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Stress-related health depreciation 

Using allostatic load to predict self-rated health 

 

 

Highlights 

• Chronic stress can lead to reduced physical health. 

• Allostatic Load (AL) objectively measures stress-related “wear and tear” using biomarkers.  

• We find that AL predicts future self-reported physical health and SF6D. 

• Reductions in these measures are greatest for those reporting worse health at baseline. 

• AL predicts health trajectories of which individual’s may not be aware. 

 

Abstract  

Approximately one quarter of UK adults are currently diagnosed with two or more chronic conditions, 

often referred to as multimorbidity. Chronic stress has been implicated in the development of many 

diseases common to multimorbidity. Policymakers and clinicians have acknowledged the need for 

more preventative approaches to deal with the rise of multimorbidity and “early ageing”. However 

divergence may occur between an individual’s self-rated health and objectively measured health that 

may preclude preventative action. The use of biomarkers which look ‘under the skin’ provide crucial 

information on an individual’s underlying health to facilitate lifestyle change or healthcare utilisation. 

The UK’s Understanding Society dataset, was used to examine whether baseline variation in 

biomarkers measuring stress-related “wear and tear” – Allostatic Load (AL) – predict changes in future 

self-rated health (SRH) while adjusting for baseline SRH, socioeconomic and lifestyle factors, and 

healthcare inputs. An interaction between baseline AL and baseline SRH was included to test for 

differential rates of SRH change. We examined SRH using the SF6D instrument, measuring health-
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related-quality of life (HRQoL), as well as it’s physical and mental health components separately. We 

found that HRQoL and physical health decline faster for those with higher baseline AL (indicating 

greater “wear and tear”) however the same pattern was not observed for mental health. These 

findings provide novel insights for clinicians and policymakers on the usefulness of AL in capturing 

health trajectories of which individual’s may not be aware and its importance in targeting resilience 

enhancing measures earlier in the lifecourse to delay physical health decline.  

 

 

Keywords: Stress, Ageing, Allostatic Load, Health Depreciation, Biomarkers, SF6D 
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Introduction 

Approximately one quarter of UK adults are currently diagnosed with two or more chronic conditions, 

this often being referred to as multimorbidity (1, 2). Prevalence increases to approximately two thirds 

among individuals aged over 65 years, is concentrated in lower socioeconomic groups, and is 

projected to increase over the next 15 years (2, 3). As more people face the challenge of living with 

chronic disease, attempts to redefine “health” have made explicit the importance of fostering 

resilience to challenges that arise from one’s environment (4, 5). Chronic stress is recognised as an 

important mechanism linking the socioeconomic environment to negative health outcomes (6). 

 

Chronic stress has been implicated in the development of many chronic conditions, such as cancer, 

obesity, cardiovascular disease, diabetes, depression, and asthma (7, 8) - diseases which consistently 

account for large proportions of national health expenditure, disability and mortality (9, 10). 

Policymakers and clinicians have argued for more preventative approaches to deal with this rise in 

multimorbidity and “early ageing” (11, 12). Preventative approaches aimed at highlighting the long-

term damage from stress, through teachable moments between doctors and patients (see (13, 14) for 

examples), or fostering resilience to stress, through the development of mutable non-cognitive skills 

like conscientiousness (15), may delay disease onset. Public Health England recently reported a 

positive return on investment for services to develop stress resilience although they highlighted a 

need to understand their long-term physical health consequences (16). Two recent Cochrane reviews 

although finding positive evidence of the effectiveness of psychological interventions to foster 

resilience in healthcare students and professionals on Self-Rated Health (SRH), noted a high level of 

uncertainty in this result and a paucity of longer-term data (17, 18).  

 

The Food and Drug Administration and the National Institute for Health highlighted the use of 

susceptibility/risk biomarkers as valuable in guiding preventative strategies (19). An Allostatic Load 



   

 

   

 

4 

(AL) index combines a number of biomarkers to measure cumulative biological dysregulation or stress-

related “wear and tear” (20, 21). Greater adversity in childhood and minority status have been linked 

to higher AL (22, 23), as have macroeconomic shocks (24). Those with higher AL experience earlier 

mortality (25, 26) and the development or exacerbation of many stress-related diseases (27). 

Objective health measures such as AL, where they represent credible surrogate endpoints (28),  

provide crucial information on an individual’s underlying health or risk of health decline which may 

facilitate lifestyle change or healthcare utilisation.  

 

This paper uses the Understanding Society dataset to examine whether baseline AL predicts future 

SRH over and above baseline SRH. A growing literature has demonstrated associations between SRH 

measures and AL however these studies are often cross-sectional and suffer from issues of reverse 

causality, small sample sizes and omitted variable bias (21, 27). Vie et al (2014) attempted to navigate 

the issue of reverse causality by examining the association of baseline SRH with future AL however 

they were unable to control for baseline AL (29). Engman (2019) argues that the potential for a rupture 

in the trajectory of one’s life - biographical disruption - is dependent on the degree to which more 

subtle changes in health are embodied prior to the occurrence of a more severe change (30). Thus we 

employ Engman’s description of biographical disruption with empirical analysis informed by 

Grossman’s model for the demand for health from the health economics literature (31-33), to examine 

the converse scenario to that explored by Vie et al (2014) - AL predicting future SRH.  

 

We explore whether this association varies according to differences in baseline SRH akin to the notion 

of increasing depreciation of health capital, i.e. how quickly health declines in relation to AL. The 

Grossman model of the demand for health and by extension healthcare (31, 32), posits that an 

individual maximises their utility subject to time and budget constraints through an iterative process 

that must be constantly updated according to, among other factors, depreciation of their health. The 
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depreciation rate was synonymous with the biological ageing rate (32, 34) however in recent years 

the model has been adapted to include stress as a source of depreciation (33) to help explain 

socioeconomic inequalities observed in health over the lifecourse.  

 

AL may drive future SRH in a number of ways. Firstly, it may reduce the stock of health, as reflected in 

SRH in the baseline period, which would lower health in the future period since the individual begins 

from a lower level. If AL operated only through this channel, we would not expect baseline AL to 

predict future SRH after adjusting for baseline SRH and interventions targeting AL may have little 

added value over interventions targeting SRH. Secondly, baseline AL may directly influence SRH in 

future periods by influencing the health depreciation rate. If AL operated exclusively through this 

channel, we anticipate that AL would significantly predict future SRH even after controlling for 

baseline SRH. Here interventions targeting AL may be helpful in offsetting future SRH decline. Thirdly, 

it may be that the depreciation rate varies with the level of baseline health for instance those in poorer 

health may deteriorate more quickly than those in good health. This would imply an interaction 

between baseline SRH and AL. Here interventions targeting AL may also be helpful in offsetting future 

SRH decline and earlier intervention, for example providing resilience enhancing measures to younger 

individuals, may provide the greatest value over the lifecourse. Thus, exploring the relationship 

between AL and SRH provides insights into the pathways through which stress may influence health 

over the lifecourse. 

 

We examine a SRH outcome commonly used in the generation of Quality-Adjusted Life Years (QALYs) 

(35, 36); the six-dimensional health state short form (SF6D, (37)) and it’s physical and mental health 

component scores (PCS & MCS) separately.  While we cannot claim that our estimates are causal we 

have endeavoured to control for a wide range of potential confounders while also examining the 

sensitivity of our results to unobserved confounding, missing observations, model misspecification, 
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and AL index configuration. This paper proceeds with: an outline of the data, empirical methodology, 

and sensitivity analysis in section two; followed by presentation of the results in section three; with a 

discussion and conclusion in sections four and five respectively. 

 

 

Methods 

2.1 Data 

This study uses data from waves 1-7 of the UK Household Longitudinal Survey (UKHLS), also known as 

Understanding Society. This is a large national UK panel dataset beginning in 2009-10 with wave one 

and collected annually across 40,000 households covering approximately 100,000 individuals (38, 39). 

The British Household Panel Survey (BHPS) was absorbed into the UKHLS at wave two. A subset of the 

non-BHPS individuals received a nurse health visit on average five months after the mainstage survey 

in wave two while a subset of BHPS individuals were visited by the nurse after a similar period in wave 

three (39). The nurse measured physiological and biomarkers, e.g. height, blood glucose, which were 

used to form an AL index (see the ‘Allostatic Load Index’ section for details). These two subsamples 

were pooled and the baseline period (t) refers to wave two for non-BHPS and wave three for BHPS 

respondents. This presented a potential sample of 35,937 individuals, of which 20,700 underwent a 

nurse health assessment to collect physiological data (39) with 10,175 and 3,342 individuals from 

waves 2 and 3 respectively having blood sample data available.  

 

The mainstage survey collected information on each individuals’ socioeconomic status and SRH across 

multiple waves while the nurse health assessment was conducted only once for distinct subsets of 

waves two and three (non-BHPS vs BHPS). Therefore we observe a single set of biomarkers, and hence 

can measure the AL index, for each respondent in the sample albeit recorded at different timepoints. 

The final sample with complete nurse health assessment and mainstage survey data across individuals 
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was 7,712 (see Figure S1). This is slightly reduced when analysing SRH outcomes further from baseline 

(Figure 1) however we examine whether results vary when applying weights for longitudinal data and 

outlier adjustment, missing nurse health assessment data, and household composition and country-

level differences (38, 39). 

 

[INSERT FIGURE 1] 

 

2.2 Allostatic Load Index 

Twelve physiological markers and biomarkers – creatinine clearance rate (CCR), insulin-like growth 

factor one (IGF-1), DHEA-s, clauss fibrinogen, glycated haemoglobin (HbA1c), pulse, systolic and 

diastolic blood pressures (SBP and DBP), C-reactive protein (CRP), ratio of total to HDL cholesterol, 

triglycerides, and waist-to-height ratio (W2H) – were used in the AL index (table 1). For most 

biomarkers elevated levels reflect higher risk but for three of these (DHEA-s, IGF-1, and CCR) lower 

levels represent higher risk and so these were rescaled before combining with the others to create 

the AL index. Kolmogorov-Smirnov (KS) tests were used to test for differences in the distribution of 

each biomarker between males and females for all available observations (table 1) and significant 

differences (p < 0.001) supported the separate standardisation of each biomarker according to gender 

before being combined (see Figure S2 for further details). The nurse, during his/her visit, also collected 

information on medication use at the time of survey. Adjustments were made to biomarkers following 

Chandola et al (2017) while more detailed medication data was used in sensitivity analyses (see 

‘Covariates’ section).  

 

A ‘z-score AL index’ was used which sums each individual’s z-score for each biomarker (21) to obtain 

a combined index that was then itself standardised. This makes use of the full distribution of each 

biomarker and allows the weight of each biomarker to vary according to its deviation from the mean. 
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However issues have been noted in the fidelity of AL indices; the choice of biomarkers and their 

configuration in an AL index vary across studies (21, 40). We thus examine model fit according to other 

AL index configurations (‘Norm AL index’ (21)) and subgroups of biomarkers capturing individual 

biological systems. 

 

[INSERT TABLE 1] 

 

2.3 Self-Reported Health 

A number of SRH variables were examined in this analysis. For simplicity we will refer to all of these 

measures jointly as ‘SRH’ unless referring to one specifically. At each wave respondents answered the 

Short Form-12 (SF-12) which is a generic health measure (41). The components of SF-12 can be 

partitioned to create a single measure of physical health ranging from 0-100, the physical component 

score (PCS), with zero representing the worst physical health and 100 the best and a corresponding 

measure of mental health, the mental component score (MCS), also ranging from 0-100. Analysis was 

carried out using each measure to reflect two different aspects of SRH as well as using the combined 

health utility/HRQoL score (SF6D). SF6D is a combination of PCS and MCS weighted according to the 

UK public’s preferences which estimates a HRQoL index with a value of one reflecting full health and 

zero being dead (37). However in practice a floor effect is commonly observed for SF6D values which 

in our data was 0.35. For the regression analyses, all SRH variables were standardised to allow for 

comparison of associations (expressed in terms of standard deviations of the outcome) across models 

but are presented in their raw form in the descriptive statistics in Table 2. 
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2.4 Control variables 

The log of equivalised household income and highest educational achievement were controlled for 

along with other individual socioeconomic characteristics of the individual outlined in the introduction 

as potentially influencing AL and SRH: age-group (quintiles), gender, marital status, employment 

status, self-reported ethnicity as white (reflecting 97% of the sample) and self-reported urban vs rural 

location. These factors were controlled for in our baseline models (Models 1 & 2) however a number 

of other potential confounders, described below and outlined in Figure 2, were also examined. 

 

[INSERT FIGURE 2] 

 

Case and Deaton (2005) note the important conceptual difference in the Grossman model between 

health depreciation (referred to by them as the rate of deterioration) and the actual change in the 

stock of health between periods (42). They suggest that medical care or other forms of health 

investment (e.g. exercise) may offset health deterioration. Therefore, we adjust for a broad range of 

other potential confounders (medication, lifestyle factors and non-cognitive skills). There does not 

appear to be a “gold standard” for how to account for medication in analyses involving AL. An 

individual may be selected into treatment because of their underlying health state while the 

treatment may then obscure this underlying health state (43). Consistent with the approach of Davillas 

and Pudney (2017), the main model was run with and without the inclusion of binary variables for 

whether an individual was in receipt of cardiovascular, gastrointestinal, respiratory, central nervous 

system, infection, endocrine, gynaecological/urinary, cytoxic, nutrition/blood, musculoskeletal, 

eye/ear, skin or other medications. 

 

Stress may alter an individual’s immune function directly through the disturbed regulation of 

hormones or indirectly by inducing unhealthy behaviours such as smoking or poor diet (8), which are 
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also risk factors for health decline. We adjust for smoking behaviour (ever smoked [Y/N]) and alcohol 

consumption (in the last 12 months), exercise (frequency and pace of walking in the last 4 weeks) and 

diet (quantity of fruit and vegetables consumed in last week) to account for correlation between 

lifestyle behaviours and the experience of stress or SES. For both the BHPS and non-BHPS samples 

information on diet, exercise, and alcohol consumption was available for all respondents in wave two. 

This reflects an earlier period for BHPS respondents rather than the baseline. However we expect this 

would reflect a reasonable approximation of lifestyle behaviours at baseline for all respondents.  

 

Certain non-cognitive skills appear important for health capital formation and resilience to health 

shocks (15, 44). These can both shape and be shaped by an individual’s AL (45) as well as affecting 

how they rate their own health (46). As such adjustment were made for the five factor (Big 5) model 

of personality types (47), modelled as a continuous variable with higher levels indicating greater 

belonging to a personality type. These have been used to capture non-cognitive skills in similar 

research (15). 

 

2.5 Data Analysis 

Our initial Ordinary Least Squares (OLS) model (Model 1), where t represents the baseline,  examines 

the association of AL for individual i at baseline (ALit) with SRH two periods post-baseline (SRHit+2). The 

nurse visit occurred an average of 5 months after the mainstage survey so we focus on SRH at least 

two periods post-baseline (SRHit+2) so as to ensure that no measurements at baseline could overlap 

with subsequent SRH. We estimate this model for three different SRH outcomes (PCS, MCS and SF6D) 

using robust standard errors (48) and also consider SRH outcomes 3 and 4 periods post-baseline 

(SRHit+3, SRHit+4). By focusing on SRH in periods after the collection of biomarkers (the baseline), we 

mitigate the issue of reverse causality, i.e. that poor SRH induces higher AL. To further mitigate this 

issue and to account for confounding factors we adjust for: SRH at baseline (SRHit); SRH in the period 
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preceding baseline (SRHit-1) to guard against period-specific fluctuations in the rating of health; a 

vector of socioeconomic variables at baseline (Xit); a binary indicator accounting for the wave at which 

the nurse health assessment was carried out to capture any period specific effects for BHPS and non-

BHPS respondents; along with an idiosyncratic error term (it+q).  

 

            𝑆𝑅𝐻𝑖𝑡+𝑞 = 𝛽0 + 𝛽1𝑆𝑅𝐻𝑖𝑡−1 + 𝛽2𝑆𝑅𝐻𝑖𝑡 +  𝛽3𝐴𝐿𝑖𝑡  +  𝛽4𝑋𝑖𝑡 + 𝑒𝑖𝑡+𝑞,  q = 2, 3 ,4                  (1) 

 

This initial specification (Model 1) allows us to test whether higher AL at baseline is associated with 

an additive decline in SRH each period. However, we posit that this decline may differ for individuals 

in good health in the baseline period, i.e. higher depreciation for those with lower baseline SRH (33, 

49), given epidemiological evidence suggesting augmented risk of morbidity and earlier mortality for 

those with higher AL and the representation of stress as depreciation in the Grossman model (33). To 

account for this, we adopt a second model specification (Model 2), that includes an interaction 

between baseline SRH and AL, where the coefficient on the interaction (𝛼) can be thought of as varying 

the depreciation of baseline health across individuals with different AL: 

 

            𝑆𝑅𝐻𝑖𝑡+𝑞 = 𝛽0 + 𝛽1𝑆𝑅𝐻𝑖𝑡−1 + 𝛽2𝑆𝑅𝐻𝑖𝑡 + 𝛽3𝐴𝐿𝑖𝑡 + 𝛼𝐴𝐿𝑖𝑡 ∗ 𝑆𝑅𝐻𝑖𝑡  +  𝛽4𝑋𝑖𝑡  + 𝑒𝑖𝑡+𝑞              (2) 

 

The marginal effect of an increase in AL on current health in period t+q, thus depends on baseline 

health (
𝜕𝑆𝑅𝐻𝑖𝑡+𝑞

𝜕𝐴𝐿𝑖𝑡
=  𝛽3 +  𝛼𝑆𝑅𝐻𝑖𝑡), while similarly the marginal effect of baseline health on current 

health depends on baseline AL  (
𝜕𝑆𝑅𝐻𝑖𝑡+𝑞

𝜕𝑆𝑅𝐻𝑖𝑡
= 𝛽2 +  𝛼𝐴𝐿𝑖𝑡). We hypothesise that 𝛽3 < 0, 𝛽2 > 0 and 

𝛼 > 0, implying future SRH is decreasing with respect to AL but that this is moderated by higher 

baseline SRH, while increases in baseline health are associated with greater subsequent health, but 
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that this would be more beneficial for those with high baseline AL, who are likely to be more 

vulnerable to ill-health. 

 

Only the baseline values of the covariates were controlled for, since controlling for values in 

subsequent years may induce post-treatment bias (50). For the associations we observe to reflect 

causal effects, we would require that conditional on past health and baseline covariates, there are no 

unobserved confounders influencing both baseline AL and current health. Thus we assume that SRH 

in future periods is conditionally independent from AL after adjusting for baseline and pre-baseline 

SRH, and our other control variables: 

 

         𝐸(𝑆𝑅𝐻𝑖𝑡+𝑞 ⊥  𝐴𝐿𝑖𝑡 |𝑆𝑅𝐻𝑖𝑡, 𝑆𝑅𝐻𝑖𝑡−1, 𝑋𝑖𝑡)     (3) 

 

This assumption would be violated if for instance unobserved variables such as adverse childhood 

experiences influenced AL in previous periods but also had a persistent effect that influenced health 

over and above its effect on health in previous periods (see Figure 2). Ideally one would use an 

instrumental variable (IV) approach to address this concern, however this would require an IV that 

would be correlated with AL but which does not directly influence health in the current period. Genetic 

characteristics may provide one such IV, however this was not available here and, given an AL index 

is a collection of multiple biomarkers, it would be difficult to rule out horizontal pleiotropy (i.e. 

unobserved confounding) in a Mendelian Randomisation analysis using genetic characteristics as 

instruments (51). We explore the robustness of this assumption in sensitivity analysis. 
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2.5 Sensitivity Analysis 

We adjust Model 2 for additional vectors of medication (Mit), lifestyle (Lit), and non-cognitive variables 

(Pit) at baseline (Models 3-6). To account for bias due to sample selection we apply sample weights to 

Model 2 (38, 39). While we control for a rich set of baseline covariates, we cannot be confident that 

there are no material omitted variables or that past values do not have dynamic effects. As such, the 

inclusion of parents’ highest educational achievement was also tested where data were available (N 

= 5,979). Nonetheless there remains the possibility for observed and unobserved confounding and 

bias through model misspecification.  

 

In order to account for potential observed confounding and model misspecification, we applied 

entropy balancing for continuous treatments (52, 53) such that all covariates (socioeconomic, lifestyle, 

medication and non-cognitive skills) were balanced to remove correlation with the treatment variable 

(AL) before regression adjustment using the same covariates with extreme weights trimmed (Model 

7). Imbens (2004) suggests truncating excessive weights beyond 4% as these may increase the 

variance of estimates (54); we conservatively trimmed extreme weights at 2% although results are not 

sensitive to greater trimming. It was not possible to balance “other medications” due to the low 

number of individuals in receipt of these (< 0.03% of the sample), however this variable is controlled 

for in the regression adjustment stage.  

 

To examine the extent to which unobserved confounding may explain the association between AL and 

future SRH, we conduct a bounds analysis on the fully restricted model (Model 6). This involved 

estimation of the degree of proportional selection required (delta) to imply that our coefficient of 

interest (ALit) is driven entirely by selection on observables (55, 56).  
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We examine model fit according to different configurations of the AL index. In particular whether 

model fit is improved with the inclusion of a stress-related biomarker - in this case 

dehydroepiandrosterone-sulphate (DHEA-s) - reflecting the original conceptual framework of AL as 

capturing heightened neural or neuroendocrine activity from repeated or chronic environmental 

challenge (40, 57). We use Model 6 to test whether our ‘z-score AL index’ which captures primary 

mediators and effects, and secondary and tertiary outcomes as part of the cascade of activity in the 

stress-response (25, 26, 58) demonstrates better fit (based on AIC and BIC) than indices reflecting 

individual biological systems or whether the ‘norm AL index’ (21) provides better fit than the z-scored 

approach.  

 

 

Results  

A total of 7,712 adults (aged over 16 years) were available for analysis, though this was reduced when 

including information from periods further from the baseline or when including additional variables 

as part of the sensitivity analysis. In Table 2 we see that socioeconomic variables vary according to AL, 

with those who are younger, female, higher earners, non-white, never married, more educated, and 

employed, self-employed, a student, in family care, on maternity leave, or live in urban areas are more 

likely to have an AL below the median, where lower AL suggests lower dysregulation (i.e. is better). 

Those with better physical health (PCS) and HRQoL (SF6D) tend to have below median AL, while those 

with worse mental health (MCS) tend to have above median AL. 

 

[INSERT TABLE 2] 

 

As shown in Figure 3, there is a clear negative correlation between AL at baseline and PCS two periods 

post-baseline, and slightly less so for SF6D, while there appears to be much less variation in AL across 
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levels of MCS. The relationship tends to be most pronounced at high values of AL, although sample 

sizes are somewhat smaller there, as reflected in the widening confidence intervals. 

 

[INSERT FIGURE 3] 

 

Figure 4 presents average SRH (with 95% CI) measured two periods post-baseline across age deciles 

for those above and below median baseline AL. Those with a lower AL tend to report better health 

relative to those with higher AL at baseline. While SF6D tends to be stable for both groups across age 

deciles, PCS appears to decline gradually across age deciles, while MCS increases. For MCS, there is 

some evidence of convergence between the high and low AL groups. While for PCS, there is evidence 

of a divergence between the high and low AL groups in older age with signs of narrowing again in the 

oldest age-groups.  

 

[INSERT FIGURE 4] 

 

Table 3 displays the regression results across SRH measures according to the model laid out in 

equation one above (Model 1); and with an AL and SRH interaction – reflecting equation two (Model 

2). For PCS and SF6D it appears that higher AL at baseline predicts lower SRH (p < 0.001). According to 

Model 1, a one standard deviation (SD) increase in AL is associated with a 0.07 SD reduction in PCS, a 

0.07 SD reduction in SF6D, and a 0.04 SD reduction in MCS. In the case of PCS and SF6D a significant 

interaction is observed between baseline AL and SRH (p < 0.001) with the higher R2 for this 

specification (Model 2) suggesting their inclusion is warranted, while this is not the case for MCS. 

 

[INSERT TABLE 3] 
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For SF6D and PCS , this is better illustrated in figure 5 showing the average partial effect of AL on SRH 

with baseline SRH held at its mean and +/- 1 SD from the mean using multiple SRH outcomes post-

baseline (t+q,  q = 2, 3 and 4). For individuals with high baseline SRH (+ 1 SD), a one SD increase in 

AL has a small and often insignificant association with SRH across all outcomes post-baseline; for SF6D 

at t+2 this is -0.02 (95% CI: -0.05 to 0.01) while for PCS this -0.04 (95% CI: -0.07 to -0.02). While for 

individuals with lower baseline SRH (- 1 SD) a one SD increase in AL has a much larger and significant 

association with SRH across post-baseline outcomes; for SF6D at t+2 this is -0.11 (95% CI: -0.14 to -

0.08) while for PCS this -0.13 (95% CI: -0.17 to -0.10). Put simply, AL predicts larger and larger 

reductions in an individuals’ SRH (PCS and SF6D) as their baseline SRH deteriorates but not so for MCS.  

 

[INSERT FIGURE 5] 

 

Sensitivity Analyses  

Table 4 demonstrates how the inclusion of lifestyle, medication and non-cognitive skills variables 

(Models 3-6) impacts upon the association between AL and SRH. For SF6D and PCS, a significant 

association and interaction is still observed. For MCS there remains little evidence of an association 

between AL and SRH. Although not presented here, there was no meaningful difference in these 

results when adjusting for sample weights accounting for sample selection or when adjusting for 

highest parental education. 

 

Model 7, which uses entropy balancing in addition to regression adjustment is broadly consistent with 

previous models. While the interaction between AL and PCS remains significant, this is not the case 

for SF6D. Table S2 shows the improvement in covariate balance according to AL while figure S3 
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illustrates the general consistency across model coefficients by plotting the marginal effects of AL on 

each outcome for models 2-7.  

 

[INSERT TABLE 4] 

 

Table S4 provides the relative weight of unobservables to observables (delta) required to drive the 

main coefficient (ALit) to zero. Oster (2019) suggests a maximum R2 of 1.3 times the R2 from the fully 

controlled regression (Model 6). At this level, the degree of selection on unobservables would need 

to be 64% (SF6D), 26% (PCS) and 85% (MCS) of observables for the coefficient on AL to be equal to 

zero. Table S5 presents the AIC and BIC for Model 6 while substituting AL for subgroups of biomarkers 

or the ‘Norm AL index’. For SF6D and PCS the full z-score AL index, which accounts for multiple 

biological systems activated as part of the stress-response, provides the best fit for predicting Sf6D 

and PCS, though this is not the case for MCS.  

 

 

Discussion 

We examined whether baseline AL predicts future SRH over and above baseline SRH. Others have 

examined the use of SRH in predicting future AL (29) however an inability to control for baseline AL 

makes it more difficult to rule out reverse causality. We consider Engman’s description of biographical 

disruption from the medical sociology literature (30), with empirical analysis informed by Grossmans 

model for the demand for health from the health economics literature (31-33), to examine the 

converse scenario - AL predicting future SRH. We found that higher AL predicts lower SRH consistent 

with expectations; an increase in AL by one SD at baseline is associated with a 0.07 (p < 0.001) SD 

decrease in physical health (PCS) and in HRQoL (SF6D) two periods post-baseline. Furthermore the 
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significant interaction, ceteris paribus, between baseline AL and SRH (PCS and SF6D) suggests that SRH 

decline according to AL is greatest for those already reporting lower physical health or HRQoL, 

supporting our hypothesis.  

 

This is in line with the original approach by Seeman et al (2001), who formulated the AL index (20), 

and showed that baseline AL predicted lower physical functioning 7.5 years later over and above 

baseline measures (25). These authors estimated a physical decline of approximately 0.12 SD 

(0.06/0.49) for a unit increase in AL. Caution is required in comparing results given this was for a 

smaller sample of 720 US adults aged 70-79, physical health measures differed, different biomarkers 

were used, follow-up was longer and information on a number of important confounders was not 

available. However, that this estimate for a group that would have lower SRH compared to the national 

average is closer to our estimate for those with baseline PCS 1 SD below the mean (estimate=0.13) is 

reassuring and further supports our hypothesised interaction between baseline PCS and AL. This is 

also consistent with evidence demonstrating that higher AL is associated with greater morbidity risk 

and earlier mortality and supports the notion of AL as reflecting stress-related health depreciation (33, 

49). That AL is most significant in predicting physical health depreciation is also consistent with 

research suggesting that AL biomarkers predict long-term healthcare utilisation and cost via the onset 

of disability (59, 60). We do not observe a significant association between AL and mental health (MCS) 

perhaps suggesting that AL does not translate well into an objective measure of mental and social 

health dimensions. 

 

This observed depreciation is attenuated when adjusting for lifestyle factors, such as smoking, diet 

and exercise (which has face validity), and when balancing on these factors, baseline SRH and 

sociodemographic characteristics alongside regression adjustment consistent with intuition. The 

interaction with SF6D is no longer significant which is unsurprising given this is a weighted 
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combination of MCS and PCS and that estimates are noisier (larger SE) for entropy balancing. A 

significant association is still observed in relation to PCS, which is robust to the inclusion of prescribed 

medications, non-cognitive skills and lifestyle factors. 

 

Our findings have implications for health promotion and education whereby measurement of an 

individual’s AL index predicts longer-term health outcomes and, as shown elsewhere, healthcare 

utilisation (59, 60). While there are many social, economic, political and cultural factors which underlie 

over- or under-use of healthcare, behavioural factors such as present bias, symptom salience, and 

false beliefs are important in this context (61). Providing individuals with information on their 

underlying health, through indices like AL, may allow them to adjust their health expectations or may 

be a catalyst for lifestyle change to reduce their AL and potentially avoid biographical disruption. 

Encouragingly, where reductions in AL have been achieved, individuals have been shown to lower 

their mortality risk (62). Empowering physicians with tools to measure stress-related “wear and tear” 

offers information for potential use in patient/doctor interactions – a teachable moment - on the need 

for lifestyle change (13, 14). This may be especially so for younger individuals for whom symptoms 

might be least apparent but for whom the lifetime benefit is greatest. While the provision of 

information on the mortality risks of health-harming behaviours such as smoking have been 

demonstrated (63), the opportunity to promote broader lifestyle changes supported with 

personalised evidence likely extends far beyond this example. 

 

Mutable psychosocial traits and teachable non-cognitive skills, for example, can be important in 

developing resilience to environmental stressors (15, 64, 65) thereby reducing the potential for stress-

related “wear and tear” of which AL is a measure. While more research is needed into the reliability 

and consistency of measures of non-cognitive skills (66), that these may be altered is supported by 

the effectiveness of psychotherapeutic techniques (e.g. mindfulness-based cognitive therapy) in 
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randomised controlled trials aimed at enhancing resilience in individuals or improving physical health 

outcomes (67, 68).  

 

Finally that some individuals unnecessarily face more stressors than others should also be a focus of 

policy. Increasing income inequality appears to play a causal role in poorer health outcomes, of which 

stress may be one mechanism along this pathway (6). Socioeconomic disparities in AL are largely 

governed by circumstances beyond an individual’s control rather than their own efforts (69). Focusing 

on clinical endpoints (i.e. the diagnosis of disease) may fail to identify potentially effective policies 

aimed to reduce health disparities over relatively short-term time horizons that might otherwise be 

missed (70); an argument that could now be extended to SRH measures. 

 

Our study has limitations which provide areas of future research. Firstly, we were limited to a single 

timepoint for measurement of AL here; a common limitation in analyses using AL biomarkers in 

relation to health outcomes (15, 43, 59, 71). Other data sources may collect data for the construction 

of an AL index at multiple time periods which would allow a richer modelling of the inter-relationship 

between AL and SRH. Additionally even with the strengths of this dataset we note that a large majority 

(97%) of respondent reported their ethnicity as white making inference relating to other ethnicities 

more challenging. 

 

We cannot rule out unobserved confounding hence estimates do not necessarily represent causal 

effects. The extent to which unobserved confounding may nullify the coefficient on AL depends on 

the extent to which the variation in our SRH outcome can be explained fully (R2=1) (Table S4). This is 

unrealistic as measurement error is likely to occur. Oster (2019) suggests an R2-max of 1.3 times the 

R2 from the controlled regression. In the case of PCS, R2-max would be 0.75 and the corresponding 

delta for the AL coefficient is 0.26. Oster (2019) suggests a lower bound of delta=1 however other 
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studies argue for a lower delta (72, 73). Our ability to control for baseline and pre-baseline SRH 

alongside AL and the interaction (Degree of Freedom [DoF]=4) is critical and results in an R2=0.55, 

while the inclusion of all other covariates (DoF=60) results in an R2=0.58. Thus it is difficult to imagine 

unobserved characteristics with such great predictive power as to overturn our results. Future work 

could explore the use of instrumental variables (IV) to obtain estimates that are more credibly causal, 

albeit it may be difficult to ensure potential IVs do not directly impact health, even after conditioning 

on baseline health.  

 

Finally, alternative measurements of AL and SRH are possible and could capture different aspects of 

the relationship of interest. While we focus on AL as a measure to examine health depreciation it is 

important to note that the measurement of AL is evolving (74) and research is ongoing as to which 

biomarkers should be combined and how to form an AL index (58). Other separate although perhaps 

inter-related measures also exist which attempt to measure health depreciation beyond ageing (75, 

76). Thus we do not propose that the measurement of AL used here is the definitive measure of stress-

related health depreciation though, from the biomarkers available in this dataset, we do find that the 

z-score AL index which captures the cascade of activity as part of the stress response is the best 

predictor of future physical health and HRQoL (Table S5).  

 

Conclusion 

Allostatic Load, as a measure of stress-related “wear and tear”, predicts subsequent declines in self-

rated physical health and to some extent HRQoL; a decline which appears to accelerate as health 

declines further. This is akin to the notion of depreciation of health. In this case, it is thought to be a 

result of individuals’ experiences of stress over their lifetime which leads to dysregulation across 

multiple biological systems and, as we have shown, accelerated physical health decline. This provides 

potentially valuable insights that may be useful in clinical practice, or in monitoring certain policy 
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outcomes or interventions especially with shorter time horizons. While the causes of such stress may 

be multi-faceted and require further research, policies which target younger individuals in general, 

through school curricula for example, to develop non-cognitive skills may be effective in delaying an 

individual’s entry into the disease span of their lifetime. 
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