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Abstract 
Background: Countries achieving control of COVID-19 after an initial 
outbreak will continue to face the risk of SARS-CoV-2 resurgence. This 
study explores surveillance strategies for COVID-19 containment 
based on polymerase chain reaction tests. 
Methods: Using a dynamic SEIR-type model to simulate the initial 
dynamics of a COVID-19 introduction, we investigate COVID-19 
surveillance strategies among healthcare workers, hospital patients, 
and community members. We estimate surveillance sensitivity as the 
probability of COVID-19 detection using a hypergeometric sampling 
process. We identify test allocation strategies that maximise the 
probability of COVID-19 detection across different testing capacities. 
We use Beijing, China as a case study. 
Results: Surveillance subgroups are more sensitive in detecting 
COVID-19 transmission when they are defined by more COVID-19-
specific symptoms. In this study, fever clinics have the highest 
surveillance sensitivity, followed by respiratory departments. With a 
daily testing rate of 0.07/1000 residents, via exclusively testing at fever 
clinic and respiratory departments, there would have been 598 [95% 
eCI: 35, 2154] and 1373 [95% eCI: 47, 5230] cases in the population by 
the time of first case detection, respectively. Outbreak detection can 
occur earlier by including non-syndromic subgroups, such as younger 
adults in the community, as more testing capacity becomes available. 
Conclusions: A multi-layer approach that considers both the 
surveillance sensitivity and administrative constraints can help identify 
the optimal allocation of testing resources and thus inform COVID-19 
surveillance strategies.
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Introduction
Coronavirus disease 2019 (COVID-19) is an infectious dis-
ease caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) and was first detected in Wuhan, 
China towards the end of 20191. On 11 March 2020, the World 
Health Organization declared COVID-19 a global pandemic2.  
Within eight months of its emergence, COVID-19 has led to 
over 25 million reported cases and over 850,000 reported deaths  
globally (as of 7th September 2020)3. Many countries and 
regions have succeeded in reducing COVID-19 incidence after  
the initial epidemics, such as China and New Zealand.

Nevertheless, it is unlikely that SARS-CoV-2 will be eradi-
cated in the near future. Given the high transmissibility of the 
pathogen4,5, the non-trivial proportion of infectious individu-
als showing mild to no symptoms6, the non-specific nature of  
symptoms7, the highly intertwined global travel network8, and 
a lack of effective pharmaceutical measures for prevention or  
therapy9, countries that successfully contain the initial spread 
of COVID-19 will likely continue to face risks introduced by 
international travellers and unidentified local cases. With physi-
cal distancing measures gradually easing, sporadic infection  
clusters have already been observed10.

To prevent these sporadic infection clusters from seeding new  
epidemics, rapid infection detection is vital. Containment strate-
gies, such as case isolation and contact tracing, rely on early detec-
tion of COVID-19 infections and can quickly be overwhelmed  
if transmission remains undetected for too long. Thus, sustain-
able, cost-effective, and highly sensitive surveillance systems 
capable of early warning for potential SARS-CoV-2 resur-
gence can guide ongoing implementation of control measures  
and are essential to the success of COVID-19 containment11.

This study explores different surveillance strategies that max-
imise the probability of COVID-19 detection using polymer-
ase chain reaction (PCR) while minimising the material and 
human resources required. We use Beijing as a case study and 
explore the potential benefits of conducting COVID-19 surveil-
lance among healthcare workers, hospital patients, and regular 
community members. Hospital settings further break down to  

different layers, from fever clinic, respiratory departments, to 
general hospital departments. Fever clinics, a triage system 
that emerged during the 2003 outbreak of SARS-CoV, play 
a crucial role in COVID-19 response in China12 and could be  
considered a potentially effective surveillance option elsewhere. 
The framework introduced is relevant to containment strategies 
in countries exiting the initial phases of COVID-19 epidemics,  
where only a small number of cases are observed sporadically.

Methods
The epidemic process
We simulate the spread of SARS-CoV-2 using a determinis-
tic age-stratified compartmental SEIR-type model (Figure 1)13.  
Additionally, the infectious compartment is split into Ipc, Ic and 
Isc to account for differences in disease progression. The com-
partment Ic represents infectious individuals whose symptoms 
are sufficiently severe (“clinical” illnesses) for them to seek  
healthcare; the compartment Ipc represents the pre-clinical 
infectious individuals who have not yet develop symptoms for 
them to seek care for COVID-19; the compartment Isc repre-
sents infectious individuals who may not seek healthcare for  
COVID-19 due to mild symptoms (“subclinical” illnesses). 
Individuals in the compartment Ipc and Isc may seek care for 
other causes. All of Ipc, Ic and Isc contribute to the force of infec-
tion (FOI) although subclinical individuals may transmit dis-
eases at a lower rate14,15. This framework has been used to  
study COVID-19 in several previous studies6,15,16. More details 
about this model can be found in the Extended data Section 117.

Chau et al. discovered that COVID-19 patients may remain 
PCR positive for up to 10 days after hospital admission, at 
which point they may no longer be infectious18. To accounts for 
this, building upon the existing model structure, we break the 
R compartment (“Removed”, a state in which individuals are 
no longer able to transmit illness) down into 

scR+ (PCR-posi-
tive individuals from Isc), cR+  (PCR-positive individuals from 
Ic) and R_(PCR-negative individuals). Based on the results of  
Chau et al.18, we assume that PCR is more likely to detect a 
COVID-19 infection in clinical infectious compartments (Ipc 
and Ic) compared to the subclinical infectious compartment 
(Isc); in infectious compartments (Ipc, Ic, and Isc) compared to  

Figure 1. Conceptual diagram of the COVID-19 dynamic model. Solid box indicates compartments that affect the force of infection; 
dashed box indicates compartments detectable by PCR-based surveillance. S: susceptible; E: exposed; Ipc: pre-clinical infectious; Ic: Clinical 
infectious; Isc: sub-clinical infectious; cR+ : PCR-positive removed following Ic; and scR+ : PCR-positive removed following Isc; R_: PCR-negative 
removed.
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post-infectious compartments (
cR+ and 

scR+ ). The PCR diagnos-
tic sensitivity in the context of COVID-19 is digitized from Chau  
et al.18. PCR diagnostic specificity, on the other hand, is 
assumed to be 100%, consistent with Grassly et al.19. Potential  
false-positive results may be compensated by double-testing  
positive samples.

Importantly, we assume that at the start of the second wave 
there is a sufficiently high number of susceptible individuals 
that early epidemic dynamics are not limited by widespread and 
long-lasting population immunity (for which there is limited  
evidence)20.

The age structure of the model considers five-year age catego-
ries for 0–74 year-olds and a single group for everyone above 
75 years of age. We obtained other model parameters from the 
literature or online database (Table 1). At the start of the simu-
lation, we assume there was one exposed (infected but not yet 
infectious) younger adult (i.e., 15–64 year-old); the population is  
otherwise susceptible, consistent with low seropositivity found 
in serological surveys21,22. A meta-analysis by Davies et al. 
showed an unmitigated reproduction number of COVID-19 to 
be 2.7 (95% critical interval: 1.6–3.9)15. Here, we assume an  
effective reproduction number (R

e
) of 2 that reflects a 25%  

reduction from 2.7 as a result of public health measures  

Table 1. Parameters table. Respiratory illnesses are defined as “respiratory infections and tuberculosis” (excluding latent 
tuberculosis infections), “chronic respiratory diseases”, and “Tracheal, bronchus, and lung cancer”.

Parameters Baseline Scenario Sensitivity 
Analyses

Source

Epidemiological parameters

Latent period 2.6 days 1 – 4 days Li et al.1 
Backer et al.23 
Davies et al.15

Pre-clinical infectious period 2.4 days 1 – 3 days Liu et al.24 
He et al.25

Clinical infectious period 3.6 days 3 – 6 days He et al.25

Subclinical infectious period (assumed to be 
the same as the sum of pre-clinical and clinical 
infectious periods)

6 days 5 and 8 days Davies et al.15

Age-specific clinical fraction (relative that develop 
symptoms after infection)

0.28 – 0.69 - Davies et al.6

Relative susceptibility 0.44 - 1 
(Baseline group: 
60–69 year-olds)

- Davies et al.6

Relative transmissibility of subclinical infections 
(compared to clinical) 

0.14 0.5 Keeling et al.14 
Davies et al.15

Mitigated reproduction number 2 1.4, 2.7 Assumed based on Davies et al.15

Number of contacts between individuals of 
different ages

3 – 20 contacts/ day - Prem et al.16

Population (counts and age distribution) 549,734 - 2,686,112 
/ age group

- China Statistics Yearbook26

Surveillance parameters

Prevalence of influenza-like illness (ILI) 3% 2%, 6% Chinese National Influenza Weekly 
Reports27

Annual prevalence of all respiratory illnesses^ ~10% - GBD 2017 Disease and Injury 
Incidence and Prevalence 
Collaborators28

Maximum routine testing capacity per population-
day

4.15/1000 Wan29

Daily Fever Clinic Service Capacity, per population-
day

0.07/1000 Gong30
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(e.g., physical distancing in public). Additionally, R
e
 of 2.7 

(unmitigated) and 1.4 (50% reduction) are explored as possi-
ble scenarios. At each R

e
 level, sensitivity analyses given dif-

ferent sets of epidemiological parameters are provided, with  
results presented as Uncertainty Range (UR).

Surveillance layers and subgroups
Surveillance layers are settings where COVID-19 surveil-
lance is possible; surveillance subgroups are defined by specific  
characteristics (e.g., age and occupation) within a given surveil-
lance layer. In this study, we consider three surveillance lay-
ers and nine surveillance subgroups within these surveillance  
layers (Table 2).

Fever clinics are triage systems established in China dur-
ing the 2003 SARS epidemic to limit the spread of pandemic 
pathogens in hospital settings and allow rapid detection33. Tel-
ephone-based triaging systems combined with drive-through 
testing centres used in the United States (e.g., Georgia34) dur-
ing the COVID-19 pandemic are motivated similarly. A fever 
clinic is part of a hospital and often staffed by healthcare  
workers (HCWs) from respiratory departments or clinical labo-
ratories. In the context of COVID-19, anyone with any respira-
tory symptoms and potential exposure to a confirmed case, as 
well as anyone with a combination of fever and any respiratory 
symptoms but no known exposure, are encouraged to present to 
fever clinics in China35. In China, the national sentinel influ-
enza surveillance system reports the proportion of all outpatients 
with influenza-like illness (ILI) (defined as fever ≥38°C and  
cough or sore throat)27. In this study, the percentage of ILI 
among all outpatients is used to model the background rate of  
fever clinic visits for non-COVID-19 related causes.

For public health surveillance, this study assumes 1) that indi-
viduals with clinical respiratory illness who seek care would be 
captured by a surveillance system in either fever clinics or res-
piratory departments; 2) that those with a subclinical COVID-19 
infection who are seeking care for non-respiratory causes may 
be detected in other hospital departments; 3) that those with a  
COVID-19 infection who do not actively seek care may be 
detected in the community whether they exhibit symptoms or 

not. Specific pathways to the detection of different surveillance  
layers and subgroups are shown in Table 2.

The risk of a susceptible individual, whether an HCW or not, 
contracting COVID-19 while present in a fever clinic or respira-
tory department is elevated due to the concentration of infected 
individuals. HCWs may face a higher COVID-19 infection risk 
than patients do in these locations due to prolonged exposures. 
In this study, the expected number of infectious encounters  
for HCW and non-HCW adults are calculated by taking  
the product of the number of contacts (either patient or non-
patient, digitised from 36) and the corresponding COVID-19 
prevalence (inpatient or non-patient settings). The HCW to non-
HCW ratios of infectious encounters (α) is then used as a risk 
multiplier for different HCW subgroups. More details can be  
found in the Extended Data Section 217.

Surveillance sensitivity and probability of detection
The surveillance sensitivity (φ

i,k,t
) is the probability of detect-

ing at least one individual infectious with COVID-19 in a sub-
group i on a given day t (since the first case) is characterised  
by a hypergeometric distribution:

             , , ,,
( 1; , , ) ϕ≥ =i t i i k ti i t

P q N N p k
i

ψ                      (eq.1)

where N
i
 is the number of all members in subgroup i, p

i,t
 is  

the proportion infected in subgroup i on day t, 𝜓
i
 is the PCR 

diagnostic sensitivity in subgroup i, 𝜓
i
N

i
p

i,t
 is the total number 

of detectable infected individuals in subgroup i, k is the number 
of individuals tested on day t, and q is the number of infec-
tious individuals identified through testing (of k individuals).  
Different from the binomial distribution, hypergeometric dis-
tribution describes the probability of detection without replace-
ment, and thus more appropriate in capturing healthcare-seeking  
behaviour. In this study, p

i,t
 depends on the surveillance path-

ways outlined in Table 2. For example, for a patient seek-
ing care at a fever clinic, the probability that they are infectious  
with SARS-CoV-2 is:

                               
. ,

c
t

fc pat t c
t t

I
p

I ILI
=

+
                               (eq.2)

Parameters Baseline Scenario Sensitivity 
Analyses

Source

Daily Respiratory Department Service Capacity, 
per population-day

1.35/1000 0.81-
1.89/1000

Zhang et al.31

Healthcare worker to patient ratio 1:3 Chinese National Influenza Weekly 
Report27 
Zhang et al.31 
China Health Statistics Yearbook32

PCR diagnostic sensitivity for SARS-CoV-2 Clinical: 30%~90% 
Subclinical: 
18%~46%

Chau et al.18

PCR diagnostic specificity for SARS-CoV-2 100% Grassly et al.19

^
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where ILI
t
 is the number of non-COVID-19 patients who 

could be triaged into fever clinics based on influenza-like ill-
ness (ILI). This equation does not include Ipc and Isc as they 
would not be triaged into a fever clinic by definition. Parameters 
used to capture the proportions of the patient population who  
would be seen at fever clinics, respiratory departments, and  
other hospital departments are summarised in Table 1.

The probability of an individual in subgroup i on day t test-
ing positive (p

i,t
) decreases as the background population size 

increases (under the assumption of perfect specificity). In the 
example above, the background population in a fever clinic is 
captured by ILI

t
. In respiratory departments, the background  

population is the number of patients who visit respiratory depart-
ments for all non-COVID-19 respiratory causes (Rsp

t
). Thus, at 

any given time t, Rsp
t
 must be at least as large as ILI

t
. The pro-

portion of COVID-19-infected patients in fever clinics p
fc.pat,t

 
is always larger than that in respiratory departments (p

rsp.pat,t
)  

by definition.

We assume that HCWs who have clinical respiratory illness 
behave identically to other non-HCW individuals with clini-
cal respiratory illness, and hence will attend fever clinics or 
respiratory departments. Surveillance targeting the HCW sub-
groups will only capture those current in the Ipc, Isc, or scR+  (see  
Table 2). These HCWs will face a higher risk of infection due 
to occupational exposure (α

fc.hcw,t
). For example, the probabil-

ity of an HCW working at a fever clinic to be PCR detectable  
on a given day t can be expressed as:

                   
. , . ,

pc sc sc
tt

fc hcw t fc hcw t

I I R
p

pop
α

+ ++
=                       (eq.3)

where α
fc.hcw,t

 is the increased risk multiplier for an HCW work-
ing at a fever clinic on day t. The probability π

t
 of detecting 

COVID-19 infection by time t in at least one subgroup using  
k tests per day can be expressed as:

                          , , ,1 (1 )k t i t i k tπ ϕ= − ∏ ∏ −                           (eq.4)

Comparing fever clinics and respiratory departments
The testing capacity needed at the respiratory departments to 
achieve a similar probability of COVID-19 detection while 
testing at maximum capacity at fever clinics (1,600 tests/day  
or 0.07 tests per thousand residents per day (t/k/day)) is found 
using mean absolute errors. Then, at different levels of daily test-
ing capacity, we estimate the time it takes for the outbreak to 
surveillance processes simulated, a corresponding time at which 
we become aware of the on-going transmission is generated. 
We extract the corresponding cumulative incidences at these 
times of transmission detection from the results of the dynamic  
model, forming a probability distribution of epidemic sizes by 
the time first COVID-19 cases are detected. The relevant uncer-
tainty is expressed using the middle 95% of the simulated  
sample, i.e., the 95% empirical confidence intervals (eCI).

Characteristics of surveillance systems
In practice, surveillance systems are constrained by human 
and capital resources. The number of samples that can be tested 
is constrained by factors like local laboratory capacity. By 22 
April 2020, Wuhan had tested as many as 63,000 samples in 
a single day, approximately 6 t/k/day37. However, testing at 
such a high level may not be sustainable. Daily testing capaci-
ties in South Korea and the United Kingdom are about 1 to 3  
tests per 1,000 residents38,39. We cap the maximum daily testing  

Table 2. Surveillance pathways.

Surveillance Layers Surveillance 
Subgroups

Descriptions HCW Non-HCW

Ipc Ic cR+ Isc scR+ Ipc Ic cR+ Isc scR+

Healthcare Worker 
Surveillance

Fever Clinic HCW working in different hospital 
departments

x x x - - - - -

Respiratory 
Department

x x x - - - - -

Other Hospital 
Departments

x x x - - - - - 

Patient-based 
Surveillance

Fever Clinic Patients seeking care with 
influenza-like symptoms

x x

Respiratory 
Department

Patients seeking care for any 
respiratory conditions

x x

Other Hospital 
Departments

Patients seeking care for any non-
respiratory conditions

x x x x x x x x

Community-based 
Surveillance

Children ≤ 15 years x x x x x x x x x x

Younger Adults 16 – 64 years x x x x x x x x x x

Older Adults ≥ 65 years x x x x x x x x x x
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capacity at 4.15 tests per 1,000 residents, consistent with the 
observed testing capacity in Beijing29. In a city with popula-
tion size and age structure of Beijing (with a population of 22 
million as of 2017)40, this translates to a maximum daily test-
ing capacity of approximately 100,000 tests per day. Addition-
ally, we assume a maximum of 10% HCWs at non-fever clinic 
hospital departments, and 30% of HCWs at fever clinics can 
be tested each day as a part of HCW surveillance to minimise  
interference with every-day work. We consider optimal resource 
allocation strategies by gradually incrementing the testing  
capacity in increments of 200.

The number of tests performed in the individual subgroups 
is also constrained by the number of individuals available 
for testing, driven by the local healthcare infrastructures and 
demographics. In this study, we extracted values for Beijing  
(Table 1). These values may apply to other large cities in the 
region.

Determining the most efficient strategy
We consider a wide range of testing capacities between 0 and 
100,000 tests daily, with increments of 200 tests, totalling 501 
different levels of testing capacity. Therefore, the number of 
daily tests available at level n is 200(n-1). We then determined 
how these 200(n-1) tests should be allocated across differ-
ent subgroups to maximise the probability of detection (π

k,t
).  

Instead of an exhaustive search among all possible allocations 
of resources, we used a recursive algorithm. Assuming there 
are only two subgroups, i and j, the probability of detecting  
COVID-19 transmission can be expressed as:

       ( ) 200, , 200, , 200,
1 (1 )(1 )k k t t i k t j k ti j i j

π ϕ ϕ+ ∗ ∗ ∗
= − ∏ − −        (eq.5)

where the sum of k
i
 and k

j
 is (n-1). Then, in the next step, 200n  

tests can be best allocated as:

,( 1) 200, , 200,

( 1) 200,
, 200, ,( 1) 200,

1 (1 )(1 ),
max

1 (1 )(1 )

t i k t j k ti j
k k ti j

t i k t j k ti j

ϕ ϕ
π

ϕ ϕ

+ ∗ ∗

+ + ∗
∗ + ∗

 −∏ − −
 =  −∏ − − 

(eq.6)

where the sum of k
i
 and k

j
 + 1 and of k

i
 + 1 and k

j
 are both n. 

This recursive algorithm is applied to all nine surveillance sub-
groups to identify the optimal surveillance strategies, i.e., the  
allocation of COVID-19 tests that can achieve the highest π

k,t
.

All analyses were done in R 4.0.041. Code used is publicly avail-
able at https://doi.org/10.5281/zenodo.401735442. An earlier 
version of this article can be found on medRxiv (https://doi.org/ 
10.1101/2020.06.27.20141440).

Results
The subgroups-specific surveillance sensitivity
Surveillance sensitivity is the probability that on-going  
COVID-19 transmission (i.e., one or more cases) can be detected 
on a given day t. During an emerging yet undetected epidemic, 
the surveillance sensitivities of different subgroups are shown in  
Figure 2 for testing capacities between 0 and 100,000 tests/
day. At the baseline scenario (R

e 
= 2), it takes 20 days for the  

epidemic process to incur over 100 cases (17 and 25 days using 
unmitigated or 50% reduced R

e
). At this point in the outbreak, 

while conducting 0.07 tests per thousand residents per day  
(t/k/day), the probability that a surveillance strategy exclu-
sively targeting fever clinic patients and HCW can detect more 
than one COVID-19 case is 1.1% [UR: 0.6%, 1.3%] and 1.2% 
[UR: 1.0%, 2.2%], respectively. At the same daily testing level, 
the probability of detection is only 0.5% [UR: 0.3%, 0.6%] and 
0.7% [UR: 0.4%, 0.9%], respectively, for respiratory depart-
ments patients and HCW. Among age-specific community groups,  
conducting surveillance among younger adults yields the  
highest surveillance sensitivity (0.4% [UR: 0.3%, 0.4%]).

Overall, without considering administrative constraints such 
as hospital service capacity, the surveillance sensitivities (i.e., 
the probability of capturing at least one infectious case) among 
HCW are slightly higher than those among patients. Within a 
hospital, fever clinics have the highest surveillance sensitiv-
ity, followed by respiratory departments, and then by other hos-
pital departments. The most sensitive age-group for COVID-19  
surveillance is younger adults. Surveillance sensitivities are  
comparable between younger adults in the community and  
respiratory patients in hospitals.

The surveillance sensitivity of patient-based surveillance strate-
gies may experience within-year variability. We found that in 
northern hemisphere summer when other respiratory pathogens 
are less common in a city like Beijing, patient-based surveil-
lance at respiratory departments become a more sensitive sur-
veillance option; in winter, when other respiratory pathogens are  
common and the number of respiratory patients per day goes 
up, patient-based surveillance performs relatively worse than its 
annual average levels in terms of COVID-19 detection (Extended  
data Section 3)17.

Comparing fever clinics and respiratory departments
To further understand the potential benefits of fever clinics, 
we compared the probability of detecting at least one case of  
COVID-19 by day t using realistic administrative constraints 
(e.g., fever clinic service capacity) for Beijing, China (Figure 3). 
Using the parameters outlined in Table 1, we estimated that the 
maximum service capacity at fever clinic is 1,600 patients/day, 
respiratory departments 29,400 patients/day, and other hospi-
tal departments more than a quarter-million patients/day. If there 
is a capacity to conduct 1,600 tests/day (i.e., 0.07 t/k/day), the  
surveillance system was able to reach a 50% chance of detec-
tion among fever clinic patients 3 days earlier than among respi-
ratory department patients. Using an unmitigated R

t
 shrunk the 

time gained to 2 days; a 50% reduced R
t
 of 1.4 expanded time 

gained to 4 days. To achieve an equivalent COVID-19 detection 
performance, patient-based surveillance in the respiratory depart-
ment would need more than double the rate of testing (i.e. 3,600 
tests/day, 0.17 t/k/day). When testing all patients arriving at  
respiratory departments (i.e., 29,400 tests per day, 1.35 t/k/
day), we estimate a 12.3% [UR: 4.2%, 20.4%] and 25.2% [UR: 
9.3%, 37.4%] chance to detect at least one COVID-19 case 
before there were a total of 50 and 100 cases in the simulated 
epidemic. While testing at maximum capacity in fever clinics 
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(i.e., 0.07 t/k/day), there is only a 1.6% [UR: 0.5%, 2.8%] and  
3.0% [UR: 1.0%, 5.7%] chance of detecting at least one  
COVID-19 case before cumulative incidence reaches 50 and  
100 cases.

Using the baseline scenario (R
e 

= 2), we found that while test-
ing at maximum capacity at fever clinics (i.e., 0.07 t/k/day), 
the cumulative incidence has likely reached nearly 598 [95% 
eCI: 35, 2154] cases by the time first COVID-19 is detected  
(Figure 3). With the same amount of tests, the cumulative inci-
dence has reached 1373 [95% eCI: 47, 5230] cases when the 

first COVID-19 is detected at the respiratory department. Test-
ing at maximum capacity at respiratory departments (i.e., 1.35 
t/k/day) means by the time the first case is detected, the scope 
of the underlying outbreak is only 91 [95% eCI: 15, 273]. More 
information about these distributions is included in the Extended  
Data Section 417.

Optimal strategies at different testing capacity
Figure 4 shows the highest probability of COVID-19 detec-
tion achievable at different daily testing capacities. These 
are also referred to as efficiency frontiers as no higher  

Figure 2. Surveillance sensitivity (φi,k,t) is the probability of detecting at least one COVID-19 case on day t after the first infected 
case (i.e., seeding event) in a surveillance subgroup had a certain amount of daily testing been conducted. Vertical dashed lines 
represent thresholds of >10, >100, and >1000 cases in the population. Healthcare-related administrative constraints (e.g., number of HCWs 
available) are not yet incorporated into this output.
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probability of COVID-19 detection can be achieved without  
improving the testing capacity. The probability of COVID-19 
detection increases as cumulative incidence increases and as 
daily testing capacities increase. As expected, when cumulative  
incidence is already high, a small number of tests will already 
allow us to detect on-going transmission. When daily testing 
capacities increase, we observe a diminishing return on invest-
ment. The additional increase in the probability of detecting 
COVID-19 by every additional 200 tests conducted decreases 
as overall daily testing capacity increases. Distinct turning 
points on the efficiency frontiers indicate when the surveil-
lance system switches from conducting more tests in a given 
subgroup to testing a new subgroup due to exhausting available  
individuals.

Figure 5 shows the specific composition of optimal surveil-
lance strategies along the efficiency frontiers in Figure 4. The  
surveillance of COVID-19 with the purpose of early detec-
tion should prioritise testing among fever-clinic patients and 
HCWs. When more resources become available, respiratory 
department patients and HCWs should be included in the sur-
veillance strategy. When more than 30,000 daily testing capac-
ity is reached in a city with 24 million residents, testing among  
HCWs in other hospital departments and younger adults in the 
community should be included in the surveillance strategy. Dur-
ing conditions where cumulative incidences are extremely 
low (i.e., ≤100), including these two groups earlier on can 
improve the probability of detection (see also Extended data  
Section 5)17.

Figure 3. Top: Probability of detection (πt) at different daily testing capacities with healthcare infrastructure and operational 
constraints at fever clinics and respiratory departments by day t. Bottom: Empirical probability density functions of cumulative 
incidence by the time of first COVID-19 case detection among different surveillance subgroups and given different daily testing capacities. 
Labels show different daily rates (tests per thousand residents per day, t/k/day).
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Figure 4. Efficiency frontiers show the optimal strategies at different levels of daily testing capacity and cumulative incidence. 
The optimal strategy is defined by the maximum probability of COVID-19 detections while considering all possible surveillance layers and 
subgroups at a given daily testing capacity. The transmission of COVID-19 is considered detected if one or more surveillance layers and 
subgroups detect at least one infectious case.

Figure 5. Allocation of resources (by proportion) to different surveillance subgroups along the efficiency frontiers.
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The surveillance processes in this study currently assume ran-
domness in healthcare-seeking decisions. In other words, clini-
cally infectious COVID-19 individuals are equally likely to use 
different healthcare service options available to them. In real-
ity, at the beginning of an outbreak, patients are likely going 
to use only a few fever clinics or respiratory departments out of 
all that are available due to spatial clustering. Consequently,  
HCWs across the whole city may not have an equal amount 
of increased exposure to potentially infectious COVID-19 
patients. Using fever clinic HCWs as an example, we discov-
ered that the optimal number of tests identified in this study 
should be allocated in a stratified manner (Extended data Section  
6)17. For example, compared to randomly testing 30% of all 
fever clinic HCWs, testing a randomly 30% of HCWs in each 
fever clinic is slightly more efficient, especially when cumulative  
incidence is low.

Discussion
This study evaluated different allocations of resources for  
designing COVID-19 surveillance strategies in Beijing, China. 
We discovered surveillance sensitivity is highest at fever clin-
ics, followed by respiratory departments, and then by com-
munity-based subgroups. Testing at maximum capacity among 
fever clinics patients (i.e., 1,600 tests/day, 0.07 t/k/day) allows 
us 50% probability to detect on-going transmission by day 
29 after the first infection given R

t
 of 2 (day 25 when R

t
 of 2.7, 

day 35 when R
t
 of 1.4). To achieve similar levels of efficiency, a  

surveillance system based in the respiratory department would 
need more than twice the daily testing capacity. Testing at  
maximum capacity in respiratory patients (29,400 tests/day, 
1.35 t/k/day) allows us a 50% probability to detect on-going 
transmission a week earlier. Surveillance sensitivity is slightly 
higher among HCWs compared to patients in hospitals given a 
within-year average condition. However, when other respiratory  
pathogens are less common, surveillance among fever clinic 
and respiratory department patients become significantly more  
sensitive.

The surveillance system in this study is particularly relevant 
to locations where epidemic “suppression” strategies (e.g., 
school and workplace closures combined with testing and con-
tact tracing) have been successful in reducing COVID-19  
incidence to a very low level, such as China, South Korea, and 
New Zealand3. These countries may experience extended periods 
without any new COVID-19 cases detected. However, epidemic  
risks will persist due to the non-trivial proportion of subclini-
cal cases6, importation from other locations8, and the poten-
tially short-lived immunity following infection43. Sporadic 
infection chains have already been observed in countries that  
previously reported no new cases for a while, such as China and 
South Korea, both of whom have relied on intensive testing poli-
cies to guide their follow-up interventions and to prevent large 
outbreaks. As more countries head into the post epidemic peak 
phases, surveillance and early detection will continue to play 
a central role in COVID-19 response. The population age distri-
bution, contact patterns, and healthcare system administrative 
and service capacities from Beijing were used to parameterise  
the model in this study. The framework is easily transferable to 

studying other health systems. A wide range of testing capaci-
ties is examined, allowing national or subnational public health 
entities at different resource levels to benefit from the concepts  
derived here.

The concepts of fever clinics and respiratory departments should 
be interpreted broadly as triaging systems, each with a differ-
ent baseline population defined by different sets of symptoms 
of various degree of syndromic specificity, leading to differ-
ent surveillance sensitivity to detect COVID-19. In other words, 
the more specific symptoms are related to COVID-19, the  
higher the surveillance sensitivity achievable. An internal medi-
cine department, for example, has lower surveillance sensitiv-
ity compared to the respiratory department but is more sensitive 
than an oncology department. We quantified the benefits of set-
ting up a triage system such as fever clinics. The current criteria 
for a patient to be admitted into fever clinics follow the World 
Health Organisation’s definition of influenza-like illness (defined 
as fever ≥38°C and cough or sore throat)44. In response to the  
ongoing outbreak started from Beijing’s Xinfadi Market, some 
hospitals have revised the body temperature threshold down  
to 37.3°C45.

We are aware of additional triaging criteria based on the assess-
ment of dyspnea, hypoxia, and chest x-ray interpretation12. 
These criteria may further decrease the background popula-
tions for fever clinics and respiratory departments, increasing 
surveillance sensitivity and thus reducing the number of tests 
needed. In Mao et al.46, based on only expert assessment and  
(when needed) chest x-ray, fever clinics in Shanghai were 
able to triage non-COVID-19 cases with 100% accuracy. This 
level of triaging accuracy, however, is not always possible. A 
COVID-19 transmission cluster in Harbin, China, included a 
patient who was triaged to be non-COVID-19, admitted for cer-
ebral stroke, and thus not isolated. This patient, directly and 
indirectly, infected 35 persons including three HCWs while  
hospitalised47.

Another potential mechanism that can be used to reduce the 
number of tests needed is the pooling of samples. Instead of test-
ing the sample of each person individually, this method com-
bines swab specimens from many and tests them collectively.  
When positive pools of specimens are identified, additional indi-
vidual-based tests will be carried out only within these pools. 
This method has been used for influenza surveillance and  
has been used for a one-time community-based COVID-19 screen-
ing in Wuhan48,49. While the pooling methods may not meet 
diagnostic needs in a clinical setting (e.g., timeliness), commu-
nity-based surveillance could potentially rely on this approach to 
increase coverage. However, specific laboratory standards may  
need further evidence support.

Routine testing in the community (other hospital departments 
or age-specific community groups) is less likely to yield a high 
probability of detecting infections but can be added if early 
detection is prioritised, in which case we find that the high-
est probability for detection is among younger adults. Although 
many studies have found older adults to be the most susceptible  
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age group with the highest clinical fraction who therefore are 
most likely to seek healthcare, surveillance of younger adults 
has higher sensitivity, possibly for two main reasons: (1) at the 
initial phase of an outbreak, younger adults may be more likely 
to be infected due to higher numbers of daily contacts16; (2) a 
larger proportion of COVID-19 infections among younger adults 
may never progress clinically and thus may go undetected with 
symptom-based surveillance in the healthcare systems; infec-
tions among older adults, on the other hand, can already be 
detected via surveillance in healthcare settings and thus do not  
need further community testing1,6,50.

This study only considers virological tests based on PCR to 
detect COVID-19 infections and did not consider serologi-
cal tests for several reasons. Firstly, the window of possible 
viral RNA detection occurs earlier than seroconversion for  
COVID-1951,52. The rate of seroconversion among subclinical  
cases is largely unknown. Serological tests thus are suboptimal 
given the objective of early outbreak detection. Secondly, it remains 
unclear if current serological tests can differentiate between  
current and previous infections. And last but not the least, fol-
low-up interventions to interrupt onward transmission, such as  
contact tracing and quarantine, given serological test results, would 
be challenging. The window of potential infectiousness may be  
uncertain and long-passed, making it difficult for infected  
individuals to recall their close contacts.

This modelling study has limitations. Firstly, an important 
assumption in this study is that clinically infectious COVID-19  
patients would seek medical care at the same rate as patients 
with other respiratory pathogens. For example, if 10% of patients 
infected with other respiratory pathogens seek care, then 10% of  
COVID-19 patients will seek care. However, this assump-
tion may not be valid. Clinically, COVID-19 patients may be 
more likely to seek care due to pandemic awareness. They 
may also be less likely to seek care due to uncertainty around 
associated healthcare costs or the risk perception surrounding  
healthcare settings. Public messaging that motivates peo-
ple to use healthcare may increase the sensitivity of hospital-
based COVID-19 surveillance at fever clinics and respiratory  
departments.

Secondly, it is also important to note that there is still much 
unknown about SARS-CoV-2, a novel pathogen. The results of  
this paper, thus, is built on our best knowledge, which may be  
challenged in the future. The underlying epidemic processes 
in this study assumes the population to be largely susceptible at 
the beginning with a reproduction number of 2. This assumption 
is justifiable based on low seropositivity in the general popula-
tion and among HCWs21,22,53. However, a smaller reproduction 
number may be required if seroprevalence is high54. In that case,  
epidemic processes will be slower compared to shown here, 
increasing the time gained to respond via public health surveil-
lance. However, the order of prioritisation among surveillance 
layers and subgroups as well as the distribution of resources will 
not change unless large differentials in terms of seropositivity  
are observed by age or occupation groups.

Thirdly, as population-level prevalence decreases, the positive 
predictive value of any individual test will necessarily be low-
ered. Despite the high diagnostic specificity of PCR, there may 
be a small amount of false-positive tests. For example, in an envi-
ronment completely free of SARS-CoV-2, conducting 30,000  
tests/day may still lead to three false-positive test results if the 
diagnostic specificity is 99.99%. Hence, as testing capacity 
increases, almost but not quite a perfect testing specificity may 
lead to false alarms. This will need to be accounted for when 
deciding how to act upon identified COVID-19 cases. In prac-
tice, imperfect diagnostic specificity (resulting from factors 
such as laboratory contamination), could be compensated for by  
re-testing of the patients or samples. This, however, was not 
explicitly accounted for in our model although we do not expect 
the number of tests required for re-testing would be high at  
the beginning of outbreaks.

Highly sensitive COVID-19 surveillance contributes to timely 
outbreak detection, thereby enabling and guiding a swift and 
targeted response associated with a high probability of con-
tainment. In this study, we assessed the surveillance sensitivity  
in different surveillance layers and subgroups. While design-
ing a COVID-19 surveillance system, prioritisation of fever clin-
ics over respiratory departments and of patients over HCWs tend 
to optimise for higher COVID-19 detection probability given  
limited testing capacity. Community-based testing that targets 
non-respiratory patients and HCWs or age-specific community 
groups can capture subclinical infections but may only be con-
sidered when more testing capacity becomes available. Future 
research may further assess the value of information on COVID-19  
surveillance systems by estimating the on-ward transmission  
prevented.
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Based on a currently more recognized COVID-19 model framework, the study considered the part 
of recovered population with PCR-positive who are actually no longer infectious by further 
subdividing the recovered population compartment. This brings the extended SEIR model 
framework closer to reality. 
 
This study considered the actual situation of different detection scenarios (e.g., fever clinic, 
respiratory department, etc.), and evaluated how to allocate different medical resources. For 
example, in the early stage of epidemic, patients in fever clinic should be given priority to be 
tested. This also provides scientific advice to the actual detection departments, which can more 
quickly predict the number of people who have been infected when the first infected person is 
detected, thus giving early warning to relevant departments for further prevention and control 
work. 
 
There are some issues need to answer or consider:

The author used an effective reproduction number (Re) of 2 that reflects a 25% reduction 
from 2.7 as a result of public health measures, which need to give more evidence. As a 
number of publications has shown the effective implementation of NPIs can reduce the Re 
below 1. 
 

1. 

 Regarding the assumption 2 – ‘those with a subclinical COVID-19 infection who are seeking 
care for non-respiratory causes may be detected in other hospital departments’, there is no 
guarantee that a patient with subclinical COVID-19 will take the PCR test in other 
departments. 
 

2. 

Regarding the assumption 3 – ‘those with a COVID-19 infection who do not actively seek 
care may be detected in the community whether they exhibit symptoms or not’, which is 
true only when the outbreak has led to community transmission. 
 

3. 

Your model indicated that the testing at such a high level (e.g. 63,000 samples in a single 4. 

 
Page 15 of 18

Wellcome Open Research 2020, 5:218 Last updated: 10 NOV 2020

https://doi.org/10.21956/wellcomeopenres.17858.r40827
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4497-5251


day) may not be sustainable. However, the measurement of Qingdao and Yunnan have 
approved the testing capacity may not be a problem in cities in the country like China and 
other countries with abound resources. 
 
The large-scale use of pooling testing will compromise the sensitivity and specificity of 
COVID-19 testing, which has been included in the guideline in China, and you may need to 
consider it in your modeling. 
 

5. 

I did not see how the close contacts would be tested and detected because of exposure, 
which was however very important for the measurements for control of epidemics. 
 

6. 

The author should pay more attention to the details of the article. Errors like these may 
cause confusion in the reader's understanding, for example, the formula in line 7 on page 2 
of the attachment seems to be ambiguous which should be clinical infectious 
compartments. 
 

7. 

A few of newly published papers may need to be included in the references.8. 
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In this study, authors used a dynamic SEIR-type model to investigate different surveillance 
strategies among healthcare workers, hospital patients and general community to detect a new 
COVID-19 outbreak in population. Using extensive model simulations, authors evaluated the 
surveillance sensitivity in different settings with various testing capacities, and proposed a multi-
layer surveillance approach that optimally allocates testing resources. Results from this modeling 
work have direct implications in COVID control and can inform allocation of testing to achieve 
rapid detection of the onset of a new outbreak. The study is in general technically sound, and the 
results are clearly communicated. Here I have a few questions and suggestions that I hope 
authors find useful.

The study employed a deterministic compartmental model and assumed the new outbreak 
is initiated by a single exposed person. As the initial transmission dynamics is highly 
stochastic, it is more appropriate to use a stochastic version of the model. This model 
stochasticity could also potentially affect the surveillance sensitivity and uncertainty in the 
results, for instance, Figure 3. 
 

1. 

Figure 2 is hard to read using the current color map. A contour map would be better. 
 

2. 

In Table 1, does the PCR diagnostic sensitivity depend on the sampling time relative to 
infection time? 
 

3. 

It would be good to explain the meaning of crosses in Table 2. 
 

4. 

In the model, HCWs are assumed to face a higher infection risk than patients due to 
prolonged exposures. However, there are reports showing that the use of PPE actually 
could reduce the infection risk compared with general population. A discussion on this 
factor would be helpful.
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