

· · ·

Dynamic resource management in QoS controlled networks

Venkatesan Iyengar Prasanna · Armin R. Mikler · Ram Dantu · Kaja Abbas

V. I. Prasanna

Department of Computer Science and Engineering, University of North Texas

e-mail: iyengar@cs.unt.edu

A. R. Mikler

e-mail: mikler@cs.unt.edu

R. Dantu

e-mail: rdantu@unt.edu

K. Abbas

e-mail: kaja@unt.edu

Abstract

This paper addresses the problem of resource fragmentation (RF) in QoS controlled networks.

Resources are said to be fragmented when they are available in non-contiguous blocks and hence

cannot be utilized by incoming calls with high resource demands. This paper shows the effect of

resource fragmentation on QoS controlled networks and presents the Dynamic Resource

Redistribution (DRR) algorithm to counteract RF. The DRR algorithm reduces the effects of RF

by attempting to redistribute resources in different paths to make resources to incoming calls. A

variety of simulation experiments were conducted to study the performance of the DRR algorithm

on different network topologies with varying traffic characteristics. The DRR algorithm, when

used, increased the number of calls accommodated in the network as well as the overall resource

allocation in the network.

Keywords

QoS . RSVP . Resource fragmentation . Dynamic resource redistribution

1. Introduction

Many network architectures [3] have been designed to incorporate quality of service (Qos) [1,2,8,

12,17] approaches into networks. The two most popular architectures are Differentiated Service

Architecture (DiffServ) [4] and Integrated Service Architecture (IntServ) [5]. DiffServ is intended

to facilitate scalable service discrimination in the network without the need for per-flow state and

mailto:iyengar@cs.unt.edu
mailto:ar@cs.unt.edu
mailto:mikler@cs.unt.edu
mailto:rdantu@unt.edu
mailto:kaja@unt.edu

+

signalling in the node. Services are constructed by setting up appropriate bits in the IP header

fields and these bits are used to determine how a packet is forwarded in the network. Since

this architecture does not reserve any resources in the network, it is not preferred for most real

time applications. On the other hand, IntServ assumes that resources must be regulated in the

network in order to deliver QoS thereby making it more suitable for real time applications [5].

Regulation of resources may involve the allocation, maintenance and/or release of resources

in the network, which is usually accomplished using a signaling protocol. As varying resource

requests arrive and leave the network at arbitrary times, resources may become fragmented as

a consequence of being allocated to incoming calls. Resource fragmentation (RF) occurs in

the network when resources are available but cannot be utilized because they are available in

smaller fragments than the required amount along the path requested. Resource fragmentation

cannot be eliminated completely in spite of being undesirable. It occurs due to the random

arrival and departure of connections leading to allocation of resources as and when available,

usually on a first-come first-serve basis regardless of RF consequences. Moreover, signaling

mechanisms and routing protocols are independent of each other, which may lead to RF. For

instance, popular routing protocols like Routing Information Protocol (RIP) use hop count as the

metric. Hence, the path with the minimal hop count to the destination is selected. This may result

in many calls attempting to use the limited resources along the links of the shortest path. Some

incoming calls may therefore be dropped as resources may not be available along the shortest

path. This is a direct consequence of resource fragmentation because contiguous blocks of

resources on the selected path are not available, but there may be sufficient resources distributed

along other sub-optimal paths to the destination. Combining routing protocols and resource

reservation [11,13] signaling mechanisms to avoid RF is not a viable solution because signaling

mechanisms cannot be changed without affecting the routing algorithm and vice versa. One can

argue that constraint based routing [9] combines signaling and routing, however, adding multiple

constraints into routing, impedes the speed of the routing algorithm considerably [10]. Resource

fragmentation is a common problem in networks. This problem along with a possible viable

solution is illustrated here using Resource Reservation Protocol (RSVP) [6,7,15,16] controlled

networks.

1.1. Need for dynamic resource management

The most important component of resource management is the admission control. The main

purpose of admission control module is to regulate the use of resources in the network. Admission

control module cannot prevent RF because it does not occur only due to the use of sub-optimal

admission control algorithm. RF may occur due to optimal resource allocation in the past or

present but that optimal decision might be viewed as sub-optimal by incoming resource demand

in future. Lacking clairvoyance, the admission control module in the network is only capable

to optimize resource allocation with respect to status quo. That is, future resource demands are

unknown and cannot be considered in the current resource allocation decisions. As a consequence,

a particular resource allocation made at time t may turn out to be a sub-optimal upon arrival of

a new connection at time t b..t (from the new connection’s point of view). Dynamic resource

redistribution process proposed in this paper can be used to rectify previous decisions and reduce

the effect of RF.

1.2. Illustration of RF in RSVP-controlled networks

The Resource Reservation Protocol (RSVP) [6] is an IntServ signaling protocol used to allocate,

maintain and release resources in the network. RSVP is an Internet control protocol similar to the

Fig. 1 RSVP

Internet Control Management Protocol (ICMP) and the Internet Group Management Protocol

(IGMP), and cannot be used to send application data. RSVP operates above the IP layer and

is designed to work with the routing protocol implemented in the IP layer. Application data

is carried by transport protocols, such as UDP, and transport protocols interact with RSVP to

obtain a QoS guarantee. Resource allocation in RSVP involves two phases. In the first phase,

a path is established between the sender and the receiver. In the second phase, resources are

allocated along the path established in the first phase. Path establishment is accomplished by

sending a PATH message to the destination. The PATH message consults the local routing table

in the intermediate nodes to establish a path between the sender and the receiver. When the

PATH message reaches the destination, a RESV message is sent by the destination to allocate the

resources in the path established by the PATH message.

An RSVP source starts sending data only after its resource request has been granted by the

network. If sufficient resources are not available in the pre-determined path during the reservation

(RESV) phase, the call is dropped. To illustrate the flow of messages and the corresponding

fragmentation of resources, we consider a small section of a network as shown in Fig. 1. Assume

that a call (flow1) is active in the path ABCDE. In addition, consider a call request (flow2) that

originates at node A for destination F. An RSVP PATH message traverses downstream whereas

an RSVP RESV message traverses upstream towards the sender. Further assume that when the

RESV message reaches node D, the QoS request cannot be satisfied due to the lack of resources

along the path A–F.

If, instead of dropping the current call, node D could release a certain amount of resources and

redistribute it on other paths, it might be able to grant the requested QoS for flow2. Specifically,

if node D could redistribute the resources of flow1 through node G , it can release the resources

associated with flow1 and allocate them to flow2. It is imperative that the entire process of

redistributing resources should not affect the data flow of flow1 or any other flow in the network.

This can be accomplished by exchanging messages between the nodes concerned. The resource

redistribution is said to be dynamic because resource redistribution is attempted only when a

resource request fails, i.e., on demand.

This paper describes the resource redistribution process when a reservation request fails during

the reservation (RESV) phase. The algorithms developed and the messages used in dynamic re-

source redistribution are presented in Section 2. An analytical model of the resource redistribution

x

| |
| |

⊆ ∈ ≤ ≤ | |

≤ ≤

d

= { } y

j 1 n

process is presented in Section 3. The simulation results for the proposed algorithm are discussed

in Section 4. The paper is summarized in Section 5, along with recommendations for future

work.

2. Dynamic resource redistribution process

The Dynamic Resource Redistribution Process broadly involves two steps: selecting the flows

whose resources will be redistributed (Flow Select Algorithm), and redistributing the resources

of the selected flows without affecting existing flows in the network (Dynamic Resource Redis-

tribution (DRR) Algorithm). The DRR algorithm uses the Flow Select Algorithm to select flows

for redistribution. This section describes the Flow Select Algorithm and the DRR algorithm.

The terms redistribution of resources and redistribution of flows are used interchangeably in this

paper.
Let f a be any flow that is passing through node Na and has b as a flow identifier. Let f a.qos be

b b
the resource demand of flow f a. Let f j be the flow that is experiencing resource deficiency at node

b y

N j and flow identifier y. Assume that the network is represented by a graph G(V, E) where V

denotes the number of vertices/nodes and E denotes the number of edges/links in the network.

Let F be the set of all flows in the network. Let F j be the set of all flows passing through node N j

such that F j F and f j F j where 1 x F j . In other words, F j is the set of flows for

which resources have been allocated at N j . Any of the flows in F j are potential candidates for re-

source redistribution. That is, these flows may be rerouted so as to circumvent N j , thereby freeing

resources in N . Let F j
I

be the set of flows (f j , . . . , f j) whose resources will be attempted for

redistribution. Let ft
j denote a flow in F j

I

(1 t n). Let the transmission delay (dap) over all
links in the network be uniform. Let P be the fixed processing time associated with the resource

redistribution process at each node. An alternate path needs to be explored for all the flows in F j
I

starting from node Nk
j −1 (1 ≤ k ≤ n) to their respective destinations Nm (1 ≤ m ≤ n). Let T be

the set of possible resource/QoS requests. We have considered four classes of resource requests in

terms of buffer space, i.e., T 1, 2, 4, 8 . Node Nj

algorithm.

2.1. Flow select algorithm

attempts to accommodate f j using the DRR

When the resource request for a flow fails at a node, a certain number of flows from this node are

selected for redistribution, so as to free resources for the failed flow. This is done by implementing

either of two different algorithms in the following order

(1) Best Fit Multiple Flow Select Algorithm (MFS)

(2) Best Fit Single Flow Select Algorithm (SFS)

The MFS algorithm is called first in an attempt to redistribute resources of multiple flows,

each with a smaller resource request than that of the failed flow. For example, if a flow

with a resource request of 4 units of buffer space fails, we try to redistribute flows that

have resource requests less than four units each, totalling 4 units. That is, two flows hav-

ing resources of 2 units, or four flows having resources of 1 unit each are selected. The

approach of executing MFS before SFS appears prudent, as the redistribution of flows with

smaller resource requirements is more likely to succeed than that of flows with larger resource

requests.

| |

If the MFS algorithm fails, we call the SFS algorithm to find a single flow having at least the

same resources as that of the failed flow, and redistribute its resources.

The possible classes of resource requests (buffer space requested) considered in this algorithm

are 1, 2, 4, and 8 units. The flows selected for redistribution depend on the resource request (qos)

of the failed flow as follows:

For qos demand of 8, MFS will select 2 flows with resources of 4 units each, or 4 flows with

resources of 2 units each, or 8 flows with resources of 1 unit each. For the same demand SFS

will select 1 flow with resources of 8 units. For qos demand of 4, MFS will select 2 flows with

resources of 2 units each, or 4 flows with resources of 1 unit each. SFS will select 1 flow with

resources of 4 units, or 1 flow with resources of 8 units. For qos demand of 2, MFS will select

2 flows with resources of 1 unit each. SFS will select 1 flow with resources of 2 units, or 1 flow

with resources of 4 units, or 1 flow with resources of 8 units. For qos demand of 1, SFS will

select 1 flow with resources of 1 unit, or 1 flow with resources of 2 units, or 1 flow with resources

of 4 units, or 1 flow with resources of 8 units.

While choosing flows for redistribution, we do not block partially available resources until

the resource deficit is resolved. Instead, the resource request is partitioned into uniformed blocks

as explained in this section. Consider, a node gets a resource request of 4 units and 3 units of re-

sources are available in that node. In this case, we try to redistribute 4 units of resources from the

current node even though 3 units of resources are available. This is to ensure that there is no block-

age of resources (in this case 3 units) until the resource deficit (in this case 1 unit of resource) is

resolved.

Algorithm 1. Flow Select Algorithm

SET FLOWS to empty set.

IF qos = 1 THEN

CALL Single Flow Select with qos RETURNING FLOWS

ELSE

CALL Multiple Flow Select with qos RETURNING FLOWS

IF FLOWS < 1 THEN

CALL Single Flow Select with qos RETURNING FLOWS

ENDIF

ENDIF

RETURN FLOWS

2.2. Best fit multiple flow select algorithm (Multiple Flow Select)

In this algorithm, we first try to minimize the number of flows being redistributed at a

node. For example, if a resource request of the failed flow is 4 units, we can redistribute

either two flows with resource requests of 2 units each, or four flows with resource re-

quests of 1 unit each. We try to select two flows with resources of 2 units each for re-

distribution before attempting to select the latter. Thus the MFS algorithm attempts to se-

lect fewer flows to minimize the network overhead because of the resource redistribution at-

tempt. We try MFS before SFS because it is easy to redistribute multiple flows with small

resource demands than a single flow with a large resource demand. Max is a func-

tion that takes a set as a parameter and returns the largest element from the set (refer

Algorithm 2.2).

/\

÷

| |

{ | ∈ }

=

i

i

=

{ }

i i

i i

Algorithm 2. Best Fit Multiple Flow Select Algorithm

SETW to x x T x < qos

COMPUTE f (n) as qos n

SET flag to false

SET MFLOWS to empty set

WHILE W > 0 AND flag = false

COMPUTE a as Max(W)

COMPUTE b as f (Max(W))

Let (a,b) be a two tuple element selected to search F j for ’b’ number of flows

with a resource allocation of ’a’ units.

SET search success to false

SET search count to 0

SETi to1

WHILE i ≤ |F j | AND search success = false

IF f j .qos = a AND f j .rd flag = 0 THEN

INCREMENT search count by 1

IF search count b THEN

SET search success to true

ENDIF

ENDIF

INCREMENT i by 1

ENDWHILE

IF search success = true THEN

SET search complete to false

SET search count to 0

SETi to1

WHILE i ≤ |F j | AND search complete = false

IF f j .qos = a AND f j .rd flag = 0 THEN

SET f j .rd flag to 1

COMPUTE MFLOWS as MFLOWS ∪ f j

INCREMENT search count by 1

IF search count b THEN

SET search complete to true

SET flag to true

ENDIF

ENDIF

INCREMENT i by 1

ENDWHILE

ENDIF

DECREMENT W by a

ENDWHILE

RETURN MFLOWS

/\
{ | ∈ ≥ }

| |

i

i

{ }

−

i i

s 1 2 i d

2.3. Best fit single flow select algorithm (Single Flow Select)

A single flow with at least the same resource requirement as that of the failed flow is searched

first. For every failed flow, the node tries to find a single flow of the same or higher resource

requirement for redistribution. For example, if a flow with a resource request of four units fails,

and the MFS algorithm is also unsuccessful, an attempt is made to find a single flow with

resources of 4 units for redistribution. If this also fails, an attempt is made to find a single flow

with resources of 8 units. Min is a function that takes a set as a parameter and returns the

smallest element from the set (refer Algorithm 2.3).

Algorithm 3. Best Fit Single Flow Select Algorithm

SETW to x x T x qos

SET flag to false

SET SFLOW to empty set

WHILE W > 0 and flag = false

COMPUTE a as Min(W)

Let a be an element selected to search F j for a single flow with a resource allocation of

‘a’ units.

SET search success to false

SETi to1

WHILE i ≤ |F j | AND search success = false

IF f j .qos = a AND f j .rd flag = 0 THEN

SET f j .rd flag to 1

COMPUTE SFLOW as SFLOW ∪ f j

SET flag to true

ENDIF

INCREMENT i by 1

ENDWHILE

DECREMENT W by a

ENDWHILE

RETURN SFLOW

2.4. Special messages used in the DRR algorithm

In order to facilitate the signaling necessary to dynamically redistribute resources, extra messages

need to be incorporated into RSVP. There are a total of eight extra messages that are used,

henceforth referred to as special messages. Special messages are used to establish new routes

and to allocate resources along the new routes. To demonstrate the working of these messages,

Let Pk(Nk, Nk, N k , . . . , N k , . . . , Nk) denote the sequence of nodes (explored by the PATH
message) along a path from sender Nk to receiver Nk for any flow k. Assume that a resource

s d
request fails at a node N j due to the lack of resources. Let Nk be the node along the path Pk

that is visited just before N
j 1

j . The special messages are described below.

S TRIGGER Message: When a resource request fails at a node, the S TRIGGER message
is sent to Nk

j −1
to trigger the generation of a S PATH message.

−

S PATH Message: The S PATH message explores new routes to the destination. The

S PATH message must ensure that the new route does not form a loop and does

not contain node N j . If the above two criteria cannot be satisfied, the S PATH mes-

sage fails and does not proceed further. No attempt is made to find another alternate

path.

S RESV Message: The S RESV message is sent by the destination node along the reverse
path of the S PATH message to Nk

j −1 . This message is sent to allocate resources in

each node in the above reverse path. However, no resources are allocated in those nodes

(common nodes) that are common to old and new routes. This is due to the fact that they

already have the required resources. Nevertheless, in the common nodes, a flag (rd flag)

is set to indicate that the resources of this flow cannot be redistributed. When resources

are not available, S RESV fails, and an S RTEAR message is sent to the destination

to release the resources. No further attempt is made to allocate resources on any other
alternate path. When S RESV reaches Nk , an S CONFIRM message is sent to the

destination along the new route.
j −1

S CONFIRM Message: The S CONFIRM message is sent to confirm the reservation of

resources along the new path to the destination and to change the path states in the

common nodes to reflect the new previous hop and next hop entries along the new path.

Until S CONFIRM reaches all nodes common to the old and new paths, they retain

their old path state. The old path state is maintained to ensure that in the event of the

failure of the S RESV message, the old path is followed. However, if the S RESV mes-

sage is successful, the new path needs to be followed and the path state information

needs to be updated in these nodes. When the S CONFIRM message reaches the desti-

nation, an S TEAR message is sent to release resources along the old path in the reverse

direction.

S REFRESH Message: In RSVP, refresh messages are sent periodically to maintain the

reservation state. If the nodes do not receive a periodic refresh message, they release their
resources. The S REFRESH message is sent by Nk

j −1 along the old path to ensure that

resources are not released prematurely before being allocated along the new path. If the

new path is longer than the old path, messages might take longer to reach the destination

along the new path. The destination or common node may release the resources due to

late arrival of refresh messages. This would result in loss of path to the destination. To

keep the resource reservation alive in common nodes, the S REFRESH message must be

sent.
NOTIFY SUCCESS Message: The NOTIFY SUCCESS message is sent by Nk to no-

tify N
j 1

j of the successful redistribution of resources. There may be more than one

NOTIFY SUCCESS message, depending on the qos of the call that failed at N j . Upon

receiving all the NOTIFY SUCCESS messages, N j allocates the freed resources to the

failed call.

S TEAR Message: The destination node sends the S TEAR message along the reverse

old path to release the resources. This is done only after the destination receives the

S CONFIRM message. Resources are not released in those nodes that are common to

the old and new paths.

S RTEAR Message: The S RTEAR message originates from the node where the S RESV

message fails and is sent to the destination node. The S RTEAR message re-

leases resources in each node it traverses on its way to the destination node.

Resources are not freed in those nodes that are common to the old and new

paths.

k

k

k

k

k

y

y

y

1 i y

2.5. Dynamic resource redistribution algorithm

This subsection describes the algorithm that determines how the resources are redistributed

without affecting the data flow in the network.

Algorithm 4. Dynamic Resource Redistribution Algorithm

1. Let S be a subset of F j consisting of flows satisfying the Flow Select algorithm. Let i = |S|,
and S ={ f j ... f j }. If i is zero, exit the algorithm and drop the flow f j , otherwise goto 2.

2. A timer TNS is started at N j for the successful notification of redistribution of resources

(NOTIFY SUCCESS) by each of the flows in set S. A counter C is initialized to i.

3. For each flow in set S, f j , where 1 ≤ k ≤ i , the following steps are carried out:

(a) Let PHOPk be the node on a path Pk that is visited just before Nj . An S TRIGGER message

is sent to PHOPk from N j , to trigger the S PATH message.

(b) From PHOPk an S PATH message is sent to the destination Dk of flow f j , along a new

path PkI . This new path is determined in such a way that it does not contain N j , nor any

loops.

(c) After receiving the S PATH message, node Dk sends an S RESV message to PHOPk along

the reverse path of Pk I . If the S RESV message fails before reaching the node PHOPk , an

S RTEAR message is sent to node Dk along the forward path Pk I .

(d) When the S RESV message reaches PHOPk, PHOPk does the following:

(i) It sends an S CONFIRM message to the node Dk along the new path PkI .

(ii) It sends an S REFRESH message along the old path of flow f j to node Dk.

(iii) It changes its path state to reflect the new path along Pk I to node Dk .

(iv) Node PHOPk finally sends a NOTIFY SUCCESS message after a specified period of

time, to N j to indicate successful redistribution of resources for flow f j . This delay is

introduced to allow the S CONFIRM message to reach the destination and confirm the

new path.

(e) Upon receiving the S CONFIRM message from PHOPk, node Dk sends an S TEAR mes-

sage to N j along the old path of flow f j to release the resources. Dk also updates its state

to reflect the new path.

(f) On receipt of a NOTIFY SUCCESS message from PHOPk,

(i) If the timer has not timed out, N j decreases the counter C by 1. If C becomes 0,

N j releases the resources it had allocated to flows in set S and re-allocates them to

flow f j .

(ii) If the timer has already timed out when N j receives the NOTIFY SUCCESS message for

a flow, N j removes the state information for the flow that was redistributed and the same

flow now maintains its new path.

4. If the timer TNS at N j times out before it receives the NOTIFY SUCCESS message from all

the flows in set S, then flow f j is dropped.

2.5.1. Illustration of the DRR algorithm

Consider a part of the network as shown in Fig. 2. Let a flow f j with a resource request of 4 units

of buffer space fail at node j . The subscript y identifies a unique flow in node j . Assume that the

Fig. 2 Example of resource redistribution

Flow Select algorithm selects two flows f j and f j with resource allocation of 2 units of buffer

yI yII
j j

space to redistribute. Algorithm 4 is used to redistribute resources of fy I and fy II . Figure 2 show
paths taken by special messages.

2.5.2. Maintaining a path at all times

When an attempt is made to redistribute the resources of a flow on a different path (new

path), the old path is not affected until its resources are successfully redistributed. In other

words, at least one path remains active between the sender and the receiver when the DRR

algorithm is applied to a flow unless and until it is explicitly torn down by the sender or its

reservation state times out. When the S RESV message reaches those nodes that are common

to the old and new path, it does not delete the old path information. Thus it is guaranteed

that if the S RESV message fails before reaching its intended receiver node, the old path is

preserved.

When the S RESV message reaches its intended receiver, it sends an S REFRESH message

along the old path to the destination, to keep the old path and reservation states alive. If the new

path is longer than the old path, reservation state in the destination node may timeout due to

delayed arrival of refresh messages. Therefore an explicit refresh message is sent to keep the

path and reservation states alive in the destination node.

When the S RESV message fails due to lack of resources, the S RTEAR message is sent

to the destination to release the resources allocated so far. Resources are not released in the

nodes that are common to the old and new path, as this would mean loss of resources, not

only for the new path, but for the old path as well. Thus, the old path is maintained. The

NOTIFY SUCCESS message is sent to node j after a specific delay of time. This delay is

introduced to allow the S CONFIRM message to reach the destination and confirm a new

path to the destination. If there is no delay in sending the NOTIFY SUCCESS message and

the destination is not yet aware of the new path, it sends a RESV message to maintain the

reservation state along the old path. Upon reaching node j , the RESV message may fail if

the node has already received all the NOTIFY SUCCESS messages and removed its reserve

state.

2.5.3. Alternate path with no loops

When an alternate path exploration is started at N j , a timer is started for the response of this

exploration. If the response is not received within this timeout interval , the call is dropped.While

exploring alternate path, the S PATH message carries the identity of N j . If this message comes to

N j again before reaching destination D, it will not proceed further and would eventually lead to

timeout at N j . This ensures that the alternate path does not contain loops. The S PATH message

also will not go on forever as it will be dropped when the Time to Live (TTL) of its Internet

Protocol (IP) header becomes zero. The alternate path is selected at random and depends on the

routing protocol used. The effect of alternate path discovery and resource allocation on that path

on the call setup time needs to be explored.

2.5.4. Special cases

If a PATH TEAR or RESV TEAR message for one of the flows being redistributed is received at

node j , the resources reserved for that flow at node j are not released, as they are being held for

the new flow. Node j waits until it receives a NOTIFY SUCCESS message for all the flows that

are being redistributed or until it times out before releasing the resources to the new flow.

After sending the S PATH message, the reserve state in PHOPk may be explicitly deleted by

the sender or it may time out. When the S RESV message reaches its intended destination, it will

not find a reservation in that node. In this case, an S RTEAR message is sent to the destination

to release all the resources for the flow, as they are not required any more.

3. Analytical model of the resource redistribution process

An analytical model for the DRR algorithm is presented in this section. The resource redistribution

process at N j and the actual dynamic resource redistribution along alternate paths are illustrated

using state diagrams. The notations used in the proofs herein are defined in the previous section.

Fig. 3 Example of resource redistribution

| |−

Fig. 4 Resource redistribution

process at N j

Fig. 5 Expansion of RRRS

The state diagram in Fig. 4 illustrates the states of N j . In RRRS, resource redistribution

request is sent for all flows in F j
I

. If the resource redistribution for all flows in F j
I

is successful,

then their resources will be transferred to f j . Otherwise, f j will be dropped.
y y

Figure 5 is an illustration of the RRRS state in Fig. 4. The figure depicts the state diagram for

each flow ft
j in F j

I

while an attempt is made to redistribute their resources. In APSS, an alternate

path for a flow in F j
I

is explored. If an alternate path cannot be found, then the algorithm does

not proceed further. The time taken to discover that an alternate path is not found is finite as the

number of nodes visited is atmost V 1 assuming that the network does not contain loops.

Even if the network contain loops, this discovery process comes to an end when TTL field in the

IP header reaches its maximum limit. Unavailability of alternate paths leads to timeout at N j .

If an alternate path exists, then resources are reserved in this path. Let Pt
j denote the alternate

path for ft
j (a flow in F j

I

) that circumvents N j . Successful allocation of resources on Pt
j leads

to RCANS. In this state, Pt
j is confirmed and a notification message is sent to N j to indicate

successful redistribution of resources for ft
j . However, shortage of resources along Pt

j leads to

RRS where resources allocated so far in that path are released. After the resources are released,

the algorithm does not proceed further. Shortage of resources along the alternate path also leads

to timeout in N j .

Corollary 3.1. The resource redistribution process converges in finite time.

After resource redistribution requests for all flows in F j
I

have been sent, the algorithm waits

= { }

for a fixed time (TNS) to receive the notification for successful redistribution of resources. In the

absence of such a notification, f is dropped and the STOP state is entered. Otherwise, required

resources are transferred to f and the STOP state is entered. Since TNS and time taken to transfer

the resources is finite, the STOP state is entered after finite time.

4. Results

The main focus of this paper is to evaluate the overall performance of RSVP (unicast communi-

cations) when Dynamic Resource Redistribution (DRR) is incorporated. A variety of simulation

experiments has been conducted to measure the performance of RSVP DRR. The simulator,

traffic model, network model and the experiments conducted are described in this section.

An object oriented event based simulator (NRLSIM) has been developed to measure the

efficacy of the DRR algorithm. The NRLSIM is a simulation engine that can be used to simulate

any event driven system. The type and the nature of the event is transparent to the simulator

and can be custom defined by the model. The simulator acts as a black box and can be used to

simulate any defined event.

Traffic in the network is modeled in terms of flow requests with specific buffer requirements. A

request is characterized by a source node, destination node, buffer requirements and the duration

of this flow. The generation of requests is Poisson distributed with an average arrival rate of λ
calls per minute. The duration of each flow is exponentially distributed with an average duration

of D minutes. Buffer space requests are uniformly and non-uniformly distributed over the set

T 1, 2, 4, 8 .

The DRR algorithm has been tested on different networks modeled by graphs of different

sizes and average node degrees (d¯). Every node in the network acts both as a router and end

host. The state of a node refers to the collective state values of data structures associated with the

node, such as path state, reserve state, buffer space, etc. These data structures may grow or shrink

depending on events that occur in the node. An event may or may not change the state of the node.

For example, upon receiving a PATHTEAR message for a specific flow, the node may have to

remove its path and reserve states if they already exist for that flow. Otherwise, no action is taken.

Links in all topologies have a fixed transmission delay of 3 and 2 ms for RSVP messages and

special messages respectively. Each node in the network is assumed to be RSVP aware, i.e., it can

process and forward RSVP and special messages. Messages sent over any link in the network are

also assumed never to be lost or damaged. The network remains static throughout the duration

of the simulator. Each node maintains a routing table with multiple routes for all destinations,

if possible. Dijkstra’s shortest path algorithm is used to find the shortest path between nodes to

complete the routing tables in all the nodes present in the network before starting the simulation

of the algorithm.

4.1. Experimental analysis

In all the experiments, the performance of RSVP with DRR (RSVP DRR) is compared to con-

ventional RSVP. There are three broad categories for comparisons—number of drops (request

failure due to resource unavailability), resource utilization in the network, and the time com-

plexity. When RSVP is simulated, all the traffic characteristics (source node, destination node,

resource request, duration of flow and time of request) are stored and the same traffic pattern

is used while executing RSVP DRR. Experiments have been conducted on a 30 node network

with varying average node degrees of 3, 5 and 7. These experiments were conducted for two

different distributions of QoS requests. In the first set of experiments, calls with QoS requests of

Fig. 6 Cumulative drop graph for a network size of 30 nodes with an average node degree 5 (non-uniform QoS

request distribution)

1, 2, 4 and 8 units of buffer space are generated with a probability of 50%, 25%, 15% and 10%

respectively. In the second set of experiments, calls with QoS requests of 1, 2, 4 and 8 units of

buffer space are each generated with a probability of 25%. Different average call holding times

(tavg) have been used for the experiments. The comparisons between RSVP DRR and RSVP are

discussed for different tavg, in terms of total number of calls dropped and resource utilization in

the network.

4.2. Non-uniform QoS requests

In these experiments, calls with QoS requests of 1, 2, 4 and 8 units of buffer space are generated

with a probability of 50%, 25%, 15% and 10% respectively. The number of calls dropped in

RSVP DRR and RSVP is measured and compared, in order to evaluate the performance of

RSVP DRR. The results confirm that fragmented resources in the network increase the number

of calls dropped in conventional RSVP, and that the redistribution of resources reduces the degree

of fragmentation in the network.

When average node degree (d¯) of the network is 5, RSVP DRR compares favorably to RSVP

in terms of the number of calls dropped. Initially, there are no call drops in the network, as shown

in Fig. 6. After a significant number of calls have been established, resources may become

unavailable for new incoming calls. Incoming calls are dropped when their resource requests

cannot be granted by the network. At this point, a steep increase in cumulative call drops is

observed due to resource unavailability. However, the slope of the curve that characterizes the

number of calls dropped decreases after a period of time. This decrease is a direct consequence

of resources becoming available in the network after the initial calls have been serviced.

The number of calls dropped increases as the average holding time of a call increases as can

be seen in Fig. 6. There is a marked difference in the number of calls dropped when tavg is 5

minutes and when tavg is 20 minutes. This is due to the fact that calls request and hold resources

for a shorter duration, and thereafter release the resources within a short period of time in the

former. This greatly reduces the number of drops. The longer a call holds resources, the less

available resources there are in the network for that duration, and consequently higher are the

number of calls dropped.

RSVP DRR closely follows the performance of RSVP, but is nevertheless an improvement

on it in terms of the number of calls dropped (Fig. 6). When tavg is small, RSVP DRR is more

Fig. 7 Resource utilization for a

network size of 30 nodes with an

average node degree of 5

(non-uniform QoS request

distribution)

effective than when tavg is large, as resources are available sooner for redistribution. There is a

decrease of 36% in the number of calls dropped in RSVP DRR over RSVP, when the average

call holding time is 5 minutes. When tavg is increased, this percentage decreases (16% for 10

minutes, 9% for 15 minutes and 7% for 20 minutes) as resources are held longer by the calls

before being released.

Resource utilization is a measure of the ratio of allocated resources over total available

resources in the network. Resource fragmentation leads to under-utilization of resources in

the network. This experiment has been conducted to investigate the effect of redistribution of

resources on resource utilization in the network.

Resource utilization in the network is higher with RSVP DRR than with RSVP, as seen in

Fig. 7. When the network succeeds in redistributing resources, more resources in the network are

allocated. Further, when tavg is large, resources of more calls will be redistributed as compared

to when tavg is small. It can be concluded that redistribution of resources reduces resource

fragmentation and thereby improves resource utilization in the network over conventional RSVP.

Time complexity of an algorithm is the total time taken to execute the algorithm under

given conditions. It is likely that a call will re-attempt to avail resources even after initially

being denied. This holds true for both RSVP DRR and conventional RSVP. In this experiment,

successive attempts are made to accommodate a call until its resource request can be granted by

the network. Usually, unavailability of resources leads to a call being dropped in both RSVP DRR

and RSVP. The interpretation of unavailability of resources in RSVP DRR is that the attempt(s)

to redistribute the resources was also unsuccessful. When a resource request fails, an attempt is

made to allocate resources for the failed flow by re-attempting the request until it is successful.

The delay between each attempt to allocate resources is exponentially distributed with an average

delay of 5 minutes. This experiment compares the time complexities of RSVP DRR and RSVP

and projects the total time required to accommodate all calls in the network. The resource request

for a denied call is repeated until its request is granted by the network. The likelihood of a call

succeeding after having failed initially in RSVP DRR is higher than in RSVP (see Fig. 8).

This is due to the fact that resource redistribution is successively attempted in RSVP DRR to

grant resources to the denied call, which increases the chances that the call is successful sooner.

The results verify that all calls are indeed, more likely to succeed with RSVP DRR, within a

shorter period of time than in RSVP. Thus, the total time taken to execute RSVP DRR is less

than RSVP.

Fig. 8 Time complexity experiment

for a network size of 30 nodes with

an average node degree of 5

(non-uniform QoS request
distribution)

Fig. 9 Cumulative drop graph for a
network size of 30 nodes with an

average node degree of 7

(non-uniform QoS request

distribution)

Figure 8 illustrates the time complexity of RSVP and RSVP DRR. Initially, the same number

of calls are active in the network for both RSVP and RSVP DRR. This is because there are no

call drops and all incoming calls can be accommodated as resources are available in the network.

For subsequent calls, when resources may become scarce in the requested path, and RSVP DRR

tries to redistribute resources to accommodate more calls. Thus, there is an increase in the number

of active calls in the network for RSVP DRR than for RSVP. Consequently RSVP DRR takes

less time to accommodate all calls as compared to RSVP, as it attempts to redistribute resources

if necessary. RSVP does not redistribute resources, and therefore has to wait until resources

are available in contiguous blocks. The last recorded time in the time complexity graph is the

time at which all calls have been successfully granted resources by the network. RSVP DRR

takes approximately 70 minutes versus 94 minutes taken by RSVP to successfully accommodate

all calls in the network (see Fig. 8). Therefore, the redistribution of resources implemented in

RSVP DRR reduces the total time taken to accommodate all calls in the network.

When d¯ is increased to 7, the number of calls dropped decreases in RSVP. This is due to the

fact that there are more paths between any two nodes in the network. The RSVP DRR algorithm

also performs well as shown in Fig. 9. However, the percentage difference in number of calls

dropped between RSVP DRR and RSVP is not as high as might be expected. This is due to

the fact that the size of the routing table is finite. That is, a routing table can store only finite

number of routes (next hop entries) for a particular destination. Even though d¯ is 7, the number

Fig. 10 Cumulative drop graph for

a network size of 30 nodes with an

average node degree of 3

(non-uniform QoS request

distribution)

of alternate path choices has been limited, thereby curtailing the performance of RSVP DRR.

The results for resource utilization and time complexity mimic those that are observed in Figs. 7

and 8 respectively.

When d¯ is reduced to 3 (Fig. 10), the total number of calls dropped using RSVP DRR is

higher than with RSVP. One plausible explanation is that in a sparse network, the number of

nodes directly connected to other nodes is small. Hence there are few alternate paths that can be

used for redistribution of resources. Even if a path is found to redistribute resources, another call

originating at one of the nodes along the selected alternate path may have to be dropped because

resources were redistributed on this path.

4.3. Uniform QoS requests

In these experiments, calls with QoS requests of 1, 2, 4 and 8 units of buffer space are generated

with a probability of 25% each. These experiments measure the performance of RSVP DRR

and RSVP in the scenario where the traffic is burst with an equal probability as that of normal

traffic. The experiments reveal that there are more calls dropped here than in the non-uniform

distribution of QoS requests. Lower class QoS requests are easier to accommodate in the network,

than higher class QoS requests. Here, the distribution of calls with a QoS request of 8 units is

the same as that of calls with a QoS request of 1 unit. Hence, the number of calls dropped in this

distribution increases.

When d¯ is 5 (see Fig. 11), RSVP DRR compares favorably to RSVP in terms of the number of

calls dropped. However, the total number of calls dropped increases from what has been observed

for the non-uniform QoS request distribution. This is due to the fact that more calls with resource

requests of 8 and 4 units are generated and not all of them can be accommodated. The difference

between the total calls dropped for RSVP DRR and RSVP is less than that in the non-uniform

QoS request distribution. Redistribution of resources of calls with a high QoS demand is more

difficult than of calls with a low QoS demand. Since calls with a high QoS request are generated

with the same probability as calls with a low QoS, it is more difficult to accommodate the former

in the network. This contributes to the decrease in the difference between the total number of calls

dropped for RSVP DRR and RSVP. Irrespective of the call holding times, it is observed that the

change in QoS request distributions affects the difference in the number of calls dropped between

RSVP DRR and RSVP. The average call holding times however, contribute to the increase in

the total number of calls dropped i.e., we observe an increase in calls dropped for large tavg.

Fig. 11 Cumulative drop graph for a network size of 30 nodes with an node degree of 5 (uniform QoS request

distribution)

Fig. 12 Time complexity

experiment for a network size of 30
nodes with an average node degree

of 5 (uniform QoS request

distribution)

The experiment for time complexity (Fig. 12) in a uniform traffic distribution shows that the

time taken to successfully accommodate all calls in the network is greater than the time taken in

a non-uniform QoS request distribution (Fig. 8), in both RSVP DRR and RSVP. This difference

is due to the generation of increased calls with QoS requests of 4 and 8 units. The time taken to

allocate and/or redistribute resources for these calls is longer, contributing to the increased time

taken to accommodate all calls in the network.

RSVP DRR compares favorably to RSVP for both uniform and non-uniform distributions of
resource demands. All the experiments discussed in this section were run on a 30 node graph

with varying topologies (i.e., varying d¯). However, our results show that RSVP DRR scales well

when the network size increases.

5. Summary

The Dynamic Resource Redistribution algorithm implemented with RSVP (RSVP DRR) reduces

the effects of resource fragmentation in the network. The results for both non-uniform and

uniform distribution of QoS requests indicate that RSVP DRR is an improvement on RSVP

in terms of the number of calls dropped. There are fewer calls dropped with RSVP DRR than

Fig. 13 Message complexity for a

network size of 30 nodes with an

average node degree of 5

with RSVP, and resource utilization in the network increases. This is a direct consequence of

reduced resource fragmentation when RSVP DRR is used. The magnitude of QoS demand is

a factor in the performance of RSVP DRR. When the QoS request is higher, calls are more

likely to be dropped, as it is more difficult to accommodate such calls, and redistribute resources

for large QoS requests. The average node degree of the network, and availability of multiple

routes to the same destinations also affect the performance of RSVP DRR. This is due to the fact

that resources are redistributed on alternate paths and availability of multiple paths obviously

improves the performance of RSVP DRR.

RSVP DRR, as explained in the previous sections, uses the Flow Select algorithm to select

the flows whose resources may be redistributed in the network. In this specific algorithm, only

an even number of flows is selected for resource redistribution. This algorithm could be extended

to select an odd number of flows for resource redistribution.

It should be noted that RSVP DRR is implemented only for unicast communications in this

paper. However, RSVP itself was developed keeping multicast communications in mind, and it is

currently being supported in many networks that facilitate multicasting. Therefore RSVP DRR

needs to be extended for multicast communications.

The performance of RSVP DRR is better than RSVP because resources are redistributed on

alternate paths. As mentioned earlier, the selection of the flows for redistribution depends on

the Flow Select algorithm. However, alternate paths to the destinations of these selected flows

are selected at random. Intelligent route selection algorithms can be incorporated for better

performance.

Message overhead is a measure of the number of extra messages exchanged by nodes in the

network due to the dynamic redistribution of resources. As seen in Fig 13, RSVP DRR has

a higher message overhead (44% more) than that of conventional RSVP. The performance of

RSVP DRR, nonetheless offsets this increase in message count.

Implementing timers in the intermediate nodes may eliminate the exchange of some spe-

cial messages thereby reducing the message overhead of RSVP DRR. Optimizing the message

overhead is left as future work. For example, sending an explicit S RTEAR message could be

avoided, if timers were implemented in the nodes to release resources after a period of time, if

the S CONFIRM message were not received. This is an alternative to be explored in the future.

Guaranteed Load Service (GLS) [14] of Integrated Service Architecture (IntServ) controls

the queuing delay experienced by a datagram and guarantees that this delay does not exceed a

maximum limit. This guarantee is valid only as long as the flow conforms to its traffic specification

advertised before the data transmission. RSVP is an IntServ signaling protocol used to provide

GLS. This factor (delay guarantee) is however not considered by RSVP DRR while redistributing

resources and exploring new paths for the flows of redistributed resources, as the number of

intermediate nodes on the new path is unknown. The new path may be longer than the old path,

thus possibly increasing the queuing delay guaranteed by GLS. The repercussions of such an

increase in queuing delay are yet to be investigated. This issue was not addressed in this work,

since the experiments were conducted on the assumption that the maximum allowed queuing

delay would not be exceeded. It is possible that in spite of being longer, the alternate path for

the flows to be redistributed may not have a longer queuing delay. Nevertheless, it is possible

that this assumption may not hold true in all cases, and consequently resource redistribution may

affect the guaranteed QoS.

The algorithm presented in this paper presents an extension to RSVP, to facilitate dynamic

redistribution of resources. Ongoing research is focusing on the above discussed issues, and their

results will be made available.

References

1. Introduction: Quality of Service Overview, CISCO Systems. [Online]. Available:

www.cisco.com/univercd/ cc/td/doc/product/software/ios120/12cgcr/qos c/qcintro.htm

2. White Paper—The Need for QoS, July 1999. stardust.com Inc. [Online]. Available:

citeseer.ist.psu.edu/ 275228.html,

3. C. Aurrecoechea, A. Campbell, and L. Hauw, A survey of QoS architectures, Multimedia Systems

6(3) (1998) 138–151.

4. S. Blake, D. Black, M. Carlson, et al., An architecture for differentiated services, (1998) RFC

2475. [Online]. Available: www.faqs.org/rfcs/rfc2475.html.

5. R. Braden, D. Clark, and S. Shenker, Integrated services in the internet architecture: An overview,

(June 1994) RFC 1633. [Online]. Available: www.faqs.org/rfcs/rfc1633.html.

6. R. Braden, L. Zhang, S. Berson, et al., Resource reservation protocol (RSVP)—Version 1

functional specifi- cation, (September 1997) RFC 2205. [Online]. Available:

www.faqs.org/rfcs/rfc2205.html.

7. R. Braden, D. Estrin, S. Berson, et al., The design of RSVP protocol, ISI, Tech. Rep., (July 1996).

8. P. Ferguson and G. Huston, Quality of Service—Delivering QoS on the Internet and in

Corporate Networks. John Wiley and Sons (1998).

9. B. Jamoussi, R. Callon, R. Dantu, et al. , Constraint-based LSP setup using LDP,” (Jan 2002)

RFC 3212. [Online]. Available: www.faqs.org/rfcs/rfc3212.html.

10. F. Kuipers, T. Korkmaz, M. Krunz, and P. Mieghem. A review of constraint-based routing

algorithms, Technical University Delft, The Netherlands, Tech. Rep., (June 2002).

11. D. Mitzel, D. Estrin, S. Shenker, and L. Zhang, A study of reservation dynamics in integrated

services packet networks, in: INFOCOM (2) (1996) pp. 871–879.

12. Microsoft Corporation, QoS Technical White Paper, (September 1999) [Online]. Available:

www.microsoft.com/windows2000/techinfo/howitworks/communications/trafficmgmt/qosover.

asp.

13. S. Shenker and L. Breslau, Two issues in reservation establishment, in: Proceedings of ACM

SIGCOMM’95, (Cambridge, MA, 1995).

14. S. Shenker, C. Partridge, and R. Guerin, Specification of guaranteed quality of service,

(September 1997)RFC 2212. [Online]. Available: www.faqs.org/rfcs/rfc2212.html.

15. W. Stallings, High-Speed Networks : TCPIP and ATM Design Principles (Prentice Hall

1997), ISBN: 0135259657.

16. J. Wroclawski The use of RSVP with IETF integrated services, (September 1997) RFC

2210. [Online]. Available: www.faqs.org/rfcs/rfc2210.html.

17. W. Zhao, D. Olshefski, and H. Schulzrinne, Internet quality of service: An overview, Columbia

University, New York, Tech. Rep., (2000) [Online]. Available:

citeseer.ist.psu.edu/zhao00internet.html

http://www.cisco.com/univercd/
http://www.faqs.org/rfcs/rfc2475.html
http://www.faqs.org/rfcs/rfc1633.html
http://www.faqs.org/rfcs/rfc2205.html
http://www.faqs.org/rfcs/rfc3212.html
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/trafficmgmt/qosover.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/trafficmgmt/qosover.asp
http://www.faqs.org/rfcs/rfc2212.html
http://www.faqs.org/rfcs/rfc2210.html

