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Abstract Policy makers in Africa need robust estimates of the current and future
spread of SARS-CoV-2. We used national surveillance PCR test, serological survey
and mobility data to develop and fit a county-specific transmission model for Kenya
up to the end of September 2020, which encompasses the first wave of SARS-CoV-
2 transmission in the country. We estimate that the first wave of the SARS-CoV-2
pandemic peaked before the end of July 2020 in the major urban counties, with
30-50% of residents infected. Our analysis suggests, first, that the reported low
COVID-19 disease burden in Kenya cannot be explained solely by limited spread of
the virus, and second, that a 30-50% attack rate was not sufficient to avoid a further
wave of transmission.
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Introduction
The potential risk from SARS-CoV-2 to Africa was iden-
tified early in the global pandemic [1]. As the epicen-
ter of transmission moved from East Asia to West Asia
and Europe and then to North America, there was spec-
ulation as to the likely impact of the pandemic on the
African continent with its young populations, high infec-
tious disease burden, undernutrition and fragile health in-
frastructure. However, as health systems and economies
of high-income countries strained, the reported burden
of COVID-19 cases and associated deaths in Africa re-
mained low with the exception of South Africa and North-
ern Africa [2]. The question is whether this is the re-
sult of lower risk due to demographic structure (young
age [3], either cross-reacting immunity (e.g. pre-existing
SARS-CoV-2 cross-reactive T cells [4]) or dampened im-
munological over-reaction [5], a low reproduction num-
ber from rapidly imposed interventions (such as school
closures and lockdowns [6]), environmental conditions
(e.g. temperature and humidity [7]), or under-reporting.
The reason this remains a conundrum is, at least in part, a
paucity of good quality data to reveal the probable extent
of SARS-CoV-2 spread in African populations.

Following the first confirmed COVID-19 case in Kenya on
13th March 2020, the Kenyan Government moved rapidly,
closing international borders, schools, restaurants, bars
and nightclubs, banning meetings and social gathering,
and imposing a dusk to dawn curfew and movement re-
strictions in the two major city counties, Nairobi and
Mombasa [8]. The major concerns from unmitigated
spread were a limited surge capacity of the Kenyan health
system [9] and groups of the Kenyan population iden-
tified as potentially highly vulnerable to infection, due
to socio-economic factors such as crowded households or
lack of access to handwashing, and/or severe disease, due
to epidemiological factors such as higher rates of obesity
and hypertension [10]. Throughout the months of April,
May and into June 2020 few people in Kenya were re-
ported SARS-CoV-2 test positive by polymerase chain re-
action (PCR), or severely diseased or dying with COVID-
19 as the established cause [11]. There followed a relax-
ation of some measures in June and July including con-
trolled opening of restaurants and places of worship and
the removal of travel restrictions into and out of Mombasa
and Nairobi counties. As of 30th September 2020, there
were 45,795 laboratory-confirmed positive swab tests out
of over 340,000 tests (about 13.5%), and 749 deaths
with a positive test result in Kenya. This should be com-
pared with the 200-250,000 cases and 30-40,000 deaths
attributable to SARS-CoV-2 for similar sized countries in
Europe (France, Italy, UK) by the end of September.

The reason for this apparently low level of COVID-19
disease in Kenya is unknown; one possible explanation
is that SARS-CoV-2 had not widely spread among the
Kenyan population by the end of September. However,
two pieces of information suggest that SARS-CoV-2 had al-
ready spread extensively by the end of September. First, a
regionally-stratified seroprevalence study of 3098 Kenyan
blood donors sampled between May and June reported a

national estimate of 4.3% (adjusted to reflect the popu-
lation distribution by age, sex and region) [12]. Sero-
prevalence was higher in Nairobi (7.6%) and Mombasa
(8.3%). These levels of seropositivity are comparable
to those reported in May in the UK [13], April/May in
Spain [14], and March/April in some US cities [15],
where high numbers of PCR-positive cases, hospitaliza-
tions and deaths have also been reported, in contrast to
Kenya. Second, we noticed that test-positive PCR cases,
and daily reported test-positive deaths, were declining in
first Mombasa (from early July 2020) and then Nairobi
(from early August 2020); respectively Kenya’s second
and first largest cities. In Europe, declining case and
mortality rates have been closely associated with non-
pharmaceutical interventions (NPIs) [16]. However, in
Kenya this went counter to evidence of increased mixing,
and hence reproduction potential, arising from Google
Mobility data for these cities which showed a steady re-
version in mobility towards pre-COVID-19 intervention
levels since early April (Fig. S1). These observations, in
turn, lead to the conclusion that either a smaller than ex-
pected proportion of infected individuals have had severe
disease, and/or, that there has been under-reporting of
severe disease.
To investigate these findings, we developed a simple SEIR
compartmental mechanistic and data-driven transmission
model for Kenya, which integrates three sources of longi-
tudinal data: national time series PCR tests, the Kenyan
serological survey and Google mobility behavioural data.
The overall modelling approach is similar to Flaxman et
al [16]; that is we use time-to-event lag distributions, and
the daily incidence time series, and, both models gener-
ate the daily incidence time series using a simple deter-
ministic transmission model with the key unknowns being
initial numbers of infected individuals and R(t). Where
we differ in approach from Flaxman et al [16] is that, in-
stead of using reported test-positive deaths as the most re-
liable data for inferring underlying transmission patterns,
we use a combination of PCR test-positive and serologi-
cal data. The PCR test-positive data informs the model
on the epidemic trajectory but does not account for likely
under-detection of cases. This under-detection of cases
is inferred from the proportion exposed to SARS-CoV-2
evidenced by the seroprevalence estimates, hence scaling
the incidence estimation. Finally, the mobility data, as a
proxy for the contact rate, determines the contribution of
the intervention (which acts to alter contact patterns) rel-
ative to other factors that alter incidence and the effective
reproduction number, the most important of which is the
susceptible proportion of the population. Our aim is to de-
rive a coherent picture of the SARS-COV-2 epidemiology
in Kenya in the first wave and reveal the historic and fu-
ture patterns of spread across the country and by county.
Reported deaths are not used as primary data for infer-
ence, but rather the trend in changing rates of reported
deaths is used as a validation data set for model predic-
tive accuracy (see supporting information for description
of model validation). Reported deaths may be subject to
substantial under-reporting, and we assume that the bias
in under-reporting is consistent over time.
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Results
Underlying transmission rates in Mombasa and
Nairobi during the first wave
As at 30th September, a substantial proportion of PCR
positive tests have been samples from the capital Nairobi
(25,182 positive tests), while Kenya’s second largest city,
Mombasa, has reported the next highest number of PCR
positive tests (2,056). We infer that the underlying rate
of new infections peaked on May 18th 2020 (CI May 16th
- May 21st) in Mombasa and July 9th 2020 (CI July 7th
- July 10th) in Nairobi, and subsequently declined from
peak transmission (Fig. 1 HG). The model suggests that
the PCR test and serology data can be explained by the ini-
tial presence of <200 infected individuals in both Mom-
basa and Nairobi on 21st February, three weeks before the
first reported case in Kenya. Thereafter, growth of trans-
mission was rapid in both counties. In early March, the
reproductive ratio was estimated to be 1.94 (CI 1.89-1.98)
and 2.00 (CI 1.97-2.02) in Mombasa and Nairobi, respec-
tively, with associated doubling-time of 4.84 and 4.59
days, respectively. After March, the transmission curves
flattened substantially. This change is consistent with the
introduction of containment measures by the Kenyan gov-
ernment, and evidence of substantial reduction in mobil-
ity (see Google Mobility data Fig. S1). From late April,
through May and June, and into July the evidence sug-
gests movement restrictions became steadily less effec-
tive. The waning effectiveness of movement restrictions
results in an inferred increase in R(t) across Kenyan coun-
ties and an increased rate of epidemic growth (Fig. 2).
The increasing R(t) estimates are broadly in line with pre-
dicted trends from Google mobility data (supporting in-
formation), although it should be noted that the R(t) esti-
mates exhibit secondary fluctuations around the increas-
ing mobility trend (Fig. 2). In Nairobi and Mombasa we
predict that reduction in susceptibility of the population
(Fig. 1C,D) caused the effective reproductive ratio (Re f f ;
the mean number of secondary cases accounting for re-
duced susceptibility) to drop significantly below the ba-
sic R value from June onwards (Fig. 2). However, other
counties, where the epidemic did not establish itself as
early as Mombasa and Nairobi, and where a substantial
majority of the population are likely to still be susceptible,
now have R(t) estimates which we estimate rebounded to
the original levels estimated as occurring before Kenyan
public health measures (Fig. 2).
By accounting for the delay of an average of 19 days be-
tween infection and death (supporting information for de-
tails on infection to death distribution) we find the trans-
mission curve, estimated from PCR tests and serology,
generates a good prediction of the observed trend in daily
deaths in Nairobi and Mombasa (Fig. 1 EF). We did not
use mortality data in transmission model inference, there-
fore the good fit to the observed trend in deaths with
a PCR-confirmed test result represents an out-of-sample
validation of the modelling [17]. Note, it is the distribu-
tion of deaths over time, rather than the absolute num-
bers, that we consider to be a good fit. In accord with
observations, we estimate a peak of positive PCR test

samples occurred at the end of July or early August in
Nairobi and earlier, mid-June, in Mombasa. The lag be-
tween transmission peak and positive swab testing peak
being explained by both the delay between infection and
becoming detectable by PCR, and the period after an in-
fected individual has ceased being actively infectious but
remains detectable by PCR [18] (Fig. 1 GH and AB). As of
the end of September 2020 we estimate that about 35.4%
(CI 29.0%-40.4%) of the Nairobi population, and 30.3%
(CI 23.6-36.7%) of the Mombasa population were sero-
logically positive with SARS-CoV-2, (Fig. 1 CD). This es-
timated level of seropositivity is substantially higher than
has been estimated in some countries that have been hit
hard by the pandemic [13, 15, 14]. However, they are
in broad agreement with a study in Niger state, Nigeria,
from June 2020 [19], as well as seropositivity rates re-
ported from the hard-hit city of Manaus, Brazil, in May
2020 [20]. Note that these estimates of seropositivity at
the end of September assume both that waning seropos-
itivity would not have had a significant effect on sero-
logical observations by late September, and furthermore
that waning immunity leading to re-infection remained
insignificant by late September.

SARS-CoV-2 attack rates in the first wave
in Kenyan counties and the estimated crude
infection-to-fatality ratio
Accounting for the sensitivity of the serological assay, and
the delay between infection and seroconversion, we esti-
mate that the actual exposure of the population to SARS-
CoV-2 by September 30th was 43.3% (CI 35.3%-49.5%)
in Nairobi and 37.6% (CI 29.2%-45.7%) in Mombasa (Fig.
1 CD). Such levels of population exposure are predicted
to be associated with decreased rates of new cases due to
reduced numbers of susceptible individuals in these ur-
ban populations, although this is also influenced by the
estimated reproductive number and effective population
size at risk of exposure (Pe f f ). The effective population
size accounts for the impact of heterogeneity in the sus-
ceptibility, transmissibility and social interactivity in the
population (supporting information for more details on
effective population size in transmission modelling); for
Nairobi it was inferred as 81.8% of actual population
size (CI 66.7%-93.2%), for Mombasa 71.9% (CI 56.3%-
86.5%). The effective population size estimates rest upon
inferred variation in risk across the population. There re-
mains a possibility of future increase in transmission if
population mobility continues to rise, if population mix-
ing patterns alter leading to changed risk heterogeneity or
if immunity is short lived, leading to a rebound in reported
cases. One or more of these factors could lead either to
lengthening the tail after the first peak in cases/deaths, or
even to a secondary increase in cases and/or deaths.
The inferred I FRcrude values for both Nairobi (I FRcrude
= 0.019% (CI 0.014%-0.024%) and Mombasa (I FRcrude
= 0.022% (CI0.016%-0.027%)) are substantially lower
than the age-adjusted IFR expected for Kenya under full
ascertainment from the age-specific IFR estimated given
by Verity et al (I FRveri t y = 0.26% [21]; and supporting
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information). This is a crude observational value for the
infection to fatality ratio, since we do not currently have
an estimate of the reporting bias of deaths of individu-
als infected with SARS-CoV-2. Therefore, our estimate
of I FRcrude potentially reflects lower detection in Kenya
compared to China, as well as any lower mortality risk
due to fewer comorbidities.
We extended our model-based inference to each of the
47 counties in Kenya (see dataset S1 for parameter es-
timates, peak time estimates and I FRcrude estimates for
each county). We find that, in addition to the two main
Kenyan city counties, more than 25-30% of the popu-
lation in each of the semi-urban counties neighbouring
Nairobi (Kiambu, Kajiado, and Machakos) had been in-
fected. However, the infection rate is predicted to be ei-
ther lower than 25% and/or subject to high uncertainty in
other counties (with high uncertainty defined as a predic-
tion standard error of > 10% of county population size;
Fig. 3).
Due to the lag between infection and the observability
of the infected person (whether by swab PCR test, serol-
ogy test, or death), we estimate that both daily PCR pos-
itive test detections and daily observed deaths attributed
to COVID-19 across the two main cities, and semi-urban
counties neighbouring Nairobi had a peak in early Au-
gust 2020 (Fig. 3 BC). Hospitalisation rates are not avail-
able for all Kenyan hospitals. However, sentinel clinical
surveillance of severe acute respiratory infection (SARI),
with or without a PCR test for SARS-CoV-2, at 14 county
hospitals suggests an increasing rate of adult admissions
in June and July 2020 [22]. However, SARI admissions
were lower in the early phase of the Kenyan epidemic than
observed counts from the same months in 2018 and 2019
[22] and the apparent rise in SARI admissions could rep-
resent a reversion towards pre-COVID numbers; this ob-
servation underlines the difficulties in using hospital data
to understand the penetration of SARS-CoV-2 in Kenya.

Conclusions and Discussion
Our modelling analysis provides a coherent account of
the SARS-CoV-2 pandemic in Kenya up to end September
2020. Limitations include lacking information on the PCR
testing denominators for the full time frame, the limited
serological survey and that we have applied a simple dy-
namic model. In mitigation similar results were obtained
when excluding all negative tests, and the dynamic model
is transparently a fit to the data where the availability of
the latter is a key strength of our study.
Our analysis suggests that 30-50% of the urban popula-
tion were already exposed by the end of September, and
that the first wave of the Kenya epidemic peaked in the
urban and semi-urban counties during a period of rela-
tively little restrictions or physical distancing. This infers
a burden of infection in Nairobi and Mombasa similar to
extremely hard-hit cities in South America at the same
time, e.g. Manaus [20]. However, in Manaus there was a
substantial first epidemic wave through April-June 2020,
with about 50% of the population infected, followed by a
long epidemic tail leading to an estimated total 75% at-

tack rate by the end of 2020 [20]. In Kenya, the second
wave came shortly after the first (October to December
2020), which suggests that the causes of the Kenyan sec-
ond wave are complex.
Whilst the full picture of the epidemiology in Kenya will
not be established until cause-specific mortality data be-
come available (e.g. from resumption of Demographic
Surveillance System and verbal autopsy activities), our
model, fitted to three sources of nationwide longitudinal
data, suggests that the number of symptomatic COVID-19
cases reported and the mortality attributed to the SARS-
CoV-2 epidemic are substantially lower in Kenya than in
Europe and the USA at a similar stage of the epidemic.
This would remain the case even if reported deaths ac-
counted for just 1/10th of the true value. However, there
is insufficient data for speculating on the degree of under-
reporting and previous estimates of 1 in 4 deaths occur-
ring in hospital may not be generalizable to the hospital
access during COVID [23].
Late 2020 saw the spread of COVID-19 to more rural ar-
eas of Kenya, with less infrastructure and access to public
health facilities and a second wave of SARS-COV-2. This
second wave needs to be dissected and understood. Policy
makers need to balance the direct and indirect health and
socio-economic consequences of any control measures; a
balance that becomes more precise as we develop a better
understanding of SARS-COV-2 dynamics in Kenya.

Methods
Transmission model definition
The dynamics of transmission in each Kenyan county were
assumed to follow a SEIR transmission model with an ef-
fective population size parameter (Pe f f ) [24]. The SEIR
model with effective population size is an extension of the
homogeneous SEIR model [25] with the additional flexi-
bility that Pe f f N out of a total population size N in each
county is at risk of contracting SARS-CoV-2. Pe f f = 1 re-
covers the homogeneous SEIR model, whereas, Pe f f <
1, recovers the effect of underlying heterogeneity in the
transmission potential and risk in the population of the
county on the aggregate dynamics of epidemic. This as-
pect of heterogeneous models of transmission has been
widely investigated, for example, in the context of com-
paring vaccination coverage thresholds for elimination
between uniform and targeted vaccination policies [26].
In the context of the SARS-CoV-2 pandemic modelling lit-
erature, the possible role of population heterogeneity in
decoupling estimates of R0 from predictions of the "herd-
immunity" threshold and final attack rate has again been
identified [27, 28]. In this study, rather than make strong
assumptions about the mechanism of population hetero-
geneity, e.g. differential susceptibility, differential rates
of social mobility etc., we have taken a phenomenologi-
cal approach; the effect of heterogeneity in the population
was encoded in the effective population parameter Pe f f ,
and this parameter was inferred jointly with R0. Our a pri-
ori belief was that the most probable value was Pe f f = 1.
We assumed that Pe f f was constant over the period of in-
ference.
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The model dynamics for each Kenyan county were repre-
sented as a system of ordinary differential equations,

Ṡ(t) = −γRt
S(t)I(t)
Pe f f N

,

Ė(t) = γRt
S(t)I(t)
Pe f f N

−σE,

İ(t) = σE(t)− γI(t),

Ṙ(t) = γI(t),

Ċ(t) = γRt
S(t)I(t)
Pe f f N

.

(1)

With initial conditions (time 0 is the calendar date 21st
Feb 2020 and all rates are per day),

S(0) = Pe f f N − E0 − I0,

E(0) = E0, I(0) = I0, R(0) = 0, C(0) = 0. (2)

Where the dynamic variables S(t), E(t), I(t), R(t) were
the numbers of susceptibles-at-risk, exposed (but not yet
infectious), infectious, and, recovered individuals in the
county. The full number of susceptibles in the county at
any time was (1−Pe f f )N+S(t). C(t) was the cumulative
numbers of infected individuals in the county.
The incubation-to-infectious rate was σ = 1/3.1 per day,
and the recovery rate was γ = 1/2.4 per day, implying
a mean generation time of 5.5 days (see Supporting in-
formation for a comparison to the generation distribution
inferred by Ferretti et al [29]). The instantaneous repro-
ductive ratio Rt = R0βt decomposed into a basic repro-
ductive ratio R0 and an effective contact rate βt , where
βt = 1 represents a pre-pandemic baseline contact rate in
the population.

Transmission model inference
We used a mixed Bayesian and maximum a-posteriori
(MAP) approach to parameter inference for each of the 47
Kenyan counties, based on daily observations of positive
and negative PCR and serology tests in each county. The
likelihood of individuals being detectable on any given
day was based on whether they had been infected before
that day, and, the number of days since their infection.
The number of new infections on each day n, was denoted
ιn. For a given set of model parameters ιn was generated
by solving the ODE system (1), giving,

ιn = C(n+ 1)− C(n), (3)

for each day n. Given the daily numbers of new infec-
tions, the number of people in the county on each day n
who are detectable by PCR testing, denoted (P+)n, and
serological testing, (S+)n, were given by convolving the
new infection time series with the probability of (respec-
tively) being detectable by a PCR or serological test τ days
after infection, QPCR(τ) and Qsero(τ):

(P+)n = [ι ∗QPCR](n),
(S+)n = [ι ∗Qsero](n).

(4)

The log-likelihood function for each county has the form,

l((P+)1, ..., (P+)T , (S+)1, ..., (S+)T ,θOM ) =
T
∑

n=1

ln fPCR((ObsP+)n|(P+)n,θOM )

+ ln fsero((ObsS+)n|(S+)n,θOM ). (5)

Where, ln fPCR((ObsP+)n|(P+)n,θOM ), and,
ln fsero((ObsS+)n|(S+)n,θOM ), were, respectively, the log-
probability of observing (ObsP+)n PCR test-positives and
(ObsS+)n serological test positives on days n = 1, ..., T
given the model prediction of numbers of PCR and
serological detectable people in the population, and the
observation model parameters θOM . Day n = 1 corre-
sponded to the calendar date 21st Feburary 2020, and,
day n = T = 223 corresponded to 30th September 2020.
The observation model parameters included bias and
over-dispersion parameters for finding PCR positives in
the daily testing group compared to an unbiased binomial
sample over the population; we used a beta-binomial
count data model whenever the number of negative
PCR tests for that day was available in the county and
a negative binomial count data model whenever it was
not. We assumed that the serological test-positives were
from an unbiased sample but included over-dispersion in
sampling serological positives by using a beta-binomial
count data model. Supporting information gives further
details on the data sources and the log-likelihood calcula-
tion including a full description of all observation model
parameters and the functional forms and underlying
evidence for QPCR and Qsero.
We assumed that βt was piece-wise constant on days,
and, therefore, could be reconstructed from daily effec-
tive contact rates (βn)n=1,...,T . For any fixed estimate of the
effective contact rate βt , we used Hamiltonian Markov-
chain Monte Carlo (HMC) [30] to estimate the posterior
distribution for the transmission model parameters; that
is the initial condition values (E0, I0) and fixed param-
eters (Pe f f , R0) jointly with the observation model pa-
rameters θOM . Prior distributions for parameters were
chosen for groups of counties (e.g. largely rural coun-
ties had different priors to major urban conurbations like
Nairobi and Mombasa; see supporting information for fur-
ther details). Starting from an initial estimate that βt fol-
lowed daily Google mobility trends [31] for the whole pe-
riod, we sequentially improved our βt estimate using the
expectation-maximisation (EM) algorithm [32]. The E-
step corresponding to posterior distribution estimation us-
ing HMC, and the M-step corresponding to optimising the
daily effective contact rate estimates (βn)n=41,...,T using
the popular stochastic gradient descent algorithm ADAM
[33]. The first 40 days of effective contact rate estimates
(βn)n=1,...,40 were assumed to be fixed to their Google es-
timate; this improved identifiability jointly with R0 and
captured the observed sharp drop in mobility in response
to Kenyan public health measures following the first iden-
tified case on 13th March 2020. See supporting informa-
tion for further details on the use of Google mobility data
and the EM algorithm method used in this study.
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After inference of transmission parameters, the model im-
plied a prediction of the expected number of daily deaths
due to COVID, E(X+)n, based on an overall population
infection-to-fatality ratio (IFR), and, the delay distribu-
tion between infection and death, pI D,

E(X+)n = I FR[ι ∗ pI D](n). (6)

In this study, we assume that the IFR is constant for
each county over the period of inference, which allows
us to construct a Bayesian estimator of the crude IFR,
I FRcrude, by fitting to the observed daily numbers of test-
positive deaths, (ObsX+)n (see supporting information for
details and background data informing pI D). Because
the observed test-positive deaths were not used in infer-
ring model parameters, we treat the log-predictive den-
sity of deaths from the model as an out-of-sample val-
idation metric for the model. However, we emphasise
that the out-of-sample comparison is to the trend of daily
deaths, because this is invariant to the I FRcrude estima-
tor, which is itself sensitive to under-reporting of COVID
deaths. Supporting information gives full details on the
Bayesian model validation used in this study.
Data and materials availability: The full Kenyan SARS-
CoV-2 line list contains sensitive personal information
that could potentially allow the identification of individ-
ual cases. The analysis performed in this study only
required a highly aggregated dataset derived from the
Kenyan linelist. Other data used in this paper was
openly available. All data is available in the main text
or the supplementary materials. The code base underly-
ing the analysis is accessible at the open github repository
https://github.com/ojal/KenyaSerology.
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Figure 1. SARS-CoV-2 PCR positive swab tests, seroprevalence and deaths in Nairobi and Mombasa, Kenya, with
model forecasting. (A) (B) Weekly reported positive PCR positive swab tests (green dots) for Nairobi (A) and
Mombasa (B), model prediction of mean weekly detection during both sampling periods when negative PCR
test data was unavailable (blue curve), and available (orange curve). (C) (D) Monthly seropositivity of Kenya
National Blood Transfusion Service (KNBTS) blood donors in Nairobi (C) and Mombasa (D) (green dots), model
predictions for population percentage of seropositivity (green curve), exposure to SARS-CoV-2 (red curve), and
uninfected (blue curve). (E) (F) Daily deaths with a positive SARS-CoV-2 test in Nairobi (E) and Mombasa (F)
by date of death (black dots), and model prediction for daily deaths (black curve). Inset plots in (E) and (F)
indicate cumulative reported deaths and model prediction. (G) (H) Model estimates for rate of new infections
per day in Nairobi (G) and Mombasa (H). Background shading indicates 95% central credible intervals. Dates
for all graphs mark the 1st of each month.
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Figure 2. Estimated basic and effective reproductive numbers in Kenya since Feb 21st 2020. The posterior
mean reproductive number for Nairobi (red curves), Mombasa (green curves), and the inter-quartile range
(IQR) over mean reproductive number estimates for all other Kenyan counties (blue curve and shading). Shown
are both the basic reproductive numbers (expected secondary infections in a susceptible population adjusted for
mobility changes since the epidemic start; solid curves), and effective reproductive numbers (expected secondary
infections accounting for depletion of susceptible prevalence in the population; dotted curves). The effective
reproductive number varied significantly from county to county and is not shown except for Mombasa and
Nairobi. Restrictions aimed at reducing mobility in risky transmission settings (black dotted lines) are labelled
in groups. The chronologically ordered restrictions in each group are: 1) First PCR-confirmed case in Kenya,
suspension of all public gatherings, closure of all schools and universities, and retroactive quarantine measures
for recent returnees from foreign travel, 2) suspension of all inbound flights for foreign nationals, imposition
of a national curfew, and regional lockdowns of Kilifi, Kwale, Mombasa and Nairobi counties, and 3) additional
no-movement restriction of worst affected areas within Mombasa and Nairobi, and, closure of the border with
Somalia and Tanzania.
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Figure 3. Predicting peak timing of transmission rate by Kenyan county, and forecasting of Kenya-wide PCR
positive swab tests and reported deaths. (A) Posterior mean estimates for the attack rate (% of population)
in each county. Solid shaded counties have a posterior standard deviation in their attack rate estimate of less
than 10%, candy-stripe shaded counties have greater uncertainty associated with their attack rate estimate. (B)
Kenya total positive swab tests collected by day of sample (blue dots) with model prediction of daily positive
swab test trend (red curve). (C) Kenya total reported deaths with a positive swab test (black dots), with model
prediction of reported death rates (black curve). Inset plot indicates cumulative reported deaths with model
prediction of cumulative deaths. Dates on (B) (C) mark 1st of the month.


