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Abstract. Global malaria burden is reducing with effective control interventions, and surveillance is vital to maintain
progress. Health management information system (HMIS) data provide a powerful surveillance tool; however, its esti-
mates of burden need to be better understood for effectiveness. We aimed to investigate the relationship between HMIS
and cohort incidence rates and identify sources of bias in HMIS-based incidence. Malaria incidencewas estimated using
HMIS data from 15 health facilities in three subcounties in Uganda. This was compared with a gold standard of repre-
sentative cohort studies conducted in children aged 0.5 to < 11 years, followed concurrently in these sites. Between
October 2011 and September 2014, 153,079 children were captured through HMISs and 995 followed up through
enhanced community cohorts in Walukuba, Kihihi, and Nagongera subcounties. Although HMISs substantially under-
estimatedmalaria incidence in all sites compared with data from the cohort studies, there was a strong linear relationship
between these rates in the lower transmission settings (Walukuba and Kihihi), but not the lowest HMIS performance
highest transmission site (Nagongera), with calendar year as a significant modifier. Although health facility accessibility,
availability, and recording completeness were associated with HMIS incidence, they were not significantly associated
with bias in estimates from any site. Health management information systems still require improvements; however, their
strong predictive power of unbiased malaria burden when improved highlights the important role they could play as a
cost-effective tool for monitoring trends and estimating impact of control interventions. This has important implications
for malaria control in low-resource, high-burden countries.

INTRODUCTION

Global burdenofmalaria hasdeclinedover thepast 20 years
because of implementation of wide-scale control interven-
tions and the effective treatment of cases using artemisinin-
based combination therapy (ACT).1,2 Nevertheless, malaria
remains a global public health challenge, with more than 200
million cases and 400,000 deaths occurring in 2018 alone.3

Despite this high burden, case incidence has reduced sub-
stantially in at least 31 malaria-endemic countries, including
Uganda, and these are on track to reduce the incidence by
40% or more by 2020.3 To sustain these current gains in
control and prevent future epidemics, malaria surveillance is a
core intervention as was proposed in the 2016–2030 Global
Technical Strategy for Malaria.4 To be effective, this strategy
demands improved understanding of surveillance data.
National malaria control programs rely on data from health

management information systems (HMISs) for malaria sur-
veillance and day-to-day decision-making.5 Although there
are extensive HMIS improvements through standardized data
formats and quality assessment tools,6 among others, HMIS
data are still underused toprovide rigorous evidenceof program
effectiveness because of concerns about incompleteness,
delayed reporting, data quality, and often low rates of definitive
diagnostic testing.7,8 Consequently, other sources of burden
estimate, such as Malaria Indicator Surveys and Demographic

Health Surveys, are often used as alternatives.8–11 Although
these surveys are valuable to estimate intervention coverage
and enable detailed subnational comparisons, they cannot
provide continuous information to support ongoing decision-
making as can HMISs.9

A national HMIS was introduced in Uganda in 1997 to en-
ablepriority disease surveillanceat national levels12,13 andhas
since expanded with the introduction of the District Health
Information System version 2 web-based system in 2012.14

Specific to malaria, the HMIS was additionally supplemented
by routine sentinel surveillance through malaria reference
centers in different endemicity settings to enable a more de-
tailed understandingof transmission intensity and its temporal
trends and improve HMIS data quality.15 These sentinel site
data have been used to evaluate the impact of control inter-
ventions and inform decisions on control and prevention in
Uganda, and notable improvements in health service delivery
and utilization have also been reported as a result of improved
use of HMIS data elsewhere.16,17 Although the precision of
HMIS estimates requires further investigation, HMIS data are
highly attractive for monitoring malaria trends and supporting
intervention programs, considering their temporal and spatial
coverage, and cost-effective community representativeness.
To our knowledge, no study in sub-Saharan Africa has in-

vestigated how malaria incidence rates from HMIS data
compare with incidence rates from rigorous cohort studies.
Although cohorts are uncommon and normally small, they
provide a gold standard method for measuring the incidence
or risk of malaria in defined populations. Here, we quantified
the relationship between HMIS incidence and cohort
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incidence rates in three contrasting settings in Uganda. The
analysis sought to then use these data to explore potential
sources of bias in HMIS incidence relative to cohort incidence
and explain discrepancies between the two, providing im-
portant insight into the utility and representativeness of HMIS
estimates of malaria burden compared with true population
burden.

METHODS

Study design. This was an evaluation study comparing two
longitudinal estimates of malaria burden. These estimates
were generated using 1) reports of uncomplicated malaria
from the HMISs in outpatient departments (OPD) of all public
health facilities in three sites and 2) community cohort studies
conducted over the same duration in these sites with passive
case detection in a dedicated clinic for each site.

Study setting and population. The study used data col-
lected between October 2011 and September 2014 at three
varied transmission intensity sites, described in detail
elsewhere.18,19 In brief, these include the following. 1) Walu-
kuba subcounty in Jinja district, approximately 12.0 sq. km in
size (Figure 1). Walukuba had approximately 9,800 house-
holds according to our enumeration and mapping survey of
2011. Itwasaperi-urban site ofmoderate-to-low transmission
intensity, with an estimated annual entomological inoculation
rate (aEIR) of approximately three infective bites per person
per year during this study duration.18 2) Kihihi subcounty in
Kanungu district, � 186.0 sq. km with approximately 12,700
households, was a rural site of moderate-to-low transmission
intensity, with an aEIR of 32. 3) Nagongera subcounty in
Tororo district, � 81.0 sq. km with approximately 6,900
households, was a rural site of high transmission intensity,
with an aEIR of 310.18

FIGURE 1. Site map showing the sites and health facilities included. This figure appears in color at www.ajtmh.org.
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This study encompassed two populations. The first com-
prised all children aged between 6 months and younger than
11 years living within the three sites considered for HMIS es-
timates. The second included all children aged between
6 months and younger than 11 years recruited into an en-
hanced passive community cohort in each of the three sites.
Cohort data were interpreted as the unbiasedmonthlymalaria
incidence in the three communities.
Data sources. Health facilities’ HMISs. In Uganda, health

facilities receive and assess patients with uncomplicated ill-
ness through their OPD clinics. A full record is made, in a
standardized OPD register (HMIS Form 031), of patient de-
mographics, place of residence, presenting symptoms, di-
agnostic test performed, diagnosis made, and treatment
prescribed for eachpatient seen.Here,weextracteddata from
these registers, entered and cleaned it in a MS Access data-
base (Microsoft Corporation, Redmond, WA), and analyzed it
using Stata 15 (Stata Corporation, College Station, TX). This
involved three independent projects: the primary project in 12
facilities, and the UgandaMalaria Surveillance Program15 and
the ACT-PRIME project20 in three facilities each, to provide
additional HMIS data. All public health facilities (including
three level VI, two level III, and 10 level II) located within the
three subcounties provided theHMISdata for this study. Level
IV facilities serve � 50,000 people providing inpatient, labo-
ratory, and maternity services, whereas level III facilities serve
� 20,000 with inpatient and laboratory services, and level II
� 5,000 with basically outpatient and community outreach
services.21

As a denominator in estimating HMIS incidence rates, es-
timates of participant population at risk per month were de-
rived, as explained elsewhere.19 In summary, gridded
population images for 2010 and 2015, from the world Pop
(www.worldpop.org) project, were used together with inter-
censual growth rates between the 2002 and 2014 censuses,
provided by the national bureau of statistics of Uganda.
Enhanced passive community cohorts. Part of the In-

ternational Centers of Excellence for Malaria Research, the
Program for Resistance, Immunology, Surveillance and
Modeling of malaria (PRISM) project, was conducted in
Uganda between October 2011 and June 2016. One key
component of this project was cohorts conducted in Nagon-
gera, Walukuba, and Kihihi subcounties that comprised study
sites. Although details about the PRISM project are fully
explained elsewhere,18 the cohorts involved 100 randomly
selected households from each subcounty in which all resi-
dent children aged between 6 months and younger than 11
years, with due consent, were enrolled.
Over time, follow-up was terminated for all children who

became 11 years old, whereas new children born into or
joining study households were considered for enrollment. At
enrollment, participants agreed to visit the cohort clinic for all
their treatment needs, thereby minimizing clinical visits to
other places. Participants were followed up at a dedicated
clinic at each site, open 7 days athe week, through regular
visits scheduled for once every 3months, in addition to interim
visits if they had illness and treatment needs. At each visit, a
blood specimen was assessed for malaria, and transport to
the clinic was reimbursed. If a participant was symptomatic
and tested positive for malaria parasites, treatment with
artemether–lumefantrinewas administered anddata recorded
in a database. By these symptomatic diagnostically confirmed

infections, incidentmalaria caseswere identified, and person-
time of follow-up per participant per month was computed.
Outcomeandexplanatory variables.Theprimaryoutcome in

this studywas themonthlymalaria incidence rate derived from
health facility HMIS OPD incident malaria cases data for
children aged between 6 months and younger than 11 years,
hereafter referred to as HMIS incidence. An incident case of
malaria was defined as an independent symptomatic episode
of malaria among participants seen at any study health facility
OPD clinic. Level II and III health facilities had very low testing
rates and predominantly diagnosed malaria presumptively.
Assuming that the risk of malaria for children aged between
6 months and younger than 11 years seen at each reference
facility was the same as for similar age children seen at the
respective lower level facilities each month, total monthly
presumptive malaria cases from lower level facility sites were
corrected for test positivity using the monthly test positivity
rates from the respective site reference facility (level IV). This
approachwas also supported by a linear relationship between
the cohort fever incidence andHMIS clinicalmalaria incidence
suggesting case identification at facilities as a major factor
(Figure 1 in the additional file). Moreover, to optimize
catchment-sourced malaria cases, cases with a missing vil-
lage of residence were corrected for nonresidence within
study site boundaries, using the facility monthly proportion of
participants with recorded villages of residence that were lo-
cated or known within the study sites. Notably, cases from
villages unknown within site boundaries were excluded. To
generate monthly HMIS incidence rates, the site-level sum of
incident cases of malaria among children aged between
6 months and younger than 11 years after accounting for
nontesting among presumptive cases, and for nonresidence
among those with missing data on village of residence, was
divided by the site estimated monthly population of children
aged younger than 11 years at risk of malaria.
Data from health facility clinic visits that were classified as

“reattendance” in the registers, referring to follow-up visits for
a previously recorded episode, were excluded from the
analyses.
The main explanatory variable was the monthly cohort in-

cidence rate, providing an indication of the level of community
transmission, and, thus, true burden. To generate monthly
cohort incidence rates, site total incident malaria cases per
month were divided by the total person-time of follow-up of
the respective site participants over that month. Incident
cases of malaria in the cohort were determined as any
symptomatic participant visits, at least 2 weeks apart, that
were each diagnostically confirmed positive for malaria par-
asites using blood slide microscopy. Participants with
asymptomatic parasitemia at the time of assessmentwere not
included in case estimates. Preliminary analyses showed ev-
idence of bias in incidence because of age, which we attribute
to a growing difference in the age structure as the cohorts
aged over time. Consequently, we age-standardized in-
cidence estimates in the cohorts using six age categories
defined between 6months and < 11 years, based on the initial
recruitment age distribution in these categories as the stan-
dard (as explained in section E in the additional file). Initial
recruitment into the cohorts was conducted primarily during
August and September 2011 for each site.
Regression model. After accounting for community trans-

mission using cohort incidence, we selected factors
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quantifiable from our data thatmay influence the reliability and
representativeness of the routine data, including both health-
seeking and health facility characteristics. Health seeking was
measured by health facility accessibility and health facility
availability, whereas health facility characteristics were esti-
mated using health facility performance in recording patients’
diagnoses.
Accessibility between residence and health facility was

measured by proxy as monthly rainfall estimates (which influ-
ence agricultural demands and ease of road use to travel)
obtained from Tropical Applications of Meteorology using
SATelline data and ground-based observations (TAMSAT)
raster data described elsewhere22,23 and extracted as site
monthly mean estimates. On examining monthly trends in
rainfall and attendance,weobserved ageneral pattern of peaks
in rainfall corresponding to troughs in attendance for the same
month and vice versa, suggesting associations between rainfall
andattendanceandsupporting its useasproxy for accessibility
(Figure 2 in the additional file). These also served as a proxy for
seasonality,which isan important factor inmalaria transmission
dynamics.24 It was assumed that the higher the mean rainfall
received per month the less physically accessible the health
facility is for the population that month. Mean rainfall estimates
varied by site, with Walukuba receiving 98.9 mm (SD = 45.2),
Kihihi 82.2 mm (SD = 40.3), and Nagongera 105.2 mm (SD =
55.8) of rainfall per month. For use in the analysis, however, this
metric was standardized around itsmean to ameanof zero and
SD of one, to generate its z-score.
To account for health facility availability, measured as ease of

careavailabilityat the facility,wegenerated theaverageproportion
of days permonth that health facilities within each site were open
to see patients. The average proportion was defined as themean
number of days a site’s facilities were open in amonth divided by
the respectivecalendarmonth’s total numberofdays. In thiscase,
level IV facilities performed best, withmean days open per month
25.8 (SD = 4.0), followed by level III with 24.8 days (SD = 4.1) and
level II with 18.8 days (SD = 4.7). However, there was limited var-
iation between sites, with Walukuba recording the highest mean
numberofdaysopenpermonth22.3 (SD=2.4), followedbyKihihi
with21.5days (SD=2.3)andNagongerawith21.0days (SD=1.9).
For inclusion in the regression as a covariate, the z-score of this
metric was generated.
To measure health facility performance at recording vital

patient information (recording completeness or performance),
we generated the average site health facility proportion of
patients seen permonth that had no diagnosis recorded in the
OPD register. Here, level II facilities performed the best, with
the lowest mean number of patients missing a diagnosis per
month of 6.5 (SD=24.6), followedby level IVwith 19.7 patients
(SD= 25.4) and then level III with 20.9 patients (SD= 40.7). The
reciprocal of the proportion was derived so as to enable in-
tuitive interpretation of its trend as performance (high values
correspond to high performance and vice versa). This mea-
sure was varied by site: Walukuba scored lowest with a me-
dian of 89.9 (IQR, 38.3–125.5) points and then Kihihi with
124.1 (IQR, 64.3–178.0) points. Nagongera recorded both
highest performance and variability over time,with 310.5 (IQR,
193.2–496.2) points. This score was then standardized to its
z-score for inclusion in the analysis.
Overall, although Nagongera had the highest recording

completeness, it had the lowest availability and least accessi-
bility, making it the lowest HMIS performance site of the three.

Statistical analysis. Relationship between HMIS and co-
hort incidence. We explored the relationship between HMIS
and cohort incidence among children aged between 6months
and younger than 11 years on a monthly timescale, stratified
by site. First, we examined trends in monthly raw incidence
rates as cases per person-year at risk for both HMIS and co-
hort incidence, using line plots. Second, using monthly in-
cidence rates (standardized to their z-scores and hereafter
known as incidence rate z-scores), we examined the re-
lationship between HMIS and cohort incidence using scat-
terplots with fitted lines. Third, we examined trends in
incidence rate z-scores using line plots of calendar month
against incidence. And finally, we evaluated agreement be-
tween these rates using the Bland–Altman diagram approach
without a predetermined threshold of agreement.
Moreover, using test positivity and nonresidence-corrected

HMIS incidence as primary outcome and age-standardized
cohort incidence of malaria as primary exposure, site-specific
Poisson regression models (with incident case counts as
outcome and population at risk as offset) were fit with health
facility accessibility, health facility availability, and health fa-
cility recording performance as the included explanatory
variables.
Potential drivers of the differences between HMIS and

cohort incidence (sources of bias). Significant factors in the
relationship between HMIS and cohort incidence were
assessed for viability as potential contributors to differences
between HMIS and cohort incidence (potential sources of
bias) using linear regression. Factors assessed included
monthly estimates of health facility accessibility, health facility
availability, and health facility recording performance esti-
mated as explained earlier. To investigate bias due to these
factors, we fit a simple linear regression model with the dif-
ference between corresponding pairs of incidence rate z-
scores per month as the primary outcome and the identified
factors as explanatory variables.

RESULTS

Study participants. Health management information
systems. From the 15 OPD clinics in public health facilities
located in Walukuba, Kihihi, and Nagongera subcounties en-
rolled in this study, 153,079 participants aged between
6 months and younger than 11 years were seen between
October 2011 and September 2014, with a mean age of 4.14,
4.52, and 3.52 years, respectively (Table 1). Of these partici-
pants, 114,919 (75.1%) had their village of residence known to
be within site boundaries, whereas 1,840 (1.2%) had an un-
clear or no village record, and 36,320 (23.7%) were from a
village unknown in the study site. A small majority of partici-
pants seen at OPD clinics were female (53%). Suspected
malaria cases comprised the majority of participants seen
(70%), with Nagongera recording the highest proportion of
suspected malaria participants (83%), followed by Kihihi
(69%) and Walukuba (56%).
Cohorts. From the three sites, 995 children aged between

6months and younger than 11 years were recruited (304, 357,
and 334 fromWalukuba, Kihihi, and Nagongera, respectively)
in the study, 755 (76%) of them at the start of the study
(August–September 2011) (Table 2). Overall, 19,911 clinic
visits were made, of which 9,109 (46%) were by female par-
ticipants. Among all clinic visits, 8,954 (45%) of participants
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were febrile, with the majority of them being male (55%).
Whereas Kihihi had the highest number of participants
recruited overall (36%) and Walukuba the lowest at 31%, the
majority of clinic visits when febrile (53%) were recorded in
Nagongera, the highest transmission site, followed by Kihihi
(45%) and Walukuba (29%). That being the case, Nagongera
had the highest mean monthly febrile visit frequency at 1.35
visits per individual per month, whereas Kihihi and Walukuba
were similar and lower at 1.21 and 1.20 visits per individual per
month, respectively.
Incidence rates.Health management information system

incidence rates. Across the study duration, a total of 4,884,
12,058, and 18,960 symptomatic test and residence-
corrected incident malaria cases (Table 1) were generated
among participants in Walukuba, Kihihi, and Nagongera,
respectively. The majority of incident cases of malaria were
registered from lower level (level II) facilities in the highest
transmission site of Nagongera (79%), whereas in the lower

transmission settings of Walukuba and Kihihi, the majority
were recorded from the level IV facilities (53% compared
with level II and 43% compared with levels II and III,
respectively). Consistent with transmission strata of the
sites, mean monthly HMIS incidence rates were lowest
in Walukuba, followed by Kihihi, and highest in Nagongera
(Table 2).
Cohort incidence rates. Between October 2011 and Sep-

tember 2014, a total of 189, 1,477, and 2,325 incident malaria
cases were recorded in the Walukuba, Kihihi, and Nagongera
cohorts, respectively (Table 2). From these, sitemeanmonthly
incidence rates were derived and age-standardized. These
cohort incidence rates were found to be lowest in Walukuba,
followed by Kihihi, and highest in Nagongera, a pattern con-
sistent with HMIS incidence rates.
Trends in HMIS and cohort incidence rates. The monthly

HMIS and cohort incidence, expressed as raw estimates,
showed similar trends in Walukuba but were unclear in the

TABLE 1
Summary of HMIS participant data from health facilities from October 2011 through September 2014

Site Health facility

Total
OPD
visits

Visits with
suspected

malaria*, n (%)

Suspected malaria
with laboratory test

done, n (%)

Cases of
laboratory-
confirmed
malaria

Test
positivity
rate† (%)

Clinical cases of
malaria without
laboratory testing

Test-
adjusted
clinical
cases‡

Residence-
adjusted
confirmed
cases§

Total
estimated
cases of
malariak

Nagongera Nagongera
HCIV

20,611 18,748 (91) 18,380 (98) 8,014 43.60 332 N/A

Were HCII 8,054 7,138 (89) 612 (9) 494 N/A 6,499
Maundo HCII 8,311 7,089 (85) 1,143 (16) 999 5,931
Katajula HCII 10,983 9,179 (84) 5,520 (60) 3,724 3,655
Pokongo HCII 12,582 7,891 (63) 1 (0) 1 7,890
All 60,541 50,045 (83) 25,656 (51) 13,232 51.60 24,307 8,770 10,190 18,960

Walukuba WalukubaHCIV 26,018 17,003 (65) 16,890 (99) 4,062 24.00 113 N/A
Masese port
HCII

5,423 1,765 (33) 134 (8) 34 N/A 1,631

Masese three
HCII

9,630 4,111 (43) 552 (13) 357 3,559

All 41,071 22,879 (56) 17,576 (77) 4,453 25.30 5,303 912 3,972 4,884
Kihihi Kihihi HCIV 20,510 18,310 (89) 18,300 (99) 8,875 48.50 10 N/A

Matanda HCIII 12,293 7,020 (57) 0 (0) 0 N/A 7,020
Nyamwegabira
HCIII

5,236 2,628 (50) 0 (0) 0 2,628

Nyakashure
HCII

4,930 2,320 (47) 276 (12) 203 2,044

Bihomborwa
HCII

6,334 3,448 (54) 0 (0) 0 3,448

Bushere HCII 1,168 959 (82) 648 (68) 560 311
Kibimbiri HCII 996 847 (85) 0 (0) 0 847
All 51,467 35,532 (69) 19,224 (54) 9,638 50.10 16,308 3,079 8,979 12,058

OPD = outpatient departments.
* Patients sent to the laboratory for malaria testing or those given a clinical diagnosis of malaria without laboratory testing.
†Cases of laboratory-confirmed malaria/suspected malaria with laboratory test performed.
‡Total monthly (clinical cases of malaria without laboratory testing × HCIV test positivity rate).
§Cases of laboratory-confirmed malaria from known villages + residence adjusted laboratory-confirmed cases from missing villages.
kTest-adjusted clinical cases (‡) + cases of laboratory-confirmed malaria (§).

TABLE 2
Summary of malaria incidence rates

Site

HMIS Community cohort*

Population
Person time in

years†
Total cases of

malaria‡
Mean monthly incidence

rate (range)§
Number of
participants

Person time in
years

Total cases of
malaria

Mean monthly incidence
rate (range)

Walukuba 41,071 11,089 4,884 0.19 (0.05–0.41) 304 600.80 189 0.33 (0.02–1.15)
Kihihi 51,467 22,428 12,058 0.26 (0.07–0.57) 357 847.34 1,477 1.71 (0.29–4.70)
Nagongera 60,541 15,907 18,960 0.46 (0.14–0.81) 334 781.68 2,325 3.26 (1.59–5.31)
HMIS = health management information systems.
* Age standardized to age structure of cohort participants at recruitment.
†Population of children younger than 11 years per site at mid-point of study duration, (average for months of March and April 2013).
‡Cases corrected for nonresidence within site boundaries among those with missing villages, as well as for test positivity among presumptive malaria cases.
§ Incidence rates were corrected for test positivity among presumptive cases and site nonresidence among missing villages.
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other sites (Figure 2). As the respective mean-standardized
scores, however, results showed similar trends in Walukuba
and Kihihi, except for the first two months of study duration in
Kihihi (Figure 3, right column). In Nagongera, there was a
tendency for HMIS incidence to increase and peak during
February 2013, followed by a generally downward trend. The
cohort incidence, on the other hand, followed an increasing
trend before peaking during May 2014, and then sharply de-
clined through to September 2014.

Relationship between HMIS and cohort incidence rates.
Health management information system incidence estimates
were seen to underestimate the true (cohort) incidence rates in
all three sites, both as mean monthly estimates, by magni-
tudes of between 2 and 10 (Table 2), and from trends in
raw incidence estimates (Figure 2). Nevertheless, mean-
standardized rates (z-scores) showed the same trends over
time, particularly in Walukuba and Kihihi, but not clearly in
Nagongera (Figure 3, right column). The overall concordance

FIGURE 2. Trends in raw incidence rates per month. This figure appears in color at www.ajtmh.org.
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between HMIS and cohort incidence rates was very good and
well within the 95% confidence bounds, by the Bland–Altman
criteria at all three sites (Figure 4). Only Kihihi had 2months as
major outliers, consistent with other results observed, in-
cluding the trends.

Relationships explored using scatterplots of age-
standardized cohort incidence z-scores against HMIS in-
cidence z-scores with fitted lines showed a linear relationship
for two of the three sites. This relationship was strongest
in Walukuba (adjusted R-square = 0.6235), weaker in Kihihi

FIGURE 3. Scatterplots and trends in health management information systems and cohort incidence rates on respective mean-standardized
scales (z-scores). This figure appears in color at www.ajtmh.org.
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(Adj. R-sq. = 0.4066), and not present in Nagongera (Adj. R-
sq. = 0.0922), as shown in the first column of Figure 3 (and
Table 1 in the additional file).
Consistent with exploratory results, adjusted analysis re-

sults revealed a significant association between mean
monthly HMIS incidence and cohort incidence rates, with
varied but significant modifications to the associations by
year. In Walukuba, changes in cohort incidence had an in-
creasingly greater effect onHMIS incidence, with the adjusted
incidence rate ratio (aIRR) increasing from 0.39 to 14.13 for
2011 to 2014, respectively. This was followed by Kihihi, with
reduction in the aIRR from 7.18 to 1.39, respectively, and
Nagongera, with the aIRR increasing from 1.09 to 1.34, re-
spectively (Table 3). Factors controlled for were health facility
accessibility (rainfall estimates), health facility availability, and
health information recording completeness at each site.
Moreover, after accounting for the underlying disease burden,
the HMIS incidence rate was significantly associated with
health facility accessibility, health facility availability, and
health information recording completeness in all sites, except
recording completeness in Nagongera. Results showed that
after accounting for the community burden and year of study,
recording completeness was significantly associated with a
minimal increase in theHMIS incidence rate forWalukuba, and
a sizable decline in Kihihi (aIRR = 0.85, 95%CI: 0.83–0.87, P <
0.001), but not in Nagongera (Table 3). By contrast, health
facility availability was significantly associated with a minimal
increase in the HMIS incidence rate in Nagongera and Kihihi,
but a decrease for Walukuba. Moreover, reduced health fa-
cility accessibility was significantly associatedwith declines in
the HMIS incidence rates at all sites, highest in Kihihi (aIRR =
0.88, 95% CI: 0.86–0.90, P < 0.001), and moderate in
Nagongera and Walukuba.
Notably, calendar year of study was a significant modifier

of this relationship, with statistically significant (P < 0.001)

FIGURE 4. Concordance between health management information
system incidence and cohort incidence rates using Bland–Altman
diagrams by site, based on incidence z-scores. This figure appears in
color at www.ajtmh.org.

TABLE 3
Association between healthmanagement information systems and cohort incidence rates, accounting for potential confounders in the relationship

Site Covariate Year

Unadjusted Adjusted

IRR 95% CI P-value IRR 95% CI P-value

Walukuba Effect of cohort incidence* by year 2011 1.01 0.42–2.40 < 0.001 0.39 0.13–1.19 < 0.001
2012 2.75 2.35–3.21 2.67 2.23–3.20
2013 4.26 3.40–5.34 4.37 3.45–5.55
2014 21.26 10.62–42.56 14.13 6.70–29.78

Recording – – – 1.07 1.02–1.13 0.005
HF availability – – – 0.95 0.91–0.99 0.017
HF accessibility – – – 0.97 0.93–0.99 0.042

Kihihi Effect of cohort incidence* by year 2011 3.07 2.38–3.97 0.017 7.18 5.38–9.58 < 0.001
2012 1.83 1.63–2.05 1.71 1.51–1.95
2013 1.45 1.40–1.50 1.50 1.44–1.55
2014 1.51 1.47–1.54 1.39 1.35–1.43

Recording – – – 0.85 0.83–0.87 < 0.001
HF availability – – – 1.03 1.00–1.07 0.023
HF accessibility – – – 0.88 0.86–0.90 < 0.001

Nagongera Effect of cohort incidence* by year 2011 1.17 1.09–1.26 < 0.001 1.09 1.01–1.17 < 0.001
2012 1.14 1.10–1.18 1.22 1.17–1.27
2013 1.46 1.40–1.52 1.33 1.27–1.39
2014 1.30 1.25–1.35 1.34 1.28–1.39

Recording – – – 1.01 0.99–1.03 0.256
HF availability – – – 1.09 1.07–1.11 < 0.001
HF accessibility – – – 0.93 0.91–0.94 < 0.001

IRR = incidence rate ratio.
* Cohort incidence rates were age-standardized using the site-specific recruitment population structure as standard population. Other covariates are standardized around their means to obtain

the corresponding z-score for each.
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interactions of calendar year with cohort incidence in all three
sites.
Factors that potentially influence differences (bias) between

HMIS and cohort incidence rates. The three factors evaluated
were found to be significant confounders in the association
between HMIS and cohort incidence rates in all three sites.
Given these independent associations with HMIS incidence
rates, health facility accessibility and availability, and health
information recording completeness were assessed as sus-
pected sources of bias in HMIS incidence relative to the gold
standard.
After accounting for calendar year of study, none of the

three factors was found to be significantly associated with the
difference between the incidence rates (Table 2 in the addi-
tional file).

DISCUSSION

In this analysis, we investigated the relationship between
routine HMIS incidence (health facility case detection and
reporting) and cohort incidence (burden in the community)
rates of malaria among children aged between 6 months and
younger than 11 years in three diverse sites in Uganda. We
found a strong relationship between the two measures in the
higher HMIS performance moderate-to-low endemicity sites
of Walukuba and Kihihi, with both data sources revealing
similar monthly trends, although this was not observed in
the lowest HMIS performance high-endemicity setting of
Nagongera. Although these findings suggest HMIS incidence
as a viable proxy for the true incidence ofmalaria inmoderate-
to-low transmission settings,19,25 results also highlighted how
HMIS incidence substantially underestimates cohort in-
cidence at all sites, with subtle differences in cohort incidence
reflected by much larger changes in HMIS incidence after
controlling for confounders.
These findings are consistent with previous work that re-

ported HMIS incidence as a good measure for evaluating
trends in malaria burden within facility catchments, compared
with test positivity rates.19 Taken together, our findings sug-
gest that HMISswill become increasingly relevant as a robust,
cost-effective means of monitoring changes in malaria bur-
den, particularly as effective control interventions continue to
drive wide-scale reductions in malaria burden.1,3

Our findings contrasted substantially between low-to-
moderate and high-transmission settings, suggesting impor-
tant differences in the proportion of malaria infected persons
recorded through passive surveillance. This is likely due to
variations both in treatment seeking among facility catchment
populations, driven by caregiver characteristics, accessibility,
and availability of healthcare resources,26,27 and by the quality
of diagnosis and reporting at facilities. It is not uncommon,
however, for people to move outside of their closest facility
catchment for care, for example, when traveling or because of
perceived better care. In those cases, clinical malaria cases
may not be registered for surveillance within the facility
catchment of origin or not at all, within the private sector.
Previous studies have suggested that most care seeking is
conducted in private health facilities in Uganda, including
private-for-profit hospitals/clinics, pharmacies, and drug
shops9,28; however, private facilitieswere very few inour study
sites and therefore excluded. Also, prompt treatment is not yet
attainable outside of research settings, owing to care-seeking

characteristics and diversity. In the lower transmission set-
tings with better HMIS performance, most malaria cases were
collected from facilities with high diagnostic testing rates,
further improving the confirmation rates in those sites com-
pared with the high-transmission site.7 This suggests that
these findings strongly depend on improved surveillance
systems and can be reliable in all transmission settings.
In addition, although treatment was free of monitory cost at

public health facilities, regular patient visits to the health fa-
cility still costed them in the form of transport cost and long
waiting times. Within the cohorts, however, transport was
reimbursed for every clinic visit made and waiting times min-
imized because of the dedicated clinics. This status quo may
have limited potential HMIS clinic visits and, thereby, con-
tributed to HMIS underestimating cohort incidence estimates.
To further explore the extent by which other factors may

systematically influence the representativeness of HMIS data,
we identified indicators that were quantifiable from our data
and explored their association with HMIS incidence. Our
findings are consistent with previous reports on reliability of
HMIS measures of burden being dependent on complete-
ness and accuracy of HMIS records, as well as healthcare
access,10,11 although results were not always consistent
across sites. For example, health facility accessibility, health
facility availability, and recording completeness were each
significantly associated with heterogeneous changes in HMIS
incidence after accounting for community burden. In Walu-
kuba, the site with highest availability according to the site
meannumber of days facilitieswere open, improved recording
completeness was associated with the increased HMIS in-
cidence. For Kihihi, with the second highest availability,
however, increased recording completeness was associated
with the reduction of HMIS incidence, suggesting heteroge-
neous effects of the same factor in different locations. We
believe these effects may be due to variations in factors such
as resource availability and staffing or workload, but these
were not evaluated in this study.
For all three study sites, reduced health facility accessibility

(represented by increasing monthly rainfall) was associated
with reduction in HMIS incidence, the largest impact being in
Kihihi, a hilly site with roads that can become impassable
when it rains. Moreover, increased rainfall in a given month is
also known to be inversely associated with mosquito abun-
dance in thatmonth because of flushing of long-termbreeding
sites.29,30 A lagged increase in rainfall that may not influence
access and, therefore, not considered here, however, is as-
sociated with increased mosquito abundance.31 Although
these findings confirm the perpetuation of errors in routine
HMIS data through health system factors, when assessed for
likelihood to be sources of bias in HMIS incidence relative to
cohort incidence, none qualified. Although health facility ac-
cessibility, availability, and recording completeness are vital
for accurate estimates of HMIS incidence and its reliability,8

the absence of their significant impact on the difference be-
tween HMIS and cohort incidence rates provides evidence
against claims of systematic bias in HMIS burden estimates
through these HMIS data drawbacks.7

Results revealed the calendar year of study to be a signifi-
cant modifier of the relationship between the rate of change in
HMIS incidence and cohort incidence. This effect may have
been due to seasonal or temporal variation in health system
factors, such as drugs or diagnostics stocks and staffing that
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were reportedly changing over this study duration.32 It may
also be attributable to community campaign–based activities,
such as the distribution of long-lasting insecticidal nets in
2013–14 or urbanization.33,34 Moreover, variability in care
seeking for alternatives such as self-medication, use of herbal
medicines or drug shops,35 and availability of diagnostics or
drugs36 could also explain year-to-year impacts on this re-
lationship. These results provide some evidence that the
HMIS level of performance and treatment seeking are key
factors that drive the strength of the relationship between
HMIS incidence and cohort incidence.
This study had several limitations that could be catego-

rized as HMIS data and analytical limitations. First, from the
data side, low testing rates in lower level facilities could have
impact on the number of cases observed and, thus, on in-
cidence estimates. This may have been exemplified by the
lack of clear relationship and absence of clear trends in the
highest transmission site, where the majority of malaria
cases were recorded from lower level, low testing rate fa-
cilities. We did, however, adjust these presumptive cases by
reference facility positivity rates, which acted to reduce this
impact on incidence estimates. Second, not all facilities had
complete data for every month, with some registers missing
at the facilities, reducing the number of cases registered.
Third, the difference in diagnostic testing methods between
the cohort (microscopy) and health facilities (microscopy or
rapid diagnostic test) may have introduced some disparities
due to sensitivity and specificity differences in methods.
Fourth, being unable to access patient records from private
facilities may have impact on the true number of malaria
cases in each community. However, private facilities were
very few in each site, and results from unpublished data
showed that most private facilities that were expected to be
in the sites had closed. Fifth, being unable to account for
malaria commodity stock levels in health facilities may have
undermined HMIS incidence through reduced HMIS atten-
dancewhenever therewas a considerable stock-out season.
Sixth, health facility availability, accessibility, and recording
performance are more complex than this study proposed to
estimate them. This could have masked any potentially ob-
servable associations otherwise not found. Last, it is unclear
what proportion of patients with missing age would have
been participants in this study, and this too could have had
an impact on our results.
On the side of analytical limitations, first, we were unable

to obtain census estimates of the population for the health
facility catchments considered. Consequently, we esti-
mated the denominator for HMIS incidence, which may not
have been a precisemeasure of the catchment population at
risk. Secondwas the inability to directly account for bias due
to gender that was identified. However, the overall effect of
this biaswas not expected to varymuch over time, given that
gender does not change over time. Third, being limited to
three sites may imply that comparisons between them were
limited; however, the diversity of settings and transmission
provides important contributions of benefit to surveillance
and considerably generalizable findings in Uganda. Last,
there were limited data on covariates describing treatment
seeking, hospital characteristics, and governance factors,
which may have left several influences unaccounted for.
However, using the available data, considerable scope was
taken into account.

CONCLUSION

Findings from this study show that although HMIS sub-
stantially underestimates the cohort-based malaria incidence
rate, there is empirical evidence of a strong linear relationship
between these incidence rates in children living in high HMIS
performance moderate-to-low endemicity settings that dete-
riorates in a low HMIS performance very high–transmission
setting. This, coupled with similar trends in these rates and
good concordance, suggests that HMIS incidence rates may
constitute a reliable estimate of malaria burden and its trends
with improved HMISs. These findings have important impli-
cations for malaria risk assessment in low-resource settings
that bear most of the burden of malaria, given improved in-
formation systems. Coupled with successful control inter-
ventions reported globally, the stronger predictive power of
HMIS incidence for the true burden with improving HMISs,
despite transmission settings, suggests a cost-effective
means of evaluating malaria risk for effective control.
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