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Abstract 
Challenges in Big Data analysis arise due to the way the data are recorded, 
maintained, processed and stored. We demonstrate that a hierarchical, multi-
variate, statistical machine learning algorithm, namely Boosted Regression 
Tree (BRT) can address Big Data challenges to drive decision making. The 
challenge of this study is lack of interoperability since the data, a collection of 
GIS shapefiles, remotely sensed imagery, and aggregated and interpolated 
spatio-temporal information, are stored in monolithic hardware components. 
For the modelling process, it was necessary to create one common input file. 
By merging the data sources together, a structured but noisy input file, show-
ing inconsistencies and redundancies, was created. Here, it is shown that BRT 
can process different data granularities, heterogeneous data and missingness. 
In particular, BRT has the advantage of dealing with missing data by default 
by allowing a split on whether or not a value is missing as well as what the 
value is. Most importantly, the BRT offers a wide range of possibilities re-
garding the interpretation of results and variable selection is automatically 
performed by considering how frequently a variable is used to define a split in 
the tree. A comparison with two similar regression models (Random Forests 
and Least Absolute Shrinkage and Selection Operator, LASSO) shows that 
BRT outperforms these in this instance. BRT can also be a starting point for 
sophisticated hierarchical modelling in real world scenarios. For example, a 
single or ensemble approach of BRT could be tested with existing models in 
order to improve results for a wide range of data-driven decisions and appli-
cations. 
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1. Background 

Data are typically stored in various ways and various formats, mostly in mono-
lithic software architectures which do not allow for interoperability. Analysis of 
data across multiple data sources is thus difficult, since the functionality of the 
single data sources with respect to input and output, maintenance, data 
processing, error handling and user interface is all interwoven and acts as archi-
tecturally separate components. In order to create a basis for analysing the data 
considered here, it was required to extract the datasets from their original data-
bases and combine them to form a common input file for the modelling process. 
It was therefore inevitable that this resulted in a data file structure which showed 
missing data, inconsistencies, duplicates and redundancies. 

A case study is presented here to examine land use data sourced from a GIS, 
direct observations from an agricultural company, and remotely sensed data. 
The data were extracted from a relational database, Excel spreadsheets, remotely 
sensed imagery stored as raster data, and vector data from a Geographic Infor-
mation System (GIS), directly observed and measured data in real-time and in-
terpolated data. By combining these data sources to form one common basis for 
our analysis, issues of data volume, variety and veracity were encountered. Big 
Data research clearly deals with issues beyond volume and belongs not only to 
the ongoing digital revolution, but to the scientific revolution as well. The ques-
tion posed of Big Data and illustrated in the case study presented here, is wheth-
er new knowledge can be extracted from various data sources that haven’t been 
analysed in combination before, and can thus assist in a better and more confi-
dent decision making. 

2. Introduction 

There is an exponential increase in interest in the use of digital data to improve 
decision making in a range of areas such as human systems, urban environ-
ments, agriculture and national security. For example, decisions in the agricul-
tural domain may require information based on vegetation or land use change, 
estimation of crops or biomass, distribution of native or exotic species, livestock 
or weed assessment and so on. One source of digital data that has generated in-
tense interest over the past decades is remotely sensed imagery. These data are 
available from a wide range of sources, ranging from satellites to drones, and 
have been used for a very wide range of environmental applications [1]-[8]. 

The availability and resolution of these data, combined with improved com-
puter storage and data management facilities, have greatly increased the oppor-
tunity for mathematicians and statisticians to utilise this information in their 
models and analyses. The challenge in linking remotely sensed data to decision- 
making is that there are multiple steps in the process. Here, we focus on an ex-
emplar real-world problem in the livestock industry: deciding on the allocation 
of animals to different paddocks and potentially different grazing properties 
based on the predicted availability of grass over the year. This problem arose in 
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the context of collaboration between statisticians at the Queensland University 
of Technology and a large livestock organisation in Australia. The specific aim of 
the project was to develop an ensemble of models to predict the carrying capaci-
ty, that is, the number of animals that can be sustained on a paddock. In order to 
achieve this goal we utilised remote sensing data and supporting information 
about climate and paddock characteristics. Further, it was important to present 
the results in a form that is useful for the agricultural decision makers. 

Difficult or challenging decisions demand a thorough consideration and even 
then they imply uncertainty, complexity and different levels of risk. Making the 
right decisions at the right time can lead to success, increase of profit or mini-
misation of risk. It is thus important that thoughtful considerations are put into 
each decision. Figure 1 demonstrates the workflow following a Big Data ap-
proach for our case study. Here, we use structured but heterogeneous data 
sources that showed characteristics like missing data, noise and redundancies. 
All the data sources were used to create a BRT model via an ensemble approach. 
The resulting model and its output serves as a foundation for a better decision 
making. The steps involved in the process are depicted in Figure 1. Due to 
commercial confidentiality concerns, the final results of the modelling workflow 
are not presented here. 

In this article we focus on one component of the ensemble modelling ap-
proach employed in the project, namely the use of BRT to estimate so-called 
animal equivalents per paddock. Since calves, cows and bulls of different ages 
consume different amounts of grass, these animals are standardised to a refer-
ence animal which can then be used as a common response variable in the anal-
ysis. An interesting conundrum is that one of the major inputs into such a model 
is the amount of grass, or more generally the biomass, in a paddock. This can 
potentially be estimated directly from remote sensing, but is confounded by the 
fact that animals are on the paddock eating the very thing that is being measured 
by the sensor. Moreover, the decision maker may be interested in the biomass 
estimates themselves, either directly via the remotely sensed measurements or 
indirectly via the animal equivalents based on animal weight and metabolic 
formula. 

A BRT is a popular statistical and machine learning approach that has not yet 
seen much application in the analysis of remotely sensed data. Indeed, although 
they were first defined two decades ago, BRT has only recently been extended to 
deal with the types of features that are characteristic of remotely sensed data, in 
particular its spatial and temporal dynamics. Most of the activity around the use 
of BRT for agricultural and environmental applications does not appear in the 
mainstream mathematical and statistical literature. 

 

 
Figure 1. Modelling process for case study. 
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2.1. Case Study 

The study area is located in the Northern Territory, Australia. The main climate 
zone is identified as grassland with hot dry summers and mild winters [9]. It is a 
heterogeneous region with a complex topography and land cover and type of 
grassland. Identification, differentiation and quantitative estimation of biomass 
is of primary interest in this case study. A range of data from different sources 
was required for this problem. In this section, we describe the information de-
rived from Landsat imagery and comment briefly on other data. The reflectance 
recorded by the Landsat sensor is stored as an 8 bit value, resulting in a scale of 
256 different grey values ranging from black (0 max absorption) to white (255 
max reflection). The electronically recorded data appear as an array of numbers 
in digital format. In addition to the 8 bit quantisation, Landsat offers several 
spectral bands in the electromagnetic and infrared spectrum in which each indi-
vidual pixel shows different values across different bands. This means that each 
pixel has a different dimension and therefore will be represented differently in 
each spectral band. Raster data are becoming increasingly common and increa-
singly large in volume, although it is possible to reduce file size with compres-
sion functions. 

There is a strong advantage in using remotely sensed Landsat imagery and 
applied spectroscopy for these types of analyses because the data are freely 
available, the imagery covers a wide geographical range, and it avoids expensive, 
extensive and often impractical in-situ measurement. However, the trade-off is 
in resolution: in-situ measurements provide highly localised accuracy whereas a 
pixel in a Landsat image covers an area of 30 × 30 meters. It is noted that other 
satellites are now able to provide higher resolution, but these are not yet freely 
available for the areas of interest in this case study. 

Estimation of biomass using satellite data is of ongoing global interest. Grass 
biomass estimation is challenging since the phenological growing cycle of natu-
rally existing grass is a dynamic process influenced by many complex parame-
ters, including grass type, soil, climate, topography and land use. With the spec-
tral information of remotely sensed imagery it is possible to detect green vegeta-
tion, which is driven by the photosynthetic biochemical process of grass bio-
mass. However, since raster imagery is only a two dimensional representation of 
the land cover it is difficult to derive the quantity of the vertical grass biomass 
directly. 

Fractional cover [10] data are often available as derived products; for example 
Geoscience Australia (GA) who provides an Australian Reflectance Grid 25 
(ARG25) product which gives a 25 meter scale fractional cover representation of 
underlying vegetation across Australia or Tern - Auscover in 30 meter resolution 
of Landsat 5 and 7 covering the temporal extent from 2000-2011. Fractional 
cover unmixing algorithms use the spectral reflectance of a Landsat scene for a 
pixel to break it into three fractions represented as percentage values. These are 
photosynthetic vegetation (includes leaves and grass), non-photosynthetic vege-
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tation (includes branches, dry grass, and dead leaf litter) and bare surface cover 
(bare soil or rocks) [11]. 

In addition to fractional cover Vegetation Indices (VI) are commonly used to 
extract meaningful information out of the imagery through image analysis tech-
niques. To calculate VIs it is common to apply arithmetical methods in order to 
create additional artificial channels using existing spectral bands of the imagery. 
Other related data were also available to support the analyses. For example, SILO 
(Scientific Information for Land Owners) is a database of historical climate 
records for Australia. SILO provides daily datasets for a range of climate va-
riables and in formats suitable for a variety of applications. In addition, SILO 
datasets are constructed from observational records provided by the Bureau of 
Meteorology (BOM). As another example, the AussieGRASS spatial framework 
includes inputs of key climate variables (rainfall, evaporation, temperature, va-
pour pressure and solar radiation), soil and pasture types, tree and shrub cover, 
domestic livestock and other herbivore numbers. The derived results of Aussie-
GRASS data are spatially interpolated to construct gridded datasets on a regular 
grid (approximately 5 × 5 km) across Australia [12] [13]. 

2.2. Data-Related Challenges 

The analysis of relationships in ecological data sets is not trivial [14]. In addition 
to the complexity of the processes being modelled, there is the challenge of deal-
ing with data dimensionality since it is often necessary to combine various data 
sources. Moreover, the scale of spatial data needs to be considered when there 
are differing granularities of spatial and temporal data. For example, SILO rain-
fall data are reported at a 5 × 5 km grid, whereas a Landsat pixel covers an area 
of 30 × 30 meter. The SILO data are stored in a tabular data base format and the 
single measurement points to record the precipitation independently from each 
other. In contrast, the derived VI cover a whole Landsat scene of 185 × 185 km 
and are highly correlated. All our environmental data have been provided from 
the Department of Science, Information Technology and Innovation (DSITI). In 
addition to the environmental data we used operational data provided by a 
commercial entity under a confidential agreement. 

Another challenging characteristic of remotely sensed data is missing infor-
mation. There are two major considerations in dealing with this issue. The first 
is dealing with the missing values. Common options are to filter them out [15] 
[16], interpolate them or increase the spatial aggregation. There are advantages 
and disadvantages to each of these approaches in terms of computational re-
sources, inferential capability, and precision and bias of the resultant estimates 
[17]. The second consideration is whether to undertake the chosen method as 
part of the pre-processing or post-processing steps. 

For our case study we performed a number of pre-processing steps to prepare 
our data for the modelling process, namely data aggregation and data reduction 
for our predictor variables, as well as calculation of the response variable. Instead 
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of working with single pixel values we reduced the volume of data by deriving 
descriptive statistics from Landsat, MODIS and SILO data, thereby obtaining 
paddock specific means, medians, first quartile, third quartile, variance and 
Shannon Entropy. With respect to our response variable, we aggregated real- 
time measurements to a monthly mean. In the next step we created a test and a 
training data set by partitioning the data to 20% and 80% respectively. The 
training set was used to estimate the model parameters. The test set was used for 
model performance evaluation on unseen data. 

3. Boosted Regression Trees 

Boosted Regression Trees (BRT), also known as Gradient Boosted Machine 
(GBM) or Stochastic Gradient Boosting (SGB), are non-parametric regression 
techniques that combine a regression tree with a boosting algorithm [18]. This 
extension to the classical regression tree allows greater flexibility and predictive 
performance in modelling the data. The implementation of these methods used 
in this study can be found in the gbm R package. 

A regression tree partitions the data with a hierarchy of binary splits that de-
fine regions of the covariate space in which the response variable has similar 
values. These splits are defined by rules, distance metrics or information gain. 
The choice of variables and the value at which the split point occurs is deter-
mined in a recursive manner at each stage of the tree construction. The segmen-
tation can be depicted as a tree-like structure, comprising nodes representing the 
selected factors, branches acting as if-else connectors between the nodes, and 
leaves representing terminal nodes containing the subsets of responses [19] [16] 
[20].  

Boosting improves the performance of a simple base-learner by reweighting 
observations that were misclassified or had large residual errors in the previous 
iteration. The deeper we grow the tree, the more segments we can accommodate 
and thus more variance can be explained. This results in higher model complex-
ity and therefore higher risk of overfitting the model to the data. 

The motivation behind Boosting is that each tree can be quite shallow (a weak 
classifier) and thus fast to estimate, but by combining the predictive power of 
many weak classifiers, a classifier of arbitrary accuracy and precision can be 
created [21] [22] [23]. 

Gradient Boosting 

In this section we give a brief summary of the method, following Friedman [18]. 
This supervised machine learning approach deals with a response variables y and 
a vector of predictor variables x  that are connected via a joint probability dis-
tribution ( ),P yx . Using a training sample ( ) ( ){ }1 1, , , ,n ny yx x  of known 
values of x  and corresponding values of y, the goal is to find an approximation 
( )F x  to a function ( )*F x  that minimises the expected value of a loss func-

tion ( )( ),y Fψ x , i.e. 
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Boosting approximates ( )*F x  by an “additive” expansion in the form of  
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where the functions ( );h x a  are generally simple functions of x  with para-
meters { }1 2, ,a a= a . The parameters { }0

M
ma  and the expansion coefficients 

{ }0

M
mβ  are jointly fit to the training data. This is done in a forward stage wise 

manner. Gradient Boosting [18] approximately solves differentiable loss func-
tions ( )( ),y Fψ x  with a two step procedure. First, the function ( );h x a  is fit 
by least squares to the current “pseudo”-residuals  
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which represent the residuals from the given stage of the tree building. 
Then, given ( ); mh x a , the optimal value of the coefficient mβ  is calculated 

via  

( ) ( )( )1
1

arg min , ; .
N

m i m i i m
i

y F h
β

β ψ β−
=

= +∑ x x a             (4) 

Gradient Tree Boosting performs this with a base learner ( );h x a  of an L 
terminal node regression tree. A regression tree partitions the feature space into 
L disjoint regions { } 1

L
lm l

R
−

 and predicts a separate constant value at each itera-
tion m.   

{ }( ) ( )
1

1
; 1 .

LL
lm lm lm

l
h R y R

−

= ∈∑x x                  (5) 

The parameters of the base learner are the splitting variables and correspond-
ing split points that define the tree, and this defines the corresponding regions 
{ }1

L
lmR  of the partition at each iteration. These are accomplished in a top-down 

“best-first” approach using a least squares splitting measure [18]. Equation 4 can 
be solved individually within each region lmR  defined by the corresponding 
terminal node l  of the mth tree. Because the tree in Equation (5) predicts a 
constant value lmy  within each region lmR , the solution to 4 reduces to a sim-
ple location estimate based on the criterion ψ  

( )( )1arg min , .
i lm

lm i m i
R

y F
γ

γ ψ γ−
∈

= +∑
x

x                (6) 

Next, the current approximation ( )1mF − x  is individually updated in all of 
the corresponding regions  

( ) ( ) ( )1 1 .m m lm lmF F Rν γ−= + ⋅ ∈x x x                 (7) 

Friedman [18] added a stochastic element to the above boosting algorithm by 
proposing to draw a random subsample from the full training data set without  

https://doi.org/10.4236/ojs.2017.75061


B. Colin et al. 
 

 

DOI: 10.4236/ojs.2017.75061 866 Open Journal of Statistics 
 

 
 

replacement. This subsample is then used to fit the base learner and compute the 
model update for the current iteration. By adding randomness to the algorithm 
the performance of gradient boosting was improved and this resulted in the sto-
chastic Gradient Boosting Machine (GBM) [23]. The Stochastic Gradient Boost-
ing algorithm is summarised as pseudo code below [15] [23]. The input training 
data is defined through { }, N

i i i
y x  and ( ){ }N

i
iπ  is the random permutation of 

the integers 1, , N . The random subsample of size N N<  is given by 

( ) ( ){ }
1

,
N

i iyπ π



x .  

4. Results 

The data were presented as a set ( ){ }samples, 0i ix y i n≤ <  with feature vector 
featuresn

i ∈x  , and the response iy ∈ . All the data we used for our case study 
were combined into a structured comma-separated values (CSV) file that con-
sisted of 209 observations and 141 covariates. The machine friendly notation of 
our covariates are generated in the following manner. There are in total 5 dif-
ferent components for creating the covariate names. The first shows whether the 
calculated summary statistics are for monthly values of EOLW/D = end of last 
wet/dry, or WS = wet season; these are then followed by whether it is an aggre-
gated mean, minimum red or maximum monthly values, followed by the nature 
of the descriptive statistic: first quartile, median, mean, third quartile, variance 
and Shannon Entropy; next comes the name of data source (e.g. rain = SILO da-
ta), and lastly the corresponding area in proximity to water (3 km, 5 km, 99 km 
= whole paddock). The covariate name of paha.99km/5km stores values for the 
whole paddock area measured in hectare and the proximity of water e.g. 5 km 
radius or 99 km for the whole extent of the paddock. As described in 2.2, the da-
ta set was partitioned by treating 80% as training data and the remaining 20% as 
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test data, resulting in 167 training and 42 test observations. 
The computational environment was the R statistical modelling software ver-

sion 3.3.3 [24] running inside Windows 7 SP1 (64-bit) on a 2.60 GHz Intel i7 
CPU with 16 GB of RAM. All of the results and illustrations were created in the 
R programming language. The GBM model implementations for this article 
were taken from the gbm packages. Table 1 show the distribution of the re-
sponse variable and the most influential covariates. Please see Figure 3 as a fur-
ther reference in regards of their individual contribution in the splitting process. 

One way of showing the complex relationships of the joint probability and 
contribution of each covariate in describing the response is through a relative in-
fluence plot. Relative influence measures are calculated by averaging the number 
of times a covariate is used for splitting, weighted by the squared improvement 
to the model as the result of each split. It is then scaled so the values sum to 100. 

In Figure 2 we present a relative influence plot for all of the available va-
riables. The relative influence of the 141 variables varies considerably, with some 
never contributing (0%) and only 20 variables having relative influence greater 
than 2.9% as depicted in Figure 3. The two variables that contribute the most 
are paha.99km at 10.8%, followed by paha.5km with 9.56%. The third strongest 
variable is EOLW.q3.abrad.3km which contributes with only %3.83. Figure 3 
shows the top five contributors on a log scale plot.  

Regularisation methods are used to constrain the fitting procedure so that it 
balances model fit and predictive performance [15]. Regularisation is particular-
ly important for BRT because its sequential model fitting allows trees to be add-
ed until the data are completely overfitted [25]. As discussed in section 3, intro-
ducing some randomness into a boosted model usually improves accuracy and 
speed and reduces overfitting [23]. 

Figure 4 describes the effect of regularisation on the squared error loss. The 
blue line is the error in the training data, the red line in the test data. The vertical 
dashed line indicates the optimal number of iterations/trees provided by the 
gbm model where the test data reaches its minimum, here at 2784 trees. After 
reaching the minimum, the graph of the squared error loss starts to increase 
again. This change of direction indicates the start of the model overfitting the 
training data and therefore poorly explaining the variation seen in the test data.  

 
Table 1. Distribution of the response variable and key predictors. Predictor names are 
described in text.  

Covariates Min Median Mean Max Std Dev. 

Response variable 8.33 7323.89 11,830.00 87,549.92 13,612.75 

1st: paha.99km 310.30 11,400.00 12,670.00 43,710.00 10,856.50 

2nd: paha.5km 310.30 7347.00 8569.00 28,200.00 7097.22 

3rd: EOLW.q3.abrad.3km 34.56 235.40 235.10 374.80 94.81 

4th: EOLD.mean.lgcg.99km 0.00 0.05 0.06 0.33 0.04 

5th: WS.max.var.rain.99km 0.00 16.69 33.99 412.10 50.45 
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Figure 2. Relative influence plots of all 141 covariates showing their contribution in the split-
ting process. The horizontal axis indicates the frequency of the contribution with the maxi-
mum of 10.8%. 

 

 
Figure 3. Subset of a relative influence plots of covariates with a contribution greater than 
2.9% (log scale). 

 

 

Figure 4. Squared error loss for the training (blue) and test (red) data as the number of trees 
in the ensemble increases to a maximum of 6000. The optimal tree size (2784) is shown with 
the dashed black line. 
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The bias-variance trade-off goal is to find the optimal number of trees where the 
bias and the variance are balanced and the error is minimised, since both under- 
and overfitting will have a negative effect on the predictive performance of the 
model. 

Histograms of the residuals for the test and training sets are shown in Figure 
5. In comparison to the training data the test data does not have multiple 
peaks—which often indicate that important variables are not yet accounted for— 
but there are some large positive outliers in the training data, beyond 50,000.  

Table 2 shows the results of the comparison of BRT and other methods. It is 
seen that the BRT performed best in fitting the data according to the RMSE. 

One of the biggest advantages in using a BRT is that it can handle missing 
values in the predictors by default. As part of the model diagnostics, we can plot 
how the data have been split, to which node they have been assigned, and the 
reduction in error for this single iteration/tree. If the tree is challenged with data 
that are missing a variable, the split is decided based on a surrogate variable, 
typically one that has a high correlation with non-missing observations. 

The R function pretty.gbm.tree() returns a data frame in which each row cor-
responds to a node in the tree (Table 3). Here, the root node (indicated by the 
row number 0) is split by the 84th SplitVar (splitting variable). Since the num-
bering starts with 0 the split variable is the 85th column in the training set of our 
case study. Rows in the table with a SplitVar of −1 are terminal nodes. A Split-
CodePred value of 301.171 denotes that all points less than 301.17 were allocated 
to the left node 1 (and hence all points greater then 301.17 were allocated to the 
right node 2). All points that had a missing value in this column were assigned  

 

 

Figure 5. Histogram of residuals in the test and training sets at the optimal tree size. 
 

Table 2. Overall model average prediction performance, based on 500 cross-validations. 

Method RMSE 

Random Forest 

BRT 

LASSO 

0.48 

0.38 

0.84 
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Table 3. Summary of gbm single tree prediction in pretty.gbm.tree. 

ID SplitVar SplitCodePred Left Right Miss. Err.Red Wt Prediction 

0 84 23.0117 10+×  1 2 3 29.72521 466 51.9659 10−− ×  

1 −1 31.8441 10−×  −1 −1 −1 0.00000 6 31.8441 10−×  

2 −1 41.5669 10−− ×  −1 −1 −1 0.00000 274 41.5669 10−− ×  

3 437 18.8800 10−×  4 5 6 31.31934 186 41.2208 10−×  

4 −1 57.7070 10−×  −1 −1 −1 0.00000 116 57.7070 10−×  

5 −1 33.3260 10−×  −1 −1 −1 0.00000 3 33.3260 10−×  
 

to the missing node 3. If the node is a terminal node then this is the prediction. 
The error reduction (29.73) indicates the reduction in the loss function as a re-
sult of splitting this node and there were 466 weights (weights will be on each 
node) in the root node. The weight indicates the total weight of observations in 
the node. The last column prediction of −0.000019659 denotes the value as-
signed to all values at this node before the point was split. The prediction col-
umn refers to individual trees and they are fit to predict the gradient of the loss 
function evaluated in the current prediction and the response. This is the gra-
dient part of Gradient Boosting. 

5. Discussion 

In this case study we demonstrated that BRT is able to address Big Data chal-
lenges, produce satisfying results and can deal with missing values by default. In 
addition, we obtained in-depth knowledge of the diverse and heterogeneous data 
sources used in this study, and identified key covariates that were most influen-
tial in describing the response variable. Further, descriptive statistics has been 
used to quantitatively describe our data and basic features of it by providing 
summaries that enables us to present our results in a meaningful way and there-
fore allowed for a simpler interpretation. The histograms of training and test 
data showed us the underlying frequency distribution of our continuous data. In 
this case both histograms are left skewed and demonstrate that the majority of 
data can be found on the left hand side. Because histograms use bins to display 
data it is not possible to see exactly what the specific values are for the minimum 
and maximum. However, we can see an approximation of the range of values, 
see how spread out the data are and that there are not outliers that we need to 
take care of. One of the biggest disadvantages of BRT is, that they are prone to 
overfit the data, thus appropriate settings for the hyperparameters need to be set 
in order to control the model building process. It is therefore advisable to tune 
the model hyperparameters as part of a pre-processing step in an iterative man-
ner prior to performing the final modelling. 

There are many features of BRT that are advantageous for the problem consi-
dered here. In addition to computational speed and accuracy of estimation, they 
can describe complex nonlinearities and interactions between variables, accom-
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modate missing data, include different types of input variables without the need 
for transformations, perform well in high-dimensional problems, and allow for 
different loss functions such as accurate identification of small areas of interest. 
Moreover, they can be visualised and interpreted easily, thus facilitating the 
translation of the analytic results to decision makers [18]. BRT have also been 
compared favourably with other flexible regression approaches such as genera-
lised additive models [14]. An example of BRT models helping in developing an 
understanding of missingness structure in the data is given by [26]. In this study 
Tierney [26] concluded that more knowledge was gained about the origins of the 
data and the data collection process, as well as the handling of missing values for 
future analysis. In another study [26], the author took a different approach to 
deal with missing values by taking summary values such as the mean over 
grouped data. 

There are several challenges in using BRT for this case study. First, the volume 
of one single satellite imagery is quite high even without aggregating or com-
bining them in a dense time series. One Landsat satellite scene covers 185 × 185 
km of land and has a file size of about 300 MB. The temporal resolution of 
Landsat is on average 16 days; thus, in one year there are 22 scenes of the same 
area to computationally process, analyse and store, a data volume of about 6.6 
GB. Examination of several years of satellite imagery yields in enormous 
geo-temporal datasets. Given these specifications, a substantive challenge is the 
storage, processing and management of massive volumes of raster data informa-
tion. This challenge is exacerbated when the other input variables are also con-
sidered, especially since these are of different data formats, sources, structure 
and spatial granularities. In order to decrease the volume we calculated descrip-
tive statistics based on individual paddock information instead of using pixel in-
formation for our analysis. 

The second challenge is determining the geographic area to include in the sta-
tistical models. The region of interest is spread over multiple stations, with mul-
tiple paddocks per station. However, not all of the land in a paddock is grazable. 
Jansen [27] investigated the quantification of livestock effects on the scalable, 
season specific metric of Landsat imagery and biomass identification and devel-
opment of a model assessing spatial relationships between spectral indices and 
ruminants over a growing season. The focus was on finding significant correla-
tions between existing biomass, vegetation metrics and management practices to 
quantify changes in vegetation due to grazing. Changes can be caused not only 
through overgrazing and loss but also due to changes in phenology caused by 
climate variability and also availability of water. The spatial distribution of ani-
mal impacts becomes organised along an utilisation gradient termed a piosphere 
[28]. Moreover, since animals need access to water, concentric rings can be cal-
culated based on the distance from naturally occurring water points in the pad-
docks. In the case study these were of order 3 km, 5 km and the size of the whole 
paddock. The area around those water locations is then deemed to be the availa-
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ble foraging area. In addition to the concentric rings there are also natural water 
streams which attract the animals and provide biomass along those linear fea-
tures. So-called linear buffer zones can be calculated along the streams to indi-
cate grazing areas nearby the water, like the concentric rings around the water 
points. The quantity and quality of biomass types can be extracted through the 
spectral values of the Landsat pixels and with additional spatial data, in particu-
lar fractional cover which identifies three categories of ground cover percentage 
(photosynthetic vegetation, non-photosynthetic vegetation and bare soil). 

The third challenge is incorporating spatial information with disjoint geo-
graphic areas (agricultural properties or stations), each of which comprises re-
gions (paddocks) of varying sizes. In the case study, the provided information 
was typically in the form of summary values per paddock per month. Seasonal 
(wet and dry) indicators were also used to help quantify the biomass [29] and 
define the spatial extent of the area due to varying rainfall. The beginning of the 
dry season is a critical time stamp in terms of predicting the amount of grass 
that will be available during the dry season and the corresponding decision re-
garding the number of animals to be placed in paddocks to avoid the negative 
impact of over- or under grazing. 

There is a large literature on the predictive, methodological and computation-
al properties of decision trees, including the Random Forest (RF) and Boosted 
Regression Tree (BRT) models used in this paper. The predictive accuracy of 
these methods has been investigated both theoretically [30] [31] [32] [33] and in 
various applications [34]. The latter authors also compared modelling ap-
proaches considered in this paper in the analysis of a large epidemiological da-
taset and concluded that RF, BRT and LASSO outperformed the conventional 
logistic regression framework. Methodologically, decision tree approaches be-
long to the family of greedy algorithms and select variables in a forward selec-
tion manner. Both of these features strongly influence the convergence speed 
and computational time [18] [23]. The computational time is also influenced by 
the choice of model parameters such as the learning rate and tree complexity 
[25]. For example, while a smaller shrinkage parameter slows down the learning 
rate and results in better predictive performance, the trade-off is a larger number 
of iterations in order to converge to a local minimum and therefore a longer 
computational time. The total running time also depends on the choice of loss 
function, regularisation method and the measure of convergence [31]. Empirical 
comparisons of the running time of different tree methods such as RF and BRT 
have also been published [35]. 

This article has focused on the use of a modern statistical machine learning 
technique, namely Boosted Regression Trees, to address a challenging real world 
problem in industry. We presented and demonstrated the efficiency of BRT for 
addressing Big Data properties with environmental data, specifically remotely 
sensed data for decision making. There are, of course, other methods that could 
be used for this type of problem. An appealing alternative that also deals with 
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big, noisy and spatial data is the Bayesian additive regression model [36], a 
Bayesian sum-of-tree model that generates samples from a posterior. Further, a 
sum-of-trees model is an additive model with multivariate components. Com-
pared to generalized additive models based on sums of low dimensional 
smoothers [37] [38], these multivariate components can more naturally incor-
porate interaction effects. This approach enables full posterior inference includ-
ing point and interval estimates of the unknown regression function as well as 
the marginal effects of potential predictors. Gathering large and diverse envi-
ronmental data is essential in this field and analysing those covariates is chal-
lenging. Big data has notable effects on predictive analytic, knowledge extraction 
and interpretation tools [39] and appropriate methods need to be applied in or-
der to gain new knowledge of data-driven discoveries that assist in decision 
making.  
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