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ABSTRACT 17 

The geographical accessibility to health facilities is conditioned by the topography and 18 

environmental conditions overlapped with different transport facilities between rural and urban 19 

areas. To better estimate the travel time to the most proximate health facility infrastructure and 20 

determine the differences across heterogeneous land coverage types, this study explored the use 21 

of a novel cloud-based geospatial modeling approach and use as a case study the unique 22 

geographical and ecological diversity in the Peruvian territory. Geospatial data of 145,134 cities 23 

and villages and 8,067 health facilities in Peru were gathered with land coverage types, roads 24 

infrastructure, navigable river networks, and digital elevation data to produce high-resolution (30 25 

m) estimates of travel time to the most proximate health facility across the country. This study 26 

estimated important variations in travel time between urban and rural settings across the 16 27 

major land coverage types in Peru, that in turn, overlaps with socio-economic profiles of the 28 

villages. The median travel time to primary, secondary, and tertiary healthcare facilities was 1.9, 29 

2.3, and 2.2 folds higher in rural than urban settings, respectively. Also, higher travel time values 30 

were observed in areas with a high proportion of the population with unsatisfied basic needs. In 31 

so doing, this study provides a new methodology to estimate travel time to health facilities as a 32 

tool to enhance the understanding and characterization of the profiles of accessibility to health 33 

facilities in low- and middle-income countries (LMIC), calling for a service delivery redesign to 34 

maximize high quality of care.  35 
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1. INTRODUCTION 36 

Despite growing consensus to combat inequalities in the accessibility to healthcare around the 37 

world, large disparities in healthcare accessibility remain as a problem in countries with an 38 

ongoing rural-to-urban transition. According to the ‘Tracking Universal Health Coverage: 2017 39 

Global Monitoring Report’, half of the worldwide population lacks essential health services 40 

(World Health Organization & World Bank, 2017). To overcome the disadvantage of 41 

marginalized populations, the international community through the United Nations (UN) have 42 

stated 17 Sustainable Development Goals (SDG) targeted by 2030 (UN General Assembly, 43 

2015). From these goals, the interface between goal 3, — ‘Good health and well-being’,; and 44 

goal 10, — ‘Reduced inequalities’, play an important role to foster and couple endeavors towards 45 

ensured access to healthcare services. 46 

The broad term ‘accessibility’, when referring to healthcare, focuses on multiple domains such as 47 

the provision of healthcare facilities, supply chain, quality and effective services, human 48 

resources, and on the demand side, health-seeking behaviors (Agbenyo, Marshall Nunbogu, & 49 

Dongzagla, 2017; Peters et al., 2008). All these characteristics pointed to the ability of a 50 

population to receive appropriate, affordable and quality medical care when needed (Kanuganti, 51 

Sarkar, Singh, & Arkatkar, 2015). Importantly, in rural and high poverty areas the most common 52 

reasons that prevents the access to healthcare are the geographical accessibility, availability of 53 

the right type of care, financial accessibility, and acceptability of service (Al-Taiar, Clark, 54 

Longenecker, & Whitty, 2010; Peters et al., 2008). This study focuses on the travel time to health 55 

facilities as an important component of the geographical (or physical) accessibility to healthcare. 56 

Several studies in developing countries report that geographical accessibility is the main factor 57 

that prevents the use of primary healthcare (Al-Taiar et al., 2010; Kanuganti et al., 2015; Müller, 58 

Smith, Mellor, Rare, & Genton, 1998; Noor, Zurovac, Hay, Ochola, & Snow, 2003; Perry & 59 

Gesler, 2000; Stock, 1983), and not only conditions the ability of the population for health 60 

seeking, but also the capacity of the health system to implement prevention and control strategies 61 

with adequate coverage. However, fewer studies have explored the heterogeneity in geographical 62 

accessibility across areas with contrasting land coverage (Bashshur, Shannon, & Metzner, 1971; 63 

Comber, Brunsdon, & Radburn, 2011), i.e. the marked variation in the topography and 64 
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environment conditions overlapped with different transport facilities between rural and urban 65 

areas that may influence the geographical accessibility across these areas. The geographical 66 

accessibility to health services has a direct impact on health outcomes since determine the timely 67 

response to patients that seek care, community-based campaigns (i.e. vaccination, iron 68 

supplements to combat anemia, etc.), or deliver first response to accidents or natural disasters. 69 

Previous studies highlighted the importance of geographical or physical accessibility using a 70 

variety of methods (Comber et al., 2011; Delamater, Messina, Shortridge, & Grady, 2012; 71 

Huerta Munoz & Källestål, 2012; Ouko, Gachari, Sichangi, & Alegana, s. f.). The emergence of 72 

‘Precision Public Health’ driven by estimates of a wide range of health indicators at a high 73 

spatial resolution is defined as the use of the best available data to target more effectively and 74 

efficiently interventions of all kinds to those most in need (Chowkwanyun, Bayer, & Galea, 75 

2018; Dowell, Blazes, & Desmond-Hellmann, 2016; Horton, 2018; Tatem, 2018). This approach 76 

may be favorable since traditionally government's reports aggregates data at administrative units, 77 

in a way that obscure the prioritization of resources. A recent study used a precision public 78 

health approach to estimate the geographical accessibility to major cities (Weiss et al., 2018), 79 

however, this approach has not yet been used for estimating the geographical accessibility to 80 

health facilities in developing countries.  81 

This study sought to estimate the travel time to the most proximate health facility in rural and 82 

urban areas across heterogeneous land coverage types in Peru as a means to help resources 83 

prioritization, disease surveillance, as well as prevention and control strategies. Multiple sources 84 

of geospatial data were fitted with a novel cloud-based geospatial modeling approach (Weiss 85 

et al., 2018) to produce high-resolution (30 m) estimates of travel time to the most proximate 86 

health facility across the country. These estimates were then compared between urban and rural 87 

settings and across 16 major land coverage types in Peru. 88 

2. MATERIALS AND METHODS 89 

2.1. Study design 90 

Ecological study using the Peruvian registry of villages and health facilities to model the travel 91 

time required for individuals in each village to reach the most proximate health facility (shortest 92 
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travel time) in a two-step process. First, a friction surface was computed. Several geospatial 93 

datasets (land coverage types, boundaries of restricted areas, roads infrastructure, navigable river 94 

networks, and topography) were used to construct a surface (i.e. raster or grid) of a given spatial 95 

resolution (i.e. 30m per pixel) where the value of each pixel (or cell) contains the time required 96 

to travel one meter in that given area. Secondly, this friction surface and the geolocation of the 97 

health facilities were used to infer the travel time to the the most proximate (lowest time) health 98 

facility using a cumulative cost function. As a result, the travel time estimate for the most 99 

proximate health facility was computed for the entire country. The computed values were then 100 

summarized in a 500m-radius from the geolocation of cities and villages; per district, province or 101 

department; by urban/rural areas; and across 16 major land coverage types defined by the 102 

Ministry of Environment (MEnv). 103 

2.2. Study area 104 

This study was conducted using nationwide data from Peru, located on the Pacific coast of South 105 

America. Peru encompasses an area of 1,285,216 Km2 and 32,162,184 inhabitants divided in 25 106 

departments and 1,722 districts. Major ecological areas in the country are divided into the coast, 107 

highlands, and jungle (Figure 1A), however this study explore a higher granularity of ecological 108 

areas with more than 60 unique land coverage areas (Supplementary Information 1) that were 109 

officially classified in Peru. This classification was based on ecological, topographic, and climate 110 

characteristics, that in turn are important for the calculation of travel time since each category 111 

requires a different displacement effort. 112 

2.3. Data Sources 113 

The datasets were divided according to its use in the construction of the friction surface and the 114 

travel time map. 115 

a) Friction surface construction 116 

The land coverage types were derived from satellite images from MODIS MCD12Q1 product 117 

(Friedl et al., 2010). The MODIS collection includes seventeen land coverage types including 118 

urban and rural areas inferred by the spectral signature of the satellite images. The boundaries of 119 
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the national protected natural areas were included using data provided by the MEnv. The road 120 

infrastructure in all districts was provided by the Peruvian Ministry of Transportation (MTrans), 121 

and the navigable river network was derived from the HydroSHEDS Flow Accumulation dataset 122 

(Lehner, Verdin, & Jarvis, 2006). The estimates of the friction surface (minutes required to travel 123 

one meter) were adjusted by the slope of the terrain. This means that, the travel time required to 124 

cross an area will be proportionally dependent to the slope of the terrain. The slope for each area 125 

was calculated using the SRTM Digital Elevation Data (Jarvis, Reuter, Nelson, & Guevara, 126 

2008) produced by NASA. 127 

b) Travel time estimation 128 

The target locations used for the cumulative cost function were the health facilities (clinics) of 129 

the Ministry of Health (MH). This data was obtained from the geo-localization registry of health 130 

facilities (RENAES in spanish) (Figure 1B). The MH organize the health facilities in three 131 

categories according to the complexity of services they provide (from primary healthcare to 132 

specialized hospitals). The  primary level includes basic health facilities with no laboratory, the 133 

secondary level includes health facilities with laboratory, and tertiary level includes hospitals and 134 

higher complexity services. Finally, travel time estimates were extracted for each city and village 135 

(Figure 1C). The most updated geo-localization of villages was provided by the Ministry of 136 

Education (MEd) in a recent census of cities and villages, and education facilities. 137 

2.4. Data Analysis 138 

a) Friction surface construction 139 

The estimation of travel time were conducted in Google Earth Engine (GEE) (Gorelick et al., 140 

2017). A surface grid was constructed using the information about land coverage, road 141 

infrastructure, and river network. All datasets were converted into aligned grids with a 30-meter 142 

resolution. Each dataset contained the information of the speed of movement in each feature. All 143 

the layers were then combined with the fastest mode of movement taking precedence (Km h-1). 144 

The speed assigned for each category of land cover were obtained from elsewhere (Weiss et al., 145 

2018). A data transformation was conducted, so each pixel within the 2D grid contained the cost 146 

(time) to moving through the area encompassed in the pixel, herein referred to as ‘friction 147 
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surface’. Slope adjustment was carried out using the Tobler’s Hiking Function (Tobler, 1993) 148 

and the speed was penalized (reduced) in urban and national protected areas to account for 149 

vehicular traffic and restricted displacement, respectively.  150 

b) Travel time estimation 151 

To calculate the travel time from the villages to the most proximate health facility, the 152 

cumulative cost function was used in GEE to generate the accessibility map. The cumulative cost 153 

function is a least-cost-path algorithm, briefly, all possible paths were analyzed iteratively and 154 

the weighted cost (in this case, weighted by time) was then minimized. The minimum travel time 155 

to the most proximate health facility was computed for each pixel in the grid, then the median 156 

travel time was summarized in a 500m-radius from the geolocation of each city or village 157 

(Supplementary Information 2). Values between the 5% and 95% percentile range were 158 

considered to avoid extreme values. Since a health facility could be located in the 30m2 159 

corresponding to the pixel spatial resolution of the estimates, a baseline 10-minutes travel time 160 

was considered. The analysis was carried out for each health facility category. After GEE 161 

processing, all data outputs were imported and analyzed using R v.3.6.0 (R Development Core 162 

Team, R Foundation for Statistical Computing, Vienna, Australia).  163 

The computed travel time was then summarized per district, province or department; by 164 

urban/rural areas; and across 16 major land coverage types defined by the MEnv. Urban/rural 165 

status was defined based on the MODIS land coverage satellite images (described previously in 166 

2.3 Data Sources). To better detail the large diversity of land coverage types in Peru, a shortlist 167 

of 16 eco-regions provided by the MEnv (Supplementary Information 1) was used to 168 

summarize the travel time in these areas. In addition, the distribution of travel time relative to the 169 

proportion of population with unsatisfied basic needs (UBN) ─ a multidimensional poverty 170 

measurement developed by the United Nation’s Economic Commission for Latin America and 171 

the Caribbean (ECLAC) ─ per department was computed with data provided by the Ministry of 172 

Economy (MEco).  173 

3. RESULTS 174 

Travel time to health facilities 175 
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For this study, we gathered geo-referenced data on 145,134 villages (Figure 1B) and 8,067 176 

health facilities (Figure 1C) across the 1,722 districts in the Peruvian territory. The health 177 

facility density (number of health facilities divided by the total population) in Peru was 2.58 per 178 

10,000 inhabitants with variations between major ecological areas, from 1.35 in the coast, 4.56 in 179 

the highlands, to 5.21 in the jungle.  180 

Friction and travel time maps were reconstructed in Google Earth Engine using the described 181 

local datasets at a spatial resolution of 30 meters per pixel (Supplementary Information 2). 182 

Country-wide median travel time from each village to the most proximate health facility varies 183 

according to category: primary healthcare = 39 minutes (IQR=20 – 93), secondary healthcare = 184 

152 minutes (IQR=75 – 251), and tertiary healthcare = 448 minutes (IQR=302 – 631). 185 

Importantly, maximum travel time reached 7,819, 12,429, and 35,753 minutes for primary, 186 

secondary, and tertiary levels, respectively (Figure 2). 187 

Urban/rural and ecological settings 188 

High heterogeneity was observed in contrasting land coverage areas. The median travel time was 189 

5.3 fold higher in rural (85 minutes; IQR=11–7,819) than in urban settings (16 minutes; IQR = 190 

11–835) to a primary healthcare facility; 3.2 fold higher in rural (226 minutes; IQR = 11–12,429) 191 

than in urban settings (70 minutes; IQR = 11–3,386) to a secondary healthcare facility; and 2.4 192 

fold higher in rural (568 minutes; IQR = 11–35,753) than in urban settings (235 minutes; IQR = 193 

11–10,048) to a tertiary healthcare facility. A larger variation in travel time to primary healthcare 194 

was observed in rural compared to urban areas, and conversely, a larger variation in travel time 195 

to tertiary healthcare was observed in urban compared to rural areas (Figure 3). The district-196 

level stratified averages in Figure 2 show that there were also strong heterogeneities within 197 

major ecological regions. The north-east part of the Amazon Region, which borders with 198 

Colombia and Brazil, presented the largest country-wide travel times to the most proximate 199 

health facilities. The largest travel times to the most proximate health facilities within the 200 

Highlands Region was observed in the southern areas of the Andes, and in the coast was 201 

observed in the southern coast. Contrasting distributions of travel time to the most proximate 202 

health facility was observed between the 16 eco-regions defined by the MEnv (Figure 3). 203 
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Travel time to health facilities relative to UBN 204 

When the travel time to most proximate health facilities was distributed relative to the proportion 205 

of the population with unsatisfied basic needs at department level (administrative level 1), a 206 

positive trend was observed (Figure 4). The slope of this relation was increased in geographical 207 

accessibility to tertiary health facilities in comparison to primary or secondary health facilities. 208 

4. DISCUSSION 209 

The present study explored the use of novel cloud-based geospatial modeling approach fitted 210 

with detailed local geospatial data to accurately estimate the travel time to the most proximate 211 

health facility across a highly diverse geographical and ecological settings as observed in Peru. 212 

This study showed the first quantification of heterogeneities in travel time to the most proximate 213 

health facility as a surrogate of geographical accessibility in the Latin American region. Most of 214 

the differences in travel time arose from heterogeneous land coverage profiles and the contrast 215 

between urban and rural areas. This is particularly important due to the fact that in Peru and in 216 

most LMIC, the most detailed data is available at a coarse administrative level that deter the 217 

resource planning and healthcare provision in these countries. Another direct implication of the 218 

utility of this approach is providing yet another angle of disadvantages amongst the most 219 

underserved, now in terms of access to healthcare as measured by distance and time, one of 220 

multiple aspects of high-quality healthcare. 221 

In settings with a scattered distribution of villages, timely access to health facilities is a 222 

cornerstone to improve the health status of impoverished populations and a first step to provide 223 

high quality care (Kruk et al., 2018; Kruk, Pate, & Mullan, 2017). Although the use of big data 224 

and high-detail datasets paves the way for a comprehensive quantification of geographical 225 

accessibility in terms of distance and travel time, these technologies were not previously applied 226 

to estimate geographical accessibility to health facilities until recently (Tatem, 2018). Using this 227 

analytical approach, this study demonstrated that the population in the Jungle area have less 228 

accessibility since healthcare services are reachable at longer trajectories and travel time, 229 

understood as less geographical accessibility. The dramatic heterogeneity in travel time to the 230 

most proximate health facility observed in this study corresponds to the contrasting landscape 231 
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composition in the coast, highlands, and jungle regions. A dense road network was observed in 232 

the Coast, facilitating access to multiple services including healthcare as reported in other studies 233 

in India and Africa (Kanuganti et al., 2015; Strano, Viana, Sorichetta, & Tatem, 2018). 234 

Conversely, sparse road coverage was observed in the Highlands and only the two major cities in 235 

the Jungle region had roads.  236 

Consistently with previous studies (Bashshur et al., 1971; Comber et al., 2011), this study 237 

determined the heterogeneity in travel time  to the most proximate health facility across areas 238 

with contrasting land coverage types. Despite that this fact is widely accepted, few attempts have 239 

been made to quantify these heterogeneities. In addition, asymmetries were identified when the 240 

travel time to the most proximate health facility was compared along socio-economic profiles 241 

based on the unsatisfied basic needs index proposed by the United Nations Development 242 

Programme (UNDP). Uneven trends of greater travel time to health facilities (lower geographical 243 

accessibility) were observed among villages with higher rates of unmet basic needs. These 244 

results are consistent with previous reports of negative trends in geographical access to 245 

healthcare facilities in low-income populations (Kiwanuka et al., 2008; Meyer, Luong, 246 

Mamerow, & Ward, 2013; Peters et al., 2008; Tanser, Gijsbertsen, & Herbst, 2006).  247 

It is important to highlight that the analysis conducted in this study did not take into account 248 

variability due to climatic factors that may prevent displacement to health facilities (i.e. floods or 249 

landslides). However, Highlands and Jungle areas are more prone to this kind of natural disaster, 250 

leading to a conservative estimation of travel time in these areas. Traffic, which may greatly 251 

influence the estimates in the large cities, was not considered in the analysis and potentially 252 

cause an underestimation of the travel time to health facilities. In addition, seasonal variability 253 

may greatly affect some displacement routes such as rivers; however, only navigable rivers were 254 

considered in this approach and the availability to displace through this rivers are less affected by 255 

seasonality. Another important consideration about the least-cost-path algorithm used in this 256 

analysis is that we infer the lowest travel time boundary to reach a health facility. This 257 

consideration relies on the assumption that the villagers opt for this route despite the cost and 258 

danger of the route in addition to its availability, as explained above. 259 
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In addition, the data reported here was generated at a meso-scale, with a spatial resolution of 30 260 

meters. At this scale and resolution, some important details could be lost and affect the travel 261 

time estimations. For instance, in some settings the travel time might be increased due to 262 

meandering rivers or roads that follow the morphology of the terrain. The model assumes that 263 

transit flows in a direct manner, meaning that zigzagging routes may cause our approach 264 

underestimate the real travel time to reach a health facility. Despite these possible shortcomings, 265 

the proposed approach provided conservative yet useful estimates of travel times to health 266 

facilities that are important for planning of prevention and control strategies for multiple health-267 

related events. This approach demonstrates that curation and alignment of geospatial data from 268 

multiple governmental institutions are important for national decision-making. In addition, the 269 

use of mapping and modeling techniques, and ‘big data’ were recognized as critical for better 270 

planning (Buckee et al., 2018; Hay, George, Moyes, & Brownstein, 2013; Tatem, 2018); 271 

however, a remaining challenge is the implementation of these approaches into routine disease 272 

prevention and control programs (Buckee et al., 2018; Hay et al., 2013). 273 

This study acknowledges the relevance of other components of health access that may play an 274 

important role in the underlying phenomena. The sole presence of clinic infrastructure does not 275 

assure a proper healthcare delivery. Supply chain, human resources, financial accessibility, 276 

acceptability of services, and availability of treatment are some remaining barriers once 277 

geographical accessibility is overcome (Agbenyo et al., 2017; Al-Taiar et al., 2010; Johar, 278 

Soewondo, Pujisubekti, Satrio, & Adji, 2018). Further studies were suggested to get a 279 

comprehensive understanding of the accessibility to healthcare in Peru and other LMIC. 280 

5. CONCLUSION 281 

This study used a new methodology to estimate the travel time to most proximate health facilities 282 

as a first step to understanding and characterizing the geographical accessibility profiles in Peru. 283 

Contrasting patterns were observed across heterogeneous land coverage areas and urban and 284 

rural settings. These findings are important as first steps for tailoring strategies to deliver 285 

appropriate, affordable and quality healthcare to impoverished populations.  286 
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FIGURES 422 

Figure 1. Study area. A) Major ecological areas (coast, andes, and jungle) in Peru. Solid lines 423 

represent the 25 Departments (administrative level 1). B) Spatial location of primary, secondary, 424 

and tertiary health facilities. C) Spatial location of villages. Maps were produced using QGIS, 425 

and the base map was obtained OpenTopoMap (http://www.opentopomap.org), under CC BY-426 

SA 3.0. 427 
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Figure 2. Country-wide map of travel time to health facilities for 2018. District-level average 429 

travel time to each category of healthcare facilities. A) Primary healthcare. B) Secondary 430 

healthcare. C) Tertiary healthcare. Color scale in logarithmic scale 431 

 432 
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Figure 3. Distribution of travel time to most proximate health facility. Estimates across the 435 

16 eco-regions defined by the Peruvian Ministry of environment and rural/urban settings for 436 

primary, secondary and tertiary healthcare. Y-axis in logarithmic scale. 437 
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Figure 4. Median travel time to each health facility category relative to the proportion of 442 

population with unsatisfied basic needs per department. Y-axis in logarithmic scale 443 

 444 
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