution assessment including coarse (regional) down to fine (health facility catchment) spatial resolutions. 

Moreover, whilst Uganda is considered a perennial transmission setting, this study revealed a nation-wide 

seasonal pattern in incidence rates with two peaks (major and minor), the highest during June-July and the minor 

peak during October.  This approach may facilitate efficient implementation and optimization of targeted control 

activities that can leverage existing health facility systems [210]. It may also improve managers’ understanding of 

the heterogeneity and/or clustering of malaria burden within districts that currently form the lowest level of 

malaria burden assessments, though acknowledged as difficult to use or unusable for planning control [64]. 

This study showed that the risk of malaria by regional rank among the highest and lowest risk regions had minimal 

temporal variability, with these regions maintaining their status both during low and high burden seasons. These 

findings were consistent with extant UDHS regional stratification of Uganda where Acholi, West Nile, and 

Karamoja are among the highest transmission regions, and Ankole and Kigezi among the lowest. This stratification 

supports tailored approaches for long-term malaria control efforts aiming at elimination, as advocated in the 

global ‘high burden to high impact’ initiative [17] that was recently adopted as central to onward national malaria 

control strategies for Uganda [38]. Whilst targeted interventions including IRS [211] and larval source 

management [37] have been used, further emphasis is necessary [81, 160] with implementation taking greater 

account of local context. Importantly however, temporal variability of risk among many regions highlights the 

continued vital role of routine surveillance for planning and timely action towards control. Moreover, higher risk 

among high burden locations during the lowest than highest burden seasons suggests persistent high-risk in these 

locations, the identification of which could facilitate high precision targeted actions for effective control. 

This study also identified several distinct clusters of high-risk health facility catchments, which were consistent 

over time though largest during the highest burden seasons and smallest at the lowest. The largest high-risk 

clusters were concentrated in the West Nile and Acholi regions in Northern Uganda, although smaller clusters 

were noted in the recognised high transmission regions of Karamoja and East-Central Busoga [61]. Conversely, 

the most notable low-risk health facility catchment clusters could be grouped into three categories: highland 

regions (e.g. Kigezi, Ankole and Bugisu) [152, 212]; regions with recent intense targeted multi-year IRS activity 

associated with high impacts on transmission (e.g. Bukedi, Teso, and Lango) [60, 61, 213, 214]; and, large urban 

municipalities (e.g. Southern Buganda) with urbanization associated with reduced transmission [215, 216]. These 

findings provide further evidence of identifiable candidate locations for targeted control interventions among the 

high-risk clusters and an approach for assessment of possible impacts of previous interventions. 
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Trends in annual confirmed malaria cases in Uganda declined between 2016 and 2018, despite increased reporting 

and proportions of confirmed cases over time, consistent with MIS findings between 2014 and 2018 [60, 61], 

before a sharp increase in 2019. Moreover, the relationship between regional relative risk and prevalence of 

malaria (among children under five years of age from the 2018 MIS) showed that small changes in parasite 

prevalence were associated with sharp increases in relative risk among regions at lower than national average 

risk. However, large changes in parasite prevalence were associated with small changes in relative risk among 

regions at higher than national average risk. This further confirms the variability of risk among many regions while 

pointing to strong effects of age on malaria [217]. In addition to estimated confirmed cases being lower than 

estimates reported by WHO and MAP per year (possibly due to study design of excluding some facilities), trends 

were dissimilar with WHO and MAP cases increasing between 2016 and 2017 [3], unlike in this present study. 

Nevertheless, such dissimilarities have been documented [71] and likely explained by the use in global assessment 

for sub-Saharan Africa of prevalence surveys that are predominantly conducted among children [82]. With 

estimates for the whole population generated from these surveys, despite shifts in malaria burden from children 

to the older population following effective control interventions [217], the dynamic effects on burden may not be 

adequately accounted for in the prevalence-to-incidence models used. 

The observed seasonality with June-July peaks and February-March troughs was consistent with reports from 

south western Uganda, where epidemics followed a regular July pattern except during El-nino in 1998 [64, 218] 

and in Gulu district (Northern Uganda) where between 2006 and 2015 biannual peaks of malaria were reported 

during June-July and October-November [219]. One study however, reported two peaks of malaria during April-

May and September-November in Northern Uganda following the rain seasons, though unsubstantiated [220]. 

Findings from this present study may inform optimal timing for control activities including IRS, mass drug 

administration (MDA), or community mobilization campaigns towards increased malaria risk awareness for 

control vigilance. 

PFP facilities, a small majority of which do not report to the HMIS and were therefore excluded from this study, 

limit the utility of focal analyses such as presented here. This highlights an important missed surveillance 

opportunity. The limited capacity to detect outbreaks in settings largely served by PFP may exacerbate the severity 

of malaria outcomes among their most vulnerable residents with increased case management costs [221]. There 

are several possible initiatives to increase reporting in these facilities where a small majority seek care for febrile 

illnesses [59-61]. First, provision of guarantees on exclusive use of data for public health not revenue monitoring, 

may improve confidence and alleviate any fears of punitive intensions in their reporting. Second, ensured 

availability of standardized reporting tools, may offset running costs of stationery in the private facilities while it 

enables improved documentation of health records. Third, training of PFP managers and owners on the benefits 
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of surveillance and/or reporting. Lastly, implementation of regular feedback mechanisms may provide a means of 

continued evaluation that fosters risk and other assessments that are mutually beneficial. 

Given that policymakers’ remediating responses as well as policy formulation processes are informed by pooled 

information from diverse sources, including but not limited to research, political, and funding provisions, it is 

unrealistic to expect these technocrats to be expert generators of the evidence from these multi-disciplinary 

sources. Whilst there are no simple solutions to the implementation of analyses such as in this present study, 

interpretation of contemporary outputs is nowhere nearly as demanding, highlighting the criticality of 

partnerships between policy and research dimensions for malaria and other disease control efforts. 

This study had limitations. First, the disproportionately low proportion of geolocated reporting private facilities 

impacted on the estimates of malaria burden, especially among highly urban locations including Kampala and 

Wakiso districts and others across the country. Results for the Kampala region (and Wakiso district) in this study, 

represent only a small proportion of the burden and were excluded from results discussions. Moreover, exclusion 

of non-geolocated reporting public health facilities (such as in Kitgum district), impacted on the estimates of 

incidence due to unidentified catchments in those places. Nevertheless, there was wide coverage of health 

facilities across the country with a small proportion of districts under-represented, minimizing effects of this 

constraint. Second, the study did not account for level of health facility and other population level factors that 

impact on differential health seeking behaviour, which may have inflated incidence rates and risk where a given 

level or type of facility is preferred. However, in this analysis it was assumed that for uncomplicated malaria, 

people attend the closest health facility and some important factors such as urbanicity and primary care giver 

education were accounted for, though further research may be required to better understand impacts of level of 

health facility on care seeking for uncomplicated malaria. Third, the study did not account for stock levels of 

antimalarials or test kits, variations of which may impact on the number of cases recorded between seasons of 

full stock versus stockouts. A better understanding of the linkage between logistics management and HMIS may 

be required, given known associations between stockouts and increased under-five mortality or compromised 

treatment practices like dosage rationing and use of less effective remedies [222]. Fourth, given that health facility 

recruitment into the study was not dynamic, any increase in number of facilities reporting could have had impacts 

on study findings. Moreover, the systematic exclusion of non-geolocated facilities, may have biased study results 

towards more long-term established than newer health facilities, but duration of facility existence was beyond 

the scope of this study.  

Conclusion 

Assessment of malaria burden and/or risk in high burden countries using routine surveillance data is highly 

achievable. Using national routine data, this study provided needed evidence of vital concurrent assessment of 
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malaria risk and burden among regions, districts, and health facility catchments with identifiable significant spatial 

clustering of risk. Targeting hotspots as an intervention approach has been shown to yield modest and transient 

impacts on malaria prevalence [223]. However, locations with persistently high-risk of malaria that are potential 

candidates for health facility-based interventions such as community outreaches, provision of LLINs, mass drug 

administration and enhanced case management were identified, an approach that may be beneficial beyond 

isolated health facility catchments. Furthermore, whilst extensive geo-spatial analytical output with scales either 

too large (region or district) or too fine (pixel or neighbourhood) may be challenging for control programmes to 

use [224], this study provides evidence of HMIS-based assessments at practical scales for districts to implement 

and assess intervention impacts. Moreover, in perennial settings, the identifiable strong seasonal patterns as seen 

with June-July highest peaks and February-March lowest troughs in Uganda, provide vital information for 

intervention timing. Taken together, these results show the potential in routine HMIS surveillance data for 

pragmatic timely identification of high-risk areas and with further research assessments for optimal 

implementation of targeted control activities and their impacts. 
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Figure legend 

Fig. 1 Map of Uganda showing locations of study health facilities within their defined catchment areas 

The orange points are the relative geo-locations of the study health facilities recruited from across the country, 

each situated in a grey background representative of the exclusive catchment area for each facility. The catchment 

areas were constituted using a three-hour cost distance surface towards each health facility. These are overlaid 

with the regional boundaries (dark green) defining the 15 endemicity regions across the country. 

Fig. 2 Spatial distribution of malaria incidence rates during high burden months of study duration 

Columns A, B, and C represent regions, districts, and heath facility catchments respectively, while the rows 

correspond to the respective highest burden month of each year. The lighter the shade of colour, the lower the 

incidence rates within a region, district, or catchment and the darker the colour, the higher the incidence rates. 

Fig. 3 National and regional trends in mean monthly malaria incidence rates July 2015 – September 2019 

Trend plots of incidence rates (confirmed malaria cases / 1000) over study time (x-axis) – monthly. The top plot 

shows the national mean incidence rates per month (blue line) with a linear trend-line (dotted red). The bottom 

plot shows the trends for the 15 endemicity regions that comprise the country. 

Fig. 4 Spatial distribution of the relative risk of malaria during lowest and highest burden months of the study 

duration 

The left column shows, from top to bottom, relative risk by region, district, and health facility catchment for the 

lowest risk month of February 2018 while the right column shows a similar arrangement for the highest risk month 

of June 2017. For each row, the same levels (region, district, or health facility catchment) are side-by-side. 

Green areas are locations with relative risk of malaria lower than the national average where the darker the colour 

the lower levels of risk below national average. 

Red coloured areas are locations with relative risk of malaria higher than national average, where the darker the 

colour the high the risk 

Fig. 5 Spatially significant clusters of malaria risk for the highest and lowest burden months between 2015 and 

2019, across Uganda 

The map at the top represents the distribution of significant clusters of malaria risk across the 15 regions of the 

country during the highest risk month of June 2017. The map at the bottom represents a similar distribution but 

for the lowest risk month of February 2018. 
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High-High Clusters: The black and dark red areas represent the clusters of high-risk health facility catchments that 

are spatially located next to other high-risk catchments, with significant positive spatial autocorrelation at <=0.01 

and <=0.05 levels of significance, respectively. 

High-Low Outliers: These orange areas represent high-risk clusters that are significantly disparate from their 

surrounding low-risk catchments. These outliers have significant negative spatial autocorrelation.  

Low-High Outliers: These blue areas represent the low-risk clusters that are significantly disparate from their 

surrounding high-risk catchments. These outliers also have significant negative spatial autocorrelation. 

Low-Low Clusters:  These green areas represent the clusters of low-risk health facility catchments that are spatially 

located next to other low-risk catchments, with significant positive spatial autocorrelation. 

Not significant: The light grey areas represent the health facility catchments that did not show any significant 

spatial autocorrelation or clustering of either high, low or outlier distribution of risk of malaria. They are areas of 

highly random spatial distribution of risk of malaria.  
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6.1 Additional Information for Paper 4 

6.1.1 Study health facilities’ selection 

Health facilities were selected for inclusion in this study primarily in the basis of presence of geo-ordinates from 

the publicly available database as well existence in the national routine HMIS data repository (DHIS-2) by 2015. 

The geo-location database contained nearly half the number of entries as the reported malaria cases DHIS-2 

database given that 50.9% were without a match in the geo-location database (Fig. S1). 

Fig S1. Flow-diagram of the recruitment process for the study health facilities 

 

By 2015, there were at least 7029 health facilities (public and private) registered in the DHIS-2 database, in 

anticipation of them submitting monthly malaria reports. Of these, 2656 (37.8%) did not submit any reports 

through the year, though majority of these were private clinics that often do not comply with MoH reporting 

requirements (Fig. S1). A total of 3663 health facilities with associated geo-coordinates were identified by name 

and these comprised a health facility geolocation database. Comparing the two databases, identities of 3446, by 

facility name, were matched and the same constituted the study health facilities for this work. 

6.1.2 Diagnostic confirmation of malaria and reporting 

Whereas diagnostic testing rates varied across the country, overall proportions of the reported malaria cases 

confirmed by a diagnostic test increased nationally over time from 62.2 to 88.7% between 2015 and 2019 (Fig. 

S2). These increases were observed across 14 of the 15 endemicity regions of the country, with the three best 
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performing regions of Lango in Northern Uganda, Kigezi in South Western Uganda and Teso in Eastern Uganda, 

increasing from 70.9 to 98.1%, 58.8 to 97.4% and 45.8 to 98.1% respectively. Notably however, Kampala in central 

Uganda recorded declining performance, with the proportion of reported cases that were diagnostically 

confirmed reducing from 62.0 to 16.0% between 2015 and 2017. Notably however, majority of excluded facilities, 

were disproportionately concentrated in Kampala (the capital city and most urban district in the country) making 

it an outlier. Along with the improved diagnostic testing, national reporting rates defined as the proportion of the 

expected reports received within the DHIS-2 system per year recorded an 22.1% increase between 2015 and 2019 

(Fig. S3). 

Fig S2. Distribution of proportions of reported malaria cases that were test confirmed, by the 2018 MIS 

endemicity regions and nationally. 

 

*Not complete calendar years, included July-December 2015 and January-September 2019 

The red colours represent lowest performance of reporting test confirmed cases while the green colours, 

improving performance 

6.1.3 Reporting completeness and timeliness 

Part of the output from the DHIS-2 system is an assessment of reporting completeness and timeliness of report 

submission. Reports of national reporting were generated from the system for the study duration and these were 

available by MIS regions of 2014 during which the country was divided into five regions. Fig. S3 below shows the 
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trends in reporting rates, defined as the proportion of expected reports for a given year that were submitted from 

regions. Notably however, reporting timeliness was lower than eventual submission indicating an area of much 

needed improvement in HMIS reporting. 

Fig S3. Proportion of expected HMIS reports that were submited, by the four regions and the overall national 

trend 

 

The central region which includes Kampala and the other highly urbanized areas of the country showed the lowest 

performance, consistent with findings from our analysis where urban areas with high proportions of PFP that 

report the least. However, the region showed considerable improvement over the years. 

6.1.4 Impact of study design on results 

Whilst the study health facilities included in the analysis were only a proportion of the full list of health facilities 

registered in the national data repository of surveillance data (DHIS-2), these were a good general representation 

for the national distribution. This was supported by a general left skewed distribution with a median proportion 

of 71.3% (IQR: 59.0 – 80.0)  (Fig. S4) and three districts (Kampala and Wakiso - the most urban settings of the 

country, plus Kitgum - a fairly rural district in the previously war ravaged Northern Uganda) presenting as outliers 

with low proportions of registered health facilities included in the analysis (Figs. S4 & S5). 
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Fig S4. Distribution of health facility inclusion in the analysis from amongst the list registered in the DHIS-2 

database by 2015 

 

This distribution suggests a fairly good representation of routine surveillance data from across the country with 

the exception of the three unique districts for which additional efforts would be required to improve their status. 



Page 164 of 267 
 

Fig S5. Geographical representation of the proportion of DHIS-2 health facilities included in this study by 

district. 

 

We observed here that the mid-western region of the country is another that is fairly under-represented. 

However, it’s not clear why in spite of the fairly good overage of catchments across this region, there is still a large 

number of facilities unaccounted for. Interestingly however, the north-eastern region that had a sparse 

distribution of catchments than the rest of the country presented some the highest representation districts. 

Nevertheless, the population in this region leads a characteristically nomadic lifestyle with far-flung permanent 

settlements among which health facilities would be viable. 

To assess the impact of exclusion of facilities from the study on the basis of no geo-location information, however, 

we examined the raw reported confirmed malaria cases by for each of the 15 endemicity regions. Here, we 

assessed confirmed malaria cases from excluded regions as a proportion of overall regional confirmed malaria 

cases reported over each calendar year of the study duration. Results showed that the proportion of confirmed 
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cases among non-geolocated facilities increased slightly between 2015 and 2019 with the highest increase in 

Tooro from 11.7 to 32.9%, followed by West Nile from 3.6 to 16.4% respectively (Table S1). Overall, the proportion 

of malaria cases reported from non-study health facilities moderately increased between 2015 and 2019 from 

11.7% to 16.1%, which may indicate an increase in reporting, especially from private facilities with time.  
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Table S1. Comparison of observed raw (reported) confirmed malaria cases between study and non-study facilities by 

region, per calendar year 

Region 

2015* 2016 2017 2018 2019* 

Includ

ed 

Excluded 

(% Missed) 

Include

d 

Excluded 

(% Missed) 

Include

d 

Excluded 

(% Missed) 

Includ

ed 

Excluded 

(% Missed) 

Include

d 

Excluded 

(% 

Missed) 

Acholi 
469,34

3 

89,535 

(16.0%) 

1,011,4

20 

230,923 

(18.6%) 

648,22

1 

158,629 

(19.7%) 

405,5

19 

92,890 

(18.6%) 

1,028,8

92 

222,463 

(17.8%) 

Ankole 
223,36

7 

37,015 

(14.2%) 

635,57

7 

99,989 

(13.6%) 

690,19

4 

111,088 

(13.9%) 

217,7

62 

53,439 

(19.7%) 

201,69

5 

51,337 

(20.3%) 

Bugisu 
121,62

2 

15,058 

(11.0%) 

299,72

2 

35,663 

(10.6%) 

316,75

2 

44,194 

(12.2%) 

199,3

40 

35,895 

(15.3%) 

242,37

4 

42,895 

(15.0%) 

Bukedi 
147,27

3 

11,500 

(7.2%) 

365,37

4 

28,915 

(7.3%) 

413,05

7 

35,863 

(8.0%) 

255,0

22 

22,221 

(8.0%) 

237,19

4 

21,658 

(8.4%) 

Bunyoro 
190,00

2 

27,645 

(12.7%) 

485,29

0 

79,643 

(14.1%) 

496,47

1 

70,328 

(12.4%) 

298,4

54 

48,038 

(13.9%) 

460,36

8 

67,734 

(12.8%) 

East 

Central 

Busoga 

459,73

3 

58,858 

(11.3%) 

1,315,0

82 

159,976 

(10.8%) 

1,102,3

82 

172,844 

(13.6%) 

936,7

40 

147,221 

(13.6%) 

946,49

2 

133,679 

(12.4%) 

Kampala
# 

39,321 
63,481 

(61.8%) 
65,791 

118,693 

(64.3%) 
44,852 

107,817 

(70.6%) 

25,24

5 

107,912 

(81.0%) 
29,196 

96,983 

(76.9%) 

Karamoj

a 

123,95

1 

5,676 

(4.4%) 

228,29

9 

11,836 

(4.9%) 

261,32

1 

14,978 

(5.4%) 

309,4

48 

14,427 

(4.5%) 

300,31

4 

23,727 

(7.3%) 

Kigezi 63,218 
4,790 

(7.0%) 

151,66

3 

19,676 

(11.5%) 

160,42

3 

21,471 

(11.8%) 

80,46

6 

11,094 

(12.1%) 
94,855 

7,795 

(7.6%) 

Lango 
274,98

0 

20,689 

(7.0%) 

649,07

1 

57,531 

(8.1%) 

364,46

9 

41,071 

(10.1%) 

245,3

98 

34,690 

(12.4%) 

515,35

4 

57,704 

(10.1%) 

North 

Buganda 

359,74

0 

37,244 

(9.4%) 

899,17

2 

104,118 

(10.4%) 

1,075,6

36 

126,180 

(10.5%) 

598,1

92 

80,623 

(11.9%) 

806,89

2 

104,170 

(11.4%) 

South 

Buganda 

339,56

6 

50,641 

(13.0%) 

857,37

9 

132,875 

(13.4%) 

924,70

3 

180,585 

(16.3%) 

446,7

11 

124,387 

(21.8%) 

511,24

1 

114,152 

(18.3%) 

Teso 
250,83

4 

27,289 

(9.8%) 

610,96

4 

58,393 

(8.7%) 

406,33

7 

53,759 

(11.7%) 

478,0

98 

57,421 

(10.7%) 

495,77

8 

57,500 

(10.4%) 

Tooro 
256,00

1 

33,934 

(11.7%) 

610,96

4 

95,187 

(13.5%) 

613,59

0 

84,107 

(12.1%) 

304,9

32 

122,434 

(28.7%) 

379,66

2 

186,336 

(32.9%) 

West Nile 479,283 
17,873 

(3.6%) 

1,185,5

21 

66,045 

(5.3%) 

1,367,0

89 

132,152 

(8.8%) 

1,486,

110 

140,520 

(8.6%) 

1,445,54

1 

283,897 

(16.4%) 

Overall 
3,798,2

34 

501,228 

(11.7%) 

9,371,2

89 

1,299,463 

(12.2%) 

8,885,4

97 

1,355,066 

(13.2%) 

6,287,

437 

1,093,212 

(14.8%) 

7,695,84

8 

1,472,030 

(16.1%) 

*Incomplete calendar years included in study: July-December for 2015 and January – September for 2019 

# Region comprised of one district  
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Notably, the total predicted number of confirmed cases recorded during the nine months of 2019 included in the 

study period were higher than the total for all of 2018 by at least 1.4 million cases indicating a major increase in 

malaria burden and confirming 2018 as the lowest burden year between 2016 and 2019. 

Population estimates: To determine incidence rates, total confirmed cases at either health facility catchment, 

district or regional resolution provided the numerator while total population estimates at each respective 

resolution provided the denominator. Population estimates were extracted from WorldPop gridded surfaces. 

Compared to Uganda Bureau of Statistics’ (UBOS) national population projection for 2015 of approximately 35.5 

million, this study’s estimated Uganda’s at 35.9 million in 2015 from WorldPop. The estimated total study 

population of 34.9 million therefore, accounted for 97.2% of the 2015 national population estimate. Similarly, 

whilst UBOS population projection for 2019 was 40.3 million, this study estimated 40.8 million. The study 

population estimate of 39.6 million during 2019 therefore, accounted for 97.1% of the national population 

estimate. Whilst the differences between UBOS and WorldPop estimates may be due to in model approaches, 

differences between national total and study population are attributable to populations located beyond our 

defined catchments and in locations where very few and sparse health facilities were geolocated. 

6.1.5 Cost distance surface 

Generally in Uganda, geographical catchment for each level of health facility have been conceptualized as level II 

serving a parish, level III a sub-county, and level IV a group of sub-counties otherwise known as a health sub-

district (MoH), among others, though it may not be the case in actual practice. Treatment seeking for malaria has 

been reported as influenced by multiple factors like: knowledge about malaria and its outcomes, severity of 

disease, reputation of a health facility and affordability of its services, available alternative remedies, as well as 

age of head of household [225-227]. However, proximity of a health facility may be one of the strongest influences 

on treatment seeking, often cited in the rampant use of private versus public health facilities [141]. We, therefore, 

defined health facility catchments under the assumption that people seek care for uncomplicated malaria from 

the most proximal health facility, using the AccessMod tool supported by the WHO [195]. 

AccessMod is a web-enabled spatial analysis tool that provides extended ArcView 3.x functionality. Among others, 

it is used for modelling catchment areas associated with geo-located sources of care as an estimate of physical 

accessibility, using travel time [195]. Here, first we generated a cost-distance surface of the entire country, at a 

100x100 meter pixel resolution. For this, several geographical covariates, within the WGS 1984 UTM Zone 36S 

coordinate system under the Transverse Mercator projection, were included. Respective covariate classifications 

were first assigned an intuitive characteristic speed of travel across them, taking into consideration the most likely 

means of travel useable, to define an overall travel scenario. This scenario included most likely modes of travel 

across different surfaces such as walking and cycling, driving and riding, as well as using a canoe or boat across 

water surfaces. Along with these modes, average travel speeds across the respective surfaces or covariates were 
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estimated. The covariates included: 1) a digital elevation model (DEM) of the country that defines the elevation 

variability across the surface at a 100x100m resolution. This measure of slope per pixel in the DEM was used to 

penalize the speed of crossing a pixel, particularly for walking and bicycle means, making direction of travel 

important to define. With interest in access to the health facility in this study, direction of travel was chosen to be 

towards the health facility. 2) Road network across the country classified as Primary, secondary, tertiary, and other 

roads, were each considered to enable varied speeds of travel across them, ranging from 30 kilometres per hour 

(Km/h) on other roads such as feeder or country roads to 100 Km/h on primary roads such as highways. 3) Land 

use and land cover surface covariate, also at a 100x100 meter resolution, was defined in ten classifications of: tree 

cover, shrub, grassland, cropland, aquatic vegetation, sparse vegetation or lichens-Mosses, bare ground, built-up, 

open water, and no data areas. The predominant land cover type per pixel, was assigned a characteristic speed of 

travel, ranging from a low of one Km/h such as across open water to ten Km/h across bare ground. 4) Lakes and 

rivers. Whereas the first three covariates were classified to enable travel across them, lakes and rivers were 

considered primarily as barriers with limited capability to cross them and no likelihood of being residential areas 

for populations or locations for a health facility. Any health facility that would have its geo-coordinates within 

water was excluded. This did not include health facilities on islands of which there were several. 5) Another barrier 

considered in this cost-distance evaluation were swamps with limited likelihood of travel across them except if 

there was a certain type of road network through them, assumed to likely be a bridge-type crossing. These too 

were included in this process. Majority of country was within  four hours (240 minutes) of travel time to the health 

facility (Fig. S6)  however, there were some outliers, especially far into the lakes and fairly high travel times in 

parts of the country such as the North-Eastern areas, among others. 
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Fig S6. Distribution of travel time to the health facility across the country in minutes from country-wide raster 

surface generated 

 

6.1.6 Model selection 

To select the model covariates to include, time varied covariates including rainfall estimates, land surface 

temperature and vegetation amounts quantified as NDVI were evaluated for selection between the current 

monthly estimate and the mean of current monthly estimate and either one, two or three months’ lags using 

akaike’s information criteria values of a multi-variate regression model of crude incidence rates as dependent 

variable. While keeping all others constant, each covariate was varied to obtain its best quantity for inclusion in 

the model and the choice of covariate quantity was based on the lowest value of AIC between each covariate’s 

varied values as summarized in Table S2 below. 
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Table S2. Akaike’s information criteria values with corresponding value of covariate included 

Covariate 

Akaike's information criteria (AIC) 

Rainfall 
Land surface 

temperature 
Vegetation (NDVI) 

Current month's estimate -478514.4 -479,047.50 -481,472.60 

Mean of current & 1 month’s lag -479,561.30 -479,232.40 -481,537.80 

Mean of current & 2 months’ lag -480,403.10 -479,743.80 -481,127.30 

Mean of current & 3 months’ lag -480,553.30 -480,553.30 -480,553.30 

Best choice covariate AIC indicated with bold value 

From the final selection of covariates including: years of education for women of childbearing age, nighttime light 

emissivity, mean of current and three months’ lags for rainfall and land surface temperature, and mean of current 

and one month’s lag of NDVI, it was clear that all except years of education for women of childbearing age were 

significantly and positively associated with the outcome, while education was negatively but also significantly 

(p<0.001) associated as shown in Table S3 below. 

Table S3. Association between best fitted covariates and crude incidence rates from multi-variable regression 

Covariate 
Regression 

coefficient 
95% Conf I p-value 

Education -0.007338 (0.007578 - 0.007099) <0.001 

Nighttime light emissivity 0.000052 0.000042 - 0.000063 <0.001 

Mean of current & 1 month’s lag (NDVI) 0.000477 0.000453 - 0.000501 <0.001 

Mean of current & 3 months’ lag (Rainfall) 0.000128 0.000122 - 0.000135 <0.001 

Mean of current & 3 months’ lag (Temperature) 0.001654 0.001584 - 0.001725 <0.001 

 

6.1.7 Bayesian model validation 

The Bayesian model fit to generate the posterior estimates of malaria incidence accounted for four main 

explanatory factors including: education of women of child-bearing age, the same being the predominant primary 

care givers in homes; mean rainfall estimates over the current and three previous months; land surface 

temperature; vegetation amounts, and nighttime emissivity. In order to validate this model, we randomly selected 

20% of catchments to be withheld from the posterior estimates and re-run the model to thereafter compare 

estimates generated from the model with 80% data to posterior estimates determined from the model with the 

full data. 
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Results showed that consistent with strong correlation between observed incidence rates and posterior estimates 

for all data as shown in Fig. S7 below, out of 990 randomly selected catchments, posterior estimates for 942 were 

within 95% credible interval of the full model prediction for the same. Moreover, there was high correlation 

between these estimates with Spearman’s rho = 0.6988, P<0.001 also represented in Fig. S8 below. 

Fig S7. Scatter plot of predicted against observed confirmed number of malaria cases from all 3446 

catchments in the study 
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Fig S8. Scatter plot of model predicted against observed confirmed malaria cases for a random sample of 990 

catchments for validation of Bayesian model 

 

 

6.1.8 Distribution of catchment-level incidence rates 

Consistent with the observed distribution of incidence rates during the high burden months of the study duration, 

for all the low burden months, a distinct distribution was observed. In the latter like the former, highest burden 

districts - potential drivers of their respective regional burden were identifiable. Similarly, highest burden 

catchments – potential drivers of district burden were also identifiable as shown in Fig. S9 below. Moreover, the 

pattern of reducing burden from 2016 through 2018, followed by a rebound in 2019 was also observable, 

particularly among regions and districts.  
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Fig S9. Spatial distribution of malaria incidence rates during low burden months of study duration 

 

Maps in column A represent the distribution of incidence rates by MIS regions (15 regions) of the country; B represent the 

distribution of incidence rates by district (128 districts); while C represent the distribution of incidence rates by health facility 

catchments (3446 catchments in all). 

Examination of the association between mean and standard deviation (SD) of monthly incidence rates, considering 

SD the coefficient of variation in these monthly incidence rates, showed that there was a strong linear association 

between the two, both at district and health facility catchment levels. This was shown using scatter plots of the 

coefficient of variation versus mean monthly incidence rates at each level as shown in Fig. S10 below as well as 
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the heat-map of district monthly incidence rates in Fig. S11 below. Moreover, increase in mean monthly incidence 

rates was associated with an increased coefficient of variation and therefore, variability. 

Fig S10. Scatterplot for association between Standard deviation and Mean monthly incidence rates at district 

and catchment levels 
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Fig S11. Distribution of malaria incidence rates per month for the 128 districts in Uganda between July 2015 and September 2019
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6.1.9 Trends in monthly incidence rates 

Whilst clear and fairly strong trends in malaria incidence rates were observed at the national level with seasonality, similar trends and seasonality were 

also reflected among regions and districts. The highest burden areas also sustained the highest levels of mean monthly incidence rates across the study 

duration both at regional and also as shown among districts in Fig. S12 below. 

Fig S12. Trends in the mean monthly incidence rates by the 128 districts of Uganda as of 2018 

 

Here, we observe two groups of districts with the highest incidence rates. The first comprised the three districts of Moyo, Lamwo, and Adjumani while the 

second group included Amuru, Pader, Nwoya, and Maracha. Consistent with seasonality observed at national level, all districts both how and high burden, 
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showed the same seasonality pattern with June-July as the highest incidence rates months and February-March 

being the lowest incidence rates months across the study duration. 

6.1.10 Annual estimates of confirmed malaria cases 

National estimates of annual total confirmed malaria cases in Uganda are obtainable through routine surveillance 

data. However, these are not fully utilized in global burden estimates of malaria for Uganda or other countries in 

the region. To evaluate how HMIS-based estimates compared with global estimates, annual estimates for each 

calendar year were compared with the most recent estimates reported in the WHO’s world malaria report 2019. 

Given that global reports are provided in complete years, the respective calendar years for which data included in 

our study was not from the entire 12 months of the year, the comparisons were considered not applicable. These 

results are presented in Table S4 below. 

Table S4. Estimated number of confirmed malaria cases from this study compared with estimates from the 

WHO estimates 

Year / duration 
Confirmed malaria cases in 

millions (95% CI) 

Estimated cases from 

Malaria atlas project in 

millions (95% Conf. I) 

WHO malaria report 2019 in 

millions (95% Conf. I) 

Jul-Dec, 2015 4.759 (4.642 - 5.017) N/A N/A 

Jan-Dec, 2016 10.151 (9.904 - 10.688) 10.876 (8.439 - 14.007) 12.070 (9.342 - 15.300) 

Jan-Dec, 2017 9.439 (9.210 - 9.927) 11.096 (8.613 - 14.286) 13.863 (10.840 - 17.470) 

Jan-Dec, 2018 6.527 (6.368 - 6.865) N/A 12.357 (7.623 - 18.970) 

Jan-Sep, 2019 7.951 (7.760 - 8.362) N/A N/A 

CI – Credible interval 

Conf. I – Confidence interval 

Given that estimates from this study included only the health facilities that were geo-located across the country, 

we argue that this may explain the lower estimates of confirmed malaria cases per year from this study compared 

to WHO reported estimates as seen in Table S4. Notably however, the trend observed from this study with total 

annual confirmed cases reducing between 2016 and 2018 is not observable from WHO reported estimates [3] or 

with Malaria Atlas project estimates. From this study, 2016 registered the highest total confirmed number of cases 

and 2018 the lowest of the three years, while the global reports indicated 2017 as the highest with 2016 the lowest 

of the three years. This may be attributable to differences in the approaches used for the estimates reported 

between these sources. Both MAP and WHO estimates, that showed an increase in cases from 2016 to 2017, were 
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generated predominantly using survey-based data [3, 207] that may not capture nuances observed from routine 

data that showed a clear downward trend in malaria cases between 2016 and 2018 from this study. 

National monthly incidence rates: Examining monthly estimates of national mean incidence rates, results showed 

that across the 51 months, June-July experienced the highest incidence rates for all the years, while the lowest 

estimates were observed variably but mostly during February-March as shown in Table S5. For 2015 where only 7 

months were included in this study starting from July, however, the lowest estimate was observed during October. 

Table S5. National, regional and health facility catchment highest and lowest estimated monthly incidence 

rates per study calendar year in Uganda 

Annual duration 
Peak monthly incidence rates Lowest monthly incidence rates 

month IR (95% CI) month IR (95% CI) 

Jul-Dec 2015 July 27.6 (27.0 - 29.1) October 20.1 (20.6 – 21.7) 

Jan-Dec 2016 June 32.1 (31.3 - 33.8) March 17.2 (16.8 - 18.1) 

Jan-Dec 2017 June 36.6 (35.7 - 38.5) December 12.3 (12.0 - 13.0) 

Jan-Dec 2018 June 18.9 (18.4 - 19.9) February 8.9 (8.7 - 9.4) 

Jan-Sep 2019 July 36.3 (35.4 - 38.1) February 12.7 (12.3 - 13.3) 

CI – Credible interval 

IR – Incidence rate estimated 

Further, the five highest risk regions both during the highest and lowest burden months being identified across 

the country as Acholi, West Nile, Karamoja, East Central – Busoga, and Teso. Within these regions, the highest 

burden districts were also identifiable, the highest four districts in each shown in Table S6 below between the two 

seasons. 
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Table S6. The four highest burden districts within the five highest risk regions across the country during July-

2017 and February-2018, the highest and lowest burden months of the study duration. 

 July 2017 (the highest burden month) February 2018 (the lowest burden month) 

Region District IR (95% CI) District IR (95% CI) 

Acholi 

Lamwo 167.6 (165.6 - 169.8) Lamwo 36.4 (35.9 - 37.0) 

Amuru 122.5 (118.4 - 138.0) Amuru 25.1 (24.2 - 28.2) 

Nwoya 118.8 (117.2 - 120.3) Pader 24.3 (23.2 - 28.7) 

Pader 117.3 (111.5 - 118.2) Nwoya 23.9 (23.5 - 24.3) 

West Nile 

Moyo 192.5 (189.9 - 195.1) Moyo 48.0 (47.2 - 48.8) 

Adjumani 145.0 (143.5 - 146.4) Adjumani 35.2 (34.8 - 35.7) 

Maracha 100.8 (99.3 - 102.4) Maracha 24.4 (24.1 - 24.8) 

Koboko 68.5 (67.8 - 69.3) Pakwach 17.2 (16.9 - 17.7) 

Karamoja 

Kaabong 81.1 (79.6 - 82.5) Moroto 23.9 (23.4 - 24.4) 

Moroto 80.2 (78.7 - 81.7) Kaabong 21.0 (20.6 - 21.4) 

Nakapiripirit 52.4 (51.5 - 53.3) Kotido 12.6 (12.4 - 12.9) 

Abim 51.1 (50.1 -52.0) Nakapiripirit 11.1 (10.9 - 11.3) 

East Central - Busoga 

Namayingo 73.1 (71.9 - 75.0) Namayingo 19.1 (18.7 - 19.6) 

Luuka 71.3 (69.9 - 72.7) Luuka 17.2 (16.8 - 17.6) 

Iganga 58.5 (57.6 - 59.5) Iganga 15.1 (14.9 - 15.4) 

Bugweri 58.4 (57.5 - 59.4) Jinja 14.1 (13.5 - 16.0) 

Teso 

Katakwi 72.0 (70.9 - 73.1) Katakwi 16.2 (15.9 - 16.5) 

Kumi 58.6 (57.7 - 59.5) Kumi 13.5 (13.3 - 13.7) 

Kapelebyong 57.5 (56.5 - 58.5) Ngora 12.5 (12.3 - 12.7) 

Amuria 54.2 (53.4 - 55.1) Amuria 12.4 (12.1 - 12.6) 

 

To evaluate the estimated relative risk against other known estimates, a scatter plot of the regional prevalence of 

malaria estimated among children 0-59 months of age tested by microscopy within the 2018 Malaria Indicator 
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Survey [61], against the study estimated relative risk of malaria during December 2018, the month when the MIS 

survey was conducted was plotted. Fig. S13 below shows a positive relationship between these two estimates and 

indication of a positive association between the two.  

Fig S13. Relationship between the 2018 MIS regional prevalence of malaria and estimated relative risk of 

malaria for December 2018 

 

The blue points represent the (prevalence, risk) coordinates and the red dotted line, the fitted curve for the 

relationship. This observed relationship may provide some evidence of the important effect of age that is largely 

precluded from evaluations of risk among all populations based on data from children. In these cases, low 

transmission setting estimates of malaria burden may be under-estimated while being over-estimated in the high 

transmission settings. 

6.1.11 Malaria risk distribution 

Given variability of risk of malaria through the spatial hierarchy, risk at the two higher levels (region and district) 

was assessed and presented in Table S7 below. The results show regional risk of malaria relative to national 

average, during the lowest and highest incidence rate months at national level as independent columns as 
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evaluated through national trends in incidence rates. Additionally, for each region, the range of district risk of 

malaria for the districts that comprise the respective region was also included  

Table S7. Risk of malaria relative to national average, for the lowest and highest burden months between July-

2015 and September-2019, by region and district. 

Region 

Lowest burden month  

(February-2018) 

Highest burden month 

(June-2017) 

Regional risk  District risk range Regional risk  District risk range 

Acholi 2.2 1.5 – 4.1 2.6 1.9 – 4.6 

Ankole 0.8 0.2 – 1.3 0.6 0.2 – 1.1 

Bugisu 0.8 0.2 – 1.1 0.7 0.3 – 1.0 

Bukedi 0.7 1.2 – 2.4 0.8 0.2 – 2.4 

Bunyoro 0.8 0.4 – 1.5 0.9 0.5 – 1.7 

East Central - Busoga 1.3 0.5 – 2.1 1.3 0.5 – 2 

Kampala 0.2 N/A 0.2 N/A 

Karamoja 1.4 0.6 – 2.7 1.4 0.7 – 2.2 

Kigezi 0.4 0.1 – 1.0 0.4 0.1 – 0.8 

Lango 0.8 0.3 – 1.5 0.9 0.3 – 1.6 

North Buganda 1 0.7 – 1.4 1 0.8 – 1.4 

South Buganda 0.7 0.3 – 2.0 0.7 0.3 – 1.9 

Teso 1.1 0.4 – 1.8 1.2 0.4 – 2.0 

Tooro 0.9 0.4 – 1.8 0.8 0.3 – 1.4 

West Nile 1.9 1.2 – 5.4 2 1.3 – 5.3 

With 15 regions define across the country, we assessed risk distribution by region and the consequent distribution 

of risk across each region by district. For the low burden month of February-2018, the four highest risk regions in 

descending order were Acholi, West Nile, Karamoja, and East Central – Busoga, each with greater than one times 

the national average. Comparatively during the highest burden month of June-2017, the same regions maintained 

their position in rank of risk (Table S7). On the other hand, the four lowest risk regions during the lowest burden 

month in ascending order were Kampala, Kigezi, Bukedi, and South Buganda each at lower than national average 

risk. However, during the highest risk month, the four lowest risk regions changed order to include (in ascending 

order) Kampala, Kigezi, Ankole and Bugisu, implying that only Kampala and Kigezi maintained their lowest rank of 

risk. The distribution of risk across districts within each region were further explored using scatter plots for both 

the lowest and highest burden months as presented in Figs. S14 and S15 below. 
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Fig S14 

 

Results showed Acholi and West Nile as the regions with districts that are at the highest risk of malaria, will all 

their comprising districts at higher relative risk than national average regardless of season. However, while Kigezi 

region was one of the lowest burden regions with four districts having the lowest risk, the region also had two 

districts with notably higher risk of malaria than the rest in the region. This pattern is observable among all regions 

and could play a role in identification of higher priority districts per region over any given observation period. 

Notably, among districts within the two lowest risk regions of Kampala and Kigezi the mean relative risk was higher 

during the lowest burden month at 0.4 (95% Conf. I:0.0 – 0.7) than the highest at 0.3 (95% Conf. I:0.1 – 0.6), but 

with no significant difference (P=0.706). Similarly, for the middle-ranked risk regions, mean relative risk among 

their districts was higher during the lowest burden month at 0.9 (95% Conf. I:0.8 – 1.0) than during the highest at 

0.8 (95% Conf. I:0.7 – 0.9) with no significant difference (P=0.717). 
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Fig S15.  

 

Furthermore, examining the relationship between catchment-level risk during lowest and highest burden months, 

results showed that the catchments at highest risk were at disproportionately higher risk during lowest than 

highest burden seasons of the year, as shown in Fig. S16 below. 
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Fig S16. Relationship of catchment-level risk of malaria between Lowest and highest burden seasons 

 

A scatter plot of health facility catchment risk of malaria during the lowest burden month (Feb-2018, x-axis) 

against the highest burden month (Jul-2017, y-axis) with a fitted smoother curve (blue) and 95% confidence 

band (grey). The plot indicates that a large majority of locations maintain similar levels of risk of malaria both 

between high and low burden seasons. However, the non-linear form of the relationship suggests that a few 

locations bear a much higher risk of malaria during their lower than higher burden seasons, and these could be 

identified through such small area assessments for further intervention.  

6.1.12 Spatial autocorrelation of risk 

Given the identifiable distribution of risk across the 15 regions of the country, we assessed for spatial 

autocorrelation of risk at district and catchment levels so as to test for spatial randomness also known as 

heterogeneity versus spatial clustering of risk of malaria at these scales. For these assessments, the global Moran’s 

Index (Moran’s I) test was performed in R. At district-level, this included all 128 districts as they were known by 

2018. However, owing to the requirement of contiguity among neighbours for this analysis, isolated catchment 

areas without a neighbour with a shared border were excluded. Consequently, 27 catchments were excluded from 

this assessment leaving 3419 (99.2%) catchments. Catchment neighbourhood was approximately normally 

distributed as shown in Fig. S17 below, with the highest number of contiguous neighbours a single catchment had 

being 11 and the least being one. 
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Fig S17. Neighbourhood distribution among health facility catchment areas. 

 

 This analysis was conducted for both the lowest and highest burden months of the study duration and results are 

presented using Moran’s scatter plots for the two durations in Figs. S18 and S19 for the district level and Figs. S20 

and S21 at the catchment level below. 

The test statistics for spatial autocorrelation (Moran’s I) showed that both at the catchment and district levels, 

there was increased variability of clustering during the highest burden periods that were associated with increased 

relative risk. Moreover, we observed higher relative risk among lower transmission areas during lower than higher 

burden seasons. Together, these may provide some indication of disproportionately higher increase in burden 

among highest risk locations than increases among the lowest burden areas when malaria upsurges occur. This 

may be consistent with the notion of the 80:20 Pareto rule [228] indicating here that 20% of the population may 

bear 80% of the burden of malaria infections. 
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Fig S18. Moran's scatter plot for district-level risk of malaria during the lowest burden month of the study 

duration 
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Fig S19. Moran's scatter plot for district-level risk of malaria during the highest burden month of the study 

duration 
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Fig S20. Moran's scatter plot for catchment-level risk of malaria during the lowest burden month of the study 

duration 
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Fig S21. Moran's scatter plot for catchment-level risk of malaria during the highest burden month of the study 

duration 
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Whilst the location of HH clusters did not change much over time, the number of health facility catchments comprising the identified significant clusters 

of high-high risk of malaria per month varied over time, showing larger numbers of health facility catchments during high burden seasons that reduced 

during the low burden seasons (Fig. S22). The total number of health facility catchments was lowest during February 2018 (the lowest burden month) at 

191 and highest during both June 2017 and 2019 at 236 health facility catchments. 

Fig S22. Changes in number of catchments comprising monthly high-high clusters of malaria risk, identified using the Local Moran's I statistics 
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7 Summary, General discussion, conclusion, and Recommendation 

7.1 Summary 

This thesis investigated the utility of routine HMIS estimates of malaria incidence through intra-system indicator 

comparisons, evaluation of impacts of interventions, evaluation of bias, and identification of high burden 

locations. It provided substantial evidence supporting HMIS data as a viable source of reliable indicators of malaria 

trends and seasonality, incidence and/or burden, and ultimately risk. First, it showed agreement in trends 

between HMIS incidence and test positivity rates - the current common metric in use, providing evidence of its 

reliability for malaria trends evaluations. However, predictable change in incidence with distance of residence 

from health facility, absent for TPR, could be evidence of its enhanced utility, compared with TPR. Second, this 

research provided evidence on impact of control interventions on age distribution of malaria cases, indicating that 

estimation of malaria burden based on a single age group such as children under 5 years to infer burden across 

the full age spectrum, is likely to be a considerable source of bias. This may explain the widely acknowledged and 

increasingly reported differences, between national reports and global estimates. This, therefore, points to the 

need to strengthen routine surveillance and encourage use of this routine data for burden assessment, especially 

in the low resource setting countries. Third in relation to strengthened HMIS, the rare evidence of a strong linear 

relationship between enhanced HMIS incidence and the gold standard cohort incidence in this research setting, 

further highlights the viability of HMIS to generate reliable estimates of malaria burden in similar locations. Lastly, 

clear identification of seasonality, as well as areas of high incidence and high-risk in the perennial transmission 

setting of Uganda using HMIS data, is profound testament to the vital role that routine national HMIS data can 

play in providing low-cost indicators of malaria burden, and therefore, a vital resource for control efforts in similar 

settings. 

7.2 Discussion of findings 

Malaria remains a heavy global health challenge that is responsible for 405,000 deaths globally, a significantly high 

proportion of these (85%) being from the low income countries of sub-Saharan Africa as well as India [3]. 

Moreover, children under 5 years of age (67% of deaths in 2018) and pregnant women remain highly vulnerable 

population groups that suffer the most severe outcomes. There is a growing body of evidence that not only the 

global but also African burden reduced significantly over the first 15 of the past 20 years thanks to expanded 

control activity [8, 229-233] but this decline then reportedly has stalled over the past few year [6, 7, 71]. These 

intractable dynamics in malaria burden further emphasize the importance of routine surveillance and the 

understanding of the data thereof, for malaria control for the following reasons. First, our understanding of the 

common indicators of burden derived from routine data or their relationships with each other has been limited. 

Second, impacts of the scaled-up control intervention activities and/or the subsequent changes in burden or 

transmission levels have not been fully explored or adequately prospectively accounted for in estimating malaria 
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burden, with important ramifications. Third, the indicators of malaria burden from routine surveillance data have 

not been assessed for their representativeness or level of bias, as evaluated against their de facto gold-standard 

estimates. Fourth, routine surveillance estimates of burden for monitoring and impact assessment have been 

largely shunned, based on historical status of quality and instead, settled for less informative approaches. 

Responding to these issues may not be sufficiently achieved in this one thesis, however, investigations into these 

important subjects are vital for global public health, and especially for the low resource malaria endemic nations 

of the world. 

Evaluating the relationship between various indicators of malaria burden derived from routine surveillance data 

is important in the interpretation of the burden. Test positivity rate (TPR), that is, the proportion of patients tested 

that have a positive result for malaria - has been very widely used for estimation of malaria burden in endemic 

settings, as recommended by WHO. However, other than for the low cost and ease of generating this indicator up 

to the lowest level of health facility, there was no defined association between TPR and incidence of malaria or 

other indicator [44, 45, 234]. TPR was therefore, a widely utilised indicator of burden, primarily based on 

convenience, rendering estimates less likely to be epidemiologically understandable. Here, I undertook to study 

the relationship between more common TPR and the less utilised but better understood indicator - malaria 

incidence rate, all derived from enhanced routine surveillance data. The temporal relationship between TPR and 

incidence is nonlinear and strongest when TPR values are lower than 50% [45] and this was also observed through 

closer trends during low transmission seasons. My original contribution to knowledge was revealing that when 

the spatial dimension was incorporated, the relationship was much more complex, owing to unparallel response 

to spatial dimensions by the two indicators. With seasonal variations in endemic settings, some of which often 

recording TPR’s higher than 50%, coupled with the non-specific nature of symptoms indicative of suspected 

malaria [235], TPR has close dependence on extra-malarial factors, which may render it a less reliable indicator of 

malaria burden. With limited such dependences, higher sensitivity to spatial variations, and therefore 

environmental factors, incidence rate is a better measure of burden from routine surveillance data. Importantly, 

incidence rate was also shown to be significantly influenced by age, after accounting for transmission intensity. 

When considering age, major research activities and routine malaria burden assessments are predominantly 

conducted in children, due to reported comparatively higher vulnerability to malaria and greater sensitivity to 

changes in transmission within this group [93]. Whilst subsequent projections of burden estimates in entire 

populations using these data are commonplace, particularly in sub-Saharan Africa, the impact of this approach on 

the true burden is less well understood. These burden estimates, however, have not gone without criticism [71]. 

Here, I set out to investigate the possible impacts of malaria control interventions on age-specific burden of 

malaria, using routine surveillance data from across diverse transmission settings. Interestingly, the risk of being 

positive for malaria progressively increased with effective control activities in place, while reducing among 



Page 194 of 267 
 

children and vice versa. These findings are important in addressing the two vital malaria challenges including 

stalled declines in malaria burden both in Plasmodium falciparum and vivax endemic areas [236, 237] and the 

discrepancies between reported case estimates and data from individual high burden countries [71]. With 

effective interventions reducing the burden among population groups central to malaria burden estimation 

(children <5 years of age), progress may be duly registered. However, with the burden shifting to overlooked 

population groups (older children and adults) within the same locations, onward transmission is likely to be 

facilitated even among the vulnerable groups. This then sustains unintended outcomes such as high mortality 

rates in children under 5 years of age at 26.8% in 2017 [238]. It may also explain the discordancy between model 

estimates and routinely reported burden of malaria from among endemic countries [239]. My original 

contribution to knowledge is the revelation that with effective large-scale interventions continued, surveillance 

based on data from younger children may be misleading and consequently, interventions targeting these 

vulnerable groups may be sub-optimal. From evidence provided, however, routine surveillance data may provide 

a more reliable source of burden assessments. 

Evaluating HMIS-based incidence rates against the gold-standard of incidence estimates from community cohort 

studies, was considered a vital step in understanding its representativeness of the true burden, within 

communities served by health facilities providing the HMIS data. By this, we could assess the level of bias in HMIS 

indicators, a commonly cited limitation of HMIS, relative to their benchmarks. Whilst HMIS has seen extensive 

quality improvement efforts associated with: improved neonatal clinical outcomes and decreased neonatal 

mortality in Uganda [240]; improved recording of deaths in Viet Nam [241]; and, improved HIV service delivery 

monitoring in Kenya [133], little has been done to evaluate HMIS indicators of burden for representativeness.  

Here, I set out to evaluate the relationship between HMIS and community cohort incidence rates, as well as assess 

bias in HMIS-based incidence due to factors associated with health facility data recording, to inform the 

representativeness by HMIS of the true burden. My original contribution to knowledge was the revelation of a 

strong linear and unbiased relationship between HMIS-based incidence and cohort incidence of malaria. This 

provided evidence of representativeness of HMIS-based incidence of the true burden of malaria, in these high and 

moderate Ugandan transmission settings. 

For meaningful use of malaria control resources, the timely and continuous identification of high-burden or high-

risk locations may be the most important functions of surveillance. Nevertheless, this capacity is yet to be 

exploited in the sub-Saharan African high transmission settings, where it is most needed and burden reduction 

been slowest [242]. Using well established geostatistical models to analyse incidence of confirmed malaria cases, 

high-burden locations were identified across the country. Whilst these approaches have been widely used and 

reported from multiple studies as favourable [96, 100, 101, 243], my original contribution to knowledge is the use 

of small area approaches to not only confirm regional stratification of malaria burden as estimated from malaria 
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indicator survey data [244], but concurrently define fine-resolution spatial-temporal distribution of this burden, 

within regions of interest across high transmission Uganda. More importantly, at this fine resolution of health 

facility catchments, control programs can both assess and implement control interventions, providing an effective 

surveillance-based approach to malaria control [102, 245]. In addition, my research revealed nation-wide strong 

seasonality of malaria incidence amidst a perennial transmission setting. With renewed efforts in targeting 

interventions for high impact [4, 160], this knowledge will facilitate improved use of surveillance data for 

identification of multi-scale high-risk locations, an important resource for the achievement of malaria eradication 

targets as we aim for elimination 

7.3 Limitations 

First, the limited number of sites included in the assessments performed under the first three objectives, may 

have limited wider generalizability of these findings, given the heterogeneity of transmission across the country. 

Moreover, whilst there were nearly five years of data available from community cohorts, in the assessment of the 

relationship between HMIS-based incidence and cohort incidence, I was limited to only three years of data, owing 

to available funding. This reduced, older dataset may have limited inferences amenable to the current status, 

however, overall applications of findings in this thesis, transcend this indicated limitation. 

Second, given the temporal frequency used in all the studies in this research as is required for estimating incidence 

of malaria, some important metrics may have been excluded in this work. These may include, social economic 

status, community-initiated malaria control interventions, research associated control interventions, or other 

national health programs with secondary impacts on malaria transmission or burden over time. Though these may 

not have varied from month to month or by location, estimates of these were not accessible at either scale or 

duration considered in this study. 

Third, the disproportionate under representation of private facilities, especially clinics and drug shops that are 

active care providers for uncomplicated malaria but are not actively providing reports, may have impacted findings 

in this research. Circumstantially, these facilities tend not to stay operational for very long for multiple reasons 

but either close shop or may change locations over time as observed in our study. However, during their 

operational time, be it limited, their routine reporting would nonetheless be beneficial for surveillance. 

Particularly, this status quo may disadvantage the urbanized communities where private facilities are the main 

care providers. Presently, therefore, routine HMIS estimates of burden in these locations remain unreliable. 

Lastly, overarching influences from political and other governance associated factors were not at all accounted 

for in this research. Whilst these could have had varied impacts from one location to another, they were beyond 

the scope of this research and may have had unexplained impacts on finding in this thesis. 
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7.4 Future direction for HMIS-based risk mapping 

This research has been foundational in its assessment of indicators of malaria burden from routinely reported 

health facility data, for spatial and/or temporal risk assessments. It builds on remarkable work from the malaria 

research community in using many other sources of data to assess risk within endemic settings, since inception of 

the Roll Back Malaria initiative. However, there is growing need to use timely data to inform optimal use of 

available effective control tools. This is especially through the global technical strategy for malaria 2016-2030 pillar 

of transforming surveillance into a core intervention, as well as the quest to address inconsistences in global 

reports. Moving forward, research is needed first, in the full and regular evaluation of the quality of routine 

surveillance data to facilitate assurances concerning the burden estimated from these data. Second, given findings 

from this study, implementation of near real-time estimates of burden from routine data accessible to policy 

makers as identified locations of highest burden or risk of malaria is not only necessary but possible. Such a system 

would support their decision making and guided allocation of treatment and disease control resources. Third, with 

these low-cost indicators of burden, the identification of seasonality of malaria even in perennial transmission 

settings will inform vector control programs, among others, on optimal timing of interventions especially IRS, 

which to date though most effective, is also most expensive and thereby limited. Further research on the 

effectiveness of surveillance supported timing of known control interventions is therefore imperative. Fourth, the 

increased understanding of indicators of burden and risk derived from routine data demands for additional studies 

on control interventions impacts using these data. Fifth, research on impacts of regular feedback from district 

health management offices to their respective reporting health facilities may foster increased capacity to use 

routine data and facilitate improved HMIS data quality and timeliness of reporting. Lastly, approaches to estimate 

the residual burden of malaria that is not reflected under current routine surveillance and is potentially 

responsible for on-ward transmission, remain ununderstood. Studies addressing this gap may facilitate improved 

understanding of surveillance and its utility to address these and other gaps that keep the burden of malaria high 

and thereby support other innovative methods to reduce it.  
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9 Appendices 

9.1 Appendix 1: Summary of literature on HMIS use in geo-spatial assessments for malaria 

Results from literature review: Following the review of literature to evaluate the use of routine health facility 

data for mapping for malaria control, various categories of commonly used malaria data were identified, and 

these are presented in table 1 below. 

Table 1. Defined categories of subjects covered in malaria mapping for control and number of literature articles 

found, covering Jan-1990 through Feb-2016 

Category Number of articles found 

Malaria Mapping with: 

HMIS 39 

Active case detection (cohort & cross-sectional) 52 

Aggregated & national (MIS/DHS) surveys 42 

LLINs 19 

Modelling + import/export 18 

Entomology and Mosquito density 201 

Malaria studies non-spatial 13 

GIS methodology 12 

Severe malaria 8 

Malaria Mortality 11 

Reviews 7 

Fever 1 

Abstract and Full text of article not found 1 

Global and continental malaria 14 

Other 226 
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Table 2. Breakdown of the literature reviewed for an evaluation of use of HMIS data in risk mapping for malaria in Sub-Saharan Africa 
Author Year 

published  

Location / study site Aim Data Age of 
participants 

Mabaso et al. 2005 Zimbabwe 

Describe relationship between seasonality and 
incidence of malaria using environmental factors to 
define spatial variation in seasonality and derive 
seasonality concentration index 

Monthly malaria cases at district 
level 

Under 5 
years 

Mabaso et al. 2006 Zimbabwe 

Describe year to year variation in climatic risk 
factors to support development of malaria early 
warning systems and determine areas prone to 
climate-driven epidemics, using Bayesian spatio-
temporal analysis 

Monthly malaria cases at district 
level 

Under 5 
years 

Zacarius et al. 2011 Mozambique 
Study influence of climatic explanatory variables on 
malaria incidence level 

Monthly malaria cases at district 
level (2007 & 2008) 

0 - 4 years 

Krefis et al. 2011 Ashanti in Ghana 
Investigate association between malaria incidence 
and classes of land cover that could influence 
vector abundance and human population density 

Children visiting selected clinics 
over 2007-2008 (18months) 

Under 15 
years 

Alegana et al. 2013 Northern Namibia 

Predict malaria incidence at second administrative 
levels and 
Adjust public health utilization rates to estimate 
catchment population by a novel approach 

Jan-Dec 2009 All ages 

Alemu et al. 2013 North-western Ethiopia 
Detect purely spatial, temporal, and space-time 
clusters at district levels 

2003-2012 district aggregates All ages 

Bejon et al. 2014 Kilifi district - Coastal Kenya 
Determine temporal and spatial scales of case 
clustering to inform targeting in malaria control 

9 years, not specified 
Under 5 

years 

Abeku et al. 2003 Ethiopia 

Describe spatial and temporal variations in malaria 
epidemic risk in Ethiopia and examine factors 
involved in relation to implications for early 
warning and interpretation of geographical risk 
models 

Data from 50 out of 59 sectors over 
Sep-1986 through Aug-1993 

All ages 

Alemu et al. 2014 North-western Ethiopia 

Describe spatial and temporal patterns of malaria 
transmission and identify drivers of the spatio-
temporal patterns in high-altitude villages of 
northwest Ethiopia with very low transmission 
intensity 

Malaria case data in prospective 
survey at 4 clinics in the district for 
Aug-2012 to May-2013 

All ages 
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Author Year 
published  

Location / study site Aim Data Age of 
participants 

Bennett et al. 2014 Zambia 
Evaluate association between ITN program 
intensity and malaria incidence using a dose-
response ecological analysis 

District monthly data for 2009-2011 All ages 

Bisanzio et al. 2015 Coastal Kenya 

Calculate fraction of fevers due to malaria and 
describe the space-time pattern of malaria 
occurrence. Then identify areas of high non-
malaria fever illness and assess HMIS use to 
capture short- and long-term effects of LLIN 
distribution 

Oct-2012 to Mar-2015 All ages 

Ernst et al. 2006 Western Kenya 
Assess spatial patterns of malaria incidence and 
spatial distribution of ecological risk factors of 
malaria in an epidemic prone highland area 

Data from one clinic for 2001-2004 All ages 

Kamuliwo et al. 2015 Zambia 
Study the burden of malaria in pregnancy, its 
spatial distribution and risk factors in the country. 

District monthly data for 2009-
2014, 
And IPTp data from malaria 
indicator survey of 2012 

All pregnant 
women 

Frank et al.  2016 Ghana 
Assess the association between urbanicity and 
malaria and how this may influence development 
of immunity on a micro-epidemiological level 

Data for 2012 from prospective 
survey 

Under 15 
years 

Kazembe et al. 2007 Northern Malawi 
Investigate spatial distribution of malaria using 
incidence data reported through HMIS 

Jan-2002 to Dec-2003 
Under 5 

years 

Lowe et al. 2013 Malawi 

Investigate the spatial & inter-annual variations in 
malaria morbidity & determine how much, if any, 
of the inter-annual variability is due to climatic 
variability relative to other non-climatic factors 

District level aggregates for Jul-
2004 to Jun-2011 

All ages 

Midekisa et al. 2014 Amhara region - Ethiopia 

Quantify the spatial distribution of herbaceous 
wetlands and test their association with malaria 
transmission at regional scale in Amhara region of 
Ethiopia 

Outpatient cases for 2007-2009 All ages 

Midekisa et al. 2015 
Highlands in Amhara region - 

Ethiopia 

Assess the effect of satellite derived climate 
variables summarised over different seasons of the 
year 

District aggregates for 2001-2009 All ages 

Zhou G. et al. 2004 
7 east African highlands sites in 

Kenya, Uganda, and Ethiopia 

Investigate the association between climatic 
variability and number of monthly malaria 
outpatients over 10-20 years in highlands where 
epidemics have been reported. 

1978-1998 

All ages for 6 
sites and <15 
years for one 

site 
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Author Year 
published  

Location / study site Aim Data Age of 
participants 

Nkurunziza H. et 
al. 

2010 Burundi 

Assess the climatic factors that are highly 
associated with monthly malaria incidence in 
Burundi using two models generalised linear and 
generalised additive mixed models 

Data from all over the country for 
1996 to 2007. 
Nearest neighbour method was 
used to fill in the 5% missing data 

All ages 

Zacarius O. et al. 2010 Mozambique 
Identify important predictors and generate a 
malaria distribution map of Maputo using spatial 
statistical analysis of malaria incidence 

District summaries from NMCP for 
8 administrative districts with 92 
health facilities for 2001-2002 

All ages 

Nkurunziza H. et 
al. 

2011 Burundi 

Use a geo-additive model to understand 
dependence of malaria cases on spatial effects and 
climatic covariates (rain, temperature, and 
humidity) in Burundi 

12years (1996-2007) monthly data 
by province  

All ages 

Zacarius P. et al. 2011 
Maputo province in 

Mozambique 

Conduct spatial statistical analysis of malaria 
incidence to identify important predictor variables 
and generate a malaria distribution map of Maputo 
province 

District summaries for 1999 to 2008 All ages 

Wimberly M.C. et 
al. 

2012 Ethiopian highlands 

Assess consistency of indicators of temporal 
variability in malaria risk 

Monthly district summaries for 
2001 to 2009 

All ages 
Test for presence of spatial and temporal patterns 
and their synchrony with variations in malaria 
cases. 

Musa M. et al. 2012 Sudan 
Create suitability maps through extension of 

Boolean logic called fuzzy logic that has no clear 
outcome 

State level aggregates for 2004-
2010 from 15 states 

All ages 

Siraj A.S. et al. 2014 Ethiopia and Columbia 
Find evidence of changing spatial distribution of 
malaria with varying temperature of 10 years in 
highland regions of Ethiopia and Columbia 

159 administrative units’ 
summaries for 1993-2005 in 
Ethiopia, and 
124 municipalities' summaries for 
1990-2005 

All ages 

Oesterholt M. et 
al. 

2006 Msitu village in Tanzania 
Identify high-risk areas where interventions can be 
focused, by identification of micro-environmental 
factors influencing malaria risk 

Clinic data for 2004 All ages 

Ndiath et at. 2015 Ndoffane district in Senegal 
Investigates malaria hotspots by using 
geographically weighted regression. 

Malaria data for June-Dec 2013 in 
prospective survey 

All ages 

Gething et al. 2007 Kenya 
Examine the effect on prediction accuracy of 
extension of spatial-only to space-time prediction 
approach, and replacement of stationary space-

District summaries  All ages 
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Author Year 
published  

Location / study site Aim Data Age of 
participants 

time fandom function with a locally varying space-
time random function. 
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Table 3. Summary of Results from literature that utilised routine HMIS data for malaria risk assessment 
Author Case 

definition 
Response variable used Explanatory variables considered Analysis and modelling approach 

Mabaso et al. 
(2005) 

Confirmed + 
Presumptive 

Incidence per capita 

Rainfall, Min temperature, 
Mean temperature, Max 
temperature, Vapour pressure, 
NDVI 
All lagged two months 

Poisson for predictor selection, 
Mapping seasonality concentration index 
Account for spatial and temporal correlation using random effects 
Regression parameters estimation using Markov Chain Monte 
Carlo algorithm 

Mabaso et al. 
(2006) 

Confirmed + 
Presumptive 

Incidence rate per 1000 persons 

Rainfall, Min temperature, 
Mean temperature, Max 
temperature, Vapour pressure, 
NDVI 

Bayesian negative binomial for selection of predictors 
Seasonality indexing approaches for year to year variations in data 
Account for spatial and temporal correlation using random effects 
Regression parameters estimation using Markov Chain Monte 
Carlo algorithm 

Zacarius et 
al. 
(2011) 

Confirmed + 
Presumptive 

Observed cases, and 
Expected cases being district 
population each year  

Rainfall, Min temperature, 
Mean Temperature, Max 
Temperature, Humidity 

Bayesian hierarchical models in the presence of temporal and 
spatial correlations. 
Account for spatial correlation using conditional autoregressive 
approach, and temporal correlation by random walk. 
Consider lag between consecutive months 

Krefis et al. 
(2011) 

Confirmed 
Village-level Incidence per year per 
1000 

NDVI with Vegetation 
classifications of: Banana, cocoa, 
palm, orange, swamp area, 
water, deforested area, road, 
built- up areas, and Population 
density 

Poisson regression for predictor selection, then Spearman's rank 
correlation for cross correlation between predictors. 
Poisson regression for sensitivity analysis with highly significant 
predictors included. 

Alegana et al. 
(2013) 

Confirmed + 
Presumptive 
adjusted for 
test positivity 
rate 

Incidence as cases/population at 
risk 

Annual mean enhanced 
vegetation index, Monthly 
precipitation, Temperature 
suitability index, Proportion of 
urban population. 
All resampled to 1x1Km spatial 
resolution 

Poisson regression for predictor selection. 
Significant predictors were fed into a Bayesian spatio-temporal 
zero-inflated conditional autoregressive model using integrated 
nested Laplace approximation 

Alemu et al. 
(2013) 

Not specific 
Incidence for census tract polygons 
as cases/estimated mid-year 
population i.e. population at risk 

None 

Poisson model in Sat Scan using temporal, spatial and space-time 
scan statistics. 
A circular window was used for spatial scan and a cylindrical 
window for space-time scans, as well as for purely time scans and 
maximum likelihood indicated the most likely cluster verified by a 
p-value. Scans identified both observed and expected observations 
inside a window. 
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Author Case 
definition 

Response variable used Explanatory variables considered Analysis and modelling approach 

Bejon et al. 
(2014) 

Cases: 
Confirmed, 
Controls: 
febrile with 
negative 
results 

Malaria positive fraction as number 
of cases divided by febrile cases 

LLIN use for within-identified 
hotspots 

Bernoulli model in Sat Scan with full data 
Re-analysed with children within identified hotspots. 
Circular moving window centred at each homestead was used 

Abeku et al. 
(2003) 

Confirmed 

Epidemic status as log(cases) for 
sector and month. 
An epidemic was when log(cases) 
exceeded historical expected value 
by one standard deviation for at 
least 3 consecutive months and low 
incidence if it was less by the same 
amount and duration. 

Abnormal weather conditions 
defined for sector and month as 
high, if value exceeds the 
historical expected by one 
standard deviation and vice versa 
for: 
Rainfall, Min temperature, 
and Max temperature 

Using Chi-square test with 1 degree of freedom. 
Testing weather presence of abnormal weather in 3months 
preceding onset of epidemic or abnormally low incidence differed 
from expected 

Zacarius O. et 
al. (2010) 

Confirmed + 
Presumptive 

Number of cases 

Rain-precipitation, Temperature, 
Humidity, Vegetation, Stationary 
water pools, Human vector 
interaction 

A Poisson distribution was assumed for observed case counts. 
A conditional autoregressive model was used with inverse Gamma 
distribution assumed for the priors. 

Bennett et al. 
(2014) 

Confirmed + 
Presumptive 

Number of malaria cases, and 
Incidence as number of cases per 
1000 population summarised as 
annual parasite index 

ITN coverage, Standardised 
treatment seeking rates, 
Standardised percentage 
population 2hours from a facility, 
Standardised monthly reporting 
rates, Standardised testing rates, 
Standardised anomalies of: 
Enhanced vegetation index, Max 
and Max temperature and 
Rainfall 

Poisson and negative binomial models to assess association 
between ITN coverage per district and response variables. 
Bayesian framework using integrated nested Laplace 
approximation. 
Model fit was compared using deviance information criteria 

Bisanzio et al. 
(2015) 

Confirmed 
Probability of a febrile case being 
positive for malaria 

Population size, Development 
category (more/less), Rainfall, 
Mosquito abundance based on 
select villages, 
Gender, Distance to shoreline, 
Presence of rice fields, and 
Development 

Clusters of high and low febrile illness prevalence identified using 
Getis' local statistic. 
Structured additive regression models used to quantify 
contribution of patient demographics, village environmental 
characteristics, and seasonality to probability of a febrile case 
being malaria. 
Linear predictors and interaction terms were included in the 
model, as well as spatially correlated and unstructured random 
effects. 
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Author Case 
definition 

Response variable used Explanatory variables considered Analysis and modelling approach 

Ernst et al. 
(2006) 

Cases: 
Confirmed 
Controls: 
Others 

Age adjusted incidence for 
hexagonal sub-units of area 

Elevation, 
Distance to swamp 

Risk ratio between highest and lowest incidence sub-units, 
Sat Scan used to identify clusters with a Poisson model, 
GEE used in individual and household analyses adjusting for 
correlation. 
Explanatory variables were added one at a time and log-likelihood 
test used to choose them 

Kamuliwo et 
al. (2015) 

Confirmed + 
Presumptive 

Number of cases of malaria in 
pregnancy 

Water bodies, roads/railroads, 
LLIN coverage 

Maps for each year developed using cluster and outlier analysis 
and compared.  
Local Moran’s Index, z-score & corresponding p-value, as well as 
the outlier type were generated 

Kazembe et 
al. (2007) 

Confirmed + 
Presumptive 

Standardised incidence ratio 

Total annual precipitation, 
total annual evapotranspiration, 
mean min annual temperature, 
mean max annual temperature, 
soil water holding capacity, 
altitude 

Collinearity assessed between all possible covariate pairs and 
where found, the least biologically viable covariate dropped. 
Poisson regression used to select candidate covariates. 
Non-linear relation between malaria incidence and continuous 
covariates assessed using scatter plots. 
SIR plotted to investigate spatial variation in risk, and smoothed 
estimates of SIR produced using conditional autoregressive 
approach 

Lowe et al. 
(2013) 

Confirmed + 
Presumptive 

Age stratified counts of cases per 
month 

Socio-economic factors, 
Population density, urban 
dwelling proportion, Proportion 
of health facilities, ITN 
distribution, 
Housing, Sanitation and literacy 
levels, Precipitation, 
Temperature, Altitude 

Maximal fixed effects model in a negative binomial generalised 
linear model framework was used to select explanatory variables 
Lags and polynomial terms were also included. 
Stepwise model selection based on Akaike's information criteria 
and removing non-significant interaction terms  

Midekisa et 
al. (2014) 

Confirmed + 
Presumptive 

Incidence as a proportion of 
number of cases to total population 
per sub region 

Rainfall estimate, 
Land surface temperature, 
Enhanced vegetation index, 
Evapotranspiration, 
Percent of herbaceous wetlands 

Percent of herbaceous wetlands included to account for spatial 
variability. 
Natural log of total population included to account for spatial 
variability in the population. 
A conceptual model of cascading seasonal effects implemented 

Zhou G. et al. 
(2004) 

Not specific 

From residuals of number monthly 
malaria cases (less effects of 
autocorrelation and seasonality), an 
epidemic measure was derived at a 
threshold of the average over past 
5years + 2 standard deviations 

Temperature, Rainfall 

t-test to compare average monthly min, max temperature, and 
rainfall between two seasons of 1978-1988 and 1989-1998. 
A two-step approach: 1) Climatic variability playing no role and 
using forward stepwise regression. 2) Accounting for predicted 
effects of auto-regression and seasonality in monthly malaria cases 
then performed stepwise multiple regression analysis. 
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Author Case 
definition 

Response variable used Explanatory variables considered Analysis and modelling approach 

Nkurunziza 
H. et al. 
(2010) 

Not specific 
Incidence as a proportion of 
number of cases to total population 
per province 

Monthly precipitation, Monthly 
average maximum temperature, 
Monthly average maximum 
humidity, Monthly average 
minimum humidity 

GLM: Metrics selected using Akaike's information criteria by 
stepwise algorithm. 
Regression coefficients estimated using Markov Chain Monte Carlo 
simulation, 
GAM: Metrics selected using Akaike's information criteria by 
simultaneous selection of variables. 
Interaction terms considered small and omitted 

Nkurunziza 
H. et al. 
(2011) 

Not specific 
Incidence as Number of cases/Total 
provincial population 

Monthly cumulative 
precipitation, Monthly average 
max & min temperature, Monthly 
max & min humidity 

Generalised additive mixed model used for decision on 
explanatory variables 
Full analysis implemented using Geo-additive model incorporating 
spatial effects 
Spatial effect in two parts 1) structured or correlated and 2) 
structured random effect 

Zacarius P. et 
al. (2011) 

Presumptive + 
confirmed 

None defined 
Monthly average maximum 
temperature 
Monthly average rainfall 

Poisson model to choose explanatory variables. 
Hierarchical model with 3 levels 1) using a simple Poisson model 2) 
Including environmental covariates and 3) including an intercept 
term 

Wimberly 
M.C. et al. 
(2012) 

Presumptive + 
confirmed 

Number of cases 

Proportion of outpatients with 
malaria as total malaria cases/ 
total outpatient visits, confirmed 
malaria cases, Proportion of 
confirmed cases that were P. 
falciparum 

Likelihood ration tests used to determine significant seasonal and 
inter-annual effects. 
Spatial autocorrelation was quantified using Moran's I statistic for 
each year. 

Log of total number of cases 
District, 
Year, 
Month 

A mixed effects model was fitted with district, year and month as 
random effects. 
Random effects plotted to determine time of greatest deviation 
from global mean. 
Spline correlogram used to measure spatially lagged correlation 
between logs of cases time series at varied spatial scales. 

Musa M. et 
al. 
(2012) 

Not specific 
Malaria case rate as Number of 
cases in a state/total state 
population 

Interpolated quantities of: 
Rainfall, Temperature, Humidity 
from observation stations values 

Two maps were generated 1) Case rate by state using thin plate 
spline interpolation and 2) predictive map using a suitability 
climate model. 
The two maps were compared using a condition that if 2/3 of area 
is within 1/3 difference, then maps are fairly similar 
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Author Case 
definition 

Response variable used Explanatory variables considered Analysis and modelling approach 

Siraj A.S. et 
al. 
(2014) 

Not specific Number of cases 
Temperature, 
Season, 
Altitude 

Negative binomial linear models were used to assess explanatory 
variables, 
Multiple models with different numbers of covariates and their 
interaction terms were evaluated using Akaike's information 
criteria  

Oesterholt 
M. et al. 
(2006) 

Confirmed by 
microscopy 

Incidence 
Rainfall, Temperature, Season 
(3months), Distance to river, 
Housing condition, Age 

Logistic regression, t-test, and single-way ANOVA, among many 
others 
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9.2 Appendix 2a: School of Medicine Research Ethics Committee Initial Approval  
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9.3 Appendix 2b: School of Medicine Research Ethics Committee Renewal Approval 
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9.4 Appendix 2c: School of Medicine Research Ethics Committee Amendment Approval 
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9.5 Appendix 3: Uganda National Council for Science & Technology Initial Approval 
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9.6 Appendix 4a: London School of Hygiene & Tropical Medicine Research Ethics Committee 

Initial approval 
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9.7 Appendix 4b: London School of Hygiene & Tropical Medicine Research Ethics 

Committee Renewal approval 
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9.8 Appendix 4c: London School of Hygiene & Tropical Medicine Research Ethics Committee 

Amendment approval 
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9.9 Appendix 5: Ministry of Health Letter of Permission for National HMIS Data Access 
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9.10 Appendix 6: Evaluating sources of data on population estimates 

The population estimates utilised in this research were obtained using Afripop data however, these estimates 

were evaluated against national estimates provided by the national bureau of statistics (UBOS), at district level. 

Afripop estimates were the preferred option given two specific properties: 

• They were readily available and/or accessible, 

• They allow for varied geographical scales such as the health facility catchment areas unlike the national 

census estimates, details of which are restricted to administrative scales including districts, sub-Counties, 

and parishes. 

Whilst parishes are the lowest administrative units for which census population estimated summaries may be 

available, finer and non-administrative geographical scales such as health facility catchments in the assessment 

of incidence of malaria for this study, were not aligned with the population data in these administrative scales. 

This, therefore, influenced the choice of Afripop data with the possible flexibility. 

Nevertheless, estimates from Afripop were evaluated against national census projections for the years between 

2015 and 2019 at district level. To do this, scatterplots were evaluated stratified by the 15 regions of the country 

(Figure 1 below) and by year (Figure 2 below). In addition, the two population estimates were evaluated by 

examining the root mean square error in a bivariate regression between Afripop and UBOS district estimates, both 

among regions (Table 1) and years (Table 2). 
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Fig 1. Relationship between district population estimates from Afripop and UBOS between 2015 and 2019, by 

region. 

 

Fig 2. Relationship between district population estimates from Afripop and UBOS, by year. 
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Both the evaluation by region and year showed a strong correlation between these two sources of population 

data estimates.  

 

Moreover, assessment of the differences between these Afripop estimates (predicted) versus the UBOS estimates 

(observed) using the root mean squared error from a bi-variate regression between the two, showed very minimal 

differences between these estimates. 

Table 1. Root mean square deviation between district population estimates from UBOS and Afripop among 

regions. 

Region RMSE 

Acholi 3,209.5 

Ankole 2,182.3 

Bugisu 2,420.5 

Bukedi 23,578 

Bunyoro 16,215 

East Central - Busoga 6,375 

Kampala 864.8 

Karamoja 8305 

Kigezi 3,345.4 

Lango 3,564.1 

North Buganda 8,239.3 

South Buganda 15,681 

Teso 8,933.5 

Tooro 3,125.9 

West Nile 9,220.4 

 

Results here showed that the differences between regional population estimates from Afripop and UBOS were 

highest among districts in Bukedi, Bunyoro, and South Buganda regions and lowest in Kampala district/region. 
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Table 2. Root mean square deviation between district population estimates from UBOS and Afripop per year 

Year RMSE 

2015 7,993.4 

2016 8,783.6 

2017 9,908.3 

2018 11,324 

2019 13,037 

 

Notably over the years, differences between population estimates from the two approaches increased from year 

to year, being lowest in 2015 and highest in 2019. Notably, these differences were smaller during the year closest 

to the most recent census survey of 2014 and greatest further from that time. 

9.11 Appendix 7: Response to reviewers in Paper 1 

AJTMH-18-0901 – Response to reviewers 

Malaria burden through routine reporting: relationships between incidence and test positivity rates 

Reviewer #1: 

 

Comments to the Author 

The analysis presented here makes use of a rich dataset and provide findings which are of interest to all those 

concerned with malaria control planning. Which metric to use to generate plans for control remains a perennial 

question. The results are interesting but are presented for a research audience. Some additional context or 

clarification to put the outcomes in an operational context may improve the readership and uptake of the 

findings.  

Specific comments 

a)    Major 

a.    It is mentioned several times that the three sites used are different transmission settings, without explicit 

mention of which site corresponds to what type of setting. Perhaps it could be labelled in Figure 1 or in the study 

setting methods which site is considered highest, medium, lowest, etc transmission perhaps based on the previous 

prevalence measures mentioned? This would help with the interpretation of the main findings. 

Response: We have revised Figure 1 to include the historical annual entomological inoculation rates of the 

three sites in the footnotes. In addition, we’ve indicated these details in the section on study settings. 
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b.    Line 114 – was the gridded population surface used also Worldpop? Outputs from Worldpop lack the 

granularity needed at this resolution. If enumeration data were available, can a brief explanation be provided for 

why that was not used to determine the population spatial pattern? Worldpop totals could be used if household 

population counts did not accompany the enumeration data. 

Response: We made several attempts to get access to population data from the national census bureau but 

without much success and hence the decision to use the Worldpop that is accessible. We have clarified in the 

text that this was due to inaccessible population estimates for our study area. 

The enumeration data from our study was an enumeration of household without a full human census in those 

households. This was helpful in estimating number of children (study population) based on the average 

household size. 

 

c.    The introduction begins with mention of the importance of these types of metrics for control and intervention 

planning, but the conclusions provided lack clarity for operational implementation. For example, ‘confirmed 

malaria case rate that is sensitive to changes both in time and space, provides a better indicator of the burden of 

malaria on the health facility catchment, as estimated from the health facility than test positivity rate.’ It may not 

be apparent to a program manager what burden in the health facility catchment, as estimated from the health 

facility means.  

Response: We have clarified further in the conclusion the operational impact of our findings on these indicators 

for implementation purposes. 

 

b)    Minor 

a.    In abstract line 28-29 – specify if the pairwise comparisons were done by month, village or both 

 

Response: We have revised the abstract to clarify that pairwise comparisons were done first by month and then 

by village 

 

b.    It makes sense that re-attendance episodes were excluded, but the mention in line 110 that CMCR is 

confirmed primary cases per 1000 

Response: We have revised the statement as suggested to “confirmed primary malaria cases per 1000” 

 

c.    Figure 2- define abbreviations used. What is VOR? 

Response: We revised Figure 2 to include a full description of VOR as “village of residence” that was initially 

omitted 
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Reviewer #2: 

Comments to the Author 

Manuscript Title: Malaria burden through routine reporting: Relationship between incidence and test positivity 

rate 

 

Authors: Kigozi et al. 

 

Overall Comments: 

This article presents work comparing two metrics used as part of routine malaria surveillance, specifically focusing 

on the temporal and spatial dynamics at 3 hospitals in Uganda. Comparing the more operational test positivity 

rate with the ideal metric of malaria incidence rate is of interest to ensure that any decisions made based on the 

available data can be done in a robust manner. The strength of this work lies in the large number of data points 

available for analysis. However, I have some comments outlined below that would greatly improve this work. 

 

Major Comments: 

-    The objectives of the work, including their significance is not very clear and lacks focus. The stated goal is to 

compare the two metrics, but ultimately the regression analysis adjusts TPR with the incidence suggesting the 

objective is to assess factors associated with TPR? A clearer focus should help clarify the main aims of the work, 

but also identify the most appropriate analysis. 

Response: The objective of this work was indicated as “to evaluate the relationship between IR and TPR both 

on the time and space dimensions to aid further understanding of the representativeness of HMIS estimates of 

burden” in the introduction. 

The regression analysis was used given it’s the most well understood approach to evaluating relationships 

between an outcome (IR) and an exposure (TPR) where there are other factors known or presumed to play a 

role in the relationship being evaluated. 

The regression approach was found to have been used in previous studies that formed the basis for our need 

to study this relationship further, especially by including the dimension of space. 

  

-    If the objective is to assess the bias between the metrics including spatial and temporal trends, the metrics 

should be on the same scale. This can be done by converting the metrics using established associations (e.g. 

publications by the MAP group) or standardizing the two metrics and work with their z-score. This will impact the 

scatter plots (and enable the line of concordance to be plotted), the Bland-Altman plots, etc. 

Response: Given that neither indicator is a gold standard measure of the other, the objective was not to assess 

bias between them 
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o    With the two metrics on a standard scale, the authors should consider using the difference between the 

metrics as the main outcome for the regression analysis to assess factors associated with any bias between 

metrics. 

Response: While IR and TPR are both indicators of burden of malaria, they are distinguished by the approach 

of generating them. As a result, we adjusted the IR scale to that of TPR, which is a proportion with limits of 0 

to 1. No other valuable approach of standardizing these indicators to the same scale was found to our 

knowledge. 

  

o    If once on the standardised scale, the Bland-Altman plots show similar patterns, there is a strong trend in 

Kihihi suggesting non-normal differences in this site. This should be acknowledged and assessed. 

Response: We have clarified the approach used in determining which sites fulfilled the Bland Altman criteria 

and this was fully assessed. 

 

-    Based on the data presented, the authors are correct in that the association between the two metrics is non-

linear. Instead of relying on lowess models with assumptions of localized weighting etc., I suggest that the 

authors explore non-linear forms of regression (e.g. log-linear) which can account for the observed association 

while adjusting for covariates 

Response: We have included quadratic prediction plots where Lowess was initially assumed sufficient and this 

has particularly improved our plots. 

However, regarding the final regression model, the multi-level mixed effect poisson model was chosen based 

on it being non-linear regression approach for count data. This model sufficiently accounts for observed 

associations while adjusting for covariates, in addition to addressing multi-level variability in the parameters 

and in our case the two levels being month and village. 

 

-    The authors have justified why they have only considered hospital attendees <11 years of age from an 

epidemiological perspective, but less so for the clinical perspective. Instead of ignoring data on the adults, if the 

data is available, can all age results be assessed, adjusted for age? E.g. Are the trends similar when considering all 

ages the same as <11? <5? Are the trends for adults only different? This is a very interesting question and 

operationally relevant for surveillance programs in being able to accurately interpret their data. 

Response: We have clarified further that trends of TPR were not different between <5 and 5-<11. Whereas the 

data on the adults is available, for this work we sought and received approval to conduct this study among 

study participants specified as children under 11 years with several other considerations made. 
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Minor Comments: 

-    Why are you using the term CMCR instead of the more commonly used incidence rate (doing so would 

improve clarity of this work)?   

Response: We have revised this to incidence rate (IR) for the benefit indicated 

 

-    Are there other smaller level facilities or community health workers within the study areas that may absorb 

some of the suspected malaria cases? If so, would this potentially bias the results? 

Response: We have acknowledged among study limitations that there are other lower level facilities that 

absorb some of the suspected malaria cases and this would impact our results 

 

-    What was the pre-determined threshold for agreement using the Bland-Altman plots?  

Response: Other than the formal 95% confidence band, we had no pre-determined threshold of agreement in 

place and we have acknowledged this in the text 

 

-    The temporal unit being assessed is not always clear with both monthly and annual scales being considered at 

different points. Please include the unit when discussing the temporal results.  

Response: We have included the units for further clarification 

-    The authors showed that both metrics are able to pick up seasonality, but one interesting question that could 

be assessed with this data is whether the degree of bias changes between the high and low transmission seasons. 

This could be done with a simple interaction term. 

Response: Given that none of the metrics was a gold standard of the other, we did not consider bias however, 

we intend to compare this incidence rate to incidence from cohorts at which point we’ll be in position to fully 

evaluate bias 

 

-    LL146-154 is this referring to the total health care seeking population? Those suspected of malaria or those 

testing positive for malaria? 

Response: We have clarified these further in the text 

 

-    LL153: removing data with missing variables will impact the precision as there are fewer data points available 

(e.g. make confidence bands wider). Do the authors mean accuracy (assuming non-differential missingness)? 

Response: We have revised this to “no considerable impact on our results” in the text 

 

-    LL157: the authors state “suggesting agreement between them” when referring to plotting monthly TPR and 

CMCR. A timeseries plot doesn’t test for agreement. Do they mean “show similar trends”?  
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Response: We have revised this appropriately to indicate similarity of trends rather than agreement in the 

text 

 

-    What is the case definition used by facilities for malaria? Who is supposed to be tested? (Also, note the 

potential for detecting opportunistic malaria infections.) 

Response: We have clarified this further in the outcome measures section 

 

-    Figure 2: currently ‘missing’ is not qualified. Can the key missing variable (e.g. age, village of residence) be 

added to avoid confusion? Were all records complete with no missing diagnosis? 

Response: We have revised Figure 2 accordingly to qualify the ‘missing’. In addition and importantly, there were 

no records with missing diagnosis 

 

-    Figure 5: The figures suggest the mean annual figures are presented whereas the legend says 4-year mean. 

Please clarify and be consistent in labeling. Also, the data is available for 4.75 years. Why was this not all used and 

restricted only to the years with complete monthly data? 

Response: We have revised these to include the full 4.75 years 

 

-    Figure 5: The color scales are all different which biases the visual interpretation when comparing between TPR 

and CMCR as well as across sites. The best approach would be to plot the standardized units so the maps are all 

directly comparable.  

Response: We have standardized the units in Figure 5 and a revised version is now included 

 

-    Figure 7: Is a linear fit the best choice? Have any other forms been tested or residual diagnostics done?  

o    Fit for Walukuba extends beyond data. 

-    There are no confidence bands on any of the linear fits presented in plots. 

Response: We have revised these plots to predicted quadratic plots that better explain the relationship; 

corrected the plot in Walukuba; and, included confidence bands in all three as suggested. 
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Reviewer #3: 

Comments to the Author 

Overall Comments: 

This paper comparing test positivity rate and incidence rate I settings in Uganda is much improved. I however have 

a couple of minor comments that should still be addressed before publication. 

Minor Comments: 

-    Impact of lower-level facilities on results? Would you expect the trend with distance to be impacted if people 

further away prefer the lower level facility for something as routine as malaria? It would be helpful to include this 

in the discussion section. I’m guessing the linear trend with distance is due to cases seeking care in the more local 

lower-level facilities. 

Response: Previous unpublished data that we looked at showed that lower level facilities have very similar 

patterns of access with the higher-level facilities included in our study. All of them see patients as routine as 

uncomplicated malaria, from near (majority) and farther away (fewer) in a very similar way. I would, therefore, 

expect the crisscross swap of patients to minimize the potential effect of lower-level facilities on the results in 

our study. We have therefore, indicated this position in discussion as suggested. 

-    Table 1: the denominators for testing rates and malaria diagnosis used for the proportions presented are not 

clear. Can you include a statement similar to the one for the gender category? 

Response: We have revised Table 1 to include clearer descriptions of sub-sections and the proportions 

presented for further clarity as suggested. 
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9.12 Appendix 8: Response to reviewer comments in Paper 2 

MALJ-D-19-00682 – Response to reviewers 

Rapid shifts in the age-specific burden of malaria following successful control interventions in four regions of 

Uganda 

Reviewer #1: 

Overall comment 

This is an interesting manuscript presenting results from a 10-year analysis of the age shift of malaria infections 

after vector control interventions in Uganda. Authors clearly present the methods and results and appropriately 

acknowledge the limitations of the study. There is also a good balance between the information presented in the 

main text and the information in the supplemental materials. 

Response: We appreciate the reviewer’s overall comments on this work. 

Main comments 

However, it is surprising to see how one of the main results of the study was neglected in the discussion: the fact 

that most malaria cases were diagnosed in women and that the percentage of confirmed malaria cases in women 

increased significantly in the group over 15 years old. Even when there was not an observable trend in the gender 

across intervention periods, data and figures showing these results could be included in the supplementary 

document and the authors should comment about them in the Discussion. Authors should analyze these results, 

present potential explanations for this, and discuss its implications for a vulnerable population group such as 

women in childbearing age. 

Response: We appreciate the reviewer’s comments raised as concerns a key result that should have been 

further emphasized. To address these comments, we analyzed the results on most malaria cases being 

diagnosed in women as advised by the reviewer and included our findings in the results as indicated in line 

numbers 245-253 (in the tracked changes version) 

Further, figures 7 – 10 have also been included together with Table 2 in the additional file to document result 

details of this analysis and/or findings. 

Findings showed a consistently higher proportion of females across all intervention periods in all four sites, as 

well as a consistent shift in age distribution of confirmed malaria cases between males and females. However, 
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there was a disproportionately larger increase in the proportion of older males than females among confirmed 

malaria cases across intervention periods. 

A summary discussion of these results has been included as indicated in line numbers 303 – 313 (in the tracked 

changes version) in the discussion section.  
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Reviewer #2:  

Overall summary 

This paper presents findings from a study assessing the impact of control interventions on the age 

distribution of malaria cases, using malaria surveillance data from 4 sites in Uganda.  This is generally a 

well written and presented paper, to a topic of importance to malaria epidemiology and impact 

evaluations of standard control measures. Below are issues the authors should address to improve the 

paper. 

Response: Thank you so much for your opinion of work from this study. We appreciate your notice of 

the importance of findings from this study 

 

Compulsory Revisions 

Introduction 

*    Lines 37-43: this section should be qualified by the fact that children <5 contribute the most to 

malaria cases (burden) and are thus the focus of control measures and studies, in areas of stable malaria 

transmission in sub-Saharan Africa.   

Response: Revised as proposed by adding the text “and are thus the focus of control measures and 

studies, in areas of stable malaria transmission in sub-Saharan Africa” 

 

*    Line 52: can the authors please specify 'confirmed malaria cases' if this is the case. 

Response: Revised as proposed by indicating the reported trends in ‘confirmed malaria cases’ from 

the reference provided 

 

Methods  

*    Line 134-135: can you please confirm the outcome was only 'confirmed malaria cases'.  What does 

'conveniently defined' mean? 

Response: Revised as proposed by precisely indicating ‘confirmed malaria cases’ and further 

elaborating on the fact that the three age categories were conveniently defined 

 

*    Were any analyses of trends in confirmed malaria case incidence, by age, done, using OPD attendance 

as an offset to account for treatment seeking?  This would have been a very nice check on the results 

and help interpret the multinomial model results.   
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Response: Thank you for raising this important issue. However, OPD attendance was not considered 

as an appropriate proxy for the population at risk to estimate confirmed malaria case incidence. 

Whereas a good estimate of incidence would have been desirable to better understand these findings, 

the same was not possible and we acknowledged this among the limitations of the study but would 

consider or recommend this for future investigations among characterized populations. Nevertheless, 

we believe that the quality and scope of the longitudinal data within the present confines of the study, 

enables viable insights towards improved surveillance and control of malaria. 

 

*    How were data pooled across MRCs?  Were the cases from the MRCs treated as a random effect, as 

they should be, in the multinomial models? 

Response: Given differing transmission settings of the four sites, data were not pooled across MRCs 

but rather each site was analysed independently using the same approach for each. As such, site-

specific multinomial models were fit, and results interpreted comparatively rather than as a pooled 

analysis. 

 

*    How was time dealt with in the multinomial models, within intervention periods?  

Response: Given that the intervention period (defined by time) was the main exposure of interest, no 

further adjustment for time were deemed necessary. Further adjustment for time was expected to 

lead to controlling for the effect of ‘time given intervention’ that we were investigating as well as 

overfitting of the models. 

 

*    How was suspected malaria (or TPR) dealt with in the final multinomial model?  Was it included 

somehow as a covariate? 

Response: We did not expect any ecological association between being suspected for malaria and age 

category of confirmed malaria cases. However, we assumed an effect of diagnostic test used and age 

of confirmed cases and despite the predominance of microscopy (followed by gradual but gentle 

increase in RDT use at all sites), this was accounted for in the multinomial models at each site. 

Moreover, given the lack of variation in suspected malaria by age-category over time, it was assumed 

unnecessary to include this as a covariate in the multinomial models. 
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*    Was any attempt made to account for other potential confounding factors on the primary outcome, 

including MRC reporting completeness, rainfall patterns, seasonality, diagnostic stockouts, varying 

intervention coverages over time and across sites, treatment seeking, and access to treatment?  I know 

these are difficult variables to ascertain, but there are a lot of publicly available sources for spatial 

surfaces (over time) for some of these, and proxies can be used for others.  If not, these potential 

confounders (or influencing factors) should be discussed as a major limitation to the study in the 

discussion section. 

Response: We appreciate the insight raised in this comment and we have acknowledged in the 

limitations that we were unable to account for other potential influencing factors for which data were 

not available in our study. However, we have accounted for some of the factors listed in this comment. 

First, varying intervention coverage over time was accounted for by defining intervention periods 

based on the major large-scale control interventions programmatically implemented with high 

coverage as well as broad community effects expected among the pockets that may not have received 

these interventions. However, we agree that there could have been possible variation in intervention 

coverage especially when control interventions were more targeted, for instance during baseline. 

Nevertheless, we observed similar effects of the large-scale interventions across all sites, implying that 

the differences between sites at baseline would have no significant impact on the main findings in our 

study. 

Second, by virtue of being MRCs that are continuously monitored, we have very high reporting 

completeness rates with for instance, we reported that only 0.3% were missing a record of age 

implying over 99% completeness that hardly varied between sites or over time. 

Third, the spatial scope of the reference sites’ catchment areas was unknown. As such, evaluation of 

spatial surfaces with an unclear spatial scope could have introduced inadvertent bias in our evaluation. 

We have indicated this by stating in the limitations that without a well characterized population for 

each site, we were unable to effectively evaluate these additional factors and/or their effects. 

 

*    For the final model for marginal predictions, can the authors please somehow well the model fit the 

data (i.e. model fits), as these models can yield spurious results when models fir the data poorly.  

Response: Thank you for this very thoughtful comment. 

It is no clear to us what associations you would consider spurious. However, we have used two 

approaches to address this 
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First, in order to implement a goodness of fit for these multinomial models used for marginal 

predictions, we would need to know the expected age-distribution of the confirmed cases across 

intervention periods among the categories used to define the multinomial outcome. In this case we 

posit that if there were no external influences on the age distribution of confirmed cases, the closest 

distributions that confirmed cases may be expected to follow would be either the suspected malaria 

cases or the general attendance age-distributions. Both crude and adjusted results from this showed 

that these age distributions followed different patterns across intervention periods. In the interest of 

this comment therefore, we used the null hypothesis that the age-distribution of confirmed malaria 

cases would follow the same distribution as suspected malaria cases or as overall patient attendance. 

We evaluated both of these but consistent with our findings, there was strong evidence to reject the 

Null hypothesis in both cases. 

In view of this, we strongly believe that whereas a possible effect of the limitations of multinomial 

models as implied through this review comment may not be ruled out, there is no basis to assume that 

it is the main driver of the findings from this study according to model goodness-of-fit evaluations. 

 

Second, we conducted model evaluations, comparing the model with and without our defined 

intervention periods and used the likelihood ratio test to determine whether including intervention 

periods improved the model. In all cases, the model without intervention periods as a covariate was 

found to be nested within the final model (one with the intervention period as covariate) which was 

an improvement of the fit, based on Akaike’s information criteria. This is now shown in the table 2 in 

the additional file and revised the text in results on page 15. Furthermore, we evaluated the 

relationship between model predicted and crude proportions using scatter plots as indicated in Figure 

7 in the additional file. Results showed that the multinomial models fit the data very well. 

 

Results 

*    Lines 169-171: what was the lowest rate of microscopy testing during the period of observation? 

Response: Revised as suggested to include the lowest overall testing rate. 

 

*    Lines 223-233: Are there statistical test results that should be presented, in addition to the 95% CIs, 

for the observed declines and increases in age groups over time periods?   
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Response: Give that the reported proportions are marginal estimates from the final multinomial 

regression models whose results are reported in Table 2 with statistical test results included, we did 

not consider it necessary to further include statistical test results here. 

 

Discussion 

*    TPR is known to vary widely by treatment seeking patterns, over time and space, even within a given 

transmission level.  What is the authors interpretation of the reported trends in TPR given this known 

bias? 

Response: We appreciate the concerns raised in this comment and agree that TPR varies over time 

and may be influenced by treatment seeking patterns. However, findings from our previously 

published work that included three MRCs from differing transmission settings showed no 

distinguishable patterns of TPR over space, regardless of endemicity but rather clear variations over 

time. That being said, evaluations in this study were predominantly temporal given unknown facility 

catchments’ spatial scope. 

Concerning the influence of treatment seeking on TPR, we recognized that this study is limited to a 

passive surveillance context where accuracy of transmission-level through this indicator may only be 

limited to the population that seek care from the public health sector rather than that of a definite 

population at risk. We further acknowledged in the limitations that we were unable to evaluate 

changes in incidence in which case we’d have been able to characterize the population with an 

improved understanding and/or reduced impact of changes in care seeking within a given site. 

Thus far, TPR is considered an indicator for changes in transmission as recommended by the WHO, 

especially with regards to temporal trends. Given that this study was investigating the effect of control 

interventions (expected to act by reducing transmission) over time, changes in TPR over time were not 

considered a source of bias in this study. 

 

*    How would the scale-up of iCCM have changed treatment seeking, and the main findings of the 

results for TPR trends and the age distributions of confirmed malaria cases once it was scaled? 

Response: The scale-up of iCCM may be expected to reduce patient attendance of children under 5 

years (which is the target population of this approach) at the health facility within the site where it 

was implemented. If this effect were to be strong, the age distribution of suspected and malaria 

negative cases would have shifted upwards, consistent with confirmed cases. However, there was no 
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evidence from our results that this was the case and this is compounded by the fact that no findings 

have been published from this iCCM activity. Furthermore, the reported implementation of iCCM was 

limited to one site and for a limited duration and despite this, the main findings from this study were 

consistent across all sites suggesting that the expected effect of iCCM on treatment seeking did not 

have a distinguishable effect on the findings in this study. Nevertheless, we acknowledged in the 

limitations that this intervention may have had some additional favourable effect to our findings. 

Concerning TPR, no particular change is expected in TPR trends as a result of iCCM scale-up, given that 

it may not disproportionately affect the number of malaria than non-malaria febrile cases. 

 

*    Were any sensitivity analyses conducted on the time periods being defined by intervention roll-out 

in the sites?  What happened if the scale-up of LLINs, or iCCM, was expected to take longer to be fully 

scaled and adopted? 

Response: We appreciate this very insightful comment. However, the study was not powered to 

conduct either per-protocol or intention-to-treat analyses with the interventions included and/or 

evaluated here. These interventions were conducted programmatically, and we had no information 

concerning variations of when or how long implementation would take. 
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9.13 Appendix 9: Response to reviewer comments in Paper 3 

AJTMH-19-0950 – Response to reviewers 

Practical implications of a relationship between Health Management Information System and community cohort-

based malaria incidence rates 

Reviewer #1:  

Comments to the Author 

General comments 

This manuscript capitalises on a wealth of data from collaborative research sites to compare malaria incidence 

estimates from passive cohort and routine HMIS datasets. Considering the current tension between advocacy 

for increased use of surveillance data in decision making and lingering concerns over quality of HMIS data, this 

paper is a useful addition to the literature. My suggested revisions below mainly relate to sections requiring 

additional clarification or detail.  

Response: We appreciate the reviewer’s opinion of this work and the suggestions for clarity provided. 

Major revisions 

1.    Please clarify if the HMIS data were restricted to the same age range as the cohort. In the abstract (line 36) 

you indicate that the focus was on children in HMIS data and in the methods (line 101) the HMIS population is 

stated as 6 months to 11 years. However, the rest of the paper (including the definition on line 141) suggests that 

HMIS data included all ages.  

Response: As the reviewer suggested, we have revised the text as follows: 

‘The primary outcome in this study was the monthly malaria incidence rate derived from health facility 

HMIS OPD incident malaria cases data for children between 6 months and less than 11 years of age, …’ 

(Methods, pg. 8, lines 144-145) 

We also revised the text within the statistical analysis section as follows: 

‘We explored the relationship between HMIS and cohort incidence among children between 6 months 

and less than 11 years of age on a monthly timescale …’ (Methods, pg. 11, lines 218-219) 

2.    There is some ambiguity about whether cohort incidence malaria cases were symptomatic or not. Line 136 

explains when treatment was provided (symptoms & positive slide), but an explicit statement on the incidence 

malaria cases (infection only, or symptomatic infection) is needed earlier in the methods (I see there is a definition 

on line 159, but this needs to be stated sooner).  

Response: As the reviewer suggested, we have clarified the text as follows: 
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‘By these symptomatic diagnostically confirmed infections, incident malaria cases were identified, …’ 

(Methods, pg. 8, lines 140-141) 

3.    Lines 144-146. I have some concerns about the assumptions used to estimate confirmed malaria cases in the 

absence of diagnostic testing at several of the facilities. Do you have any evidence to suggest that test positivity 

would be the same year-round at each of these sites? Do you expect the populations attending HCIV and HCII/III 

to be similar in terms of their risk of malaria, and therefore the proportion of fevers which are attributable to 

malaria? Any additional data or sensitivity analysis that can be provided to bolster your chosen approach to 

dealing with lack of diagnostic testing at lower level health facilities would be useful, and would strengthen the 

final conclusions you make about the comparison of HMIS data and cohort incidence. For example, did you explore 

comparing the fever incidence (clinical malaria diagnosis) between cohort and HMIS – this could give you an idea 

of whether HMIS is underestimating incidence due to lower health-seeking behaviour, or if the issue is with correct 

identification of malaria once patients get to the facility. 

Response: As far as each site is concerned, the only available reliable indication of the temporal level of 

transmission was the indicator from the national reference centres hosted within each site. We did not assume 

that test positivity would be the same all year round, however, we assumed that test positivity per month 

within each site would be very close to the respective reference centre estimate. As the reviewer suggested, 

we explored the relationship between monthly incident HMIS clinical malaria cases and monthly incident fever 

cases in the cohort and have included the results in Figure 1 in the additional file. We have also revised the text 

to indicate that these results provide further evidence supportive of the chosen approach to correct for 

diagnostic testing as follows: 

‘This approach was also supported by a linear relationship between cohort fever incidence and HMIS 

clinical malaria incidence suggesting case identification at facilities as a major factor (Figure 1 in the 

additional file).’  (Methods, pg. 8-9, lines 152-154) 

Minor revisions 

1.    Abstract lines 44-47. You state that HMIS data has a strong predictive power in lower transmission settings, 

but then contradict this by closing the abstract with the statement that the findings have “important implications 

for surveillance in low resource, high burden countries”. Do you mean that the implication is that HMIS is not 

valuable to high burden settings and there needs to be effort to use other methods / heavily invest in HMIS 

strengthening? Or do your findings are actually have relevance to all settings? 

Response: These findings have relevance in all settings, more so when surveillance is strengthened, for instance 

with improved testing of suspected cases and recording coupled with prompt reporting. We have revised the 

text to reflect this stating as follows:  
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‘HMIS still requires improvements, however its strong predictive power of unbiased burden when 

improved, highlights the important role it could play as a cost-effective tool for monitoring trends and 

estimating impact of control interventions. This has important implications for malaria control in low 

resource, high burden countries.’ (Abstract, pg. 3, lines 44-47) 

2.    Lines 59-61. This statement bothers me a little and doesn’t fully represent some of the progress made in this 

area. There have been efforts in the last few years to increasingly use HMIS data in impact evaluation, supported 

by substantial increases in access to confirmatory diagnosis in many settings following introduction of RDTs. While 

these studies are still outnumbered in comparison to those using DHS/MIS, the developments in this area should 

be briefly mentioned/referenced.  

Response: We agree that we may have undersold recent progress and as such now acknowledge the progress 

made and included reference to that effect. We also revised the text to emphasize the under-utilization of HMIS 

data in spite of these improvements as follows: 

‘Whilst there are extensive HMIS improvements through standardized data formats as well as quality 

assessment tools, among others, HMIS data are still underutilized to provide rigorous…’ (Background, 

pg. 4, lines 59-61) 

3.    Lines 66-70. A brief mention of which of these systems/initiatives are multi-disease and which are malaria-

specific would be useful here. My expectation is that both DHIS2 and HMIS cover all priority diseases, but the 

sentinel sites are focussed on malaria? 

Response: We agree with the reviewer that DHIS-2 and HMIS cover all priority diseases but sentinel surveillance 

is focused on malaria in this case. We have revised the text to clarify this difference as follows: 

‘A national HMIS was introduced in Uganda in 1997 to enable priority diseases surveillance at national 

levels … Specific to malaria, the HMIS was additionally supplemented by routine sentinel surveillance …’ 

(Background pg. 4, lines 67-69) 

4.    Line 71. Which data do you mean by “these data”? HMIS, DHIS2, or sentinel site data? 

Response: As the reviewer suggested, we have clarified in the text as follows 

‘These sentinel site data have been used to evaluate impact…’ (Background, pg. 5, line 72) 

5.    Line 83-84. I would argue that a comparison of HMIS and cohort incidence will tell you more about 

representativeness of HMIS estimates of malaria burden compared to the true population burden, not about the 

quality of HMIS data (which you’d find out about by doing records review, consultation observations etc.) 

Response: As the reviewer suggested, we agree that this comparison informs representativeness of HMIS 

estimates of the true population burden. We have revised the text to reflect this as follows: 

‘… providing important insight into the utility and representativeness of HMIS estimates of malaria burden 

compared to the true population burden …’ (Background, pg. 5, lines 84-85) 
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6.    Lines 109-111. Did you consider cross-referencing the OPD register with any laboratory registers? Depending 

on patient flow, patients with confirmed malaria may be recorded in the lab register but only listed as ‘suspected’ 

in OPD registers. There is an interesting paper by Okello et al. that looks at the issues around resolving case count 

estimates between different registers present in health facilities.  

Response: We appreciate this important point raised; however, we did not consider other sources of data from 

the health facility. That being said, we do not expect it to impact our results and if at, only minimally for the 

following reasons. 

a. Level II facilities (majority in this study) do not have laboratory facilities and therefore have a single 

point of care for uncomplicated malaria case management. As such, the OPD register captures most, if 

not all the data in these facilities. 

b. Whereas this may have affected level III facilities, there was only two in the study with extremely 

limited diagnostic testing done during the study period, which limits potential impact from this level. 

c. Concerning level IV health facilities, this is not expected to have impacted the true case counts from 

this level because these were national reference centres with rigorous monitoring for data capture and 

quality 

7.    Line 115. What is meant by “some secondary data”? Other covariates that were considered for inclusion in 

the models? Or additional case data? 

Response: We have clarified in the text that it was 

 ‘… additional HMIS data’ (Methods, pg. 7, line 116) 

8.    Line 116. I would recommend a brief statement (or reference) to explain the services provided by each health 

centre level in Uganda and approximate population size served.  

Response: We have revised the text to include population served and services offered at each level of facility 

as follows: 

‘Level IV facilities serve ≈ 50,000 people providing in-patient, laboratory, and maternity services while 

level III’s serve ≈20,000 with in-patient and laboratory services, and level II ≈5,000 with basically 

outpatient and community outreach services.’ (Methods, pg. 7, line 118-120) 

9.    I found the description of correcting for non-residence on lines 146-149 a little difficult to follow and may 

need some rewording. 

Response: We have reworded the text here to further clarify the description as follows: 

‘Level II and III health facilities had very low testing rates and predominantly diagnosed malaria 

presumptively. Assuming that risk of malaria for children between 6 months and less than 11 years seen 

at each reference facility was the same as for similar age children seen at the respective lower level 
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facilities each month, total monthly presumptive malaria cases from site lower level facilities …’ 

(Methods, pg. 8, line 148-151) 

10.    Line 152. For clarity, I would suggest re-emphasising here that the estimated population at risk per month 

was age-restricted rather than the whole population.  

Response: We have revised the text as suggested indicating the age restriction as follows: 

‘To generate monthly HMIS incidence rates, the site-level sum of incident cases of malaria among children 

between 6 months and less than 11 years of age after … was divided by the site estimated monthly 

population of children under 11 years of age at risk of malaria.’ (Methods, pg. 9, line 158-162) 

11.    Line 163. Could you provide some more information about how you age-standardised cohort incidence? Did 

you check to make sure that the age groups captured by HMIS were comparable to the overall population 

structure? In some settings, younger children and boys are more likely to be taken to health facilities than older 

children and girls.  

Response: We have provided a description of how we age-standardized cohort incidence rates in the additional 

file (Section E). We have also revised the text in the manuscript to include a summary of this process as follows: 

‘Consequently, we age-standardized incidence estimates using six age categories defined between 6 

month and < 11 years, based on the initial recruitment age distribution in these categories as the 

standard (as explained in section E of the additional file). Initial recruitment into the cohorts was 

conducted primarily during August and September, 2011 for each site.’ (Methods, pg. 9-10, lines 173-276) 

Concerning comparison of age groups in HMIS with the overall structure, we did not find a reliable source of 

the overall age-structure comparable to our participants age range. Instead, we assumed that the same age 

structure within the HMIS would be maintained over the study duration.  

12.    Line 166. How did you account for community transmission? I would also suggest that you split this into a 

new sub-section here, as you start to discuss model-building.  

Response: We have revised the text to indicate how we account for community transmission “using cohort 

incidence” and re-defined this subsection as “Regression model” in the text. (Methods, pg. 10, line 176-177) 

13.    Line 169. The last section of this sentence doesn’t quite make sense.  

Response: We have revised to the text to further clarify the statement as follows: 

‘… while health facility characteristics were estimated using health facility performance in recording 

patients’ diagnoses.’ (Methods, pg. 10, lines 181-182) 

14.    Line 170. Facility accessibility is surely a function of more than just rainfall. For example, whether roads are 

tarmac or unsurfaced, local topography etc. Other studies have used or generated travel time surfaces to take a 
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more nuanced look at health facility accessibility that includes hills, proximity to and quality of roads. Did you 

consider any of these approaches?  

Response: We did not take the other suggested approaches because we believe that the choice of rainfall as a 

proxy in an agriculturally dependent society covers the fundamental aspects of accessibility, not to mention 

seasonality. With regard to accessibility, rain seasons tend to draw families into cultivation activities as highest 

priority and therefore dropping or delaying any other prospective activities, given the risk of missing the season. 

Moreover, at the scale considered in this study where for instance there is no functional public transport, a 

composite metric of accessibility that incorporates factors such as road network, land use and topography 

among others, may not provide sufficient temporal or spatially variability. In addition, the suggested composite 

metric of accessibility is most suitable for the definition of health-facility-most-likely catchment areas, which 

was not the intention of using accessibility in this study. In this study, we perceive accessibility as an influence 

on the possibility of malaria cases being recorded in the health facility registry. 

15.    Line 178. I was surprised that while you have a temporally variable indicator for accessibility (rainfall), you 

seem to just use a single average for facility availability. Do facilities closed more often around certain times of 

year (religious holidays, farming seasons etc)? Given that you had access to the OPD registers, are you able to 

actually determine the number of days that each facility was open each month (based on dates when no-one was 

registered at OPD)?  

Response: The temporal unit for evaluating effects of change in all covariates by site, including facility 

availability, was ‘month’ and not a single estimate. 

As regards number of days that a facility was open, we examined the OPD registers of each health facility to 

find which days had no patient records for each month. Here, like for accessibility, we generated a monthly site-

level proportion of the days of each month that facilities within that site were open. This proportion was 

determined using a numerator = (average number of days site facilities were open in a month) and the calendar 

month’s known number of days as denominator. Other than Christmas time when the majority would be closed 

on Christmas day and boxing day as well as new years’ day, no other religious holidays or particular patterns 

were observed. Of note also, it is not uncommon for health workers to be involved in district or research 

organised trainings and/or meetings, besides personal engagements. For instance, level II health facilities are 

often run by a single health worker and if they are not available for whatever reason, the facility would be 

closed. However, unavailability is not unique to level II facilities. We have revised the text to further clarify how 

site-level facility availability was defined, as follows: 

‘To account for health facility availability, measured as ease of care availability at the facility, we generated 

the average proportion of days per month that health facilities within each site were open to see patients. 

The average proportion was defined as mean number of days a site’s facilities were open in a month, 

divided by the respective calendar month’s total number of days.’  (Methods, pg. 10-11, lines 195-198) 
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16.    Line 190. I don’t follow the justification for using the reciprocal of the proportion of OPD patients missing a 

diagnosis, rather than just using the % missing a final diagnosis. 

Response: The choice of taking the reciprocal of the proportion missing a diagnosis was so that as a measure of 

performance, it can be interpreted intuitively as higher values corresponding to higher performance and lower 

values corresponding to lower performance. We have revised the text to further clarify this as follows: 

‘The reciprocal of the proportion was derived so as to enable intuitive interpretation of its trend as 

performance (high values correspond to high performance and vice-versa).’ (Methods, pg. 11, line 208-

209) 

17.    Lines 233-235. The term “participant recruitment” is a little confusing, particularly coming after a sentence 

about clinic visits. Does this mean proportion of people eligible for inclusion in the cohort who consented? Or the 

proportion of all cohort members recruited from each site?  

Response: We have revised the text to clarify that this is the proportion all cohort participants from all the three 

sites as follows: 

‘Whereas Kihihi had the highest number of participants recruited overall (36%) and Walukuba the lowest 

at 31%, …’ (Results, pg. 13, line 254-255) 

18.    Line 241. I suggest reemphasising here “symptomatic incident cases”.  

Response:  We have revised the text to clarify as follows: 

‘Across the study duration, a total of 4,884, 12,058 and 18,960 symptomatic test and residence corrected 

incident malaria cases (Table 1) were generated among participants in Walukuba, Kihihi, and Nagongera 

respectively’ (Results, pg. 14, line 262-264) 

19.    Line 251. You state the number of incident cases that were recorded, but then refer to these as age-

standardized, suggesting that these are not the raw number of cases. In this case, the use of “recorded” is a little 

misleading, and perhaps the raw number of cases could be reported, then the age-standardised count.  

Response: The numbers reported were the raw incident cases recorded. Incidence rates were derived from 

these and were age-standardized and now we have revised the text to clarify this as follows: 

‘From these, site mean monthly incidence rates were derived and age standardized.’ (Results, pg. 14, lines 

272-273) 

20.    Table 3. I suggest avoiding using the abbreviation “CI” to mean two different things in the table, and just 

write “cohort incidence”.  

Response: We have revised the table as suggested 

21.    Line 328. Do you have any information on what type of private facilities these are - private not for profit 

hospitals, pharmacies, clinics, drug shops? Since you mention a general preference for private sector in Uganda, 
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is it feasible that a substantial proportion of malaria cases in these locations are being addressed by these private 

facilities and additional ones outside your defined study area? 

Response: We have revised the text to clarify the type of private facilities included, as follows: 

‘Previous studies have suggested that the majority of care seeking is conducted in private health facilities 

in Uganda including private-for-profit hospitals/clinics, pharmacies and drug shops’ (Discussion, pg. 18, 

lines 347-349) 

Notably, private-not-for-profit facilities are considered public in Uganda. 

We acknowledged that people would have sought treatment outside of our study catchment area, but this 

could not be fully quantified within our study. However, we do not expect a substantial number of malaria cases 

to be addressed outside the defined study area in the case of uncomplicated malaria. Moreover, for two of the 

three sites where we had permission to visit private facilities and look at their data for a limited duration, we 

found one in each site and only one of these had accessible records. 

Also, we expected the crossover of patients from one location to another to be highest in the peri-urban site, 

given greater availability of options within towns. We examined records from a mid-level facility (level III) in a 

town close to our study site but found extremely few patient visits from villages recognised as located within 

our study site. This provided some evidence that a sufficiently high number of cases were being captured within 

the expected catchment area. 

22.    Lines 341-344. Do you think that the overall workload (all cause OPD) at the facility could influence HMIS 

completeness and quality? Do the HCIV have additional staff to support data management and reporting? Do you 

have any data on the proportion of staff positions at each facility which were empty during the study period? 

Response: We believe that overall workload influences completeness and quality of HMIS and considered 

including this as metric in this study, however, having assessed data retrospectively, there were no records of 

staff availability over our study duration. HCIV being referral facilities for the lower level counterparts, have 

more resources including human resources such health information assistants (HIA). These HIA, however, are 

not involved in the direct management of patients but rather management and handling of data. This handling 

involves receipt of data reports from the HCIV where they are based and the lower level health facilities under 

its supervision, as well as the forward submission of reports to the district authorities. We have revised the text 

and indicated the factors that could potentially influence the observed heterogeneity across sites concerning 

HMIS recording completeness as follows: 

‘We believe these effects may be due to variations in factors such as resource availability and staffing 

or workload, but these were not evaluated in this study.’ (Discussion, pg. 19, lines 372-373) 
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23.    Lines 361-363. I would be surprised if the population preferences for self-medication and herbal medicines 

changed year-to-year, although it is feasible that these preferences could differ between sites. I’m not sure the 

reference cited here justified the statement about explaining year-to-year changes.  

Response: We believe that choice of alternatives can vary year-to-year. One study in Kenya 1 reported self-

treatment to be dependent on an interaction of affordability, acceptability and availability all of which can vary 

with time. They report that affordability depends on seasonality of illness and income, transport costs and 

unofficial payment. On the other hand, provider patient relationships and distrust in quality of care, among 

others, were identified as influential to acceptability. Lastly, facility operating hours, drug and staff shortages 

were reported to influence availability. As such, the three main facets that are thought to directly but 

interactively influence choice of alternatives for care, are in turn directly influenced by factors that can change 

from year to year. 

Whereas we have revised the text for clarity on references (Discussion, pg. 19 & 20, lines 391-392) 

  we believe that preferences are not homogeneous within sites and due to these known drivers of change and 

would thus argue that they do explain a great deal of year-to-year changes as earlier indicated. 

24.    Line 388. Do you feel that the findings from this study are generalisable to the rest of Uganda, given that you 

captured three different epidemiological settings?  

Response: Given the diversity of epidemiological settings, we feel quietly confident that these findings are 

generalizable to most parts of Uganda, with some exceptions (such as areas with nomadic lifestyles). However, 

a larger number of sites may provide further insights unattainable with just three. We have indicated the 

generalizability of these findings by revising the text in the discussion as follows: 

‘… the diversity of settings and transmission provides important contributions of benefit to surveillance 

and considerably generalizable findings in Uganda.’ (Discussion, pg. 21, lines 419-421) 

25.    I would be interested to read in the discussion about any costs associated with malaria diagnosis & treatment 

at the cohort clinics versus at the government health centres and if this could influence treatment-seeking 

behaviours. Presumably the cohort clinics provided free treatment and subsidised travel or were close enough to 

villages that there was no travel cost. Do patients have to pay any consultation fee at the health centres, even if 

treatment is free?  

Response: We have revised the discussion to include a summary paragraph indicating the difference in cost of 

treatment for HMIS versus cohort participants, as follows: 

‘In addition, while treatment was free of monitory cost at public health facilities, regular patient visits 

to the health facility still costed them in the form of transport cost and long waiting times. Within the 

cohorts however, transport was reimbursed for every clinic visit made and waiting times minimized due 
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to the dedicated clinics. This status quo may have limited potential HMIS clinic visits and thereby 

contributed to HMIS underestimating cohort incidence estimates.’ (Discussion, pg. 18, lines 356-360) 

We argue that this would have reduced and/or delayed potential clinic visits within the HMIS population and 

thereby contribute to HMIS underestimating cohort incidence estimates 
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Reviewer #2: 

Comments to the Author 

Overall, this is manuscript presents a well-structured study with a clear objective and interesting results. The 

figures are very well done, and the additional files were helpful to the reader to understand the analysis decisions 

better. Below I offer few comments/suggestions mostly with regard to clarity of the results and conclusions 

presented. 

Response: We truly appreciate your opinion of this study and suggestions provided to further improve it. 

Main Comments 

•    The authors have shown that there are similar trends and good concordance between the HMIS data and 

cohort data and go further to suggest that HMIS may be a reasonable estimate the malaria burden in low to 

moderate risk areas. The limitation is, of course, that this may only work in a highly effective health system or an 

area where the health system has been augmented to provide better care due to ongoing research, and that this 

assumption may not hold true where health systems are sub-optimal.  

The manuscript would be stronger if this were to be mentioned somewhere. Specifically, as the authors state, this 

could be used in low-resource settings, but many of those countries also have weak health systems. 

Response: We agree with the suggestion made and have further emphasized the role of effective HMIS in better 

estimating malaria burden with revised text as follows: 

‘Overall, whilst Nagongera had the highest recording completeness, it had the lowest availability and 

least accessibility making it the lowest HMIS performance site of the three.’ (Methods, pg. 11, lines 214-

215) 

Moreover, we’ve now revised the text in the discussion as follows: 

‘This suggests that these findings strongly depend on improved surveillance systems and can be reliable 

in all transmission settings.’ (Discussion, pg. 18, lines 354-355) 

We’ve also revised the text in the conclusion as follows: 

‘These findings have important implications for malaria risk assessment in low resource settings that bear 

the majority of the burden of malaria, given improved information systems.’ (Conclusion, pg. 21, lines 

432-433) 

•    I wondered about the use of rainfall as a proxy for access to the health facilities. Often access is considered a 

patient accessing care. I wonder if there might be any data from national surveys on treatment-seeking and access, 

which could be presented in comparison to using this indicator? It seems that rainfall may have impeded physical 

access, but access may be more complex and contextual, so although not possible to capture, in this analysis, it 

would help to speak to this complexity.  



Page 262 of 267 
 

Response: We have compared rainfall and patient attendance trends by site as indicated in Figure 2 in the 

additional file. These trends show a general tendency for rainfall to be at peaks when attendance is at troughs 

for many months at all sites. We have also revised the text to indicate this as follows: 

‘… and extracted as site monthly mean estimates. On examining monthly trends in rainfall and 

attendance, we observed a general pattern of peaks in rainfall corresponding to troughs in attendance 

for the same month and vice-versa, suggesting associations between rainfall and attendance and 

supporting its use as proxy for accessibility (Figure 2 in the additional file).’ (Methods, pg. 10, lines 184-

188) 

We’ve also clarified that rainfall may predominantly impede physical access in the revised text as follows: 

‘It was assumed that the higher the mean rainfall received per month, the less physically accessible the 

health facility for the population that month.’ (Methods, pg. 10, lines 189-191) 

Notably however, action of rain on physical access is the most important aspect of accessibility for this study, 

due to interest in the role accessibility plays in malaria cases being recorded in health facility registers. 

 In addition, we have revised the text among limitations stating that the estimates used for health facility 

performance, including accessibility, availability, and recording performance are but proxy measures as is, as 

follows: 

‘Sixth, health facility availability, accessibility and recording performance are more complex than this 

study proposed to estimate them. This could have masked any potentially observable associations 

otherwise not found.’ (Discussion, pg. 20, lines 410-412) 

However, this study was not in position to fully define or quantify them with our available data.  

•    Use of days open as a proxy for availability was okay, but as mentioned access to stock, data would have made 

this stronger as a clinic may have been open but could not test or treat for malaria. This is definitely a limitation 

to this indicator, although what you have is better than nothing. As availability may be more complicated than 

just the number of days open, so this should be considered when considering these results. 

Response: We agree with the suggestion made here and have revised the text to include a limitation concerning 

data where we indicate that health facility performance factors are more complicated than our study proposed 

to estimate them, which may have masked potentially observable associations. The text revision is as follows: 

‘Sixth, health facility availability, accessibility and recording performance are more complex than this 

study proposed to estimate them. This could have masked any potentially observable associations 

otherwise not found.’ (Discussion, pg. 20, lines 410-412) 

Minor points: 
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1.    Lines 242-245 in the results section should be moved to the methods section. “These were corrected for 1) 

non-testing among presumptively diagnosed cases, and 2) non-residence among those whose village of residence 

was missing. Also, cases from villages unknown within site boundaries were excluded.”  

Response: We have revised the text as suggested by removing this section from the results section and leaving 

it in the methods section only. We have also clarified the results as follows: 

‘Across the study duration, a total of 4,884, 12,058 and 18,960 symptomatic test and residence corrected 

incident malaria cases’ (Results, pg. 13, lines 262-263) 

We’ve also revised the text in the methods as follows: 

‘… villages of residence that were located or known within the study sites. Notably, cases from villages 

unknown within site boundaries were excluded.’  (Methods, pg. 9, lines 157-158) 

2.    Comments on Table 1. 

a.    It would have been helpful to include percentages in Table 1 to understand the proportion of patients who 

are tested and positive. 

Response: We have revised the table to include percentages for clarity as suggested 

b.    Also, the right three columns for Table 1 could be presented better.  

i.    First, a line to delineate the adjusted results from the other would have been helpful. 

ii.    It is not clear if the adjusted numbers are for all health facilities, only HCII/HCIII. 

Response: We have revised the table for clarity as suggested. 
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9.14 Appendix 10: INLA code for Spatial-autoregressive model in chapter 6 

# Set working directory 

setwd("F:/Analysis_INLA") 

#Load libraries 

#install.packages("spdep") 

library(spdep) 

#install.packages("INLA", repos=c(getOption("repos"), INLA="https://inla.r-inla-

download.org/R/stable"), dep=TRUE) 

library(INLA) 

#install.packages("maptools") 

library(rgeos) 

library(maptools) 

#install.packages('spDataLarge', repos='https://nowosad.github.io/drat/', type='source') 

library(spDataLarge) 

install.packages("bigmemory") 

library(bigmemory) 

#*****************************************Creating neigbourhood 

Graph********************************** 

#Load County Shapefile 

shape<-readShapePoly("./hfaccess3hrs_Catchment",IDvar="idadj") 

##plot(units) 

#Create adjacency matrix 

temp <- poly2nb(shape,queen=TRUE, row.names=shape$idadj) 

#Convert the adjacency matrix into a file in the INLA format and save 

nb2INLA("uganda.adj", temp ) 

#Visualize the graph and get summary 

#g<-inla.read.graph("uganda.adj") 

#summary(g) 

#****************************************** Load Data 

********************************* 

#Read in the data 

#data1<-read.csv("bugs_maindata1.csv") 

library(haven) 
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data1 <- read_dta("bugs_maindata1.dta") 

attach(data1) 

 

#************* Introduce columns  for space and time ************************* 

data2<-cbind(data1,reg0=data1$idadj, reg1=data1$idadj, reg2=data1$idadj) 

data<-cbind(data2,time0=data2$t, time1=data2$t, time2=data2$t) 

# Display what the data set looks like with the new space and time variables included 

head(data) 

#Besag model with random spatial effect (i.e. BYM model) and structured (rw1) +unstructured temporal 

effects 

hyper.besag <-list(prec=list(prior="loggamma", params=c(.1, .1))) 

#hyper.besag <-list(prec=list(prior="loggamma", params=c(.5, .0005))) 

hyper.iid<-list(prec=list(prior="loggamma", params=c(.001, .001))) 

formula<-confirmed ~ 1 + rainfall + land_surface temperature + Night-time-light + education-level-for-

women + vegetation amounts + f(reg0,model="besag",graph="uganda.adj",hyper=hyper.besag) 

+    f(reg1, model="iid", hyper=hyper.iid)+ 

  f(time0,model="rw1", constr = TRUE, scale.model = TRUE,hyper = list(prec = list(prior = "pc.prec", 

param = c(1,0.01)))) + 

  f(time1, model = "iid", constr = TRUE) + f(time2,model="iid", 

group=reg1,control.group=list(model="iid"),constr=TRUE) 

starting.value <- inla(formula, family = "Binomial", Ntrials=pop, data = data, 

                       control.compute = list(cpo = T, dic = T), control.inla = list(diagonal = 100, strategy = 

"gaussian", int.strategy = "eb"), 

                      control.predictor = list(compute=TRUE),  

                      control.family=list(link="logit"), 

                       control.fixed = list(prec.intercept = 0.001), 

                       verbose = TRUE) 

plot (starting.value$summary.fitted.values$mean,pfpr) 

pfpr.final<- inla(formula,family = "Binomial", Ntrials=pop, data = data, 

                control.inla = list(strategy = "simplified.laplace"), 

                control.predictor=list(compute=TRUE), 

                control.family=list(link="logit"), 

                control.mode = list(result = starting.value, restart = TRUE), 
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                 verbose=TRUE) 

summary(pfpr.final) 

plot (pfpr.final$summary.fitted.values$mean,pfpr) 

 

####### Get fitted values ############################################### 

## Predicted incidence value 

predictedmean<-pfpr.final$summary.fitted.values$mean 

# Write prediction to csv file 

write.table(predictedmean,"pfpr_fitted.csv",row.names=T,sep=",") 

## Predicted credible interval upper bound for incidence 

predictedci97.5<-pfpr.final$summary.fitted.values$`0.975quant` 

write.table(predictedci97.5,"pfpr_fitted_u.csv",row.names=T,sep=",") 

## Predicted credible interval lower bound for incidence 

predictedci2.5<-pfpr.final$summary.fitted.values$`0.025quant` 

write.table(predictedci2.5,"pfpr_fitted_l.csv",row.names=T,sep=",") 




