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Abstract
Cooling and heating degree‐days (CDD/HDD) are important metrics used in energy 
studies as a proxy for determining demand and consumption patterns of residential/
commercial buildings and work spaces. Driven by the requirements of energy im-
pact modellers, policymakers and building design experts; a new historical high‐
spatial resolution, global gridded dataset of degree‐days constructed using various 
base (threshold) temperatures (Tb) is presented in this study. Derived using sub‐daily 
temperature from a quality‐controlled reanalysis data product (Global Land Data 
Assimilation System—GLDAS), the dataset called ‘DegDays_0p25_1970_2018’ 
includes monthly and annual (i) CDD; (ii) HDD; and (iii) CDD computed using wet‐
bulb temperature (CDDwb) at 0.25° × 0.25° gridded resolution, covering 49 years 
over the period 1970–2018. The Tb used for assembling DegDays_0p25_1970_2018 
include 18, 18.3, 22, 23, 24, 25°C for CDD and CDDwb; and 10, 15, 15.5, 16, 17 and 
18°C for HDD, respectively. The data of individual indices are made publicly avail-
able in the commonly used scientific Network Common Data Form 4 (NetCDF4) and 
Georeferenced Tagged Image File (GeoTIFF) formats. DegDays_0p25_1970_2018 
fills gaps in existing energy indicators’ datasets by being the only high‐resolution 
historical global gridded time series based on multiple threshold temperatures, thus 
offering applications in wide‐ranging climate zones and thermal comfort environ-
ments. The richness of DegDays_0p25_1970_2018 lies in its flexibility by allow-
ing users to aggregate the degree‐days not only at varying spatial scales (such as 
administrative levels, national boundaries, economic organizations e.g. OECD; with 
or without population weights), but also at varying temporal scales (such as seasons), 
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1 |  INTRODUCTION

Cooling (CDD) and heating (HDD) degree‐days are import-
ant climatic indicators, commonly used to estimate the cli-
mate‐dependent cooling and heating demands in buildings 
respectively (CIBSE, 2006). Degree‐days are defined as 
monthly or annual sum of the difference between a base tem-
perature (Tb) and daily mean outdoor air temperature (Td), 
whenever the Td is greater (CDD) or lower (HDD) than Tb 
(ASHRAE, 2009).* The Tb is also referred to as ‘threshold’ 
temperature or ‘set‐point’ temperature, and it signifies the Td 
at which the indoor cooling or heating systems do not need to 
run in order to maintain human comfort levels (CIBSE, 2006; 
ASHRAE, 2009).

Degree‐days have been routinely used by building design-
ers and engineers to estimate indoor cooling/heating‐related 
energy consumption; and by policymakers and researchers 
for forecasting energy demand, consumption patterns and 
associated carbon emissions (Lee et al., 2005; Mourshed, 
2012). This is partly rooted in its’ simplicity but yet a power-
ful capability to represent a relationship with cooling or heat-
ing energy consumptions (Atalla et al., 2018). In addition, 
degree‐days are also widely used as climatic indicators for 
the assessment of the impact of climate change and variabil-
ity, such as the CDD and HDD in the energy sector (Moustris 
et al., 2015), and growing degree‐days (GDD) in the agri-
culture sector (Schlenker and Roberts, 2009; Schauberger et 
al., 2017). Readers are referred to Spinoni et al. (2018) for a 
more detailed application of degree‐days in various sectoral 
impact studies.

This study presents a unique (first‐ever) high‐spatial reso-
lution, global gridded database of three types of degree‐days; 
namely CDD, HDD and a variant of CDD accounting for 
humidity (CDDwb). Computed using multiple wide‐ranging 
Tb and meteorological variables from a quality‐controlled re-
analysis data product, the degree‐days dataset referred to as 
‘DegDays_0p25_1970_2018’ includes monthly and annual 
degree‐days, spanning the most recent 49 years (1970–2018). 
The exhaustive dataset is aimed towards multiple end users, 
such as the research community assessing impacts of climate 
change on the energy sector (as well as the usage of energy 
for adapting to climate change), and policymakers examining 

the historical climate‐energy nexus as a proxy for understand-
ing future trends and patterns in energy demands for human 
comfort.

Rest of the paper is organized as follows. Indices, mate-
rials and methods, and the underlying reanalysis data prod-
uct used in assembling the dataset are discussed in detail in 
Section 4. Details on data file formats and ways to access the 
dataset are outlined in Section 4. Finally, Section 5 discusses 
potential applications and limitations of the dataset, with rec-
ommendations for additional work.

2 |  DATA PRODUCTION 
METHODS

CDD and HDD are calculated using the commonly used 
American Society of Heating, Refrigerating, and Air‐
Conditioning (ASHRAE) method (ASHRAE, 2009), which 
are defined as follows:

where ‘+’ signifies only positive values accumulate over n days 
in the chosen time period (e.g. months, seasons, year). Td and Tb 
in Equations 1‐2 represent the daily mean outdoor air and base 
(threshold) temperatures, respectively. Degree‐days are com-
monly represented as °C or °F days, depending on the under-
lying units of Td and Tb used in the formulation. Nevertheless, 
conversion from °C days to °F days (and vice‐versa) follows 
similar rule for unit conversions as in temperature scale. For 
example, CDD computed using °C units can be converted to °F 
days by using the following relationship:

CDD computed using Td only considers the effect of dry‐
bulb temperature.† In regions with high relative humidity (rh) 

* Definitions of degree‐days applying Tb differently in calculations also 
exist (see CIBSE, 2006). This study uses the definition adopted by 
ASHRAE (2009).

(1)CDD=

n
∑

i=1

(Td−Tb)+

(2)HDD=

n
∑

i=1

(Tb−Td)+

(3)CDD◦F =9∕5∗CDD◦C

† For clarity, the daily mean outdoor air temperature (Td) referred to in 
Equations 1‐2 is measured using a dry‐bulb thermometer. Hence, Td is also 
referred to as dry‐bulb temperature in the remainder of the text.

thereby offering climatologists with a potential to examine global teleconnection pat-
terns more discretely.

K E Y W O R D S
CDD, degree‐days, GLDAS, HDD, wet‐bulb
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such as the coastal regions in New South Wales (Australia), 
coastal regions in India (e.g. Kerala) and South‐Eastern re-
gions of China and Brazil, CDD can have limited applica-
tions in determining energy requirements for space cooling 
(Guan, 2009). For such regions, CDDwb is recommended as a 
more suitable indicator than the conventional dry‐bulb‐de-
rived CDD (Guan, 2009; Krese, 2012).

The methodology to compute CDDwb on monthly and an-
nual timescales varies only in the use of wet‐bulb tempera-
ture (Twb) instead of dry‐bulb temperature (or simply Td as 
discussed in Equation 1). Moreover, the base temperatures 
and the units of CDDwb also remain unchanged, thus making 
CDDwb easily comparable to CDD. Twb is the minimum tem-
perature to which air can be cooled by evaporative cooling, 
and as such, contains information about air temperature as 
well as moisture content. For further details, readers are re-
ferred to Stull (2000, 2011).

Following Stull (2011), average daily Twb is computed uti-
lizing Td and average daily rh as follows:

where the arctangent (atan) function returns values in radians. 
Twb are expressed in the same units (°C) as Td.

2.1 | Dataset description
The degree‐days included in this study are derived using me-
teorological variables from Global Land Data Assimilation 
System (GLDAS) (Rodell et al., 2004). GLDAS is a new 
generation global high‐resolution reanalysis data product 
developed jointly by the National Aeronautics and Space 
Administration (NASA), Goddard Space Flight Center 
(GSFC) and National Centers for Environmental Prediction 
(NCEP) (Ji et al., 2015).

GLDAS incorporates satellite and ground‐based obser-
vations, producing optimal fields of land surface states and 
fluxes in near real time, thus facilitating regular updates of the 
DegDays_0p25_1970_2018 dataset presented in this study 
(Section 5.1). Furthermore, GLDAS makes available mete-
orological and land surface variables that are not commonly 
available in other reanalysis data products either as consis-
tent long time series, or at a high‐spatial resolution. Other 
reanalysis data products available have either (i) a coarser 
spatial resolution (e.g. ECMWF‐ERA40 and JRA‐55, both 
available from the mid‐1950s but at 1.125°) or (ii) a shorter 
time series (e.g. newly released ECMWF‐ERA5 at 0.281° 
from 1979–present day and NCEP‐CFSv2 at 0.205° from 
2011–present day).

GLDAS provides a consistent quality‐controlled long 
global gridded time series of a number of key meteorological 

variables at fine‐scale spatio‐temporal (0.25° gridded,‡ 3‐
hourly) resolution. It has been comprehensively evaluated 
using different regional/global reference datasets in earlier 
studies, such as Ji et al. (2015) who compare the GLDAS 
daily surface air temperature at 0.25° gridded resolution with 
two reference datasets: (a) Daymet data (2002 and 2010) for 
the conterminous United States at 1‐km gridded resolution 
and (b) global meteorological observations (2000) from the 
Global Historical Climatology Network (GHCN).

Examples of previous studies that have incorporated 
GLDAS data include (a) De Cian and Sue Wing (2019), De 
Cian et al.  (2019) for impact assessment studies in energy 
sector; and (b) Gao et al. (2014), Zhong et al. (2011) for the 
analysis of regional environmental conditions and changes. A 
recent dataset (Mistry, 2019b, 2019c) has also incorporated 
temperature and precipitation data from GLDAS to assemble 
a comprehensive set of 71 climate extreme indices. Further 
details on studies implementing GLDAS are available on 
https ://ldas.gsfc.nasa.gov/gldas/ GLDAS publi catio ns.php. 
Some known caveats of GLDAS are discussed in Section 5.2.

3 |  MATERIALS AND METHODS

The GLDAS variables used in the present study for comput-
ing CDD and HDD include daily (a) near‐surface maximum 
(TX) and minimum (TN) temperatures in °C, and in addition 
(b) surface relative humidity (rh) in % for computing CDDwb. 
rh is not directly available from GLDAS, but assembled uti-
lizing surface pressure (P) in hecto‐Pascal (hPa) or millibars 
(mb), and specific humidity (Q) in kg kg−1, both made avail-
able by GLDAS (Equations 6–8).

The variables (TX, TN, P and Q) covering the years 1970–
2018 were obtained at their native 3‐hourly time steps in the 
Network Common Data Form 4 (NetCDF4) format§ from 
GLDAS version 2‖ (Rodell et al., 2004; Kumar et al., 2006; 
Peters‐Lidard et al., 2007). The daily fields of these variables 
were assembled using a suite of command line operators 
from NetCDF Command Operators (NCO ver 4.3.4)¶ and 
Climate Data Operators (CDO ver 1.9.0).* A summary of the 
data variables used, along with the methodology, is provided 
in Table 1.

(4)

Twb =T
d
∗ a tan (0.151977∗ (rh+8.313659)0.5)+a tan (T

d
+ rh)

−a tan (rh−1.676331)+0.00391838∗ (rh1.5)∗ a tan (0.023101∗ rh)

−4.686035

‡ ~27 km × 27 km at the equator.
§ NetCDF is a set of scientific software libraries, with self‐describing and 
machine‐independent data format. https ://www.unida ta.ucar.edu/softw are/
netcd f/docs/.
‖ Data accessed from https ://disc.gsfc.nasa.gov/ on 12 April 2019.
¶ NCO (Zender, 2008) accessed on 14 July 2018 from http://nco.sourc 
eforge.net/.
* CDO (Schulzweida, 2018) accessed on 14 July 2018 from http://www.
mpimet.mpg.de/cdo.

https://ldas.gsfc.nasa.gov/gldas/GLDASpublications.php
https://www.unidata.ucar.edu/software/netcdf/docs/
https://www.unidata.ucar.edu/software/netcdf/docs/
https://disc.gsfc.nasa.gov/
http://nco.sourceforge.net/
http://nco.sourceforge.net/
http://www.mpimet.mpg.de/cdo
http://www.mpimet.mpg.de/cdo
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Td used in the computation of degree‐days (CDD, CDDwb 
and HDD) was calculated as an arithmetic average of TX and 
TN at 3‐hourly intervals (Equation 5), before computing the 
daily average.

rh (%) used in the computation of Twb (Equation 4) was 
computed utilizing P and Q as follows:

where VP is the vapour pressure (in hPa) and SVP is the satura-
tion vapour pressure (in hPa).

Equation 7 is referred to as the Magnus equation or the 
Magnus–Tetens equation, or the August–Roche–Magnus 
equation (Tetens, 1930; Webb, 1994), and is defined for tem-
peratures above 0°C. Equations 6‐8 are discussed in detail in 
Stull (2000).

3.1 | Spatial and Temporal coverage of 
DegDays_0p25_1970_2018
The spatial extent of GLDAS covers all land north of 60°S latitude. 
Consequently, the degree‐days in DegDays_0p25_1970_2018 
are also computed over the corresponding 1,440 (longitude) × 
600 (latitude) grid cells spanning 90°N–60°S, at the same 0.25° 
gridded resolution. Because GLDAS does not record data at or 
near water bodies, the grid cells in the proximity of water bod-
ies do not report degree‐days. Figure 1 (a–c) shows the mean 
1970–2018 annual degree‐days using Tb = 18°C at the native 
0.25° gridded resolution.

4 |  DATASET LOCATION AND 
FORMAT

The degree‐days in DegDays_0p25_1970_2018 on monthly 
and annual timescales spanning years 1970–2018, computed 

using different base (threshold) temperatures (Table 1), are 
free available in two widely used data formats; NetCDF‐4 
(.nc4) and Georeferenced Tagged Image File (GeoTIFF) 
(.tif). While the former is a scientific data format commonly 
used by the climate research and modelling community, the 
latter is popular among users applying geospatial analysis. 
Both data formats are compatible with a number of software 
or desktop GIS tools, such as R, Python, MATLAB and 
QGIS. Additionally, command line tools such as CDO and 
NCO are recommended for reading, manipulating and ana-
lysing NetCDF‐4 data format.

Data can be accessed as compressed.tar.bz2 folder con-
taining the individual.nc4 and.tif files from https ://doi.
panga ea.de/10.1594/PANGA EA.903123. The files follow 
the naming convention ‘gldas_0p25_deg_DD_base_T_de-
gC_1970_2018_timescale.nc4’; wherein ‘DD’ is the ab-
breviation of the index (CDD, CDDwb or HDD), degC is 
the threshold temperature used in the computation of Tb, 
and ‘timescale’ either ‘ann’ or ‘mon’ relating to annual or 
monthly timescales over which the corresponding degree‐
days are computed.

Grid cells with missing values are identified by ‘1.e + 20f’. 
Further details of the variables/dimensions in the individual 
netCDF4 files can be examined using either NCO or CDO 
commands, such as ‘ncdump ‐h netcdf_file_name’ or ‘cdo 
sinfo netcdf_file_name’, respectively. For creating quick plots 
and exploratory data analysis of individual netCDF files, 
open‐access data tools such as Panoply (https ://www.giss.
nasa.gov/tools/ panop ly/) or NCview (http://meteo ra.ucsd.
edu/~pierc e/ncview_home_page.html) are recommended.

5 |  DATASET USE, LIMITATIONS 
AND SCOPE FOR FURTHER WORK

5.1 | Scope of application
Potential scope and applications of DegDays_0p25_1970_2018 
include empirical assessment of energy demands at regional 
and global scales, implications on efficiency of building 
heating/cooling systems (such as Heating Ventilation and 
Air Conditioning systems—HVAC), cluster analysis of grid 
cells for identification of regions with similar historical spa-
tial‐temporal patterns of degree‐days.

DegDays_0p25_1970_2018 enables users to apply de-
gree‐days using various (a) spatial scales, by aggregating grid 
cells to regional, national or user‐defined boundaries; (b) 
temporal scales, by aggregating monthly degree‐days to sea-
sonal (e.g. winter months) or user‐defined periods; and (c) 
weighting options,* for example population or other socio‐

(5)Td = (TX+TN)∕2

(6)VP= (P∗Q∗1.6077)∕100

(7)SVP=6.11∗ exp [17.625∗Td∕(Td+243.04)]

(8)rh= (VP∕SVP)×100

* Readers are referred to (Hanigan et al., 2006) for a detailed discussion on 
methods for calculating population exposure estimates of derived 
meteorological parameters.

T A B L E  1  Summary of monthly and annual degree‐days, with 
the corresponding base temperatures and methodology used in this 
study

Indicator (°C 
days) Tb (°C)

Variable 
Used Eqns

CDD
CDDwb

18, 18.3, 22, 23, 24, 25 Td
Twb

1, 5
1a, 4b

HDD 10, 15, 15.5, 16, 17, 18 Td 2, 5
aEquation 1 utilizes Twb in lieu of Td. 
bEquation 4 derived using Equations 5–8. 

https://doi.pangaea.de/10.1594/PANGAEA.903123
https://doi.pangaea.de/10.1594/PANGAEA.903123
https://www.giss.nasa.gov/tools/panoply/
https://www.giss.nasa.gov/tools/panoply/
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
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economic indicator weighted degree‐days, again at varying 
spatio‐temporal scales.

For instance, linear trends in annual CDD (Tb = 24°C) for 
Mexico (Figure 2) are examined using Mann–Kendall† test 
using R (R Core Team, 2018) spatialEco package (Evans, 
2018).

Trend analysis, as well as other statistical and machine 
learning approaches (e.g. cluster analysis), can facilitate 
identification of potential cooling/heating demand patterns 
in recent decades.† As evident from Figure 2a, the north‐west 
states of Sonora and Sinaloa along the Gulf of California 
show a significant positive trend (8–12°C days year−1, at 
p < 0.05) in CDD. Together with information on population 
distribution and air conditioning in households, the fine‐
scale degree‐days available in DegDays_0p25_1970_2018 
can assist policy planners to identify potential hot‐spots in 
regional‐scale energy demands.

By employing different Tb in compiling DegDays_ 
0p25_1970_2018, users can also have flexibility in application 
of degree‐days across broader climatic regions (Indraganti and 
Boussaa, 2017). Recently studies such as Krese et al., (2012) 
and Lee et al., (2014) have highlighted the sensitivity to the 
choice of Tb both in assessment of energy demands, as well 
as in shaping policy measures for consumption of residential/
commercial cooling and heating devices.

5.2 | Limitations
While the ASHRAE (2009) methodology employed for 
computing degree‐days in this study is one of the commonly 
adopted approaches in literature, the Td used in the formu-
lation may make the degree‐days less applicable for certain 
applications. For instance, fluctuations of Td around the Tb, 
as well as the asymmetry between Td and diurnal tempera-
ture variations are important (Spinoni et al., 2018); both 
of which are not accounted for fully by the degree‐days in 
DegDays_0p25_1970_2018.

The different methodologies to compute Td using daily and 
sub‐daily TX and TN, and the subsequent potential bias in the 
derived metric (such as the degree‐days in this study) have been 
well investigated in literature (e.g. (Weiss and Hays, 2005; Ma 
and Guttorp, 2013; Villarini et al., 2017)). Td computed as the 
arithmetic mean of TX and TN (Equation 5) was driven by 
the choice of methodology (ASHRAE, 2009) for computing 
degree‐days (Equations 1–2) in this study. Any potential bias 
in the monthly and annual degree‐days emanating by using 
arithmetic mean for Td is likely to be negligible as highlighted 
by Villarini et al. (2017). Moreover, as emphasized by (Weiss 
and Hays, 2005), the choice of methodology in computing Td 
becomes more relevant when the outcome metric is based on a 
nonlinear algorithm, which is not the case in this study.

While the underlying reasons for utilizing GLDAS in this 
study have been discussed in Section 2.1 in detail; when-
ever possible, applications of indices (especially in impacts 
assessment) should incorporate input variables from differ-
ent underlying data products to account for parameter and 

† The Mann‐Kendall test developed by Mann (1945) and Kendall (1975), 
and expanded by Dietz and Killeen (1981), is a commonly‐used nonpara-
metric test for time trend analysis.

† Additional animations of global‐gridded annual CDD, CDDwb and HDD 
(using Tb = 18°C) are provided in the online Supporting Information.

F I G U R E  1  Global maps of mean 1970–2018 annual (a) CDD 
(b) CDDwb and (c) HDD, as °C days, computed using Tb = 18°C, at 
0.25° grid‐cell level. Country boundaries overlaid to show spatial 
distribution of degree‐days. At a given Td and rh < 100%, Twb will 
be lower than Td. The CDDwb computed at the same Tb (as in CDD) 
therefore show a lower range of °C days compared to CDD
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model uncertainty. For instance, certain known limitations 
of GLDAS data, such as larger uncertainty in the surface 
air temperature estimates over high mountainous areas are 
well documented in literature (Ji et al., 2015). Users of the 
GLDAS‐derived data products, such as (De Cian et al., 2019; 
Mistry, 2019b) and DegDays_0p25_1970_2018 in this study, 
are recommended to pay attention to the data caveats.

Moreover, as highlighted in Section 3.1, the grid cells in 
the proximity of water bodies do not report degree‐days be-
cause of missing data in GLDAS. This can introduce some 
limitations to users focusing on point locations or regions 
smaller than the ~27 × 27 km2 within water bodies (including 
lakes and rivers), especially in densely populated areas near 
coastal region. Such instances in DegDays_0p25_1970_2018 
are likely to be minimal because the criteria to assign the grid 
cell as land or water in GLDAS ver‐2 data are based on a very 
high‐resolution land‐water mask.‡ Nevertheless, one work 

around to fill these gaps in the degree‐days data would be to 
use an appropriate interpolation technique using software 
routines commonly available in R, CDO, etc. (e.g. bilinear, 
near neighbour, inverse‐distance mapping).

Lastly, it is important to emphasize that while CDD and 
HDD have been widely adopted in literature as indicators of 
heating and cooling demands, respectively, they should not 
be construed either as ‘perfect’ indicators of energy demands 
for heating and cooling; or as being representative of outdoor 
thermal comfort (Petri and Caldeira, 2015). Nevertheless, de-
gree‐days can be applied as proxy indicators to understand 
both independent, as well as combined cooling and heating 
energy requirements (see Petri and Caldeira, 2015 as an 
example of aggregated CDD + HDD indicator of the total 
amount of cooling and heating needs).

5.3 | Ongoing work and recommendations 
for work in future
A key motivation of this study is to provide an open‐source, 
high spatio‐temporal dataset of degree‐days, using Tb, up-
dated for the most recent years. Consequently, subject to the 
availability of the required GLDAS input meteorological 
variables in the coming years, DegDays_0p25_1970_2018 
will be kept updated and made available to the research and 
end‐user communities.

Additionally, another dataset of indices largely 
relevant for health but also energy sector (called 
‘HEI_0p25_1970_2018’) is currently under preparation 
(Mistry, 2019a). Some features of HEI_0p25_1970_2018 
will for instance be the inclusion of indices accounting for 
wind as a feel factor, in addition to the Td, Twb and rh used 
in this study. For instance, two of the indices ‘Wind Chill’ 
and ‘Apparent Temperature’ in HEI_0p25_1970_2018 
are aimed to address human discomfort factors in 
cold and warm thermal environments. Together, both 
DegDays_0p25_1970_2018 and HEI_0p25_1970_2018, as 
well as the recently published dataset on climate extreme 
indices ‘CEI_0p25_1970_2016’ (Mistry, 2019b, 2019c), 
are aimed to address the growing needs of the climate im-
pact community, by overcoming the current data scarcity 
of high‐resolution global gridded CEIs in climate science.

DegDays_0p25_1970_2018 is currently the only compre-
hensive set of degree‐days computed at a global high‐spatial 
resolution using multiple Tb (see Table S1 for a summary of 
other existing publicly available degree‐days’ datasets cov-
ering selective regions). Nevertheless, it is based on a sin-
gle global reanalysis dataset (GLDAS), employs one of the 
known methods in formulating degree‐days (ASHRAE, 
2009), and may be restrictive in applications due to the selec-
tive (although broad range) choice of Tb. Datasets of similar 
energy indicators based on additional observed/reanalysis 
datasets should be considered for a robust assessment of 

‡ Further details on the land‐water mask used in GLDAS ver‐2 data are 
provided in the online Supporting Information.

F I G U R E  2  CDD using Tb = 24°C at 0.25° grid‐cell level for 
Mexico illustrating (a) Trends (°C days/year) and (b) mean 1970–2018 
(°C days). White regions in trends indicate Mann–Kendall test not 
significant at p < 0.05. Regional boundaries overlaid to show spatial 
patterns of climatological mean and trends
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energy impacts. The compilation of such datasets is recom-
mended for work in future.
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