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Abstract 
Background: Interventions are now in place worldwide to reduce 
transmission of the novel coronavirus. Assessing temporal variations 
in transmission in different countries is essential for evaluating the 
effectiveness of public health interventions and the impact of changes 
in policy. 
Methods: We use case notification data to generate daily estimates of 
the time-dependent reproduction number in different regions and 
countries. Our modelling framework, based on open source tooling, 
accounts for reporting delays, so that temporal variations in 
reproduction number estimates can be compared directly with the 
times at which interventions are implemented. 
Results: We provide three example uses of our framework. First, we 
demonstrate how the toolset displays temporal changes in the 
reproduction number. Second, we show how the framework can be 
used to reconstruct case counts by date of infection from case counts 
by date of notification, as well as to estimate the reproduction 
number. Third, we show how maps can be generated to clearly show 
if case numbers are likely to decrease or increase in different regions. 
Results are shown for regions and countries worldwide on our website 
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(https://epiforecasts.io/covid/) and are updated daily. Our tooling is 
provided as an open-source R package to allow replication by others. 
Conclusions: This decision-support tool can be used to assess 
changes in virus transmission in different regions and countries 
worldwide. This allows policymakers to assess the effectiveness of 
current interventions, and will be useful for inferring whether or not 
transmission will increase when interventions are lifted. As well as 
providing daily updates on our website, we also provide adaptable 
computing code so that our approach can be used directly by 
researchers and policymakers on confidential datasets. We hope that 
our tool will be used to support decisions in countries worldwide 
throughout the ongoing COVID-19 pandemic.

Keywords 
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic that 
emerged in December 2019 has since spread to over 100 coun-
tries in every continent except Antarctica. While some infor-
mation on the progress of an outbreak in a given country can be  
gained from the reported numbers of confirmed cases and 
deaths, these numbers can obscure changes in the underlying 
dynamics of the outbreak due to delays between infection and  
the eventual reporting of a case or death. Accounting for the 
delays from infection to symptom onset, and delays from symp-
tom onset to hospital admission, diagnostic testing or potential  
death, followed by further delays until data are recorded in  
official statistics, requires the use of specific statistical meth-
ods for handling right-truncated data1–3 and the creation of a 
“nowcast”4,5 (an estimate of the current number of newly infected or  
symptomatic cases).

Another method for tracking the progress of an outbreak is 
measuring changes in the time-varying reproduction number 
(effective reproduction number), which represents the average 
number of secondary infections generated by each new infectious  
case6–8. This approach can be advantageous compared to moni-
toring numbers of newly reported or symptomatic cases since,  
in principle, reproduction number estimates reflect variations 
in transmission intensity. Due to the delays in disease progres-
sion, recorded numbers of newly notified or symptomatic cases 
will increase or decrease for a period after transmissibility  
has reduced or increased, respectively. Monitoring changes in 
the time-varying reproduction can account for this delay and 
reveals variations in transmissibility that are not obvious from  
reported case numbers. Changes in the time-varying reproduc-
tion number can also quantify the impact of public health inter-
ventions7,9. Discerning whether or not current interventions are  
reducing transmission effectively using case notification  
data alone is challenging, since, case numbers may still be 
increasing while transmission is declining. Tracking the repro-
duction number over time may also be useful when relaxing  
interventions for the same reasons.

This paper details the methods we have developed for nowcast-
ing and forecasting global time-varying reproduction number 
estimates, which are presented on a regularly updated website  
(https://epiforecasts.io/covid/). We first estimate cases by date 
of infection based on reported cases, accounting for right trun-
cation and uncertainty in the reporting delay and incubation  
period. We then estimate the time-varying reproduction number 
and use an ensemble of time series models to forecast future  
changes in the reproduction number by extrapolating underlying 
temporal trends. We then reverse the process of estimating the 
reproduction number from cases by date of infection to derive  
forecasts of future reported cases by date of infection. Our 
estimates use reports of confirmed cases at the national, or sub-
national, level that are extracted from publicly available reposi-
tories. This work builds on previously published tools10,11 by 
adapting them for use on the currently available data. This over-
comes some of the limitations of more naive implementations 
that derive estimates for the reproduction number directly from 
numbers of reported cases without adjusting (or with only partial  

adjustment) for the delay from infection to symptom onset or 
from onset to notification. The code that creates and updates the  
website is open source, allowing policymakers and research-
ers to run analyses in private repositories using confidential  
data. The methods outlined in this paper and corresponding  
code base are under development, and new versions of this  
live article will be released alongside changes to the methods to  
create a record of the methodology used throughout the pandemic.

Methods
Data
We use daily counts of confirmed cases reported by the Euro-
pean Centre for Disease Control for all analyses conducted at 
the national level12,13. To estimate the delay from symptom onset  
to reporting (once confirmed with a positive laboratory test), 
we use all cases from a publicly available linelist for which  
onset and notification dates are available13,14. This linelist com-
bines all known linelist data from over 100 countries and at the  
time of writing has 4,132 entries with both an onset date and 
a notification date. Countries are only included in the reported  
estimates if at least 60 cases have been reported in a single day.  
This restriction reduces the likelihood of spurious estimates  
for countries with limited transmission or case ascertainment.

For sub-national analyses, the source of the data is reported on 
the respective page on our website. The data are fetched from 
government departments or from individuals who maintain a  
data source if no official data are available. Subnational enti-
ties within countries are only reported if at least 40 cases  
have been reported in a single day. A lower limit is possible  
for sub-national compared to national data due to more consistent 
case reporting in the source datasets.

All analyses described below are run independently for  
each national or subnational entity under consideration.

Adjusting for reporting delays
To estimate the reporting delay with appropriate uncertainty, 
we fit exponential and gamma distributions to 100 subsampled  
bootstraps (each with 250 samples drawn with replacement)  
of the delay between symptom onset and case notification, 
accounting for left and right censoring occurring in the data as  
each date is rounded to the nearest day and truncated to the 
maximum observed delay. We fit each model in the statistical  
modelling program stan (2.19.1)15 and compared to good-
ness-of-fit of each distribution to the data by comparing the  
approximate leave-one-out cross-validation information criterion 
(LOOIC)16.

The distribution that gave the lowest LOOIC was selected as 
the most appropriate and 10 samples of the fitted distribution  
parameters were then drawn per bootstrap (giving 1000 in  
total). For a given country, we used sample i from the poste-
rior distribution of delay distribution parameters, Θ

i
, to draw a  

sample of delays, d
i
, to transform each observed notification  

date, c
i
, into a sample onset date, o

i
, as follows:

                                           ,i i io c d= −                                            
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where ( ) ( )ori i id exp gammaΘ Θ∼

This resulted in 1000 date of onset samples for each confirmed 
case. For countries/regions with high case loads (more than  
10,000 reported cases) the sampling step is approximated using  
the probability density function of the reporting delay.

Adjusting for right-truncation of notification dates
When moving from notification dates to onset dates it is impor-
tant to consider that the total number of confirmed cases lags  
behind the number of cases that have onset, since there is a 
delay between onset occurring and the case being counted upon  
notification. To account for this right truncation, we used  
binomial upscaling to increase the estimated numbers of case  
onsets close to the present. After transforming the observed  
notification dates to onset dates and tallying case onset num-
bers by day, we then drew a sample of the number of case onsets  
that occurred but have not yet been confirmed.

If t is the last date on which cases were reported then the 
number of onsets on day t – j, denoted as o

t–j
, is regarded as the  

result of a Bernoulli trial from the total true number of cases  
with symptom onsets on day t – j. o

t–j
 is then distributed according 

to a negative binomial distribution as follows:

( )( )1, ,t j t k io NegBin n o p F t j Θ∗
− −= + = −∼

where F(t – j, Θi)) is the cumulative distribution function for the 
given delay distribution. It gives the proportion of onset cases  
from t – j days ago that are expected to have been confirmed  
over the j days from that time until the present. The final num-
bers of case onsets that were used to estimate the time varying  
reproduction numbers for day t are consequently given by  

.t to o∗+  As our approach could not fully reconstruct unreported 
cases without bias we truncated our results and did not use  
estimates from the last 3 days. To prevent spurious estimates  
we truncated the allowed amount of upscaling to be less than 10 
times the reported cases on any given day.

Adjusting for the delay between onset and infection
We repeated the steps outlined above for adjusting for the 
delay from report to symptom onset to account for the delay  
between symptom onset and infection by replacing the bootstrapped 
report delay distribution with an incubation period distribution  
with a mean of 5 days17. Uncertainty from this distribution was  
proprogated through the model by sampling the distributions 
parameters assuming they were both normally distributed.

Estimating the time-varying reproduction number
We used the EpiEstim R package (2.2.1)6,10,18,19 to fit a model 
that estimated the time-varying reproduction number from the 
daily number of infections and an uncertain generation time  
with a mean of 3.6 days (sd: 0.7 days) and a standard devia-
tion of 3 days (sd: 0.8 days). The generation time estimate was  
derived using the data and method of20 modified to use the incu-
bation period from17. The instantaneous reproduction number  
represents the number of secondary cases arising from an indi-
vidual showing symptoms at a particular time, assuming that  

conditions remain identical after that time, and is therefore a 
measure of the instantaneous transmissibility (in contrast to  
the case reproduction number - see Fraser (2007)8 for a full  
discussion). We used a gamma prior for the reproduction number 
with mean 2.6 and standard deviation 2. This is based on early  
estimates for the basic reproduction number (R

0
) from the ini-

tial stages of the outbreak in Wuhan21,22 with long tails to allow  
for differences in the reproduction number between countries.  
Our approach can also be used to account for imported cases  
where data is available7.

We incorporated uncertainty in the generation time distribution 
by providing EpiEstim with 1000 samples each derived using  
a different sample of the log mean and log standard devia-
tion of the assumed log normal distribution. We evaluated the  
reproduction number by assuming that it is constant over a back-
wards looking sliding time window6. We evaluated window 
lengths from 1 to 7 days, running EpiEstim separately for each  
window choice. The optimal time-varying window was 
selected by first estimating the one day ahead number of cases  
implied by each time-varying reproduction number estimate23  
and then scoring this nowcast against the observed number of 
cases using the ranked probability score (RPS) score24,25. For each  
sample the window with the lowest RPS score was selected at  
each time point.

The estimates of the time-varying reproduction number at each  
time point were combined over 1000 samples, using the optimal 
window for each, to give a credible interval that incorporates  
uncertainty from the delay from case onset to notification, the  
incubation period and the generation time.

Estimated change in daily cases
We defined the estimated change in daily cases to correspond  
to the proportion of reproduction number estimates for the cur-
rent day that are below 1 (the value at which an outbreak is in  
decline). It was assumed that if less than 5% of samples were  
subcritical then an increase in cases was definite, if less than  
20% of samples were subcritical then an increase in cases was 
likely, if more than 80% of samples were subcritical then a 
decrease in cases was likely and if more than 95% of samples were  
subcritical then a decrease in cases was definite. For coun-
tries/regions with between 20% and 80% of samples being  
subcritical we could not make a statement about the likely  
change in cases (defined as unsure).

As another metric of outbreak progression, we estimated the 
rate of spread (r) using a quasipoisson regression model26. The  
R2 value of the regression fit was then used to assess the good-
ness-of-fit. In order to account for potential changes in the rate of  
spread over the course of the outbreak we used a 7-day sliding  
window to produce time-varying estimates of the rate of spread  
and the corresponding R2. The doubling time was then estimated  

by calculating ln( )1
2

r
 for each estimate of the rate of spread.

The effect of changes in testing procedure
The results presented here are sensitive to changes in COVID-19  
testing practices and the level of effort put into detecting  
COVID-19 cases, e.g. through contact tracing. For example, if 
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numbers of incident infections remain constant but a country  
begins to find and report a higher proportion of cases, then 
an increasing value of the reproduction number will be 
inferred. This is because all changes in the number of cases are  
attributed to changes in the number of infections resulting 
from previously reported cases, and are not assumed to be a  
result of improved testing and surveillance. On the other hand, 
if a country reports a lower proportion of cases because a lower  
number of tests are performed (which can happen if reagents 
required for testing are no longer available, for example) or the  
surveillance system captures a lower proportion of infections, 
then the model will attribute this to a drop in the reproduction 
number that may not be a true reduction. In order for our estimates  
to be unbiased not all cases have to be reported, but the level of 
testing effort (and therefore the proportion of detected cases)  
must be constant27. This means that, whilst a change in testing  
effort will initially introduce bias, this will be reduced over 
time as long as the testing effort remains consistent from this  
point onwards.

Countries may also change the focus of their surveillance over the 
course of the outbreak. They may initially focus on identifying 
travellers returning from areas of known COVID-19 transmission 
and performing contact tracing on the contacts of known cases.  
As the outbreak evolves this may change to passive surveillance 
at hospitals. Here, the case definition may also change from  
tests based on polymerase chain reaction (PCR) to diagnoses 
based on symptoms and computed tomography (CT) scans. In the  
future, different kinds of COVID-19 tests may be deployed  
that could influence results, such as tests that detect both active  
and past infections.

Forecasting the reproduction number and case counts by 
date of infection
We forecast the time-varying effective reproduction number over 
a 14-day time horizon using the best performing ensemble of 
time series models11 as assessed by iteratively fitting to a sub-
sample of the estimated effective reproduction number estimates  
for each region28. Perfomance was assessed using CRPS scores, 
interval scores, PIT calibration, bias and sharpness with an 
ensemble being preferred that minimised the CRPS score whilst  
being calibrated, unbiased and as sharp as possible over the full 
time horizon29–31. The reproduction number forecast was then 
transformed into a case forecast using the renewal equation  
and a Poisson distribution of cases6,19. These forecasts are indica-
tive only and should not be considered with a weight equal to the  
real-time estimates. Changes in contact rates, mobility, and  
public health interventions are not accounted for which may lead  
to significant inaccuracy.

Reporting
We report the median and 90% highest density credible intervals  
for all measures with 50% and 90% high density regions shown 
in figures. The analysis was conducted independently for all 
regions and is updated regularly as new data becomes available.  
As our credible intervals do not capture the proportion of cases 
that have been upscaled (when correcting for right truncation), we  
represent this in figures using translucency. This is presented as 

our confidence in the estimates which we define as the proportion  
of symptom onsets that are expected to have been reported  
by the date of estimation. All results are available in the  
source repository in a comma-separated values file.

Results
Daily updated estimates of the time-varying reproduction 
number, epidemic doubling time, and rate of spread at the 
national level are given for more than 90 countries on our website  
(https://epiforecasts.io/covid/)32. New countries are being added 
as data become available. An example plot created on the 23rd  
of May 2020, showing the numbers of cases by date of infection 
for Austria and the inferred time-varying reproduction number,  
is shown in Figure 1.

Sub-national breakdowns can highlight differences in how the 
outbreak is progressing within a country (Figure 2) and are cur-
rently provided for six countries (Italy, Germany, United Kingdom,  
United States of America, Brazil, India). For example, on the  
23rd of May 2020 we estimated that cases were likely decreas-
ing in every country in the United Kingdom except Northern  
Ireland where the estimate was classified as unsure.

We present the nowcasting results on a map to effectively vis-
ualise regional differences in transmission (Figure 3). This 
helps identify areas where intervention policies are more effec-
tive at reducing transmission than others, which can inform  
decision-making going forwards.

The methodology and toolset described here has also been used 
separately to produce estimates of the time-varying reproduc-
tion number at the state level in Australia, an example of how  
researchers and policymakers can apply the methods to their  
own data33. This has an added benefit of researchers being able 
to use generation time and delay distributions derived from  
local data and not our global estimates. The authors also use  
this tooling with confidential hospital admissions data to gen-
erate estimates of the time-varying reproduction number for  
policymakers in the United Kingdom.

Discussion
We provide a centralised resource, which generates compara-
ble daily estimates of the time-varying reproduction number and 
a daily nowcast of the number of cases newly infected derived  
using a standardised method. The estimates are free of any  
hypotheses about the impact of interventions, since they are 
derived only from reported case counts and an estimate of the gen-
eration time. We explicitly account for the delay between infec-
tion and case notification and include all sources of quantifiable  
uncertainty. This resource may be useful for policymakers  
to track the progression of the COVID-19 outbreak and evaluate 
the effectiveness of intervention measures. As new data become  
available, we will include sub-national estimates for addi-
tional countries, and provide additional support for public health  
agencies or researchers interested in applying our methods to  
their data. We routinely utilise our own tooling to provide  
estimates of the reproduction number in the United Kingdom for 
policymakers using confidential hospital admissions data.
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Figure 1. Confirmed cases by date of report (bars; top) and their estimated date of infection (ribbon; top) and time-varying reproduction 
number (bottom) in Austria. The light and dark blue ribbons show the 90% and 50% credible interval, respectively. The estimates were 
generated on the 23rd May 2020. Due to the delay between being infectious and becoming a confirmed case, the estimates lag behind the 
present. Confidence in the estimated values is indicated by translucency with increased translucency corresponding to increased uncertainty 
deriving from right-truncation of reported cases in the estimate. The forecast (red) is coloured differently from the nowcast (blue) to indicate 
the drop in reliability when trying to forecast future cases.

There are several advantages associated with our approach. 
Firstly, reported case counts are the only data required, which  
allows our approach to be used in a wide variety of contexts. 
Secondly, we apply the same methodology to all countries. This  
means that estimates can be compared without having to con-
sider differences in the underlying methodology (even if differ-
ences in testing should still be accounted for as discussed below).  
Finally, we have constructed our approach using open source  
tools and all of our code, raw data, and results are available 
online. This means our approach can be applied by others to  
non-public data and be fully evaluated by end users.

Our approach is also subject to several limitations. Firstly, the 
model requires that the proportion of infections that are noti-
fied is constant. In other words, it requires consistency in the  
focus of the surveillance method, level of effort spent on test-
ing, and case definition. Yet it is often the case that the level of 
under-reporting in a country changes over the course of an  
outbreak27. However, it should be noted that any changes in 
surveillance testing procedures will only bias the estimates 

temporarily if they begin to remain consistent again after they 
have changed. How long the bias remains in the reproduction  
number estimates will depend on the serial generation time and 
delay distributions, as well as the maximum window size used  
in the reproduction number estimation process.

In addition, the model is limited by how representative the delay 
that we use from infection to notification distribution is for a given 
location. As there is limited data to assess this, we estimate a  
bootstrapped global delay distribution using the combined 
data from every country. In particular, the delay from onset to  
notification can especially impact the upscaling of cases by 
date of onset that accounts for cases that have onset but not yet 
been reported. If the true delay from onset to notification for a  
given country is shorter than our global delay, then we will 
overestimate onset case numbers, and vice versa for true delays 
longer than the distribution we used. Additionally, estimates of 
the reporting delay distribution are known to be biased early 
in an epidemic and may vary over time34. However, our use of a  
bootstrapped subsampling approach mitigates these issues by  
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Figure 2. Estimates of numbers of cases that will be newly infected on the date the estimate was made and that will end up being 
reported (top panel), and the time-varying reproduction number (bottom panel) across different nations/regions of the United 
Kingdom. Estimates were produced on 23rd of May 2020. Nations/regions with fewer than 40 confirmed cases reported on a single day are 
not included in the analysis.

allowing multiple delay distributions based on the observed 
data to be considered at the cost of increasing uncertainty in our  
estimates.

Our model is also limited by the data available to us. For exam-
ple, the publicly available linelists contain little data on the 
importation status of cases. This means that cases counts may be  
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Figure 3. A map of the estimates of the expected change in daily cases at the state level for the United States of America. Estimates 
were produced on 23rd of May 2020. Regions with fewer than 40 confirmed cases reported on a single day are not included in the analysis 
(light grey).

biased upwards by attributing imported cases to local transmis-
sion. This bias is particularly problematic when case counts  
are low. Unfortunately, in the absence of data, this issue can  
only be explored via scenario analysis. However, if and when  
data on the importation of cases is available, our approach (via  
EpiEstim7) supports adjusting for imported cases.

As more data becomes available, future work should look to 
refine the distributions used for generation time, incubation 
period, and the report delay. There is also the potential to extend 
the present model to account for overdispersion in the number of  
secondary infections35 and changes in the delay from onset to 
notification over the course of an outbreak. Finally, there is  
scope to explore how outbreak dynamics that differ among  
particular sub-populations, such as high-risk COVID-19 patients, 
can bias overall reproduction number estimates.

Our approach, providing real-time estimates of the reproduc-
tion number, serves as a valuable tool for decision makers  
looking to track the course of COVID-19 outbreaks. The nowcasts 
explicitly account for delays, using the same methodology 
across all countries and sub-national regions. These reproduction  
number estimates can be used during the initial stages of  

an outbreak to ascertain the likely outbreak trajectory if no inter-
ventions have been implemented. They can also provide real-time  
feedback on whether transmission is decreasing following a  
particular intervention, or whether it is increasing following  
the relaxing or lifting of current intervention measures. We hope  
that our website and the related toolkit will provide a valu-
able resource for devising strategies to contain COVID-19  
outbreaks worldwide.

Data availability
Underlying data 
Website and latest data and available at: https://github.com/ 
epiforecasts/covid.

Archived website and data at the time of publication: https://doi.
org/10.5281/zenodo.384181832.

License: MIT.

Software availability
Development
EpiNow R package (R estimation, data processing, visualisation 
and reporting): https://github.com/epiforecasts/EpiNow.
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EpiSoon R package (forecasting and case prediction from R  
trajectories): https://github.com/epiforecasts/EpiSoon.

NCoVUtils R package (data aggregation and processing): https://
github.com/epiforecasts/NCoVUtils.

Archived at the time of publication
EpiNow R package: https://doi.org/10.5281/zenodo.383380636.

EpiSoon R package: https://doi.org/10.5281/zenodo.383380728.

NCoVUtils R package: https://doi.org/10.5281/zenodo.383380813.

License: MIT.
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