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Abstract

Plasmids play an important role in bacterial evolution and mediate horizontal transfer of genes including virulence and anti-
microbial resistance genes. Although short- read sequencing technologies have enabled large- scale bacterial genomics, the 
resulting draft genome assemblies are often fragmented into hundreds of discrete contigs. Several tools and approaches have 
been developed to identify plasmid sequences in such assemblies, but require trade- off between sensitivity and specificity. 
Here we propose using the Kraken classifier, together with a custom Kraken database comprising known chromosomal and 
plasmid sequences of Klebsiella pneumoniae species complex (KpSC), to identify plasmid- derived contigs in draft assemblies. 
We assessed performance using Illumina- based draft genome assemblies for 82 KpSC isolates, for which complete genomes 
were available to supply ground truth. When benchmarked against five other classifiers (Centrifuge, RFPlasmid, mlplasmids, 
PlaScope and Platon), Kraken showed balanced performance in terms of overall sensitivity and specificity (90.8 and 99.4 %, 
respectively, for contig count; 96.5 and >99.9 %, respectively, for cumulative contig length), and the highest accuracy (96.8% 
vs 91.8-96.6% for contig count; 99.8% vs 99.0-99.7 % for cumulative contig length), and F1- score (94.5 % vs 84.5-94.1 %, for 
contig count; 98.0 % vs 88.9-96.7 % for cumulative contig length). Kraken also achieved consistent performance across our 
genome collection. Furthermore, we demonstrate that expanding the Kraken database with additional known chromosomal 
and plasmid sequences can further improve classification performance. Although we have focused here on the KpSC, this 
methodology could easily be applied to other species with a sufficient number of completed genomes.

DATA SUMMARY
Table S1 (available in the online version of this article) 
Complete chromosomes used for creating the base Kraken 
database. Plasmid- free chromosomal sequences and complete 
plasmid sequences used for creating the base Kraken database 
are also available via Figshare at https:// doi. org/ 10. 6084/ m9. 
figshare. 13289564.

Table S2: Sequence data used for benchmarking. Draft 
assemblies of these 82 KpSC strains are available via Figshare 
at https:// doi. org/ 10. 6084/ m9. figshare. 13553432. The 
corresponding sequence read files and complete genomes 
were deposited in the NCBI SRA and GenBank under 

BioProjects PRJEB6891, PRJNA351909, PRJNA486877, and 
PRJNA646837 (individual BioSample IDs listed in Table S2).

Kraken output files are available via Figshare at https:// doi. 
org/ 10. 6084/ m9. figshare. 13553789.

INTRODUCTION
Plasmids play an important role in horizontal genetic 
exchange and facilitate the movement and spread of virulence 
and antibiotic resistance genes [1]. Accurate detection and 
analysis of these sequences is therefore a key component in 
understanding the epidemiology and evolution of bacterial 
pathogens, and can support genomic surveillance strategies. 
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Previously, plasmids were extracted from bacterial cells, and 
subjected to targeted amplicon- based DNA sequencing for 
detailed characterization; however, these investigations were 
very labour- intensive, limiting the scale to which they could 
be applied. The advent of high- throughput sequencing has 
seen a transition from these labour- intensive approaches 
to massively parallel sequencing of total genomic DNA, 
capturing both chromosome and plasmid sequences. The most 
widely used approach is Illumina sequencing, which provides 
highly accurate and economical short- read sequences. Long- 
read technologies such as those offered by Oxford Nanopore 
Technologies and Pacific Biosciences are increasingly used in 
bacterial genomics, although their use remains comparatively 
limited due to accuracy and/or cost constraints.

Due to the presence of repeat sequences, de novo assembly 
of bacterial genomes from short reads results in fragmented 
assemblies, generally comprising hundreds of contigs of 
unknown origins (chromosome or plasmid) [2]. Recently, 
several tools have been developed to identify plasmid 
sequences in such assemblies (or metagenomic sequence 
data), namely cBar [3], PlasFlow [4], Platon [5], plasmid-
SPAdes [6], RFPlasmid [7], mlplasmids [8] and PlaScope 
[9]. These tools can be divided into taxon- independent 
approaches (cBar, PlasFlow, Platon, plasmidSPAdes) and 
taxon- dependent approaches (mlplasmids, PlaScope) with 
the exception of RFPlasmid, which includes both taxon- 
dependent and taxon- independent models (Table 1). Taxon- 
dependent approaches have been reported to outperform 
taxon- independent approaches for their target taxon [7–9] 
with the exception that Platon was reported by its developers 
to outperform PlaScope on 21 Escherichia coli genomes [5]. 
Despite their advantages, each taxon- dependent tool has its 
own limitations. Currently, mlplasmids supports only three 
species (Enterococcus faecium, E. coli, Klebsiella pneumoniae), 
and it does not have functions that allow users to create 

new models for unsupported species (nor to train extended 
models using new data). RFPlasmid supports 17 taxa and also 
has a species- agnostic model for unsupported species, but the 
species- agnostic model was reported to show inferior perfor-
mance compared with species- specific models [7]. PlaScope 
supports only two species (E. coli and Klebsiella spp.), and 
it does not accept assemblies generated using tools other 
than SPAdes [10], because it relies on parameters recorded 
in the headers of SPAdes- formatted fasta files to filter contigs. 
However, PlaScope is based on the Centrifuge classifier  

Impact Statement

The assembly of bacterial genomes using short- read 
data often results in hundreds of discrete contigs due 
to the presence of repeat sequences in those genomes. 
Separating plasmid contigs from chromosomal contigs 
in such assemblies is required, e.g. to assess the mobility 
of antimicrobial resistance genes. Although several tools 
have been developed for that purpose, they often suffer 
from low sensitivity or specificity. Here, we propose that 
the Kraken classifier coupled with a custom Kraken data-
base comprising plasmid- free chromosomal sequences 
and complete plasmid sequences can be used for detec-
tion of plasmid contigs in draft genome assemblies. 
We showed that Kraken achieved balanced and higher 
performance compared with other methods (Centrifuge, 
RFPlasmid, mlplasmids, PlaScope and Platon). We there-
fore consider that the Kraken classifier can be the best 
option for predicting the origin of contigs for species 
with a suitable number of completed chromosomal and 
plasmid sequences.

Table 1. Characteristics of plasmid prediction tools

Tool Classification features Classification approach/
method

Models/databases Reference

cBar Pentamer frequencies Sequential minimal optimization Taxon- independent model Zhou et al. [3]

PlasFlow k- mer frequencies Neural network Taxon- independent model Krawczyk et al. [4]

Platon Chromosomal and plasmid 
marker protein sequences and 

other features (e.g. contig length)

Calculation of a mean replicon 
distribution score and higher- 
level contig characterizations

Taxon- independent database Schwengers et al. [5]

plasmidSPAdes Read coverage of contigs 
and structural features of the 

assembly graph

Assemble plasmids from whole 
genome sequencing data

– Antipov et al. [6]

RFPlasmid Pentamer frequencies and 
chromosomal and plasmid 

marker genes

Random forest Taxon- specific models for 17 
taxa and a taxon- independent 

model available

van der Graaf- van Bloois et 
al. [7]

mlplasmids Pentamer frequencies Support- vector machine Three taxon- specific models 
available

Arredondo- Alonso et al. [8]

PlaScope Exact matches to a database of 
known sequences

Centrifuge Two taxon- specific databases 
available (novel databases can be 

created by the user)

Royer et al. [9]
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(a metagenomic classifier which classifies sequences based 
on exact matches against a database) [11] and allows users 
to create their own Centrifuge databases for unsupported 
species, which makes the tool more flexible. Here, we propose 
that this concept can be improved by (i) using Kraken [12], an 
alternative metagenomic classifier based on the exact align-
ment of k- mers, which also allows users to create their own 
databases and has been reported to provide higher precision 
than Centrifuge [11]; (ii) refining the database by excluding 
chromosomal sequences containing integrated plasmid 
sequences.

In this study, we first prepared a dataset comprising completed 
plasmids and chromosomes that are free from chromosom-
ally integrated plasmids. We selected K. pnemoniae and 
closely related species (K. quasipneumoniae, K. variicola and  
K. quasivariicola) within the K. pneumoniae species complex 
(KpSC) as study organisms because (i) K. pneumoniae has 
a higher plasmid burden than other Gram- negative oppor-
tunistic pathogens [13]; (ii) these plasmids are of particular 
interest in genomic studies as they are frequently the location 
of functionally important genes involved in antimicrobial 
resistance and virulence [14]; and (iii) the taxon- limited 
tools mlplasmids and PlaScope both support K. pneumoniae, 
making comparison with these high- performing alternatives 
straightforward. We used the same dataset to create custom 
databases for Kraken and Centrifuge; and benchmarked 
performance of these against RFPlasmid (using a taxon- 
dependent model), mlplasmids, PlaScope and Platon. We 
chose RFPlasmid, mlplasmids and PlaScope because they 
employ taxon- dependent models that have generally been 
shown to outperform other approaches, and Platon because 
it reportedly outperformed PlaScope [5].

METHODS
Creation of Kraken and Centrifuge databases
An initial dataset was prepared by using the following 
component sequences: (i) complete chromosomes for  
K. pneumoniae (n=271), K. quasipneumoniae (n=13), K. vari-
icola (n=14) and K. quasivariicola (n=1) downloaded from 
NCBI GenBank (Table S1); (ii) a publicly available dataset 
of complete Enterobacteriaceae plasmids (n=2097) reported 
previously [15]. Plasmids can occasionally become integrated 
into chromosomes [16], or misassembled into chromosomal 
contigs. Inclusion of chromosomes with integrated plasmid 
sequences in databases could lead to erroneously classifying 
plasmid- derived contigs as chromosomal, hence chromo-
somal sequences containing integrated plasmid sequences 
were identified and removed by screening against known 
Enterobacteriaceae plasmid replicon markers using Plasmid-
Finder [17]. The resulting dataset of plasmid- free chromo-
somal sequences and complete plasmid sequences was used 
to construct a Kraken database (hereafter referred as the ‘base’ 
database) using a taxonomic tree shown in Fig. S1 (also see 
Methods in the Supplementary Material for the commands 
used). A Centrifuge database was also created using the same 
dataset and the same taxonomic tree.

Sequence data used for benchmarking
Complete genomes for clinical KpSC isolates (n=82) were 
used for benchmarking the performance of plasmid classifiers 
(Table S2). These isolates were sequenced via Illumina (short- 
read) and Oxford Nanopore Technologies (ONT, long- read) 
platforms as previously described [16, 18–20]. To generate 
short- read only draft assemblies for testing as input to the 
classifiers, Illumina reads were first trimmed using Trim 
Galore (v0.5.0) (https://www. bioinformatics. babraham. ac. uk/ 
projects/ trim_ galore/) and assembled using SPAdes (v3.13.1) 
with --careful and --only- assembler options [10]. Contigs 
shorter than 1000 bp or with a SPAdes contig coverage lower 
than 2× were discarded. In order to establish ‘ground truth’ 
classification of contigs with which to assess accuracy of 
classifier outputs, we completely resolved the genomes into 
circularized chromosome and plasmid sequences by assem-
bling the ONT reads together with Illumina reads using 
Unicycler (v0.4.7) [21]. Genomes that did not completely 
resolve automatically using Unicycler were manually resolved 
as described previously [19].

Contigs in each draft (short- read only) assembly were labelled 
as plasmid- derived or chromosome- derived by mapping to 
the corresponding complete genome for the same isolate, 
using minimap2 (v2.14) with -cx asm5 option [22]. Contigs 
that either (i) mapped to both chromosomes and plasmids, 
(ii) failed to map at all or (iii) yielded no significant alignment 
(i.e. no alignment block with length ≥50 % of the contig), were 
discarded (median two contigs and 3371 bp per genome; see 
Table S2).

Chromosomal multi- locus sequence types (STs) were deter-
mined using Kleborate (v0.4.0- beta) (https:// github. com/ 
katholt/ Kleborate) to assess the diversity of the genomes used 
for benchmarking.

Performance benchmarks
Contigs from short- read only draft assemblies were classi-
fied as plasmid or chromosomal using Kraken, Centrifuge, 
RFPlasmid, mlplasmids, PlaScope and Platon (see Methods in 
the Supplementary Material for the commands used). Kraken 
(v1.1.1) was run with default settings using the base database 
created above. Contigs assigned taxonomy ID 0 (not in the 
database) or 1 (root) were considered unclassified (Fig. S1). 
Centrifuge (v1.0.4) was run using the database created above 
(centrifuge -f -p 10 --reorder -x database -U  sequence. fasta 
-k 1 --report- file  sequence_ summary. txt -S  sequence_ output. 
txt). Contigs assigned taxonomy ID 0 or 1 were considered 
unclassified. RFPlasmid (v0.0.9) was run using the Entero-
bacteriaceae model. mlplasmids (v1.0.0) was run using the 
following settings: full_output=TRUE, species="Klebsiella 
pneumoniae". PlaScope (v1.3.1) was run with mode 2 using a 
Klebsiella database provided by the developers. Platon (v1.4.0) 
was run with default settings.

To calculate performance statistics, the category plasmid was 
considered as the positive- class, and the category chromo-
some was considered as the negative- class. Moreover, Kraken, 
Centrifuge and PlaScope may assign contigs as unclassified for 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/katholt/Kleborate
https://github.com/katholt/Kleborate
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ambiguous results. Prediction for each contig was compared 
with the ground truth determined by minimap2 mapping to 
completely resolved hybrid assemblies as described above, and 
results assigned to categories: true positive (TP) (predicted as 
plasmid- derived and mapped to true plasmids), true negative 
(TN) (predicted as chromosome- derived/unclassified and 
mapped to true chromosome), false positive (FP) (predicted 
as plasmid- derived but mapped to true chromosome), or false 
negative (FN) (predicted as chromosome- derived/unclassi-
fied but mapped to true plasmid). Sensitivity [TP/(TP +FN)], 
specificity [TN/(TN +FP)], precision [TP/(TP +FP)], nega-
tive predictive value [TN/(TN +FN)], accuracy [(TP +TN)/
(TP +TN+FP +FN)], and F1- score [2×sensitivity×precision/
(sensitivity +precision)] were calculated. These metrics were 
calculated in terms of raw contig counts (contig- wise) as well 
as cumulative contig length (nucleotide- wise) to account for 
genome- specific differences in contig length distributions.

Assessing applicability of Kraken for classification 
of contigs with antimicrobial resistance genes
Antimicrobial resistance genes were detected in each draft 
assembly comprising the benchmarking dataset using Abri-
cate (v1.0.1, https:// github. com/ tseemann/ abricate). Abricate 
was run using the Resfinder database [23] with the following 
thresholds: a minimum DNA identity of 95 % and a minimum 
DNA coverage of 80 %. Kraken predictions and assigned 
categories were retrieved for contigs in which antimicrobial 
resistance genes were detected.

Assessing improvements in performance achieved 
by expanding the Kraken database
In order to assess the performance improvement achieved 
by expanding the base Kraken database we used a threefold 
cross- validation approach whereby the 82 benchmarking 
genomes were randomly divided into three groups: A (n=27), 
B (n=27) and C (n=28). Completed chromosomes and plas-
mids from groups A and B were added to the base database 
set to create an expanded base +A+B Kraken database with 
which to assess the classification of draft contigs from group 
C. This procedure was repeated using draft genomes from 
group A as a test set against an expanded base +B+C data-
base, and draft genomes from group B as a test set against an 
expanded base +A+C database. Sensitivity, specificity, preci-
sion, negative predictive value, accuracy, and F1- score were 
calculated for each repetition.

RESULTS AND DISCUSSION
Benchmarking dataset characteristics
The benchmarking genome set was highly diverse, comprising 
43 STs of K. pneumoniae (n=69), 1 ST of K. quasipneumoniae 
(n=1) and 8 STs of K. variicola (n=12). The draft assemblies of 
these genomes had a median of 63 contigs and a median N50 
of 214 404 bp after discarding contigs shorter than 1000 bp 
or with a SPAdes contig coverage lower than 2×. Hybrid 
assemblies revealed that these strains carried 0 to 9 plasmids 
(median 3, interquartile range 5–2; see Table S2). A total of 

301 completed plasmids were assembled, and these sequences 
ranged from 1240 bp to 430 829 bp (median 53 776 bp, also see 
Fig. S2 for the length distribution of the completed plasmids).

Kraken-based contig classification outperforms 
existing approaches
Kraken, Centrifuge, RFPlasmid, mlplasmids, PlaScope and 
Platon were run on the 82 KpSC genomes and aggregated 
metrics were calculated for benchmarking (Table 2). Perfor-
mance metrics were also calculated for each individual 
genome (Fig. S3) and the distributions are shown in Fig. 1. 
All the tools performed well in terms of specificity, nega-
tive predictive values and accuracy when contig length was 
considered as a unit (overall values >99.7 %, >98.9 % and 
>98.9 %, respectively). However, metrics calculated for 
contig counts tended to be lower for all six tools, which 
indicates misclassification mainly occurred for short contigs 
for all the tools (Fig. S4). Overall, Kraken showed the most 
balanced performance in terms of sensitivity (90.8 and 96.5 % 
for aggregated contig counts and cumulative contig lengths, 
respectively; Table 2) and specificity (99.4 % and >99.9 % for 
aggregated contig counts and cumulative contig lengths, 
respectively; Table  2), and achieved the highest Youden 
Index (0.902 vs 0.736–0.897 for aggregated contig count; 
0.965 vs 0.802–0.957 for cumulative contig length) [24]. 
Although mlplasmids performed better in terms of sensi-
tivity and negative predictive values calculated for contig 
counts, this seems to be achieved at the cost of increased 
number of false positives (Table S3, median two contigs and 
3617 bp per genome). Similarly, Platon achieved the highest 
specificity (>99.9 % for contig length and 99.4 % for contig 
count) but showed the lowest sensitivity (80.2 % for contig 
length and 74.2 % for contig count). Finally, Kraken also 
achieved the highest accuracy (96.8 % vs 91.8–96.6 % for 
aggregated contig count; 99.8 % vs 99.0–99.7 % for cumula-
tive contig length), and F1- score (94.5 % vs 84.5–94.1 %, for 
aggregated contig count; 98.0 % vs 88.9–96.7 % for cumula-
tive contig length).

We also note that there was variation in performance by 
genome, particularly for sensitivity, precision and F1- score 
(Figs  1 and S3, Table S4). Both Kraken and Centrifuge 
achieved consistent performance, especially for metrics 
calculated for contig length (e.g. the interquartile ranges of 
F1- scores were 2.60 and 2.53 % for Kraken and Centrifuge, 
respectively, while the interquartile ranges of F1- scores 
for the other tools ranged from 5.03–9.99 %, also see Table 
S4). Notably, the median values for Kraken were equal to 
or higher than those for Centrifuge for all metrics (Table 
S4), although the differences in the distributions were not 
considered statistically significant (Table S5). In contrast, the 
majority of comparisons of distributions between Kraken 
and the other approaches (n=38/48 and in 32/38 cases the 
median was higher for Kraken) were considered statistically 
significant (Table S5), commensurate with the general trend 
of broader distributions and/or lower values achieved for 
these approaches (Fig. 1).

https://github.com/tseemann/abricate
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Notably, in our analysis sensitivity was higher for Centrifuge 
alone than PlaScope, which also uses the Centrifuge classifier 
internally. Chromosomes with integrated plasmid sequences 
were filtered out in our Centrifuge database but not in the 
Centrifuge database used in PlaScope, which seems to be the 
main reason for this difference: inclusion of chromosomes 
with integrated plasmid sequences in our Centrifuge database 
reduced the number of true positives by 199 (from 1455 to 
1256) and decreased sensitivity (Table S6), supporting this 
hypothesis. Minimap2 mapped 194 of those 199 contigs to 
chromosomally integrated plasmids (alignment block length 
≥50 % of the contig length).

Since mlplasmids was mainly designed for K. pneumoniae, 
we assessed the performance of mlplasmids excluding non- 
K. pneumoniae genomes (Table S7). As expected, perfor-
mance of mlplasmids was slightly better for K. pneumoniae 
in most metrics (mean 0.261 % increase for contig length and 
0.966 % increase for contig count), though precision remained 
relatively low (95.8 % for contig length and 86.1 % for contig 
count). We also assessed the performance of mlplasmids by 
changing the probability threshold. By default, mlplasmids 
assigns each contig as plasmid- derived or chromosome- 
derived with a highest posterior probability. We changed this 
threshold (0.5) to 0.7, which is the value used for predicting 

the location of antibiotic- resistance genes in the original 
paper [8], and assessed the performance of mlplasmids by 
using the 82 KpSC genomes. Table S8 shows that filtering out 
contigs based on a minimum posterior probability can lead to 
the increase of specificity (0.155 % increase for contig length 
and 6.52 % increase for contig count) and precision (2.65 % 
increase for contig length and 11.8 % increase for contig 
count), although sensitivity decreases (5.75 % decrease for 
contig length and 17.0 % decrease for contig count).

Performance of Kraken for classification of contigs 
with antimicrobial resistance genes
A total of 641 resistance genes were detected in the 82 draft 
genome assemblies, but 11 of them were located on contigs 
that either (i) mapped to both chromosomes and plasmids, 
(ii) failed to map at all or (iii) yielded no significant alignment, 
and thus were not considered in the following analysis (see 
Methods). Kraken correctly predicted the locations of 568 
genes (308 chromosome- derived and 260 plasmid- derived), 
while misclassified only ten genes (seven chromosomal 
genes predicted as plasmid- derived and three plasmid genes 
predicted as chromosome- derived). The remaining 52 genes 
were on 38 contigs that could not be classified by Kraken 
(median 2710 bp, range 1227 bp to 6981 bp). Kraken assigned 

Table 2. Performance metrics for Kraken, Centrifuge, RFPlasmid, mlplasmids, PlaScope and Platon on contigs from 82 KpSC genomes

Kraken Centrifuge RFPlasmid mlplasmids PlaScope Platon

Sensitivity (true positive rate, %)

  Contig length 96.507 94.565 94.198 95.987 87.199 80.215

  Contig count 90.796 90.485 82.898 95.833 81.157 74.192

Specificity (true negative rate, %)

  Contig length 99.973 99.941 99.859 99.727 99.958 99.984

  Contig count 99.378 99.189 98.458 91.804 99.243 99.405

Precision (positive predictive value, %)

  Contig length 99.472 98.851 97.289 94.965 99.120 99.638

  Contig count 98.449 97.980 95.899 83.568 97.899 98.189

Negative predictive value (%)

  Contig length 99.813 99.709 99.689 99.784 99.317 98.948

  Contig count 96.128 95.995 92.976 98.064 92.372 89.853

Accuracy (%)

  Contig length 99.796 99.667 99.570 99.536 99.308 98.977

  Contig count 96.777 96.550 93.742 93.025 93.761 91.762

F1- score (%)

  Contig length 97.967 96.660 95.719 95.474 92.778 88.878

  Contig count 94.468 94.083 88.926 89.282 88.745 84.520

Total contig sizes and contig counts assigned to each category (true positive, true negative, false positive and false negative) are provided in Table 
S3. Bold font indicates the highest value in each category.
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taxonomy ID of 1 (root) to all 38 contigs, indicating those 
unclassified resistance genes are on mobile genetic elements 
that can be located both on chromosomes and plasmids. 
blastn search against the GenBank database revealed all 38 
contigs have hits with 100 % query coverage and 100 % iden-
tity for one or more chromosomes and one or more plasmid 
sequences.

Impact of expanding the Kraken database
We assessed the performance improvement achieved by 
expanding the base Kraken database, which resulted in a 
marginal improvement to all the metrics except for sensitivity 
calculated for contig counts (0.002–1.04 % increase for contig 

length and 0.008–0.534% increase for contig counts, Table 
S9) (P=0.06 for McNemar’s test for differences in specificity) 
[25]. Compared with the classification results using the base 
database, 87 out of 5305 contigs (1.6 %) were classified into 
different categories when the expanded databases were used 
(Fig. 2, Table S10). Among them, 30 contigs were reclassi-
fied into the correct classes after expanding the database. 
Moreover, marked decrease was observed in the number of 
misclassified contigs, i.e. false positives+false negatives (clas-
sified), when the expanded databases were used (from 40 
contigs to eight contigs). On the other hand, the number of 
unclassified contigs increased by 39 after expanding the data-
base due to the increase of contigs with taxonomy ID 1 (root). 

Fig. 1. Performance metrics for Kraken, Centrifuge, RFPlasmid, mlplasmids, PlaScope and Platon for each genome in terms of contig 
length (a) and contig count (b). NPV, negative predictive value.
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This implies using a larger number of genomes for creating a 
Kraken database can increase the number of mapped k- mers 
in the Kraken analysis, which can also increase the number 
of k- mers mapped both to chromosomes and plasmids and 
thus can lead to the increase of unclassified cases. Importantly, 
antimicrobial resistance genes were present in 22 contigs that 
were correctly classified as plasmid- derived using the base 
database but were assigned taxonomy ID 1 using the expanded 
databases, resulting in the decrease of the sensitivity for detec-
tion of resistance genes. All but one of those 22 contigs had 
hits with query coverage of 100 % and percent identity of 
100 % against both chromosomal and plasmid sequences in 
the GenBank database, again highlighting the difficulties of 
predicting the origins of contigs on mobile genetic elements.

CONCLUSIONS
Here, we showed that the Kraken sequence classifier applied 
with a custom curated database can be used for detecting 
plasmid contigs in draft genome assemblies with high sensi-
tivity (96.5 % for contig length and 90.8 % for contig count) 
and specificity (>99.9 % for contig length and 99.4 % for contig 
count). Notably, this approach was among the most consistent 
and balanced performers in comparison to tools designed 
specifically for this task (RFPlasmid, mlplasmids, PlaScope 
and Platon), and in comparison to Centrifuge sequence clas-
sifier applied with the same database. This approach can be 
readily implemented for draft genome assemblies created with 
any assembly software because it does not require a specific 
fasta header format for input files (unlike PlaScope, which 
requires the SPAdes fasta header format for determination 
of contig depth). Moreover, performance can be further 
improved by expanding the Kraken database – a process 
that can be easily achieved through updating and rebuilding 

the database, although we note that this may also lead to the 
increase of unclassified contigs, particularly for those repre-
senting mobile genetic elements that can insert within both 
plasmids and chromosomes. In contrast, it is more difficult 
for users to modify the performance of other tools such as 
mlplasmids that require not only updating a database but 
re- training the classifier.

Although we tested the Kraken classifier only on KpSC, this 
methodology can be applied to other species for which a 
suitable number of completed chromosomal and plasmid 
sequences are available to build a database, and/or their close 
relatives. However, it may not be useful for species that have 
rarely been sequenced, though this is also the case for other 
taxon- dependent classifiers requiring pre- built databases or 
models. If an appropriate database were available, it is also 
possible that Kraken could be used for taxon- independent 
analyses and/or classification of plasmids from metagenomic 
assemblies, although further studies are needed to explore its 
accuracy for these use- cases. Nonetheless, for well- described 
species Kraken can be the best option to predict the origin 
of contigs from draft genome assemblies, to determine the 
location of antimicrobial resistance and virulence genes, and 
ultimately inform genomic surveillance studies.
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