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Abstract 

 

Objectives  

To compare approaches for obtaining relative and absolute estimates of risk of 28-day COVID-19 

mortality for adults in the general population of England in the context of changing levels of 

circulating infection. 

 

Design  

Three designs were compared. (A) case-cohort which does not explicitly account for the time-

changing prevalence of COVID-19 infection, (B) 28-day landmarking, a series of sequential 

overlapping sub-studies incorporating time-updating proxy measures of the prevalence of infection, 

and (C) daily landmarking. Regression models were fitted to predict 28-day COVID-19 mortality. 

 

Setting  

Working on behalf of NHS England, we used clinical data from adult patients from all regions of 

England held in the TPP SystmOne electronic health record system, linked to Office for National 

Statistics (ONS) mortality data, using the OpenSAFELY platform. 

 

Participants 

Eligible participants were adults aged 18 or over, registered at a general practice using TPP software 

on 1
st

 March 2020 with recorded sex, postcode and ethnicity. 11,972,947 individuals were included, 

and 7,999 participants experienced a COVID-19 related death. The study period lasted 100 days, 

ending 8
th

 June 2020. 

 

Predictors 

A range of demographic characteristics and comorbidities were used as potential predictors. Local 

infection prevalence was estimated with three proxies: modelled based on local prevalence and 

other key factors; rate of A&E COVID-19 related attendances; and rate of suspected COVID-19 cases 

in primary care. 

 

Main outcome measures  

COVID-19 related death. 

 

Results  

All models discriminated well between patients who did and did not experience COVID-19 related 

death, with C-statistics ranging from 0.92-0.94. Accurate estimates of absolute risk required data on 

local infection prevalence, with modelled estimates providing the best performance.  

 

Conclusions 

Reliable estimates of absolute risk need to incorporate changing local prevalence of infection. Simple 

models can provide very good discrimination and may simplify implementation of risk prediction 

tools in practice.      
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INTRODUCTION 

 

Within 9 months of being characterised as a pandemic by the World Health Organization1, cases of 

COVID-19 had reached almost 100 million globally and around 3.8 million in the UK, with more than 

2 million deaths attributed to the virus globally and 100,000 in the UK.2,3 Evolving policies regarding 

shielding, return-to-work guidance, prioritisation of vaccinations and individual choices about 

restricting social contact are heavily informed by estimated risk of severe outcomes from COVID-19. 

Here, we focus on risk prediction in the general population, in contrast to predicting prognosis 

among hospitalised or test-positive subgroups. Estimates of absolute risk are desirable to inform 

policy and public health decisions. However, transporting estimates of absolute risk from one 

context to another, such as a different time period or a different geographical region, is particularly 

challenging in COVID-19, due to the substantial variation in the prevalence of infection over time and 

by geography.
4
 Prediction models that do not explicitly model the underlying prevalence of infection 

are likely to produce poor absolute risk estimates. However, the prevalence of infection is not 

directly measured thus proxy measures must be used. Whether easily accessible proxy measures are 

sufficiently good to produce reasonable absolute and relative risk estimates remains uncertain.  

 

Early risk prediction models relating to COVID-19 outcomes were found to be poorly reported and at 

high risk of bias and over-optimism.
5
 However, two subsequent models have been developed to 

predict risk scores for COVID-19 death in the UK general population. The COVID-AGE is a risk score 

obtained by an algorithm derived by combining evidence from published studies.
6,7

 QCOVID is a 

prediction model estimated using routinely collected primary care data in the UK.8 Both of these risk 

prediction approaches met most criteria for low risk of bias in the development of risk prediction 

algorithms.9 However, neither of these algorithms involved explicit modelling of the underlying 

prevalence of COVID-19 infection, which limits the extent they could be adapted to provide accurate 

estimates of absolute risk for time periods or settings with different infection prevalences. 

 

In this study, we therefore used data held in the OpenSAFELY platform10 on almost 12 million adults 

in England to answer: 1) How well can we improve estimates of absolute risk of COVID-19 mortality 

by explicitly incorporating proxy estimates of the changing infection prevalence? 2) Do risk 

prediction models which do not explicitly model the underlying burden of infection produce a good 

ranking of people’s risk of COVID-19 mortality in different contexts (time and geographical)? 3) Can 

simpler prediction algorithms be used without losing substantial predictive ability, compared with 

more richly specified models?  

 

 

METHODS 
 

Full details of the methods used can be found in our pre-published protocol.11  This manuscript 

follows the TRIPOD statement for prediction models.12  

 

Data Source 

Primary care records managed by the GP software provider TPP were linked to ONS death data 

through OpenSAFELY, a data analytics platform created by our team on behalf of NHS England to 

address urgent COVID-19 research questions (https://opensafely.org). OpenSAFELY provides a 

secure software interface allowing the analysis of pseudonymized primary care patient records from 

England in near real-time within the EHR vendor’s highly secure data centre, avoiding the need for 

large volumes of potentially disclosive pseudonymized patient data to be transferred off-site. This, in 
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addition to other technical and organisational controls, minimizes any risk of re-identification. 

Similarly pseudonymized datasets from other data providers are securely provided to the electronic 

health record vendor and linked to the primary care data. The full dataset within OpenSAFELY is 

based on 24 million people currently registered with GP surgeries using TPP SystmOne software. It 

includes pseudonymized data such as coded diagnoses, medications and physiological parameters. 

No free text data are included.  

 

Study Population  

 

The target population of interest is adults in England living in the community; residential settings are 

excluded since risks experienced in institutions such as care homes are likely to be very different to 

those in smaller households.  

 

The base cohort used in this study comprises males and females aged 18 years or older registered as 

of 1st March 2020 in a general practice employing the TPP system. Patients with missing age or a 

recorded age over 105 years, missing sex or missing postcode (from which household and 

geographic information is calculated) were excluded. Households of greater than 10 people were 

excluded. The study timeframe was the 100 day period beginning 1
st
 March 2020 and ending 8

th
 June 

2020.  

 

Study Measures 

  

Outcome 

 

The outcome to be predicted is 28-day risk of COVID-19 related death. Risk is predicted for the 

general community, rather than infected people, thus the risk being predicted combines the risk of 

infection and the risk of dying once infected. Primary care records held within the TPP system were 

linked to mortality data from the Office for National Statistics (ONS). COVID-19 related death was 

defined as a death with an ICD-10 code of U07.1 or U07.2 anywhere on the death certificate.  

 

Predictor variables  

 

We selected candidate predictors based on known or plausible associations with exposure to COVID-

19 infection, risk of severe illness or respiratory tract infection, and factors associated with 

healthcare access or level of care. Our data include diagnoses (Read 3 CTV3), prescriptions (dm+d), 

basic sociodemographics and vital signs. Briefly, potential predictors included:  age, sex, ethnicity, 

deprivation, number in household, presence of young children (under 12 years old) in household, a 

rural indicator, obesity, smoking and blood pressure. Comorbidities included: diagnosed 

hypertension, chronic heart disease, atrial fibrillation, surgery for peripheral arterial disease, deep 

vein thrombosis or pulmonary embolism, diabetes, stroke, dementia, other neurological conditions, 

asthma, respiratory disease, haematological and non-haematological malignancies, solid organ 

transplant, dialysis, poor kidney function, common autoimmune diseases, asplenia, other 

immunosuppressive conditions, inflammatory bowel disease, HIV, learning disability, serious mental 

illness, and fragility fracture in the last two years. Details and codelists are provided in the Appendix, 

Table A1.  
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Proxy measures of the prevalence of COVID-19 infection  

 

Three different proxy measures of infection prevalence, measured daily, were considered. First, 

modelled estimates were obtained from dynamic disease modelling,13 with estimates obtained by 

region (7 regions in England) and by 5-year age-group. These estimates account for the infection 

prevalence, the way in which different age-groups interact with each other and the proportion of 

the population who are susceptible. These are estimates, thus come with uncertainty and potential 

error, neither of which is accounted for within our modelling. Second, the mean daily rate of COVID-

19 related A&E attendances over the last 7 days was estimated within each Sustainability and 

Transformation Partnership (STP; used as a measure of local geographic area). Rate of A&E 

attendances is likely to be an imperfect proxy since it is likely to lag behind true prevalence of 

infection. Third, the mean daily rate of suspected COVID-19 cases (with CTV3 Codes XaaNq, Y20cf, 

Y211b, Y22b7 and Y22b8 indicating a suspected case) in primary care over the last 7 days was 

estimated by STP.  A&E attendances and suspected cases in primary care are both likely to lag 

behind the true infection prevalence, although this will not necessarily hinder performance in 

predicting COVID-19 mortality. They may also be sensitive to changes in how and when people 

interact with primary care providers.  

 

Study design 
 

Three approaches were used: (A) a case-cohort study, (B) 28-day landmarking,14 and (C) daily 

landmarking. The first is a computationally efficient version of a traditional cohort design which does 

not explicitly model changes in the infection prevalence. The second involves creating multiple 

sequential overlapping 28-day sub-studies, allowing time-varying proxy measures of the infection 

prevalence to be explicitly incorporated into the risk prediction model. The third approach 

additionally updates the measures of the infection prevalence throughout the 28-day period, to try 

to better estimate the relationship between current infection prevalence and risk.  

 

For approach A, follow-up began 1st March 2020 and ended at the first of: COVID-19 related death or 

8
th

 June 2020. The outcome was COVID-19 related death. No censoring was applied at death due to 

non-COVID causes, because the target of inference was the sub-distribution hazard. The sub-

distribution hazard can be estimated by simply not censoring participants at the competing event 

because our only censoring event is the competing event of death due to other causes.15  The 

analysis sample included all cases of COVID-19 related death and a random age-stratified sample of 

the eligible patient population (the ‘sub-cohort’, largely comprising non-cases but likely to contain 

some cases by chance),
16,17

 with sampling fractions of 0.01 in the age-group 18-<40, 0.02 in 40-<60, 

0.025 in 60-<70, 0.05 in 70-<80 and 0.13 in 80+ years.  

 

For approach B, a series of 73 overlapping sequential sub-studies were extracted from the base 

cohort. The sub-studies started 0, 1, 2, 3, 4…, 72 days after 1st March 2020 and each sub-study 

continued for exactly 28 days. The first sub-study began on 1st March and the last began on 12th May 

2020 (Figure 1). All patients from the base cohort still alive at sub-study start were eligible to 

participate in that sub-study. Follow-up started at sub-study entry date and ended at the first of 

COVID-19 related death or 28 days after sub-study entry. Participants were not censored at deaths 

due to other causes. The outcome was COVID-19 related death during the 28 day period. Each sub-

study had a case-cohort design, including all eligible patients who experienced a COVID-19 related 

death during the 28-day sub-study period as cases and an age-stratified random sample of sub-study 

eligible patients (the sub-study sub-cohort), with age-group specific sampling fractions equal to 1/70 

of the sampling fractions for approach A (e.g. 0.01/70 = 0.00014 in the age-group 18-<40). Data from 

the 73 sub-studies were combined for analysis. Predictor variables and proxy measures of the 

infection prevalence were assessed at day 0 of each sub-study. 
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Approach C also used a series of stacked sub-studies, with each lasting a single day. Thus 100 sub-

studies were formed, the first starting on 1
st 

March 2020 and the last starting on 8
th 

June 2020. Each 

sub-study included all cases (COVID-19 related deaths) occurring on that day and a random age-

stratified sample of non-cases who remained alive by the previous day, with sampling fractions 

equal to 1/100 of the sampling fractions for approach A. The outcome was the binary outcome of 

whether or not the sub-study participant experienced a COVID-19 related death on that day. This 

approach also required information about the daily rate of death due to other causes, which was 

estimated in a second case-cohort sample, comprising a sampling fraction of 0.3 of all non-COVID-19 

related deaths on each day and an age-stratified sample of participants who did not die of non-

COVID-19 related causes on that day, with sampling fractions equal to 1/100 of the sampling 

fractions for approach A. 

 

 

Statistical analysis 
 

Variable selection was undertaken from the set of candidate predictors using a penalised regression 

approach (lasso)
18

. Functional forms for the proxy measures of burden of disease were selected 

using Akaike’s Information Criterion, as detailed in the protocol.11 

 

For approach A, a Cox proportional hazards model was fitted using time in study as the timescale 

including predictors selected by the lasso. Barlow weights with robust standard errors were used to 

account for the case-cohort design.16,17 Sub-cohort participants were weighted by the inverse of the 

sampling fraction and cases (COVID-19-related deaths) received a weight of 1 on the day they died 

and, unless they were also in the sub-cohort, a weight of zero prior to that. Royston-Parmar, Weibull 

and Generalised gamma models were also fitted. Results from these models are not shown: the 

Royston-Parmar models had very similar performance to the Cox models but the Weibull and 

Gamma models generally had poorer calibration. Note that these approach A models do not include 

any time-varying predictors or time-varying measures of prevalence of infection. 

 

For approach B, data from all 73 sub-studies were stacked to form one analysis dataset, with a 

variable indicating the sub-study (k=1,2,…,73). A Poisson model for 28-day COVID-19 related death 

was fitted using Barlow weights with robust standard errors, incorporating predictors selected by 

the lasso and proxy measures of the burden of infection. Three sets of models were fitted: one for 

each of the three proxy measures. Weibull and logistic models were also fitted. Results from these 

models are not shown but performance was very similar to that of the Poisson. 

 

For approach C, the series of 1-day studies were stacked to form one analysis dataset. A Poisson 

model was fitted to estimate the daily rate of COVID-19 related death using inverse sampling 

weights with robust standard errors, incorporating predictors selected by the lasso and proxy 

measures of the burden of infection. A similar Poisson model was fitted to estimate the daily rate of 

mortality due to non-COVID-19-related causes conditional on the same set of predictor variables, 

but without the measures of the burden of infection, weighted according to the inverse of the 

sampling fractions. Risk of 28-day COVID-19 related death was estimated by combining the 

estimates of daily survival from COVID-19 related death and other causes.   

 

Missing data 

 

The analysis was restricted to participants with recorded ethnicity data (which excluded 3,926,870 

participants, approximately 26%). Participants with missing BMI were assumed non-obese and 

participants with no smoking information were assumed to be non-smokers, on the assumption that 
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smoking and obesity, if present, are likely to be recorded. Patients with no serum creatinine 

measurement were included in the “no evidence of poor kidney function” group. Patients with 

diabetes but no glycosylated hemoglobin (HbA1c) measurement were included in a separate 

“diabetes, no HbA1c” category.  

 

 

Model validation 

 
Three validation periods were considered, chosen to cover periods of higher and lower infection 

prevalence, within the period of time used for model development. Validation period 1 ran from 1st 

March to 28th March 2020, validation period 2 ran from 6th April to 3rd May 2020, validation period 3 

ran from 12th May to 8th June 2020 (Figure 2). Internal validation was undertaken in each of these 

periods, assessing performance within the data the models were developed on. Geographical and 

temporal internal-external validation were also undertaken.19 For the geographical internal-external 

validation, a leave-one-out approach was used using the 7 regions of England, omitting all 

participants from one geographical region in turn, performing the model selection and fitting the 

model in the sub-sample excluding that region, and then using the fitted model, applied to the local 

prevalence measures in the omitted region for approaches B and C, to make predictions for the 

participants in the omitted region. This was repeated for each of seven regions. For the temporal 

internal-external validation, the data were split into two time-periods: 1st March 2020 until 11th May 

and 12
th

 May until 8
th

 June 2020. For each validation period, all eligible participants who remained 

alive at the start of the period were included in the validation. Risks of 28-day COVID-19 related 

death were predicted using each model, using predictors and proxy measures of infection 

prevalence (where used) from the start of the validation period. Model performance was reported 

by comparing the observed outcome, 28-day COVID-19 related death, to the predicted risk.  

 

Discrimination – the ability to distinguish between cases (COVID-19 related deaths) and non-cases – 

was assessed by Harrell’s C-statistic, expressed as a percentage.20,21 The C-statistic estimates the 

probability that, if a case and non-case are randomly selected, the predicted risk will be higher for 

the case than the non-case. A completely uninformative prediction would have a C-statistic of 50% 

and a perfect prediction would have a C-statistic of 100%. Calibration – the agreement between 

observed outcomes and predictions – was assessed by (i) comparing mean predicted risk with mean 

observed risk, (ii) by estimating the calibration intercept and slope, with 95% confidence intervals, to 

assess whether models over- or under-estimate risk.
21,22

 The calibration intercept estimates the 

mean difference between observed and predicted risks, with intercepts less than zero indicating 

over-prediction on average and intercepts greater than zero indicating under-prediction. The 

calibration slope estimates the relationship between the log-odds of the observed risk and the log-

odds of the predicted risk, with slopes greater than one indicating that risk is under-estimated in 

high risk and over-estimated in low risk participants; the opposite holds for slopes of less than one. 

We reported model performance overall and within sex and broad age-group (18-<70, 70-<80 and 

80+). Insufficient events occurred in the youngest age-group to split further. 

 
A pre-specified analysis, described in the protocol, was to compare performance of the lasso-

selected models to models including fewer potential predictors. We considered: (i) a model including 

only age-group (10 categories: <40, 40-49, 50-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89, 90+), sex 

and their interaction; (ii) number of comorbidities (0, 1, 2, 3+), sex, age-group, with all three-way 

interactions between these variables, ethnicity and a rural/urban indicator; (iii) the COVID-AGE risk 

tool (10
th

 update).
6,7

 For approach B models, the proxy measures of burden of infection were 

additionally included.   
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The comorbidities included in the “number of comorbidities” variable for model (ii) were: respiratory 

disease, cystic fibrosis, severe asthma (with OCS use), chronic cardiac disease, atrial fibrillation, deep 

vein thrombosis or pulmonary embolism, surgery for arterial disease, diabetes, cancer diagnosed in 

the last year, haematological malignancy diagnosed within 5 years, liver disease, stroke, dementia, 

neurological disease, poor kidney function (eGFR <60 mL/min/1.73m
2
), dialysis, organ transplant, 

asplenia, condition inducing immunosuppression, HIV, and either obese or underweight.   

 

For the COVID-AGE risk tool, we could not reliably distinguish Type I from Type II diabetes so 

included all diabetes as Type II. We did not have an indicator of heart failure but included chronic 

cardiac disease. COVID-AGE is primarily a risk stratification tool, rather than intended to estimate 

absolute risks, so we did not estimate calibration measures for this tool.  

 

We also fitted a richer model including all candidate predictors without any variable selection, with 

all interactions with age (linear) and sex and additional spline terms for age.  

 

Software and reproducibility 

 
Data management was performed using Python and Google BigQuery, with analysis carried out using 

Stata 16.1 / Python. All of the code used for data management and analyses is openly shared online 

for review and re-use under MIT open license (https://github.com/opensafely/risk-prediction-

research).  

 

 

Patient and Public Involvement 

 
We have developed a publicly available website https://opensafely.org/ through which we invite any 

patient or member of the public to contact us regarding this study or the broader OpenSAFELY 

project. 

 

 

 

RESULTS 
 

Table 1 described the base cohort used in these analyses, comprising almost 12 million patients of 

whom 7,999 experienced a COVID-19 related death. The case-cohort sample used for approach A 

included all 7,999 COVID-19 related deaths and a sub-cohort of 319,917, which contained 683 of the 

COVID-19 related deaths. The stacked landmark studies included all 7,999 COVID-19 deaths and 

330,132 participants.  
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Table 1. Description of cohort used for model development  

 N (%) COVID-19 related 

deaths (%) 

Total 11,972,947 (100.0) 7,999 (0.07) 

Age-group:   

  18-39 4,275,852 (35.7) 52 (0.00) 

  40-49 2,022,527 (16.9) 141 (0.01) 

  50-59 2,040,181 (17.0) 437 (0.02) 

  60-69 1,635,143 (13.7) 938 (0.06) 

  70-79 1,319,367 (11.0) 2,025 (0.15) 

  80+ 6,798,77 (5.7) 4,406 (0.65) 

Sex:   

  Female 6,232,725 (52.1) 3,315 (0.05) 

  Male 5,740,222 (47.9) 4,684 (0.08) 

BMI:   

  Underweight (<18.5)  249,294 (2.1) 306 (0.12) 

  No evidence of underweight/obesity 3,982,133 (33.3) 2,480 (0.06) 

  Obese I (30-34.9)   3,690,583 (30.8) 2,430 (0.07) 

  Obese II (35-39.9)  1,794,812 (15.0) 1,462 (0.08) 

  Obese III (40+) 678,109 (5.7) 658 (0.10) 

  Missing 1,242,341 (10.4) 340 (0.03) 

Smoking:   

  Never smoker 5,540,732 (46.3) 2,499 (0.05) 

  Former smoker 3,921,016 (32.7) 4,745 (0.12) 

  Current smoker 2,253,231 (18.8) 737 (0.03) 

  Missing  257,968 (2.2) 18 (0.01) 

Ethnicity:   

White 10,184,871 (85.1) 6,952 (0.07) 

Indian 405,477 (3.4) 299 (0.07) 

Pakistani 262,882 (2.2) 161 (0.06) 

Bangladeshi/Other Asian 262,882 (2.2) 161 (0.06) 

African/Other black 280,466 (2.3) 173 (0.06) 

Caribbean 80,863 (0.7) 124 (0.15) 

Chinese 103,423 (0.9) 20 (0.02) 

Mixed/Other 392,097 (3.3) 147 (0.04) 

Deprivation:   

IMD 1 (least deprived) 2,315,449 (19.3) 1,255 (0.05) 

IMD 2 2,375,974 (19.8) 1,443 (0.06) 

IMD 3 2,398,815 (20.0) 1,537 (0.06) 

IMD 4 2,489,997 (20.8) 1,791 (0.07) 

IMD 5 (most deprived) 2,392,712 (20.0) 1,973 (0.08) 

Location:   

Urban 9,595,617 (80.1) 6,775 (0.07) 

Rural 2,377,330 (19.9) 1,224 (0.05) 

Region:   

East 2,730,203 (22.8)     1773 (0.06) 

London 1,018,332 (8.5)      755 (0.07) 

Midlands 2,673,963 (22.3)        2005 (0.07) 

North East and Yorkshire 2,242,375 (18.7)        1679 (0.07) 

North West 1,053,537 (8.8)        905 (0.09) 
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South East 744,930 (6.2)      309 (0.04) 

South West 1,509,607 (12.6)       573 (0.04) 

Blood pressure:   

Normal 2,797,632 (23.4) 1,725 (0.06) 

Elevated 1,757,455 (14.7) 1,406 (0.08) 

High, stage I 3,899,203 (32.6) 2,454 (0.06) 

High, stage II 2,492,161 (20.8) 2,389 (0.10) 

Missing 1,026,496 (8.6) 25 (0.00) 

Diagnosed hypertension 2,448,605 (20.5) 5,332 (0.22) 

   

Comorbidities   

Respiratory   

Asthma, no OCS use 1,829,710 (15.3) 1,008 (0.06) 

Asthma, with OCS use 112,407 (0.9) 248 (0.22) 

Respiratory disease 495,699 (4.1) 1,809 (0.36) 

Cystic Fibrosis or other conditions 3,167 (0.0) 4 (0.13) 

Cardiovascular   

Cardiac disease 783,896 (6.5) 3,008 (0.38) 

Atrial Fibrillation 430,798 (3.6) 1,808 (0.42) 

DVT/PE 249,969 (2.1) 773 (0.31) 

PAD or lower limb amputation 41,362 (0.3) 220 (0.53) 

Diabetes, controlled 738,369 (6.2) 1,908 (0.26) 

Diabetes, uncontrolled 346,726 (2.9) 1,054 (0.30) 

Diabetes, status unknown 133,387 (1.1) 306 (0.23) 

Neurological   

Stroke 240,401 (2.0) 1,287 (0.54) 

Vascular dementia 22,792 (0.2) 489 (2.15) 

Other neurological condition 114,431 (1.0) 480 (0.42) 

Cancer (non-haematological)   

Diagnosed <1 year ago 54,290 (0.5) 216 (0.40) 

Diagnosed 2-5 years ago 157,859 (1.3) 358 (0.23) 

Diagnosed 5+ years ago 362,457 (3.0) 879 (0.24) 

Haematological cancer   

Diagnosed <1 year ago 6,151 (0.1) 47 (0.76) 

Diagnosed 2-5 years ago 18,722 (0.2) 95 (0.51) 

Diagnosed 5+ years ago 42,492 (0.4) 116 (0.27) 

Kidney and liver   

Reduced kidney function  

(eGFR in range 30-<60 mL/min/1.73m2) 

607,308 (5.1) 2,793 (0.46) 

Very reduced kidney function 

(eGFR <30 mL/min/1.73m2) 

58,081 (0.5) 694 (1.19) 

Dialysis 8,871 (0.1) 115 (1.30) 

Liver disease 74,193 (0.6) 189 (0.25) 

Organ transplant 11,349 (0.1) 50 (0.44) 

Immunosuppression   

Spleen 19,815 (0.2) 29 (0.15) 

RA/SLE/Psoriasis 609,421 (5.1) 733 (0.12) 

Immunosuppression 13,091 (0.1) 28 (0.21) 

HIV 23,078 (0.2) 17 (0.07) 

Inflammatory bowel disease 152,080 (1.3) 169 (0.11) 
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Other   

Fracture (in >65 year old in last 2 years) 55,952 (0.5) 443 (0.79) 

Learning disability 158,350 (1.3) 161 (0.10) 

Serious mental illness 150,928 (1.3) 254 (0.17) 

 

 

 

Table 2 shows measures of model performance in predicting 28-day risk in the three 28-day 

validation periods. Estimated model coefficients are provided in the appendix. For all models in all 

validation periods, the C-statistic was high (92-94%), indicating excellent ability to distinguish 

between cases and non-cases. For approach A, the Cox model, which did not explicitly model the 

prevalence of infection, the mean predicted and observed risks were very similar in the first 

validation period, but different in the second and third. In validation period 2, the mean observed 

risk was ten times higher than in validation period 1, but the mean predicted risk using approach A 

was (by design) the same for all three periods. The poor calibration in validation periods 2 and 3 was 

also reflected in high calibration intercepts.  

 

For the approach B model incorporating the modelled estimates of infection prevalence, the mean 

and observed risks were very similar in all three validation periods. The calibration intercept was 

slightly less than zero in validation periods 1 and 3, indicating slight over-estimation on average, with 

calibration slopes close to one, indicating reasonable calibration. Replacing the modelled estimates 

by either the rate of A&E COVID-19 attendances or the rate of suspected COVID-19 cases in primary 

care resulted in poorer calibration, particularly in the first validation period which had a very low 

infection prevalence. All approach B models had worse calibration than the approach A Cox model in 

validation period 1, the data on which the models are fitted, but considerably better calibration than 

the approach A model in the other two validation periods. All approach B models had very high 

discrimination, with C-statistics (92-94%). 

 

Approach C models performed similarly to approach B when using the actual measures of infection 

prevalence through the 28 day period. However, poor estimation of the measure using only data 

available at day 0 of the period led, in some cases, to large under- and over-estimation of risks (Table 

A3). 

 

The internal-external validation showed that the performance of the approach A Cox model was 

insensitive to the removal of a region or period of time (Appendix Figure A1). Approach B models 

were more sensitive to geographical or temporal omissions. 

 

Among the oldest age group (80+ years), discrimination was substantially lower than in the younger 

age-groups, reflecting the substantial discrimination that comes simply from age. Generally, 

discrimination was a little lower among males. The comparison of the discrimination by models that 

considered few versus many potential predictors, found that a simple model including only age and 

sex still provided fairly good discrimination (~80%) among the 18-<70 age-group, but was 

substantially worse for  the two older age-groups. In all cases, the model including the number of 

comorbidities, rather than a large number of indicators of individual comorbidities, performed 

almost as well as the models that considered many more predictors. COVID-AGE, which we applied 

only for approach A, performed similarly to the most complex models used.  
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Table 2. Measures of model performance in predicting 28-day risk of COVID-19 mortality 

Approach Measures of  

infection 

prevalence 

included 

Model Validation 

period 

C-statistic (%) 

 

Observed 

mean risk 

(%) 

Predicted 

mean risk 

(%) 

Calibration 

Intercept (95% CI) Slope (95% CI) 

A 
 

None 
Cox 

1 92.4 0.0038 0.0038 0.00 (-0.10, 0.09) 0.95 (0.86, 1.05) 

2 93.4 0.0374 0.0038 2.30 (2.27, 2.32) 1.02 (0.99, 1.05) 

3 94.1 0.0104 0.0037 1.03 (0.97, 1.08) 1.05 (1.00, 1.11) 

B 
Modelled 

estimates 

Poisson 

Approach B 

 

1 92.5 0.0038 0.0044 -0.15 (-0.24, -0.06) 0.93 (0.84, 1.02) 

2 93.7 0.0374 0.0354 0.06 (0.03, 0.09) 1.00 (0.97, 1.03) 

3 94.4 0.0104 0.0128 -0.20 (-0.26, -0.15) 1.03 (0.98, 1.09) 

B 

A&E COVID-

19 

attendances 

Poisson 

 

1 92.1 0.0038 0.0145 -1.34 (-1.43, -1.25) 0.92 (0.83, 1.02) 

2 93.3 0.0374 0.0420 -0.12 (-0.15, -0.09) 0.99 (0.96, 1.02) 

3 94.3 0.0104 0.0197 -0.64 (-0.69, -0.58) 1.05 (0.99, 1.10) 

B 

Suspected 

COVID-19 in 

primary care  

Poisson 

 

1 92.1 0.0038 0.0085 -0.80 (-0.89, -0.71) 0.90 (0.81, 1.00) 

2 93.5 0.0374 0.0378 -0.01 (-0.04, 0.02) 1.00 (0.97, 1.03) 

3 94.2 0.0104 0.0156 -0.41 (-0.46, -0.35) 1.04 (0.98, 1.09) 
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DISCUSSION 

 

We have developed and validated a risk prediction model for COVID-19 mortality in the general 

population with very high discrimination which can be applied within primary care electronic health 

record (EHR) systems without requiring linkage to external data, allowing accurate prediction of 

relative risk. In addition, we have developed a second set of models that enable estimation of 

absolute risk by incorporating estimates of the prevalence of COVID-19 infection. Incorporating 

modelled estimates led to the best model performance, but this may be impractical for most 

situations due to the complex modelling required to obtain these estimates. Incorporating the rate 

of suspected COVID-19 cases in local primary care practices led to reasonable model performance; 

this rate could be quantified within EHR systems in an automated manner, providing timely absolute 

risk estimates as the pandemic evolves.  Finally, our third set of models using daily landmarking 

allow estimation and comparison of absolute COVID-19 mortality risks under various scenarios (e.g. 

drastically increasing infection rates versus gradual decrease).  

 

We found that the existing COVID-AGE tool6,7 had very high discrimination, similar to the best 

performing models considered, suggesting this provides a reliable ranking of COVID-19 mortality 

risk. Interestingly, very simple models including only age, sex, ethnicity, a rural indicator, and a count 

of total comorbidities led to models with very good discrimination. When focusing on specific 

patient groups with higher morbidity, more complex models may provide useful additional 

discrimination, but in many cases much simpler models are able to discriminate well.  
 

In extending our knowledge of which approaches to use in predicting related COVID-19 death from a 

general population to inform future policies, this study has three major strengths. First, this is the 

first risk prediction algorithm that incorporates time-varying estimates of infection burden to 

provide accurate estimates of the absolute risk of COVID-19 related death. Second, the study uses 

data from a large representative sample of the general population. Third, we consider three 

different designs, several alternative estimation approaches, and contrast different ways of selecting 

predictors. 

 

 This study also has important weaknesses. First, the COVID-19 pandemic is evolving rapidly. We will 

re-validate and, if necessary, re-calibrate our models using data from the more recent wave, 

particularly in light of evidence suggesting differences in mortality with the new variant. Further, as 

the vaccines are rolled out, risk in the population will additionally depend on proportions of different 

patient groups vaccinated; this could be incorporated into subsequent iterations of these models.  

We have not yet externally validated these models. However, our internal-external validation 

suggests little over-optimism in the measures of model performance. 

 

Electronic health record data are not collected for research, so information on certain characteristics 

can be incomplete or absent. For example, ascertainment of HIV and cystic fibrosis is likely to be 

poor and pregnancy cannot easily be identified, limiting the ability to distinguish risks between these 

groups.  

 

Our approach to missing data reflected the way in which these models might be used in practice if 

applied within electronic health record systems. For example, patients with no BMI measurement 

would be assumed to have normal BMI. Our measures of model performance reflect performance 

under this implementation. The exception is ethnicity – given the strong relationships previously 

observed between ethnicity and COVID-19 outcomes we chose to restrict our sample to those with 
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recorded ethnicity. In previous work, model estimates from similar models were similar in ethnicity-

complete-case samples and following multiple imputation.10  

 

We have explored risk prediction for COVID-19 death in the general population. In some 

circumstances, the risk of COVID-19 death given infection with the virus might be of interest, and 

this could not be estimated with the present data in the absence of representative COVID-19 testing 

data. However, risk within the general population is more useful for various policy decisions, such as 

vaccine prioritisation.  

 

We did not attempt to compare the performance of our risk prediction models to QCOVID,6 because 

our database does not include all data required to implement that algorithm at present. In 

comparison to QCOVID, our algorithm used a smaller set of potential predictors. For example, we did 

not include homelessness as a predictor. Further, we restricted our sample to adults living in the 

community, so our risk predictions are not valid for those living in residential care. QCOVID reported 

a C-statistic of 93%; our models ranged from 92 to 94%.  

 

Our results have a number of implications for policy makers and GPs advising patients. Most of the 

discriminating power in each model evaluated here was driven by simple features such as age, sex 

and a count of co-morbidities. Complex risk prediction models driven by multiple variables from 

diverse sources can be difficult, slow, and expensive to implement in routine care: the cost, 

opportunity costs and complexity of such implementations may not be warranted. The fact that very 

simple models produce very high discrimination also suggests that policies targeting population level 

reduction of COVID-19 mortality risk may not need to distinguish between all comorbidities in detail. 

For certain policy decisions, such as vaccine prioritisation, this simplicity would provide a great 

advantage, with simple eligibility criteria resulting in faster programme rollout and delivery of 

vaccines. 

 

When absolute risk estimates are obtained from algorithms that do not explicitly model the 

prevalence of infection it is important to consider the context that data were collected in, in order to 

avoid misleading interpretations of absolute risk estimates. Our validated landmarking models can 

avoid such problems by providing absolute risk estimates which explicitly account for rapidly 

changing infection levels.  

 

Risk scores in COVID-19 need to be a dynamic and open process undergoing regular transparent re-

calibration rather than a single "one-off" digital commodity. We have developed a completely open 

source, transparent and freely available set of risk prediction models for COVID-19 mortality. Our 

approach accounts for rapid changes in the estimates of infection burden, due to daily changes in for 

example the number of people vaccinated, and therefore provide accurate estimates of the absolute 

risk of COVID-19 related deaths to inform the ongoing policy debate.  
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Figure legends 

 
Figure 1. Schematic showing the design of the 28-day landmarking sub-studies (approach B) 

 

Figure 2. Schematic showing the internal and internal-external validation undertaken 

 

Figure 3. C-statistics for a range of models using modelling approach A and B, with the latter 

incorporating modelled estimates of the COVID-19 infection prevalence (ME), rates of A&E 

COVID-19 attendance (AE) and suspected COVID-19 rates in primary care (GP). Models 

shown are: Age and sex only, model including comorbidities via the total number only, the 

COVID-AGE tool, the main selected model, and a richer model including all variables. The 

three points within each graph, for each approach, show the three validation periods, 

differentiated by depth of colour (deepest = validation period 1, lightest = validation period 

3). 
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