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Retrospective analyses of the non-pharmaceutical interventions (NPIs) used
to combat the ongoing COVID-19 outbreak have highlighted the potential of
optimizing interventions. These optimal interventions allow policymakers to
manage NPIs to minimize the epidemiological and human health impacts of
both COVID-19 and the intervention itself. Here, we use a susceptible–infec-
tious–recovered (SIR) mathematical model to explore the feasibility of
optimizing the duration, magnitude and trigger point of five different NPI
scenarios to minimize the peak prevalence or the attack rate of a simulated
UK COVID-19 outbreak. An optimal parameter space to minimize the peak
prevalence or the attack rate was identified for each intervention scenario,
with each scenario differing with regard to how reductions to transmission
were modelled. However, we show that these optimal interventions are
fragile, sensitive to epidemiological uncertainty and prone to implemen-
tation error. We highlight the use of robust, but suboptimal interventions
as an alternative, with these interventions capable of mitigating the peak
prevalence or the attack rate over a broader, more achievable parameter
space, but being less efficacious than theoretically optimal interventions.
This work provides an illustrative example of the concept of intervention
optimization across a range of different NPI strategies.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.
1. Introduction
The ongoing COVID-19 pandemic has highlighted the vital role of non-
pharmaceutical interventions (NPIs) in mitigating the spread of SARS-CoV-2.
These interventions aim to break chains in transmission through population-
and individual-level behavioural changes, which can consequently reduce
opportunities for transmission [1]. NPIs encompass a large range of potential
outbreak control strategies, ranging from simple advice to encourage hand-
washing to country-wide, severe ‘lockdown’ measures such as stay-at-home
orders, mobility restrictions and closure of non-essential businesses [2].

While an effective tool to drive down disease prevalence, severe NPIs are
considered unsustainable and time-limited, with economic, physical and
mental health repercussions during and following the cessation of these
interventions [3–5]. This has driven calls to retrospectively understand
the epidemiological and human health impacts of introducing severe NPIs
under a different set of circumstances [6–8]. This includes insight into how
differences in the timing, duration and strength of these interventions could
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have potentially altered COVID-19-associated mortality and
morbidity compared with the actual course of action.

Intervention optimization has been proposed as a
method to allow policymakers to fine-tune the characteristics
of an intervention to minimize epidemiologically relevant
outcome measures. Optimization has been explored for a
range of potential COVID-19 NPI strategies, including
single time-limited reductions to transmission [9,10], inter-
mittent pulsing of NPIs [11,12] and gradual ramping-down
of intervention measures following an initial reduction to
transmission [12–14]. This has been explored in the context
of minimizing the peak incidence or prevalence, analogous
to ‘flattening the curve’ of an outbreak.

Despite theoretically optimal interventions being
identified in a number of optimization analyses for COVID-
19, the ability for policymakers to achieve these results in
practice has been questioned [10]. This stems from the
narrow windows for optimal implementation, with minor
deviations from the optimal intervention timing, duration
or magnitude often greatly reducing the efficacy of the NPI
and therefore having severe human health consequences
[10,13]. This sensitivity to implementation error is likely to
be amplified in emerging outbreak situations such as the
COVID-19 pandemic, with imperfect epidemiological
knowledge of uncharacterized, novel pathogens preventing
policymakers from fine-tuning NPIs to a narrow optimal
parameter space. An alternative strategy is to use generalized
intervention strategies that are, as an example, longer or
earlier than the theoretically optimal parameter space [15].
Such interventions can be denoted ‘robust’ interventions.
The rationale behind these pragmatic interventions would
be to identify a broad and achievable parameter space that
may be suboptimal, but potentially more robust to
implementation error, while still capable of mitigating the
detrimental epidemiological impacts of COVID-19 [10].
Owing to the robust and general nature of these interven-
tions, they also offer more practical and flexible guidance to
policymakers than specific optimal intervention timings
or durations.

This study aims to provide a mathematical modelling
framework to explore the concept of optimal and robust
interventions across a range of different NPI scenarios. We
explore and compare the existence, patterns and optimal
parameter spaces for each intervention to minimize the
peak prevalence or the attack rate of a simulated outbreak.
This is explored for three main parameters: (i) intervention
duration, (ii) intervention strength, and (iii) the intervention
trigger point. The results from this study are not intended
to highlight an absolute best course of action. Rather, this
analysis provides an illustrative example to describe how
optimal and robust outbreak control can be achieved under
different circumstances and intervention strategies.
2. Methods
(a) Susceptible–infectious–recovered model structure
A deterministic susceptible–infectious–recovered (SIR) model
[16] was used to explore the impact of time-limited NPIs on a
simulated UK-based COVID-19 outbreak. S, I and R compart-
ments denote the fraction of susceptible, infectious and
recovered individuals, respectively, within the population
(equation 2.1)

dS
dt

¼ � b(t)SI,

dI
dt

¼ b(t)SI � gI

and
dR
dt

¼ gI :

9>>>>>>>=
>>>>>>>;

ð2:1Þ

Susceptible individuals (S) were infected at the time-varying
rate β(t), representing the daily per capita rate of transmission in
a randomly mixing population. Infectious individuals (I ) were
assumed to recover at rate γ, representing the daily per capita
rate of recovery. This rate was taken as the inverse of the average
duration of infectiousness. A baseline pre-NPI basic reproduc-
tion number (R0) of 2.8 and doubling time (Td) of 3 days were
assumed [17–21]. The generation time was calculated as a
function of these two quantities [22], with a baseline genera-
tion time of 7.79 days and a resulting γ of 0.128 day−1

(equation 2.2)

Generation time ¼ Td
(R0 � 1)

ln2
: ð2:2Þ
(b) Defining the time-varying β(t)
By setting β =R0γ, we defined the baseline per capita trans-
mission rate in the absence of NPIs, β = 0.359 day−1. To capture
the impact of smaller scale NPIs, β was multiplied by a scaling
factor of 0.7, βscale = 0.252 day−1, with this 30% reduction being
in line with estimates of the impact of NPIs, such as school-clo-
sures, introduction of social distancing and isolation upon
COVID-19 symptoms and excluding severe NPIs, such as stay-
at-home orders [21,23,24]. We assumed that these measures
were in place at the initiation of the model simulation. Using
the UK as a representative example, these measures were intro-
duced between 12 and 21 March 2020, with severe ‘lockdown’
measures initiated on 25 March 2020 [24]. However, it was not
the intention of this study to model the exact timing of the UK
outbreak response, rather to use the epidemiological character-
istics of the UK outbreak as motivation for this study.

β(t) was defined as the product of βscale and a time-varying
scaling factor c(t), which reduced βscale over the course of the
simulation to model the impact of severe NPI measures, with
0≤ c(t)≤ 1 (equation (2.3)). Reductions associated with this scal-
ing factor were introduced at the intervention trigger point, tp,
and with dt describing the duration of the intervention

b(t) ¼ c(t)
bscale, t , tp
bscale, tp � t � tp þ dt
bscale, t . tp þ dt:

8<
: ð2:3Þ

The shape of the c(t) factor varied with the different interven-
tion scenarios explored, with parameter cmin describing the
minimum value of c(t) during the intervention. This can be con-
sidered a proxy measure of the magnitude of the intervention.
For baseline reductions to β(t), we defined cmin = 0.4, resulting
in β(t) = 0.101 when the NPI measures are at their greatest mag-
nitude. Baseline cmin was chosen to roughly achieve an effective
reproduction number (Re) of 0.7≤Re(t)≤ 1 during the interven-
tion [21,23,24], with Re(t) defined as R0S(t). All interventions
were initiated at baseline tp= 52 days, equivalent to an attack
rate at the initiation of the severe NPI measures of Ic(52) =
0.02, in line with model-based UK COVID-19 estimates
[24]. The model was seeded with an initial infectious fraction
I(0) = 0.00001.



Table 1. Description of the five intervention scenarios.

scenario description of c(t) definition of c(t)

1 immediate and constant reduction to cmin c(t) ¼ cmin
2 immediate reduction to cmin followed by a linear increase back to

c(t) = 1 c(t) ¼ cmin þ 1� cmin
dt

(t � tp)

3 linear decrease to cmin followed by an immediate return to c(t) = 1 c(t) ¼ 1� 1� cmin
dt

(t � tp)

4 linear decrease to cmin at dt/2, followed by a linear increase back to

c(t) = 1 c(t) ¼
1� 1� cmin

dt=2
(t � tp), tp � t , tp þ dt

2

cmin þ 1� cmin
dt=2

(t � tp), tp þ dt
2
� t � tp þ dt

8>><
>>:

5 a ‘pulsing’ intervention with immediate reductions to cmin between

intervention intervals 0–21, 35–49 and 63–77 days (for an

example total intervention duration, dt = 84 days)

c(t) ¼

cmin, tp � t , tp þ 1
6 dt

1, tp þ 1
6 dt � t , tp þ 2

6 dt

cmin, tp þ 2
6 dt � t , tp þ 3

6 dt

1 tp þ 3
6 dt � t , tp þ 4

6 dt

cmin, tp þ 4
6 dt � t , tp þ 5

6 dt

1 t � tp þ 5
6 dt

8>>>>>>>>>>><
>>>>>>>>>>>:
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(c) Single period of severe non-pharmaceutical
interventions

A time-limited period of severe NPI measures was the
primary intervention explored in this model, with optimization
occurring in relation to this intervention. We explored five
different intervention scenarios, with each scenario differing
with regard to the shape of c(t) and the subsequent β(t)
reductions over the duration of the intervention (dt) (table 1).
The total duration of the simulation, tmax, was set at 400 and
1000 days for all other sensitivity analyses. We provide the
rationale and real-world parallels for each scenario in the
electronic supplementary material, p. 1.

For a given intervention duration, dt, the magnitude of c(t)
scaling reductions over the intervention duration was half for
scenarios 2, 3, 4 and 5 relative to scenario 1. To maintain com-
parable β(t) reductions over the intervention period, dt was
doubled for scenarios 2, 3, 4 and 5 relative to scenario 1 for
baseline analyses. This corresponds to dt = 84 days for scenario
1 (12 weeks) and dt = 168 days (24 weeks) for all other scen-
arios. However, we note this was not possible in sensitivity
analyses where dt was an explored parameter. Instead, the dt
range for scenario 1 was transformed into a relative axis to
enable comparisons across scenarios. This was achieved by
halving the explored dt range for scenario 1 relative to all
other scenarios, and then doubling the absolute values in this
limited dt range into a relative scale. As an illustrative example,
an absolute value of dt = 125 is equal to a relative value of dt =
250 for scenario 1. Baseline parameter values for the modelling
of single NPIs can be found in electronic supplementary material,
table S1.

An alternative approach was considered by keeping dt
constant and doubling cmin in scenarios 2, 3, 4 and 5 relative
to scenario 1 (electronic supplementary material, figures S1
and S2). However, in practice, it is likely more plausible
to alter dt than it is to alter cmin in a public health context.
This can be attributed to difficulty faced by policymakers
to introduce an intervention with a specific magnitude or
strength [25].
(d) Multiple non-pharmaceutical interventions
To explore the transmission dynamics resulting from multiple,
time-limited periods of severe NPIs, two interventions were
modelled for each scenario sequentially during the simulation.
We defined the minimum value of the c(t) scaling factor, trigger
point and duration of the intervention as cmin1 and cmin2, tp1 and
tp2, and dt1 and dt2, respectively, for interventions 1 and 2. We
note that tp2 is defined relative to the end of intervention 1,
with the start of intervention 2 defined as t = tp1 + dt1 + tp2.

Baseline parameter values for the multi-intervention scenario
were set at dt1 = dt2 = 42 days (6 weeks) for scenario 1 and
dt1 = dt2 = 84 days (12 weeks) for scenarios 2, 3, 4 and 5. This
was halved relative to the single-intervention scenarios to allow
the two interventions to occur within the timeframe of the
simulated outbreak and to prevent unfeasibly long overall inter-
vention durations. We note that comparisons between the single-
and multi-intervention scenarios should be limited to the general
qualitative pattern of the optimal parameter space, rather than
being direct quantitative comparisons. The minimum value of
the scaling factor c(t) was kept constant at cmin1 = cmin2 = 0.4 at
baseline. Baseline parameter values for the modelling of multiple
NPIs can be found in electronic supplementary material, table S2.

(e) Outcome measures of interest
The primary objective of all analyses in this study was to
identify the optimal parameter space for the intervention trigger
point (tp), duration (dt) and magnitude (cmin) to minimize two
outcome measures:

1. peak I(t) prevalence: Imax,

2. attack rate: Ic(tmax) ¼ lim
t!tmax

Ic(t).

We defined Imax as the global maximum of the function
describing the trajectory of the fraction infectious during the simu-
lated epidemic, with subsequent references to ‘epidemic peaks’
describing the local maxima where I(t) > 0 and I’(t) = 0. The
attack rate, Ic(tmax), was defined as the total proportion of cases
that develop over the model simulation duration. The optimal
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Figure 1. (a) Trajectory plots for the epidemic curve, β(t) reductions and Re(t) for the five intervention scenarios. (b) Sensitivity analysis for intervention trigger
point (tp), magnitude (cmin) and duration (dt) to minimize the peak prevalence, Imax, and attack rate, Ic(tmax). For (a), pale red and blue lines depict unmitigated
epidemic curve dynamics, blue shading indicates the intervention period and the dotted line depicts the Re(t) = 1.0 threshold for sustained epidemic growth. Imax
and Ic(tmax) values are annotated for each scenario. Note that for (b), the dt axis for scenario 1 was transformed into a relative axis to allow comparison across
scenarios, with the relative axis of 0≤ dt≤ 400 being equal to an absolute dt range of 0≤ dt≤ 200.
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parameter space was defined as the combination of parameter
values that resulted in the lowest possible value of Imax or Ic(tmax).

( f ) Software used
All simulations were carried out using R [26] and RStudio [27]. R
package ‘deSolve’ [28] was used for all model simulations. All
other R packages used for plotting can be found in the electronic
supplementary material.
3. Results
The impact of the five intervention scenarios on the trajec-
tory of a simulated COVID-19 outbreak was explored
(figure 1a). Scenario 4 was identified as the most effective
scenario at mitigating peak prevalence or the attack rate
under baseline parameters (Imax = 0.076, Ic(tmax) = 0.493)
relative to an unmitigated outbreak (Imax = 0.146, Ic(tmax) =
0.786). Scenarios 1 and 2 resulted in the suppression of
the initial outbreak and delay in the epidemic peak following
the initiation of intervention measures. By contrast, a
single mitigated epidemic peak was observed for scenarios 3
and 4, with the steady ramping up of β(t) reductions and
the protective effects of population immunity resulting
in a more gradual, sustained reduction to Re(t), prevent-
ing peak resurgence. The pulsed nature of scenario 5
allowed brief opportunities for the build-up of popu-
lation immunity (Re(t) > 1) and subsequent epidemic
control (Re(t) < 1).
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Sensitivity analyses were conducted to observe the sensi-
tivity of the peak prevalence, Imax, and the attack rate, Ic(tmax),
to the intervention trigger point (tp), magnitude (cmin) and dur-
ation (dt) (figure 1b). As an initial exploration into model
dynamics, each parameter was investigated sequentially with
all other model parameters held constant at baseline values.
Optimal parameter values for all scenarios can be found sum-
marized in electronic supplementary material, table S3.

A specific optimal trigger point was observed for all scen-
arios to minimize both Imax and Ic(tmax), with these optimal
values found within an early-intermediate trigger point par-
ameter space (7≤ tp ≤ 74). While an optimum was identified
for scenario 5 to minimize Imax (tp = 53), two other trigger
points resulted in similar reductions to Imax (tp = 32 and 74).
Scenarios 1, 3 and 4 were found to be highly sensitive to devi-
ations from the optimal tp value, with steep increases in Imax

and Ic(tmax) either side of the optimum. We note that if a
suboptimal trigger point was chosen in scenario 2, it would
be more beneficial to intervene earlier-than-optimal, with a
gentler increase in Imax as tp is reduced from the optimal
value, compared with later-than-optimal tp values.

Stronger interventions resulted in optimal reductions to
Imax and Ic(tmax) for scenarios 3 and 4 (cmin→ 0). By contrast,
intermediate-strength interventions were found to be optimal
in scenarios 1, 2 and 5 (cmin = 0.72/0.77, 0.56/0.62, 0.27/0.47)
for Imax/Ic(tmax), respectively. We note that if suboptimal
intervention magnitudes were chosen for scenarios 1, 2 and
5, it was more beneficial to intervene too strongly than insuf-
ficiently. This was observed with decreases in cmin from the
optimal value resulting in gentler increases in Imax and
Ic(tmax) compared with greater-than-optimal cmin values.

Longer intervention durations were found to be optimal to
reduce Imax and Ic(tmax) for scenario 2 (dt→ 400). Interestingly,
increasing the intervention duration was found to have mini-
mal impact on either outcome measure in scenario 1, with
the cessation of the intervention resulting in an identically
sized epidemic peak regardless of the intervention duration.
By contrast, intermediate-length interventions were found to
be optimal for scenarios 3 and 4 (dt = 60/97, 100/174) for
Imax/Ic(tmax), respectively, with scenario 5 displaying two rela-
tively similar optimal points to minimize Imax (dt = 104/175).
We note that if a suboptimal intervention duration was intro-
duced for these scenarios, it was better to intervene for too
long, with increases in Imax and Ic(tmax) being less severe in
an intervention that was longer-than-optimal, compared with
an intervention that was shorter-than-optimal.

To explore the interplay between multiple model par-
ameters, a sensitivity analysis was next conducted to identify
the optimal parameter space to minimize Imax and Ic(tmax) for
a multi-dimensional parameter space: (i) intervention trigger
point (tp) and (ii) intervention duration (dt) (figure 2). The
optimal parameter space for all scenarios can be found
summarized in electronic supplementary material, table S3.

A longer intervention duration (dt→ 250) and intermediate
trigger point (tp = 70/66 and tp = 80) was optimal for scenarios
1 and 2, respectively, tominimize Imax and Ic(tmax).A contrasting
patternwasobserved in scenarios 3 and4,with shorter interven-
tion durations found to maintain a near-optimal parameter
space with a later intervention trigger. We note the existence
of suboptimal trigger point ‘gaps’ in scenario 5, with increases
and decreases in Imax as the trigger point was varied. This
resulted from the fixed periods between pulsed interventions,
with these ‘gaps’ increasing as the duration of the overall
intervention increased. These ‘gaps’ were found to be less pro-
nounced for Ic(tmax) relative to Imax. Increasing the duration of
the intervention had compensatory effects for scenarios 2, 3, 4
and 5, with both Imax and Ic(tmax) becoming less sensitive to
deviations from the optimal intervention trigger point as the
duration of the intervention was increased. This suggests that
increasing the duration can make the intervention more robust
to optimal trigger point implementation error.

The sensitivity analysis was repeated with cmin = 0.25/0.5/
0.75 to assess the sensitivity of the dt/tp relationship to altera-
tions to the magnitude of the intervention (electronic
supplementarymaterial, figures S3 and S4). Low-to-intermedi-
ate cmin values of 0.25 (scenarios 1, 2 and 3) and 0.5 (scenarios 3
and 4) were found to be optimal to minimize Imax, with the
lowest explored value of cmin being optimal tominimize Ic(tmax)
for all scenarios.

Two sequentially implemented interventions for each of
the five scenarios were next modelled to explore the introduc-
tion of NPIs at a later date to tackle epidemic resurgence.
Descriptive trajectory plots for each of the five multi-interven-
tion scenarios can be found in electronic supplementary
material, figure S5. We note a higher value of Imax for scenarios
2 and 5 and the existence of an increased number of epidemic
peaks for scenarios 1 and 4 relative to the single-intervention
scenarios. This can be attributable to the shorter intervention
duration used for the multi-intervention scenarios.

A sensitivity analysis was conducted for the multi-inter-
vention model to explore the optimal parameter space to
minimize Imax and Ic(tmax) for two sets of parameters: (i) inter-
ventions 1 and 2 trigger points, tp1 and tp2, and (ii)
interventions 1 and 2 magnitudes, cmin1 and cmin2 (figure 3).
The optimal parameter space for all scenarios can be found
summarized in electronic supplementary material, table S3.

A large range of trigger points for intervention 2 (1≤ tp2 ≤
100) were found to result in near-optimal reductions to Imax

and Ic(tmax), on the condition that the optimal trigger
point for intervention 1 was achieved (50≤ tp1≤ 65)
(figure 3a). This was found to differ if an earlier-than-optimal
intervention 1 trigger point was chosen, with only a narrow
selection of optimal intervention 2 trigger points able to
compensate for a suboptimal tp1 value. The choice of a
later-than-optimal intervention 1 trigger was found to
negate the ability for an intervention 2 trigger to prevent
increases in Imax and Ic(tmax), suggesting that it is better to
introduce the initial intervention earlier, rather than later,
if the optimal intervention 1 trigger point is unknown.
Extending the duration of intervention 1 and 2 did little to
alter the optimal trigger points for all scenarios (electronic
supplementary material, figures S6–S10).

A large range of intervention 2 magnitudes (0≤ cmin2≤ 1)
were found to provide near-optimal reductions to Imax, on
the condition that the magnitude of intervention 1 was suffi-
ciently optimized for scenarios 2, 4 and 5 (figure 3b). This
suggests that for these scenarios, it is critical to focus on opti-
mizing the initial intervention to minimize Imax. A different
optimal parameter space was identified to minimize Ic(tmax)
for these three scenarios, with strong reductions to both inter-
ventions 1 and 2 being favoured (cmin1/cmin2→ 0). Scenario 3
displayed subtly different dynamics, with intervention 1
ideally being as strong as possible to minimize Imax (cmin1→ 0)
and an intermediate magnitude to minimize Ic(tmax) (cmin1 =
0.23). Scenario 1was found to be optimal at an intermediate par-
ameter space (cmin1 = 0.26/0.62, cmin2 = 0.52/0) for Imax and
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Ic(tmax), respectively. Increases in the duration of intervention 1
allowed greater reductions to Imax and Ic(tmax) for a given cmin1/
cmin2 parameter space, relative to baseline parameters (elec-
tronic supplementary material, figures S11–S15). The
exception was scenario 3, with an increased intervention 1 dur-
ation also increasing Imax and Ic(tmax) obtained over the
explored cmin1/cmin2 parameter space.
4. Discussion
This study adds to the current epidemiological modelling work
[9–14] to explore the concept ofNPI optimization.We identified
an optimal parameter space for all considered intervention
scenarios, with each scenario capable of minimizing both Imax

and Ic(tmax) for a given set of optimal parameter values.
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However, we note that the exact value of the optimal parameter
space is highly nuanced, and often highly sensitive to changes
to the explored model parameters.

The optimal parameter space was found to be strongly
influenced by the balance between the intervention peak
timing and cmin. Matching the timing of an intervention to
the epidemic peak has been explored previously [9,10]. How-
ever, we demonstrate that it is also necessary to match the
timing of the epidemic peak with the greatest magnitude of
the intervention (cmin/cmin1/cmin2) if reductions to β(t) vary.
This can be intuitively observed by comparing scenario 2
(cmin at tp) and scenario 3 (cmin at tp + dt) (figure 2), with scen-
ario 2 being optimal at a later trigger point to coincide with
the early cmin reduction and scenario 3 optimal with an ear-
lier trigger to coincide with the later cmin reduction. We also
note the existence of optimal intermediate cmin values facili-
tating the build-up of infection-induced, protective
immunity during the intervention. This phenomenon is
well reported in modelling literature, with time-limited inter-
ventions found to be optimal when Re(t) is maintained near
the threshold for sustained transmission (Re(t)≈ 1) [25].

However, attaining these optima in practice is likely to be
difficult [10]. The ongoing COVID-19 outbreak has high-
lighted the limited capacity of policymakers to effectively
micromanage the course of an outbreak [29]. Factors such
as varying public compliance, imperfect disease surveillance,
policy miscommunication, confounding parallel interven-
tions and implementation lag between the introduced
interventions and observable changes in disease prevalence
will contribute to large levels of intervention implementation
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error [8,30,31]. If placed in the context of the narrow par-
ameter optima observed throughout this study, these effects
will likely have substantial epidemiological consequences.

An alternative approach could involve interventions that
are more robust to implementation error, but less efficacious
than the theoretically optimal intervention. An example of
this can be observed in the single-intervention sensitivity
analysis, with longer-than-optimal interventions providing
robust, but less efficacious reductions to Imax and Ic(tmax) for
scenarios 3 and 4 relative to their optimal tdur value (figure 1b).
Owing to the relative insensitivity of these robust interventions
to imperfect parameter choices, these intervention strategies
will likely excel in uncertain real-time outbreaks where the cur-
rent epidemiological situation is often unknown. Parallels of
these interventions can be observed in the ongoing COVID-
19 outbreak, with recurring themes of ‘hit it hard and fast’ pro-
viding simple, yet robust advice to policymakers [15,32].

We note that for a single time-limited intervention, it was
not always optimal to intervene at a maximal strength or dur-
ation. For example, increasing tdur for scenario 3 shifted the
timing of cmin past the epidemic peak, lessening the impact
of the NPI relative to optimal tdur (figure 1). Additionally,
NPIs were assumed to be time-limited, with even maximal-
strength interventions ending before the termination of the
model simulation, allowing rebounds in prevalence. This
decision was made because of the infeasible nature of
having an indefinite implementation of severe restrictions
owing to societal disruptions. However, we note that when
considered in the context of a robust, but suboptimal inter-
vention, intervening maximally to increase tdur and
minimize cmin can be considered the most efficacious strategy
to reduce Imax or Ic(tmax) (figures 1 and 2).

Similarly, for themulti-intervention scenario, an earlier and
stronger intervention can provide reductions to Imax and Ic-
(tmax) under suboptimal circumstances as part of a robust
intervention (figure 3). However, this only holds true in the
context of the initial intervention, with this acting as a delaying
action, allowing successive interventions to compensate and
further reduce Imax and Ic(tmax). This highlights the additional
role of robust interventions to permit future decision-making
when the current epidemiological situation is uncertain. This
has practical consequences, with policymakers able to use an
earlier intervention to delay the epidemic peak if the optimal
intervention strategy is unknown, providing time for the
build-up of healthcare capacity and the opportunity for later
interventions to course-correct.

We note that population ‘lockdown’ measures have been
presented as an integral part of a package of measures, used
to drive down the level of infection and ‘buy’ time for the
introduction of more sustainable measures, such as contact
tracing or vaccination [33,34]. We note that in the context of
delaying the epidemic peak, it is universally optimal to intro-
duce the initial ‘lockdown’ measures earlier, more strongly
and for as long as necessary, until more sustainable interven-
tion measures can be introduced indefinitely (electronic
supplementary material, figure S16). However, this also high-
lights the importance of prioritizing the development of these
sustainable measures, with the harsh consequences of severe,
lengthy NPI measures making indefinite delaying actions
expensive and ultimately unsustainable.

We note that an SIR model was one of many model struc-
tures considered to model the optimization of COVID-19 NPI
strategies. An SEIR framework can be considered a more
accurate description of the epidemiological characteristics of
SARS-CoV-2, with a non-infectious ‘exposed’ state preceding
infectiousness. We explored the inclusion of an exposed state,
which shifted the timing of the optimal intervention to a later
point, but did little to change the qualitative patterns
observed when using the SIR framework (electronic sup-
plementary material, figure S17). An assumption of lifelong
immunity was also made following SARS-CoV-2 infection.
We note that inclusion of a SIRS framework with differing
levels of waning immunity would result in negligible
impact on the optimal parameter space to minimize Imax rela-
tive to the original SIR model (electronic supplementary
material, figure S18). This is likely due to the similar impor-
tance of controlling the initial epidemic wave to minimize
Imax for both SIR and SIRS models. However, a different opti-
mal parameter space to minimize Ic(tmax) was observed, likely
as a result of the replenishment of susceptibles and long-term
endemicity of COVID-19. Care must, therefore, be taken
when interpreting the results of this study with regard to
the long-term dynamics of COVID-19, especially owing to
the ongoing uncertainty regarding the presence of long-
term immunizing infection following SARS-CoV-2 infection.
Owing to the large levels of uncertainty with regard to the
immunological and transmission characteristics of SARS-
CoV-2, and with the aim of this study to describe the exist-
ence and qualitative patterns of intervention optima, and
not forecast or describe the exact timing, the use of a SIR
model was deemed justifiable for this analysis. However,
we note that for future predictive models that look to accu-
rately identify the optimal parameter space, the integration
of potentially all of the aforementioned model structures
will likely be necessary using a SEIIRS or SEIRS model.

The socio-economic cost of each intervention was also not
considered in this analysis. Factors such as adherence have a
large impact on intervention efficacy [23], and the inclusion
of these factors in the model may potentially provide support
for NPI strategies with dedicated ramping or pulsing periods,
which aim to partially mitigate the socio-economic effects
and societal disruption of strong NPIs. A relatively simple
disease metric was also used for this study, with an optimal
intervention able to reduce the maximum peak prevalence,
Imax, and attack rate, Ic(tmax). While outside of the scope
of this study, the use of other epidemiologically relevant out-
come measures such as occupied ICU capacity or mortality
per 100 000 population may be of interest when investigating
optimal COVID-19 interventions in a more policy-relevant
context. This could also be complemented by an exploration
into the impact of individual or population-level variation
of risk on intervention optimization [35–37].

NPI optimization has been highlighted in this study as a
powerful tool to greatly mitigate the epidemiological impacts
of a COVID-19 outbreak. This can be considered of significant
relevance, with the recent reinstitution of NPIs and stricter
measures being used to combat resurgent outbreaks. How-
ever, the results described in this study are highly nuanced,
with narrow intervention optima and a number of other
factors likely preventing the trajectory of an epidemic con-
forming uniformly to the dynamics observed in this study.
We highlight robust interventions as an alternative policy
option, with these interventions being less prone to
implementation error but potentially suboptimal compared
with theoretically optimal strategies. These interventions
have the additional benefit of being a risk-averse approach,
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often favourable during the initial stages of the outbreak,
where the impact of risky public health policy can lead to dis-
astrous consequences. We also note that the sensitivity
analysis-based framework used in this study is applicable
to other immunizing pathogens, where transmission can be
mitigated through NPIs. This approach has particular benefit
in emerging outbreak scenarios where the rapid identification
of optimal (or even robust) NPI implementation can contrib-
ute to the evidence base for outbreak response and reduce
indecisiveness.

Finally, we stress that it was not the intention of this study
to propose any one strategy as a singular policy option for
COVID-19 control. The evidence from this study should be
taken into context with the work tirelessly undertaken by
the wider epidemiological and modelling community. It is
only through this collaboration and synthesis that effective
and altruistic public health policy can be generated to
combat the COVID-19 pandemic.
 oc.B
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5. In context
The work presented in this manuscript was originally sub-
mitted as a series of three technical briefings to SPI-M in
early-March 2020. The study was motivated by the prevailing
need to understand the potential impact resulting from
severe non-pharmaceutical interventions on the transmission
dynamics of COVID-19 and the consequences of releasing
NPIs. We note that this work was conducted before the
initiation of the first UK lockdown (23 March 2020). These
three technical briefings were as follows:
1. Technical briefing 1—Time-limited social distancing
measures and the shape of the epidemic curve (29 February
2020).

2. Technical briefing 2—Optimizing trigger times for social
distancing measures (SDMs) (4 March 2020).

3. Technical briefing 3—Uncertainty about timings of SDMs
(4 March 2020).

The original core analysis conducted for SPI-M utilizsed
parameter values that were contemporary as of March 2020.
This includes an R0 value that was later updated from 2 to
2.8 in the formalized manuscript in July/August 2020 [17].
This reflects the substantial improvements in knowledge
regarding the epidemiology and immunological character-
istics of COVID-19 in this later period.
Data accessibility. Code used to generate/run all model simulations in
this study can be found in the GitHub repository: https://github.
com/alexmorgan1995/NPI_Analysis.
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