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Abstract

Background

This study provides detailed characteristics of vector populations in preparation for a three-

arm cluster randomized controlled trial (RCT) aiming to compare the community impact of

dual active-ingredient (AI) long-lasting insecticidal nets (LLINs) that combine two novel

insecticide classes–chlorfenapyr or pyriproxifen–with alpha-cypermethrin to improve the

prevention of malaria transmitted by insecticide-resistant vectors compared to standard

pyrethroid LLINs.

Methods

The study was carried out in 60 villages across Cove, Zangnanando and Ouinhi districts,

southern Benin. Mosquito collections were performed using human landing catches (HLCs).

After morphological identification, a sub-sample of Anopheles gambiae s.l. were dissected

for parity, analyzed by PCR for species and presence of L1014F kdr mutation and by
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ELISA-CSP to identify Plasmodium falciparum sporozoite infection. WHO susceptibility

tube tests were performed by exposing adult An. gambiae s.l., collected as larvae from each

district, to 0.05% alphacypermethrin, 0.75% permethrin, 0.1% bendiocarb and 0.25% pirimi-

phos-methyl. Synergist assays were also conducted with exposure first to 4% PBO followed

by alpha-cypermethrin.

Results

An. gambiae s.l. (n = 10807) was the main malaria vector complex found followed by Anoph-

eles funestus s.l. (n = 397) and Anopheles nili (n = 82). An. gambiae s.l. was comprised of

An. coluzzii (53.9%) and An. gambiae s.s. (46.1%), both displaying a frequency of the

L1014F kdr mutation >80%. Although more than 80% of people slept under standard LLIN,

human biting rate (HBR) in An. gambiae s.l. was higher indoors [26.5 bite/person/night (95%

CI: 25.2–27.9)] than outdoors [18.5 b/p/n (95% CI: 17.4–19.6)], as were the trends for sporo-

zoite rate (SR) [2.9% (95% CI: 1.7–4.8) vs 1.8% (95% CI: 0.6–3.8)] and entomological inoc-

ulation rate (EIR) [21.6 infected bites/person/month (95% CI: 20.4–22.8) vs 5.4 (95% CI:

4.8–6.0)]. Parous rate was 81.6% (95%CI: 75.4–88.4). An. gambiae s.l. was resistant to

alpha-cypermethrin and permethrin but, fully susceptible to bendiocarb and pirimiphos-

methyl. PBO pre-exposure followed by alpha-cypermethrin treatment induced a higher 24

hours mortality compared to alphacypermethrin alone but not exceeding 40%.

Conclusions

Despite a high usage of standard pyrethroid LLINs, the study area is characterized by

intense malaria transmission. The main vectors An. coluzzii and An. gambiae s.s. were both

highly resistant to pyrethroids and displayed multiple resistance mechanisms, L1014F kdr

mutation and mixed function oxidases. These conditions of the study area make it an appro-

priate site to conduct the trial that aims to assess the effect of novel dual-AI LLINs on malaria

transmitted by insecticide-resistant vectors.

Background

Malaria remains a major public health issue in Benin, with prevalence of infection within the

general population ranging from 11% to 51% depending on the region, with high burden in

children under 5 years old [1]. Long-lasting insecticidal nets (LLINs) distributed at the

national level every three years, and indoor residual spraying (IRS) in targeted districts, are the

main pillars on which Benin’s National Malaria Control Programme (NMCP) relies for pro-

tection against malaria vectors. During the most recent mass distribution campaign in 2017,

pyrethroid-treated LLINs (Yorkool, PermaNet 2.0 and Dawa Plus 2.0), were widely distributed

across the country. In 2018, LLIN usage was relatively high, with 71% of the national popula-

tion reporting sleeping under a net, and 92% of households owning at least one LLIN [1].

According to Bhatt et al., [2], malaria control interventions helped reduce malaria incidence

by 40% in Africa between 2000 and 2015, with insecticide treated nets (ITNs) being the highest

contributor (68% of cases averted). Similarly, reductions in malaria disease burden following

the scale-up of LLINs have been routinely documented in trials conducted in several African

countries including Kenya [3,4], and Benin [5,6]. Although LLINs are efficacious against
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susceptible vector populations, more recent studies have demonstrated that LLINs performed

below expectations in areas where vectors are resistant to insecticides used for nets treatments,

notably pyrethroids [7,8].

Insecticide resistance has emerged and spread across Africa, including Benin [9]. Between

2016 and 2018, progress in reducing malaria cases worldwide had stalled [9], with one of the

likely reasons being pervasive insecticide resistance among malaria vector populations.

Researchers and decision-makers now have high expectations of next generation LLINs

which the World Health Organization (WHO) has encouraged manufacturers to develop for

the control of resistant mosquitoes. Currently, next generation LLINs under evaluation include

nets which combine a pyrethroid insecticide with either piperonyl butoxide (PBO; a synergist

that inhibits mono-oxygenases implicated in resistance) or pyriproxyfen (PPF; a growth regu-

lator that inhibits fecundity and fertility in insects) or chlorfenapyr (a pyrrole insecticide that

disrupts mitochondrial oxidative phosphorylation). Cluster randomized controlled trials

(RCTs) conducted in Tanzania [8], Uganda [10], and Burkina Faso [11] demonstrated that

pyrethroid-PBO LLINs and pyrethroid-PPF LLINs provide more protection against malaria

than standard LLINs. Other insecticide mixture LLINs combining alpha-cypermethrin and

chlorfenapyr [12] or pyriproxyfen [13], have showed superior efficacy compared to standard

LLINs on entomological outcomes in experimental hut trials. However, there remains a dearth

of evidence regarding the effectiveness of the latter two dual-AI LLINs on malaria infection

and transmission at the community-level.

This study conducted in southern Benin presents baseline entomological data collected in

preparation for an RCT assessing the effectiveness, of Interceptor G2 (a pyrethroid-chlorfena-

pyr LLIN) and Royal Guard (a pyrethroid-pyriproxifen LLIN) deployed in the community, on

malaria incidence, prevalence and transmission.

Material and methods

Study area

The study was carried out in three adjacent districts [Covè (07˚13’08.0400” N, 02˚20’21.8400”

E), Ouinhi (07˚05000@ N, 02˚29000@ E) and, Zagnanando (07˚16000@ N, 02˚21000@ E)] located

150 kilometers away from Cotonou, the economic capital of Benin. The area has two rainy sea-

sons (May-July and September-November) and was selected because of its high endemicity for

malaria, with infection prevalence of 36.5% in children aged under 5 years old [1], intense

pyrethroid resistance in the primary malaria vector species [14] and proximity to experimental

huts sites. The main economic activities carried out by the population are agriculture, fishing,

hunting, trade, and hospitality industry. The main crops produced are groundnuts, rice,

maize, oranges, cassava, beans, oil palm, sorghum and millet [15]. According to the study cen-

sus performed in 2019, the area population was approximately 220,000. A total of 60 clusters

were formed from the 123 villages in the study area. Entomological monitoring was conducted

in one village in each cluster, equating to a total of 60 villages with 8 in Cove district, 33 in Zag-

nanando and 19 in Ouinhi (Fig 1).

Human landing catches (HLC)

Mosquito sampling technique. One round of mosquito collections was undertaken

across villages, between September and October 2019. In each village, four houses were

selected for mosquito sampling using HLCs. To facilitate the supervision of mosquito collec-

tors for HLCs, the first house was randomly selected from the study census list, while the other

three were chosen by the field team, within a radius of 15–20 meters around the first one. Four

collectors were required per house. Two collectors (one indoor and one outdoor) collected
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mosquitoes during 6 hours from 07:00 p.m. to 01:00 a.m. and the second group from 01:00 to

07:00 a.m. The collectors sat on a chair with their lower limbs exposed and collected all mos-

quitoes which landed on them using sucking tubes. To characterize Anopheles biting behav-

iour, collections were recorded per hour both indoors and outdoors.

Fig 1. Map of the study area.

https://doi.org/10.1371/journal.pone.0251742.g001
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Mosquito processing. Mosquito specimens collected in HLCs were morphologically iden-

tified to species-level using the Gillies and Meillon [16] taxonomic key. In each village, a sub-

sample of An. gambiae s.l. from indoor and outdoor collection and across collection hours

were randomly selected, dissected to determine parous status [17], and analyzed by ELI-

SA-CSP to detect presence of Plasmodium falciparum, following the protocol of Wirtz et al.
[18]. Abdomens, legs and wings of An. gambiae s.l., previously analysed by ELISA-CSP, were

used for species identification and L1014F kdr mutation following the protocols of Santola-

mazza et al. [19] and Martinez-Torres et al. [20], respectively.

Household data collection. A short questionnaire about LLIN use was administered in

houses where HLCs were conducted using Open Data Kit (ODK). The questionnaire recorded

information about number of inhabitants in the surveyed households, number of people sleep-

ing indoors and outdoors, number of people sleeping under nets, type of house (mud, cement,

others), type of nets presents in the house, condition of nets, GPS coordinates of households

and, other malaria prevention measures (IRS, coils, any others) used by household members.

WHO susceptibility tube tests

Mosquito larvae collections and rearing. Mosquito larvae and pupae were sampled from

various breeding sites in 2 nearby villages in each district, using a larval dipper. They were

transported to the field insectary for rearing until adulthood at 25˚C ± 2˚C and 80% ± 10% rel-

ative humidity. After emergence, morphological identification of adult mosquitoes was per-

formed to species-level, and only An. gambiae s.l. individuals were tested.

Susceptibility testing. In each district, batches of 20–25 unfed females An. gambiae s.l.

aged 3–5 days old were aspirated into four tubes containing WHO insecticide impregnated

papers (0.75% permethrin, 0.05% alpha-cypermethrin, 0.1% bendiocarb or 0.25% pirimiphos-

methyl) for one hour. Separate batches were exposed to a tube lined with a WHO control

paper in parallel.

To evaluate the involvement of mixed function oxidases (MFOs) in pyrethroid resistance in

populations of An. gambiae s.l., synergist assays with piperonyl butoxide (PBO; 4%) were per-

formed. Mosquitoes were pre-exposed to PBO papers in WHO tubes for one hour, before

transfer to different tubes with alpha-cypermethrin papers (0.05%) for a further hour.

The percentage mortality at 24, 48, and 72 hours post-exposure was recorded. All tests were

performed following the WHO protocol [21].

Ethical considerations

The protocol of the present study has been reviewed and approved by the Benin national ethics

committee for health research (N˚30/MS/DC/SGM/DRFMT/CNERS/SA, Approval n˚6 of 04/

03/2019) and the ethics committee at the London School of Hygiene and Tropical Medicine

(16237–1). Written consent to participate in the study was taken from head of households and

adult volunteers who performed HLCs after they have been fully informed of the risks of the

study. Collectors were trained to collect any mosquito that landed on them before being bitten.

All fieldworkers have been vaccinated against yellow fever. When they experienced malaria

symptoms, they were immediately provided with anti-malarial medication such as Artemisi-

nin-based Combination Therapy in the nearest health facility.

Data management and analysis

Entomological monitoring data were double entered into databases designed in CS Pro 7.2

software and, cleaned with Stata 15.0 (Stata Corp., College Station, TX).
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Entomological indicators of malaria transmission measured both indoors and outdoors,

were determined as mentioned in the Table 1 below.

As all An. gambiae s.l. positive for CSP ELISA and approximately 50% of the negative ones

were tested for molecular species identification, the SR per molecular species (An. coluzzii and

An. gambiae s.s.) was weighted to account for proportion of collected Anopheles processed for

CSP. This allowed taking into account the unequal sampling.

The mean of the household results for HBR, SR and EIR were used to generate a village

level result. The mean of the village results is presented by district and their confidence inter-

vals were calculated using the Poisson distribution.

According to the WHO guidelines [21], resistance status of populations of An. gambiae s.l.

was determined after exposure to the discriminating insecticide dose, as follows:

i. Susceptible (mortality rate� 98%)

ii. Possible resistance (mortality rate between 90–97%)

iii. Resistance (mortality <90%)

According to the WHO guidelines [21], involvement of metabolic mechanisms in insecti-

cide resistance in populations of An. gambiae s.l. was determined as follows:

i. Metabolic mechanism not involved (insecticide-synergist mortality not higher than for

insecticide-only)

ii. Metabolic mechanism partially involved (insecticide-synergist <98% mortality but higher

than for insecticide-only)

iii. Metabolic mechanism fully involved (insecticide-synergist �98% and higher than for

insecticide-only)

Confidence intervals of mortality rates were determined using the exact binomial test. All

statistical analyses were performed using Stata version 15.0 (Stata Corp., College Station, TX).

Results

Household and individual characteristics of study population

A total of 240 households were visited for HLCs, the average number of habitants per house-

hold was 4.5 (95% confidence interval (CI): 4.2–4.8) (Table 2). The majority (92.8%, 95% CI:

87.2–98.8) of the population slept indoors with no difference between districts. All visited

households owned at least one LLIN. The proportion of people that report to sleep under nets

the previous night was similar across districts with a mean of 82.7% (95% CI: 77.3–88.3) for

the study area.

Overall, the majority of houses were made of mud (65.8%, 95% CI: 55.9–76.9) and cement

(26.7%, 95% CI: 20.5–34.1). At the district level, while most houses were made of mud in Zang-

nanando and Ouinhi, mud and cement made houses were found in similar proportions in the

Table 1. Formulas of entomological indicators of malaria transmission.

Indicators Formulas

Human biting rate (HBR) Total An. gambiae s.l./number of collector night

Sporozoite rate (SR) Number of positive mosquitoes/Total number tested

Parous rate Number of parous mosquitoes/Total number dissected

Monthly EIR HBR x SR x 30

https://doi.org/10.1371/journal.pone.0251742.t001
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more urban district of Cove.The mean number of LLINs per household was 1.9 (95% CI: 1.6–

2.0) in the study area and, similar across districts. The majority (87.9%, 95% CI: 79.4–97.1) of

nets used were PermaNet 2.0. The other types of LLINs used were: OlysetNet, DawaPlus, Dur-

aNet and Yorkool. On average, 46.5% (95% CI: 40.4–53.3) of LLINs had holes with no differ-

ence between districts (Table 2).

Mosquito species composition

A total of 46,613 mosquitoes were collected with HLCs. Culex and Mansonia accounted for

35.3% and 36.9% of all the collection respectively, and their proportions were slightly higher

outdoors than indoors. An. gambiae s.l. was the most abundant of the Anopheles species and

represented 28.2% and 18.4% of the collection indoors and outdoors respectively. Other spe-

cies found in lower density were An. funestus, An. nili, An. ziemanni, and Aedes spp. collected

both indoors and outdoors. Coquilletidia spp. and Eretmapodites spp. were captured only

indoors but at very low frequencies (<1%) (Fig 2).

Molecular species identification performed on 1797 specimens showed that 53.9%

(N = 968) were An. coluzzii and the remaining were An. gambiae s.s. Indoors, both species

were in similar proportions [50.9%, 95% CI: 48.0–53.9 for An. coluzzii vs 49.1%, 95% CI: 46.1–

52.0 for An. gambiae s.s.]. Outdoors, An. coluzzii predominated (59.3%, 95% CI: 55.3–63.1)

over An. gambiae s.s. (40.7%, 95% CI: 36.8–44.7).

HBR, SR and monthly EIR in An. gambiae s.l.

Overall, the mean HBR was higher indoors with 26.5 bites per person per night (b/p/n) (95%

CI: 25.2–27.9), n = 6373] compared to outdoors [18.5 b/p/n (95% CI: 17.4–19.6), n = 4434] in

the study area. The same trend was observed in all three study districts (Table 3).

Table 2. Household and individual characteristics of study population.

Indicators Cove Zangnanado Ouinhi Study area

(95% CI), N (95% CI), N (95% CI), N (95% CI), N

Households (HH)

Total N of people 69960 73733 72596 216289

Total N of HH 16941 18470 18732 54143

N of visited HH 32 132 76 240

Mean N of people per visited HH 4.3 (3.5–5.1), 137 4.7 (4.3–5.1), 624 4.4 (3.8–4.9), 331 4.5 (4.2–4.8), 1092

Proportion of visited HH with at least one LLIN 100% 100% 100% 100%

People sleeping indoors in the visited HH 97.1% (81.2–100), 133 92.9% (85.5–100), 580 90.9% (80.9–100), 301 92.8% (87.2–98.8), 1014

People sleeping under nets the previous night in the visited HH 89.1% (73.9–100), 122 81.9% (74.9–89.3), 511 81.6% (72.1–91.9), 270 82.7% (77.3–88.3), 903

Type of housing

Cement wall 40.6% (21.6–69.5), 13 23.5% (15.9–33.3), 31 26.3% (16.0–40.6), 20 26.7% (20.5–34.1), 64

Mud wall 43.8% (23.9–73.4), 14 72% (58.2–87.9), 95 64.5% (47.6–85.2), 49 65.8% (55.9–76.9), 158

Other type of wall 15.6% (5.0–36.5), 5 4.5% (1.6–9.9), 6 9.2% (3.7–18.9), 7 7.5% (4.4–11.9), 18

LLINs

Total number of LLINs 62 237 148 447

Mean N of LLINs per HH 1.9 (1.4–2.5) 1.8 (1.5–2.0) 1.9 (1.6–2.3) 1.9 (1.6–2.0)

Permanet 2.0 79% (58.4–100), 49 88.6% (77.0–100), 210 90.5 (75.8–100), 134 87.9% (79.4–97.1), 393

Other LLINs 21% (11.1–35.9), 13 11.4% (7.5–16.6), 27 9.5 (5.1–15.9), 14 12.1(9.8–15.8), 54

Holed nets 45.2% (30–65.3), 28 43.9% (35.8–53.2), 104 51.4 (40–64.3), 76 46.5% (40.4–53.3), 208

N: Number of, HH: Household.

https://doi.org/10.1371/journal.pone.0251742.t002
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Biting of An. gambiae s.l. was more intense late at night both indoors and outdoors, with

the lowest density before 10 pm. The peak in biting was 4.9 b/p/h (95% CI: 4.4–5.5) indoor

and 3.3 b/p/h (95% CI: 2.9–3.8) outdoor and occurred between 4 and 6 a.m (Fig 3). The trend

was the same at the study district level (Supporting information files, S1 Fig).

In An. gambiae s.l., the SR was higher indoors [2.9% (95% CI: 1.7–4.8), n = 2264] than out-

doors [1.8% (95% CI: 0.6–3.8), n = 1341] in the study area with no significant difference, so

was the trend in each district (Table 3).

At the molecular species level, the SR was 3.1% (95% CI: 2.3–4.0) in An. gambiae s.s. com-

pared to 2.1% (95% CI: 1.5–2.8) in An. coluzzii.
Combined data revealed a higher monthly EIR indoors [21.6 b/p/m (95% CI: 20.4–22.8)]

compared to outdoors [5.4 b/p/m (95% CI: 4.8–6.0)] in the study area, with the same trend in

the three study districts (Table 3).

Fig 2. Mosquito species composition in the study area.

https://doi.org/10.1371/journal.pone.0251742.g002

Table 3. HBR, SR and EIR in An. gambiae s.l. in Cove, Ouinhi and Zangnanado.

Districts Biting location N of An collected Person night HBR (95%CI) N of An tested SR (95%CI) EIR (95%CI)

Cove Indoor 975 32 30.5a (26.7–34.6) 366 3.3a (0.6–9.5) 21.4a (18.2–24.8)

Outdoor 556 32 17.4b (14.6–20.5) 163 2.4a (0.06–13.4) 6.4b (4.7–8.4)

Zangnanado Indoor 2792 132 21.2a (19.6–22.8) 1187 3.7a (1.8–6.5) 24.1a (22.4–25.9)

Outdoor 2134 132 16.2b (14.8–17.6) 719 2.1a (0.5–5.4) 5.9b (4.9–6.7)

Ouinhi Indoor 2606 76 34.3a (31.7–37.1) 711 1.7a (0.3–4.9) 17.3a (15.4–19.3)

Outdoor 1744 76 22.9b (20.8–25.2) 459 1.7a (0.2–6.3) 4.3b (3.4–5.4)

Study area Indoor 6373 240 26.5a (25.2–27.9) 2264 2.9a (1.7–4.8) 21.6a (20.4–22.8)

Outdoor 4434 240 18.5b (17.4–19.6) 1341 1.8a (0.6–3.8) 5.4b (4.8–6.0)

An: An. gambiae s.l., The SR is expressed in percentage (%), The HBR was expressed in the number of bites/person/night (b/p/n), The EIR is expressed in number of

infected bites/person/month (ib/p/m)
a,b: Indicator values with different superscripts within a same district are significantly different (p<0.05).

https://doi.org/10.1371/journal.pone.0251742.t003
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Parous rate in An. gambiae s.l.

Of the 2,843 specimens of An. gambiae s.l. dissected in the study area, 2,327 were parous equat-

ing to a parous rate of 81.6% (95% CI: 75.4–88.4). Similar parous rates were observed indoors

(82.2%, 95% CI: 74.0–91.0) and outdoors (80.7%, 95% CI: 70.7–91.8) in the study area. The

same trend was observed in all three study districts (Supporting information files, S1 Table).

WHO susceptibility tube tests and L1014F kdr mutation frequency

Susceptibility tube testing showed that An. gambiae s.l. populations were resistant to pyrethroid

insecticides (alpha-cypermethrin and permethrin). By comparison, full susceptibility was

observed to bendiocarb and pirimiphos-methyl. No significant difference was observed between

the mortality rates at 24h, 48h and 72h, post-exposure (Fig 4) per district or per insecticide.

While full susceptibility was not reached, pre-exposure to PBO increased mortality to alpha-

cypermethrin from 9.6% (95% CI: 5.7–14.9), 4.5% (95% CI: 2–8.7), 8.6 (95% CI: 5.1–13.5) to

21.4% (95% CI: 15.7–28), 37.3% (95% CI: 30.5–44.5), 27.3% (95% CI: 17.7–38.6), respectively in

Cove, Zangnanando and Ouinhi (Fig 5). This indicates partial involvement of mixed function

oxidases (MFOs) in pyrethroid resistance in these An. gambiae s.l. populations.

Frequency of the L1014F kdr mutation in An. gambiae s.s. was 89.8% (95% CI: 88.2–91.2,

n = 829) compared to 84.3% (95% CI:82.5–85.9, n = 968) in An. coluzzii collected during HLC.

At the district level, the same trend was observed in Zangnanando, while the frequency of the

mutation was similar in both species in Cove and Ouinhi (Supporting information files, S2

Table).

Discussion

The current study provides detailed characteristics of vector populations in the study area in

preparation for a cluster RCT which will assess the impact of community use of two dual-AI

LLINs in the Zou region, Benin.

Fig 3. An. gambiae s.l. hourly biting rates in the study area (N = 6373 indoors, N = 4434 outdoors), b/p/h: Bite/person/hour,

the error bars indicate the confidence intervals.

https://doi.org/10.1371/journal.pone.0251742.g003
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Fig 4. Mortality rates of An. gambiae s.l. to 0.05% alpha-cypermethrin, 0.75% permethrin, 0.1% Bendiocarb and, 0.25%

Pirimiphos-methyl, the error bars indicate the confidence intervals.

https://doi.org/10.1371/journal.pone.0251742.g004

Fig 5. 24 hours Mortality of An. gambiae s.l. to alpha-cypermethrin and PBO+alpha-cypermethrin in Cove, Ouinhi and

Zangnanado, the error bars indicate the confidence intervals.

https://doi.org/10.1371/journal.pone.0251742.g005
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Overall, Anopheles gambiae s.l. was the major vector complex, followed by Anopheles funes-
tus and Anopheles nili, as previously reported in other regions of Benin [22–24]. Mosquito spe-

cies from the Mansonia and Culex genera were also collected at moderate frequency (<40%),

unlike Aedes, Coquilletidia and Eretmapodites which were found in low proportions (<2%). All

collected mosquito species were found both indoors and outdoors except for Coquilletidia spp.

and Eretmapodites spp. which were only collected indoors. The strong presence of mosquito

species from the Culex and Aedes genera suggests a high potential for transmission of lymphatic

filariasis and arbovirus such as dengue and yellow fever as observed in the Ouinhi [25] and Abo-

mey-Calavi [26] districts. For that, apart from the LLINs whose distribution occurred as part of

the RCT, a complementary strategy such as a larval source management program that will help

discarding the majority of productive mosquito breeding sites would be needed.

Molecular species identification performed within the An. gambiae s.l. complex revealed

the presence of a mixture of An. coluzzii (53.9%) and An. gambiae s.s. (46.1%). This is consis-

tent with results from previous studies carried out in the same area by Ngufor et al. [14] and,

in the neighbouring Plateau region by Sovi et al. [27]. According to Diabate et al. [28], perma-

nent and semi-permanent breeding sites are conducive to the development of An. coluzzii
while, temporary breeding site are favorable to the emergence of An. gambiae s.s. Indeed, sev-

eral semi-permanent breeding sites have been created by the numerous tributaries of the

Oueme and Zou rivers that water the study area as well as the presence of many rice growing

areas. By comparison, temporary breeding sites were usually created by rain. The variation

observed in the composition of the two molecular species between indoor and outdoor sug-

gests that a scrutiny survey investigating the host-seeking behaviour of each species would be

of interest. Despite the large number of specimens of An. gambiae s.l. analysed by PCR, An.

arabiensis was not detected, although its presence in the neighbouring districts of Allada has

been documented [29]. This could be due to the short mosquito sampling period and, the zoo-

philic behaviour of this species.

A large variability in the density of An. gambiae s.l. was observed among villages both

indoors and outdoors in each district. This could be attributed to the disparity in the distribu-

tion of breeding sites from village to village. Despite the presence of LLINs in the majority of

houses, and that more than 80% of household members slept under nets, the human biting

rate in An. gambiae s.l was higher indoors than outdoors. This confirms the classical endopha-

gic and anthropophagic behaviour which is observed in this mosquito species [30,31]. Indeed,

this behaviour could have been facilitated by vector resistance to pyrethroids incorporated on

the LLINs in use in the study area [14]. In addition, most biting was recorded late at night

(from 11 p.m.), with peaks early in the early morning (around 4–5 a.m. or 5–6 a.m.). This sug-

gests that the use of non-holed mosquito nets overnight can provide substantial protection to

sleepers by significantly reducing the man-vector contact. According to a socio-anthropologi-

cal study by N’tcha et al. [32], Benin’s rural populations usually perform various nightly activi-

ties (children’s play-activities, night talks, cooking, washing the dishes, eating, resting)

outdoors and sleep under their nets indoors from 10 p.m. Thus, the little biting activity

observed in An. gambiae s.l. early in the night (between 7-10pm) is not sufficient to put people

at substantial elevated risk of receiving infected bites.

Populations of An. gambiae s.l. from all three study districts were resistant to pyrethroids

but fully susceptible to bendiocarb and pirimiphos-methyl. A similar trend was observed by

Gnanguenon et al. [33] and Sovi et al. [34] in the neighbouring districts of Allada and Pobe/

Ketou, respectively. High use of LLINs over years, as well as the uncontrolled spray of insecti-

cides for agricultural purposes throughout the region might have contributed to vector resis-

tance to pyrethroids. While emergence of bendiocarb resistance occurred in some northern

regions of the country where a carbamate-based IRS was implemented [35,36], continued
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susceptibility to the same product and to pirimiphos-methyl was observed in the Cove, Ouinhi

and, Zangnanando districts located in the south. This stresses the need for a judicious applica-

tion of non-pyrethroid insecticides to delay the onset of resistance and preserve their efficacy.

The resistance genotyping revealed that the high frequency of L1014 kdr mutation could be

partly responsible for pyrethroid resistance in An. gambiae s.l. Indeed, the frequency was high

at 89.8% in An. gambiae s.s. and 84.3% in An. coluzzii. In addition, the synergistic assay data

suggests the partial involvement of MFOs that confer pyrethroid resistance, which confirms

previous work performed in the region by Ngufor et al. [14].

Aggregated data in the study area shows a higher SR indoors than outdoors in An. gambiae
s.l., although no significant difference was observed. This might be due to the difference in the

molecular species composition between indoor and outdoor. Indeed, the relative high ability

of An. gambiae s.s. to get infected could have increased the SR indoors where it was in similar

proportion with An. coluzzii, contrary to outdoors where its proportion was significantly

lower. Similarly, indoor biting vectors were slightly older as shown by the parity rates

observed. This is reminiscent of works by Machani et al. [37] who observed similar trend for

SR in Bungoma and Kisian, Western Kenya. Although not significant, the SR was higher in

An. coluzzii than in An. gambiae s.s. in the Alibori and Donga regions, Northern Benin [38].

The opposite trend observed in the present study might indicate the relative time in the age

structure of the mosquito population, since sampling was performed only once.

The large variability in the EIR between villages confirms the heterogeneity in malaria

transmission. Moreover, malaria transmission occurred mostly indoors than outdoors despite

the use of conventional LLINs. This is in agreement with previous reports by Degefa et al. [39]

in western Kenya, and might be due to the fact that most people slept indoors overnight and

also the spread of resistance to pyrethroids incorporated in the conventional nets in use, as

observed by Trape et al. [40] and, Ndiath et al. [41]. This emphasizes the need for assessing at

the community level, the efficacy of dual-AI LLINs currently developed by the manufacturers,

to control resistant mosquitoes.

Outdoor malaria transmission is a well-documented phenomenon in several other coun-

tries, including Cambodia [42], Peru [43], and Kenya [36]. According to Sherrard-Smith et al.

[44], with a scenario of universal LLIN and IRS coverage (indoor control tools) across Africa,

outdoor transmission could result in an estimated 10.6 million additional malaria cases over a

year. In future, a major challenge to malaria control and elimination will likely be residual

transmission as it remains a serious threat to the effectiveness of vector control tools that

mostly target indoor malaria transmission.

Compared to An. gambiae s.l, An. funestus and An. nili likely play a minor role (lower EIR)

in local malaria transmission due to their very low frequency (<2%), as observed in some

Benin northern districts (Kerou and Pehunco) by Osse et al. [24]. However, the contribution

of An. funestus and An. nili to malaria transmission was not evaluated in the present study.

The seasonality and the single session of night sampling per village were also study limitations.

High resistance of malaria vectors to pyrethroids, as well as persistence of the disease trans-

mission despite the strong culture of conventional LLINs use make the study area suitable for

the implementation of the RCT that aims at assessing the efficacy of two dual-AI LLINs on

malaria incidence, prevalence and transmission. For this assessment, baseline data gathered

over the present study will serve for comparisons with the post-intervention ones.

Conclusion

The present cross-sectional study provides information on key entomological indicators of

malaria transmission prior to the implementation of the RCT. The mosquito relative
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abundance shows that An. gambiae s.l. was the primary malaria vector followed by An. funestus
and An. nili. An. gambiae s.l. was both highly resistant to pyrethroids and displayed multiple

resistance mechanisms, L1014F kdr mutation and mixed function oxidases. HBR and EIR

were higher indoors than outdoors in An. gambiae s.l. despite the high usage of conventional

LLINs. This stresses the need for evaluating novel types of dual-AI LLINs that could help to

better tackle malaria transmitted by pyrethroid resistant vectors.

Supporting information

S1 Fig. An. gambiae s.l. hourly biting rates in Cove, Zangnanado and Ouinhi.

(DOCX)

S1 Table. Parous rate in An. gambiae s.l. in Cove, Ouinhi and Zangnanando.

(DOCX)

S2 Table. Allelic frequencies of the L1014F kdr mutation in An. gambiae s.s and An. coluz-
zii collected using HLCs.

(DOCX)

Acknowledgments

We acknowledge the populations of the Cove, Ouinhi and Zangnanando districts as well as the

local authorities who facilitated the implementation of the present study, through their close

collaboration. The technicians who conducted mosquito processing and bioassays are thanked

for their dedicated work, so is the LSHTM ODK support team that provided Electronic data

solutions through LSHTM Open Research Kits (http://odk.lshtm.ac.uk/).

Author Contributions

Conceptualization: Boulais Yovogan, Arthur Sovi, Constantin J. Adoha.

Data curation: Boulais Yovogan, Constantin J. Adoha, Edouard Dangbénon.
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