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ABSTRACT: A central strategy of synthetic biology is to understand the basic processes of living creatures through
engineering organisms using the same building blocks. Biological machines described in terms of parts can be studied by
computer simulation in any of several languages or robotically assembled in vitro. In this paper we present a language, the
Genetic Circuit Description Language (GCDL) and a compiler, the Genetic Circuit Compiler (GCC). This language describes
genetic circuits at a level of granularity appropriate both for automated assembly in the laboratory and deriving simulation code.
The GCDL follows Semantic Web practice, and the compiler makes novel use of the logical inference facilities that are therefore
available. We present the GCDL and compiler structure as a study of a tool for generating κ-language simulations from semantic
descriptions of genetic circuits.
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Synthetic biology extends classical genetic engineering with
concepts of modularity, standardization, and abstraction

drawn largely from computer engineering. The goal is
ambitious: to design complex biological systems, perhaps entire
genomes, from first principles.1 This enterprise has met with
some success such as microbial drug synthesis,2,3 production
of new biofuels,4 and alternative approaches to disease
treatment.5 However, most applications are still small and
mostly designed manually.
The are several obstacles to designing more complex circuits.

The design space of potential circuits is very large. Even when a
design is chosen, there is large a priori uncertainty about what its
behavior will be. In many cases the available information about
molecular interactions in a cell is incomplete. A secondary
obstacle is that designs can be brittle and very sensitive to the
host environment in which they execute. In this context
computational techniques become important for identifying
biologically feasible solutions to problems of biological system
synthesis. Beyond the challenges of the huge design space and

associated uncertainties, writing these programs by hand is time-
consuming and error prone, and there are very few tools
available for verification and debugging them. Descriptions of
models in terms of simulation code are tightly coupled to the
language of the simulation program, and it may be difficult or
impossible to use a different interpreter without completely
rewriting the code.
We solve these problems by providing a high-level, modular,

implementation-independent language for describing gene
circuits called the Genetic Circuit Description Language
(GCDL) and a compiler called Genetic Circuit Compiler
(GCC). We use a strategy of contextual reasoning to obtain
flexible output from this succinct input, and templates to support
any number of output languages and modeling granularities. An
overview of information flow through the compiler is shown in
Figure 1. We demonstrate the utility of this approach by
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describing, compiling, and simulating a complete genetic circuit,
the well-known Elowitz repressilator.6 The compiler and
example code are available at https://github.com/rulebased/
composition.
Code generation from this high-level description to a low-

level language for simulation greatly reduces the scope for error
in coding simulations. Because the language is implementation-
independent, it is not tightly coupled to any particular
interpreter or hardware. In this way GCDL facilitates evergreen
models, models that are specified sufficiently well to be
unambiguous but not so specifically that they can only be
executed or constructed in one software package or environ-
ment.
Domain specific languages and examples of compilers

processing these languages have previously been shown.7−10

These languages are designed to allow for simulations using a
particular methodology such as solving systems of ordinary
differential equations or using Monte Carlo simulation. Unlike
previous approaches, we emphasize the use of abstraction to
facilitate retargeting or production of output suitable for different
simulation environments and techniques as well as automated
circuit assembly in the laboratory from a single description.
Compiler targets are implemented using conditional inference,
defining the semantics of the terms used in the description of the
circuit in a way that is determined by the desired output type.
The design of the compiler is general, and not limited to the
present context of genetic circuits. The design is shown
schematically in Figure 2.
The GCDL is an RDF11 vocabulary and attendant inference

rules, which facilitates gathering and collation of information
about the constituent parts of a genetic circuit.12 The output
programs can be specialized to various languages, such as the
KaSim flavor of κ,13,14 BioNetGen’s BNGL,15,16 other
representations such as SBOL,17 or indeed whichever form is
required by robotic laboratory equipment that assembles circuits
in vitro. This output flexibility is accomplished using templates
that use facts derived by inference rules18 from the input model.
We now proceed as follows. We begin with an overview of

those aspects of synthetic biology and genetic engineering that
are necessary to contextualize our work. Next, we explain the
representation of this kind of genetic circuit model in GCDL,
this is the main input to the compiler. In order to understand the
desired output of the compiler, we then illustrate how these
constructs are represented as rule-based code for the κ language
simulator, KaSim. There follows a discussion of how the

Figure 1. High-level data flow through the compiler. The compiler for synthetic gene circuits takes a model description written in GCDL and, using
language-appropriate appropriate templates, creates code for simulation and laboratory assembly. We have implemented templates for annotated-κ for
the KaSim software, and envision similar for the BNGL as well as SBOL.

Figure 2. Detailed data flow through the compiler. This illustrates the
use of inference to expand the GCDL model to derive consequent
information appropriate to producing the next stage of output in the
specific target language.
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compiler infers the executable model from the input description.
Finally, we discuss some possible uses and limitations of our
technique.

■ BACKGROUND

Rule-Based Modeling of Genetic Processes. A weakness
of reaction-based methods for modeling the processes of
transcription, translation, and the production of chains of
proteins is that they require chemical species for each bound
state of the reagents. This in turn requires specification of
reactions for each combination of these reagents. To solve this
problem of needing combinatorially many reactions to describe
substantially the same process, a generalization of reactions
called rules are used.19−21

In the rule-based representation, agents correspond to
reagents and they can have slots or sites that can be bound, or
not. They can also have internal state. Unlike reactions that have
no preconditions apart from the presence of the reagents, with
rules, a configuration of the sitesbound in a particular way,
bound in some way, unbound, or unspecifiedis a precondition
for the application of the rule. A rule may rearrange the bonds,
creating or destroying them, without the need to invent new
agents in order to represent different configurations of a given
set of molecules.
The reader should note that the word rule is used in two

distinct senses in this article. The first is as we have just
described. The second is in the sense of inference rule as used in
logic and in particular the way in which we deduce executable
rule-based models from their declarative representations in
RDF.
The κ Language. To briefly illustrate the essentials of rule-

basedmodeling we will use the language of the Kappa simulation
software, KaSim.14 An agent declaration and rule expressing the
formation of a polymer can be written as

We can gloss this as an agent with two sites, u and d for upstream
and downstream, and a rule. The rule concerns two agent
patterns one of which has an unbound upstream site, and the
other an unbound downstream site, and the action of the rule is
to bind them, the notation [1] denoting the bond. This process
happens at some rate k.
The state of the other site of each agent is left unspecified, so

implicit in this rule is the possibility that either or both the agents
may already be bound to others and so part of arbitrarily long
chains. In other words this expression covers not only two
monomers joining together but an n-mer and an m-mer for
arbitrary n andm. This is the essence of the expressive advantage
that rule-based modeling provides. To express a similar concept
using a reaction network would in fact require infinitely many
reagents for every possible n (and m) and infinitely many
reactions for every possible combination.
Biological Parts and Annotation. For efficiency, and

economy of representation, we claim that the description of a
computational model should include minimum information
necessary for simulation. However, in order to use these models
in an automated design process, additional metadata, or
annotations, about the meaning of different modeling entities
is needed.12 Annotation facilitates the drawing of specific parts

from a database such as the Virtual Parts Repository.22 Models
in that database are annotated with machine-readable metadata
intended for combination into larger models. Myers and his
colleagues have used annotations to derive simulatable models
from descriptions of genetic circuits23 and vice versa,24 though
these use reaction-based techniques and so inherit the poor
scaling properties of that method.
To facilitate the in silico evaluation of potential synthetic gene

circuits, a library of descriptions of genetic parts, together with
their modular models is suggested in the literature.22,25 These
parts are intended to be large enough to have a particular
meaning or function (i.e., larger than individual base pairs) but
not so large that they lack the flexibility to be recombined (i.e.,
entire genes). Thus, we are concerned with coding sequences for
particular proteins, promoters that, when activated, start the
transcription process, operators that activate or suppress
promoters according to whether they are bound or not by a
given protein, and a small number of other objects. A sequence
of these objects is a genetic circuit, and our goal is to have a good
language for describing such sequences.
Annotation in this setting means machine-readable descrip-

tions of entities of biological interest. This is done with
statements, triples of the form (subject, predicate, object)
according Semantic Web standards.11,26 Entities are identified
with Universal Resource Identifiers (URIs).27 This provides the
dual benefit of globally unique identifiers for entities and a built-
in mechanism for retrieving more information about them
providing that some care is taken to publish data according to
best practises.28,29 Large bodies of such information about
biologically relevant information are published on the Web30,31

and the use of Semantic Web standards for annotating our
models allows us to express how an entity in a model description
corresponds to a real world protein, or gene sequence or other
entity.
The Semantic Web also affords us a technical advantage:

inference rules. These can be either explicit as in Notation332,33

or implicit as in OWLDescription Logics.34,35 In either case this
facility makes it possible, given a set of statements, to derive new
statements according to inference rules. We use this to improve
the ergonomics of our high-level language: while the compiler
itself will make use, internally, of a large amount of information,
we do not expect the user to supply it in painstaking detail.
Rather, we allow the user to specify the minimum possible and
provide rules to derive the necessary detail. Inference rules
provide for both economy of representation for the high-level
model description and flexibility for the different implementa-
tions.

■ A LANGUAGE FOR SYNTHETIC GENE CIRCUITS

This section describes the GCDL, the high-level language for
describing genetic circuits made from standard biological
parts.22,25 We begin by stating the properties that we want in
such a language and showing how we achieve them. There
follows a synopsis of the vocabulary terms essential to the
language. Finally, we illustrate salient language features applied
to example circuits.

Desired Language Features. Our desired language
features for high-level representation of a genetic circuit are as
follows:

1. Sufficiency; there should be enough information to derive
executable code for the circuit.
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2. Identifiability; it should be possible to determine to which
biological entities (DNA sequences, proteins) the
representation refers.

3. Extensibility; it should be straightforward to add
information or constructs that are not presently foreseen.

4. Generality; there should be no requirement that
information about biological parts comes from any
particular set or source.

5. Concision; there should be a minimum of extraneous
detail or syntax.

The third and fourth requirements are readily met by using RDF
as the underlying data model. The open world presumption36

means that adding information as necessary is straightforward.
The use of URIs27 that can be dereferenced to obtain the
required information means that information from different
web-accessible databases can be obtained, mixed, and matched
as desired. The use of URIs goes some way toward meeting the
second requirement, albeit with some well-known caveats.37

The first and last of the desired features are the primary areas
of innovation of the present work. We suggest (but do not
require) the use of Turtle38 or indeed Notation318 as the
concrete surface syntax for writing models. This goes some way
toward a representation that is intelligible by humans. Even then,
we aim to minimize what needs to be written, and we do this
using inference rulesif a needed fact can be derived from the
model under the provided rule-set, it is unnecessary to write it
explicitly in the model. Indeed it may even be undesirable to do
so since it is a possible source of errors, for example some kinds
of assertions may be correct in the context of some output types
and incorrect in others. We aim for a minimal, yet complete
under the inference rules, description of the model.
Vocabulary Terms. New terms introduced in this paper

have the prefix gcc, which can be read as the “Genetic Circuit
Compiler” vocabulary. The list of terms is reproduced in Table 1
and their complete definitions are given together with the
accompanying rules in the Supporting Information. The GCDL
is the union of terms from the gcc namespace with those from the
Rule-Based Model Ontology (RBMO) that we previously
defined,39 together with terms from the Simple Knowledge
Organization System (SKOS)40 vocabulary, RDF Schema
(RDFS),35 and Resource Description Framework (RDF).11

Model Description.To illustrate the syntax of the high-level
language, we use the well-known Elowitz repressilator shown
diagrammatically in Figure 3a. The complete model can be
found in the Supporting Information as well as distributed in the
examples/ subdirectory of the compiler distribution. Also
included with the compiler is a hand-assembled implementation
of this circuit for comparison. A sample trace produced by
generated program is shown in Figure 3b. Figure 4 shows a
description of this the core of the model, in the GCDL. Some
bibliographic metadata is included, using the standard Dublin
Core41 vocabulary, as well as a generic pointer (rdfs:seeAlso) to
a publication about this model.
The term gcc:prefix is necessary in every model; it instructs

the compiler that any entities that it creates should be created
under the given prefix. Ultimately annotated rules will be
generated for the low-level representation and the annotated
entities require names. To give them names, a namespace is
required, and this is how it is provided.
Next there is a gcc:include statement. This is a facility for

including extra information in the low-level language. Extra
information typically means rules for protein−protein inter-

actions, which are beyond the scope of the current work, and as
such it is simply supplied as a program fragment in the output
language. This corresponds roughly to calling an assembly or
machine language routine to perform a specialized task when
programming a computer in a high-level language like C.
There follows initialization for specific variables. In this case

these are the copy numbers for RNA polymerase molecules and
ribosomes. These are denoted using rbmo:agent because of our
choice to support rule-based modeling for greater generality
than reaction-based methods. Finally, the circuit itself is
specified. The argument or object is an rdf:List that simply
contains identifiers for the parts, in order.
The circuit itself is now defined. However, at this juncture, we

simply have a list of parts without having specified what they are
or what their intended behavior is. To obtain a working model,
we need more.

A Part Description. A simple example of a part description
is shown in Figure 5. This is a coding sequence, as is clear from
the type annotation on the part. It codes for a particular protein,
specified with gcc:protein. This term is specific to proteins
because under normal circumstances other kinds of part do not
code for proteins. It is given a part symbol using gcc:part because
the output language will not typically permit the use of URIs as
identifiers, so this symbol via the implied skos:prefLabel40 is
what will appear instead. The protein produced by this coding
sequence is also specified and linked using gcc:protein. It too is
given a label using skos:prefLabel for the same reason, and its
degradation rate is also specified with gcc:proteinDegradation-

Table 1. Selected Terms from the GCC Vocabulary

classes

gcc:Part Generic biological part
gcc:Operator Operator
gcc:Promoter Promoter
gcc:RibosomeBindingSite Ribosome Binding Site
gcc:CodingSequence Coding Sequence
gcc:Terminator Terminator
gcc:Token Token or symbol in a template

predicates

gcc:include Include a low-level model fragment
gcc:prefix The prefix to use for generated

annotations
gcc:init Specifies initial copy numbers
gcc:part Links a part to its token or symbol
gcc:overlaps Indicates that two parts overlap

(symmetric)
gcc:linear Linear circuit type
gcc:circular Circular circuit type
gcc:transcriptionFactor Relates an operator to its

transcription factor
gcc:transcriptionFactorBindingRate Various rates
gcc:transcriptionFactorUnbindingRate
gcc:rnapBindingRate
gcc:rnapUnbindingRate
gcc:rnapRNAUnbindingRate
gcc:ribosomeBindingRate
gcc:ribosomeRNAUnbindingRate
gcc:ribosomeProteinUnbindingRate
gcc:transcriptionInitiationRate
gcc:transcriptionElongationRate
gcc:translationElongationRate
gcc:rnaDegradationRate
gcc:proteinDegradationRate
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Rate. It is equally possible to specify the rates for transcription
and translation in a similar manner though not shown here. In

Figure 3. Diagram and sample simulation results of the Elowitz repressilator. (a) An example genetic circuit: the Elowitz repressilator. It is a negative
feedback oscillator. The circuit is arranged linearly. Protein production and inhibitory protein−operator relationships are shown using the SBOL visual
standard. (b) Sample simulation data from a program produced by the compiler showing the expected oscillations. Note in particular the relatively
small copy numbers of the proteins for which stochastic simulation in the κ language is well suited.

Figure 4. Example model for a synthetic gene circuit, Elowitz repressilator.

Figure 5. A coding sequence part description from the repressilator model. Notice how the coding sequence is linked to the protein that it codes for.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.8b00201
ACS Synth. Biol. 2018, 7, 2812−2823

2816

http://dx.doi.org/10.1021/acssynbio.8b00201


practice, rates are known primarily from experiment, and this is
an important reason to have accessible databases or repositories
of part specifications.
Importantly, following the practice in our previous paper on

rule annotation,39 a weak identity assertion is made with
identifiers in external databases for the parts. This uses bqbiol:is
instead of owl:sameAs because the strong replacement

semantics (Leibniz’s Law42) of the latter can yield unwanted
inferences when terms are not used perfectly rigorously.37 This
weaker identify assertion permits the identification of the :P0010
in the example with the identifier for the protein in the well-
known UniProt31 database.

A More Complex Part Description. A more involved
example demonstrating how an operator−promoter combina-

Figure 6. An operator and promoter from the repressilator model. The binding rates for the promoter depend on the state of the adjacent operator.

Figure 7. Representations of the Subtilin Receiver model. (a) Diagram of the subtilin genetic circuit. The figure shows the multirelay phosphorylation,
and hence the activation, of SpaR TFs to induce the downstream gene expression. As a result, GFP reporter proteins are produced in the presence of
Subtilin molecules. (b) Corresponding semantic model.
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tion is encoded is shown in Figure 6. Here we have an operator
with the rates for binding and unbinding of the transcription
factor specified explicitly. If the operator is bound by the
transcription factor, the neighboring promoter is repressedan
RNA polymerase will not be able to bind. By contrast if the
operator is unbound, the promoter will accept binding of RNA
polymerase easily and frequently. The language supports an
arbitrary amount of operator context for operators and
promoters enabling the specification of complex regulatory
structures such as combinatorial logic gates43−45 and some
forms of cooperative binding.
The transcription factor is specified by using gcc:transcrip-

tionFactor to refer to the protein that will turn the operator on or
off. Like gcc:protein for coding sequences, the term is unique to
operators.
The promoter comes next and it is the most complex part to

specify. Because the rate for binding of RNA polymerase
depends on the state of the operator, two rates must be specified.
States of the nearby parts are specified using the rbmo
vocabulary, which makes available the full range of expressive-
ness for rule-based output languages. For generality, a list of
parts, upstream or downstream on the DNA strand may be
specified along with their states. This enables a promoter to be
controlled by two or more operators. The rate itself in this case is
given with gcc:value for each case.
Host and Protein−Protein Interactions. The language

can also support protein−protein interactions in a basic way. To
see why these are useful, consider an example from the
engineering of a bacterial communication system where the
subtilin molecule is used to control population level dynamics.
Cells have the receiver device22,46 to sense the existence of
subtilin, and the reporter device to initiate downstream cellular
processes (Figures 7a and 7b). In the subtilin receiver, the
interactions among the proteins produced by translation and the
operator−promoters are mediated by a cascade reaction
initiated by the subtilin molecule. Subtilin combines to
phosphorylate the SpaK protein, which in turn phosphorylates
the SpaR protein that finally binds to the promoter that controls
the emission of a fluorescent green protein.
While the genetic circuit can straightforwardly be described

similarly to the previous repressilator example, the protein−
protein interactions cannot. We do not attempt here to model
these interactions in the GCDL though a future extension could
do so. Instead we simply allow for inclusion of the relevant
program, as a file in the output language (in this case κ-
language). It is possible to supply arbitrary code in the low-level
language using the gcc:include term. This facility makes it

feasible to represent such genetic circuits, which depend
strongly on the host environment in order to operate.

Protein Fusion. It is also worth noting that this example
illustrates that in the high-level language it is immediately
possible to represent devices that produce chains of proteins.
This is known as protein fusion and is interesting for some
applications.47 A chain of proteins is produced by adding
adjacent (and appropriate) coding sequences. It is enough to
simply list the coding sequences in the circuit; nothing else need
be done.

Other Parts. The descriptions for the other kinds of
biological parts, terminators, coding sequences, follow a similar
pattern. There are terms for specifying the rates for the rules in
which they participate, and a few specialized terms according to
the function of the specific part. It is possible to find out the
available terms by inspecting the gcc vocabulary included in the
Supporting Information.

■ OUTPUT REPRESENTATION

We now briefly consider the form of the output representation.
By using different templates, the compiler can produce output in
different languages. We focus on rule-based representations here
and use the language of the KaSim simulator14 for concrete
illustration as it is widely adopted for stochastic simulation of
rule-based models.48 The rule-based modeling approach is
merely outlined here and follows that used in Kappa BioBricks
Framework KBBF48 closely. We stress that though output as
executable program in the KaSim language is demonstrated
here, alternative rule-based representations like BioNetGen are
equally possible as are descriptions in a language like SBOL as
input to an experimental process in the laboratory. A more
detailed account of the modeling methodology and correspond-
ing output can be found in the Supporting Information.
The real work of modeling the transcription and translation

machinery is done with sliding rules. Figure 8 shows how this
works for the creation of a protein from a coding sequence. This
is our first example of a rule where though the adjacent part
figures explicitly in the rule, its type does not. It is sufficient to
know that it is a piece of RNA. In this case, two pieces of RNA
are involved, the part that is central to this rule corresponds to
the coding sequence for X. It is adjacent to another piece of
RNA, and the ribosome slides from one to the other (to the left,
where sliding on DNA happens, as we will see next, to the right)
and in the process, emits a protein of type X.

Figure 8. Translation of the RNA segment corresponding to a coding sequence to produce a protein.
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■ GENETIC CIRCUIT COMPILER

Having described the GCDL in some detail, we now briefly
sketch our implementation of the compiler. Many compiler
implementations are possible; ours innovatively combines the
logical inference that is native to the semantic web with the use
of templates to generate the target program. The templates
define standard models for each type of part in a given output
language. Different output languages or model granularities are
achieved by choosing a different set of templates. The overall
information flow through the compiler is illustrated in Figure 1.
Our strategy is to first gather all the input statements and

background facts that are asserted by the various vocabularies in
use. In the first inference step, standard RDF rules are used to
make available consequent facts that will be needed to produce
the ultimate result. The result is a program in a language such as
κ and not RDF, and which uses local variable names and not
URIs, so the materialized facts are transformed into a suitable
internal representation. Substitution into templates is done next,
and finally the result is postprocessed to derive any remaining
program directives that are only knowable once the complete
circuit is assembled.

It is interesting to consider that the entire compiler can be
thought of as implementing a kind of inference quite different
from what is commonly used with the Semantic Web. The
consequent, the executable model, is in a different language from
the antecedent, the declarative description. Through the use of
embedding annotations, however, the original model is
nevertheless carried through to the output, and is unambigu-
ously recoverable. There is thus an arrow from the space of
declarative models in RDF to the space of annotated executable
models. There is an arrow in the other direction that forgets the
executable part and retains the declarative part. In an important
sense, the two representations contain the same information,
only that the executable model has more materialized detail in
order that it may be run.

Semantic Inference. The input from the user is the model
description in the high-level language as described above. This
description uses terms from, and makes reference to the gcc and
rbmo vocabularies. Themeaning of these terms, in the context of
deriving an equivalent version of the program in the low-level
language, is given by the companion inference rules. This is a
somewhat subtle concept so let us illustrate what it means.
Consider the statement

Figure 9. Template examples. On top is the template for a generic part, and it references several other templates, one of which, translation_chain.ka, is
reproduced on bottom.
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This statement gives the type of :R0040a as gcc:Operator.
The implications of this statement allows to identify the

correct template to use for this part, found from information
provided by the gcc vocabulary. Indeed, as a background fact, we
have

or in other words that a gcc:Operator corresponds to the
template rbmt:operator.ka. We also have an inference rule,
provided with the gcc vocabulary that says

In theNotation 332,33 language this means that “for all ?parts that
has a type that corresponds to a kappa ?template, that ?part itself
corresponds to that ?template”. Alternatively,

∧ →p x x t p ttype( , ) kappa( , ) kappa( , )

It would have been perfectly possible to explicitly write what
template should be used for each part in the high-level model
description. That is not desirable because it would leak
implementation details of the compiler into what ought to be
an implementation-independent declarative description.
The above rule, and others like it serve to elaborate the high-

level description into a more detailed version suitable for the
next stage of the compiler and relieve the user of the need to
supply the extra details. All implications that can be drawn under
the rdfs inference rules and the gcc specific rules are drawn and
become part of the in the in-memory RDF storage as the
transitive closure of the rules (given the background facts and
the provided model facts).
Internal Representation. The output of the first stage of

the compiler contains all the information necessary to
completely describe the output, but it is not in a convenient
form for providing to the template rendering engine. Our
implementation choice for the compiler is the Jinja249 rendering
engine. This means that the appropriate data structure is a
dictionary or associative list that can be processed natively by
these tools without need of external library. The required
internal representation is built up by querying the in-memory
RDF storage for the specific information required by the
templates.

Our implementation does not require modification when new
terms are added to the vocabulary and templates. To add
support for a new kind of part it is necessary to write a new
template for it and possibly add some terms to the vocabulary
but does not require changing the compiler software itself. What
makes this possible are the inference rules described in the
previous section. The queries on the RDF storage that produce
the internal representation are posed in terms of the consequents
of the inference rules rather than the specific form of input.

Template Substitution. The templates that produce the
bulk of the low-level output are written in the well-known Jinja2
language. This language is commonly used for the server-side
generation of web pages. KaSim or BNGL programs are not web
pages but they are text documents and Jinja2 is well suited to
generating them. It has a notion of inclusion and inheritance that
is useful for handling the variations among the different kinds of
parts, which typically differ in the rules for one or two of the
interactions in which they participate with the others being
identical. We provide a total of 15 templates for KaSim, of which
there are top-level templates for each of the five distinct types of
biological part defined in the gcc vocabulary as well as a generic
part template, five templates implementing functionality shared
among parts, and five consisting of supporting boilerplate
required by KaSim.
A full description of the facilities provided by Jinja2 is beyond

the scope of this paper, but a flavor is given in Figure 9, which
shows an example of a template for a generic part (not having
specific functionality like a promoter or operator might)
demonstrating substitution of the name variable derived from
annotation, and include statements referencing several other
templates, one of which is reproduced and shows the KaSim
code that is produced.
We use specific terms for defining the rates for the rules in

which biological parts are involved, and a few other terms
according to the function of the biological part of interest. It is
possible to find the available terms out by inspecting the gcc
vocabulary provided in the Supporting Information.
A fragment of the gcc vocabulary is reproduced in Figure 10.

Though this exposes some implementation detail, it is useful to
understand the relationships between the various terms used to
describe models. This is also important when supplying
customized templates.
There are gcc:Tokens, so named because they correspond to

tokens in the low-level language that are replaced. Each must

Figure 10. Specification in the gcc vocabulary of a gcc:Operator and associated terms.
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have a preferred label that gives the literal token. In cases where
there exists a sensible default value, this is given with gcc:default.
The purpose of these statements is to act as a bridge between the
fully materialized RDF representation of the model and the
templates that require substitution of locally meaningful names.
For each kind of part (such as the gcc:Operator in the example

in Figure 10), there are two main annotations that are necessary.
For each machine-readable low-level language, a template is
specified. The gcc:tokens annotations give the tokens that are
pertinent to this kind of part. These must be specified in the
high-level model or allowed to take on their default values. In
addition to documenting the requirements of the templates for
each kind of part, these statements are, “operationalized” and
used by the compiler. They can equally well be used to check
that a supplied high-level model is sufficiently complete and
well-formed to produce an output program.
Derivation of Declarations. The KaSim language requires

forward declaration of the type signatures of agents. This is by
design50 so that the simulator can check that agents are correctly
used where they appear in patterns in the rules. While this design
choice can help a modeler that is writing a simulation program in
the low-level language by hand, to assist in finding mistakes and
typographical errors, it is not possible to know a prioriwhat these
declarations should be in the present context. The correct
declarations for DNA, RNA, and Protein depend on the
complete set of parts that make up the model so their correct
declarations cannot be in any template for an individual part.
To solve this issue, the compiler implements a postprocessing

step. The rules that are produced by instantiating the templates
for each part are concatenated together with any explicitly
supplied rules and then the whole is parsed. The use of each
agent in each rule in this rule-set is assumed to be correct by
construction. From there a declaration that covers each use of
each agent is built up.
Initialization. At this final stage of the compiler, all rules are

present, both supplied by the user for the host environment and
implied by the parts that form the genetic circuits, and all
declarations are also present. What is missing is the statement
that creates an initial copy of the DNA sequence itself, with each
upstream−downstream bond present. This information is, of
course, available in the definition of the circuit, and so an
appropriate %init statement, creating a single instance of the
DNA sequence with correct linkages between the agent-parts is
produced and added to the output. The low-level program is
finally complete and ready to be executed.

■ DISCUSSION
We have presented a language, the GCDL for describing genetic
circuits and our compiler for generating simulation executables
from it. We have made the case that the succinctness of the
GCDL affords the user the benefit of describing the salient
aspects of these circuits free of extraneous detail, that this
reduces the potential for user error inherent in detailed coding of
molecular interactions, and that this approach also affords
flexibility in choosing the simulation or experimental method-
ology for the model. We have further developed the argument
that modularity in modeling of genetic circuits has similar
benefits of modularity in high-level programming languages,
namely, encapsulation and clarity. We now consider some of the
limitations and benefits of our design choices and explore some
areas ripe for future research.
It is important to understand the correctness and verification

properties of the compiler and the GCDL. The GCDL is an

RDF-based language and models are typically written in Turtle.
The syntax11,38 on a concrete level is well-defined and models
that are badly formed will be rejected. The standard templates
are documented in machine-readable form in the GCDL
vocabulary. Annotations that are required for a given part type
also cause the model to be rejected by the compiler if they are
not present. But the compiler does not perform verification in
terms of how the parts are composed. Users are free to choose
any DNA parts and in any order. For example, a model that
includes a coding sequence part without preceding promoter
and ribosome binding site parts is allowed, though and the
resulting model would emit no protein agents and perhaps not
be very interesting. Verifying whether a given circuit expressed in
theGCDL is accepted by a parts grammar;7,51 verification of part
sequences is out of scope for the compiler but could be the
subject of future work.
The expressive power afforded by the design choice of

modularityfixing the level of abstraction for a modelcomes
at a cost. Biological parts are considered as atomic units. While it
is straightforward to model complex mechanisms like
combinatorial logic operators and cooperative binding it is not
straightforward to mix models in terms of the part abstraction
with models of the underlying substrate. Phenomena that
inherently involve the physical or chemical structure of the DNA
molecule or the shape of a protein cannot be modeled directly,
and we are restricted to simply asserting that they occur or not at
some rate. Similarly, while parts that share nucleotide sequences
and may overlap can be marked as such with the gcc:overlaps
term, this has no effect on the modeling. If the fact of parts
overlapping is significant in the behavior of the circuit, those
parts are not modular and that would break the abstraction
barrier. Such an annotation can, however, be used when
selecting parts for assembly in vitro. Parts for which overlap is
functionally significant can also be treated as an atomic unit with
a suitable template. The modeling abstraction, once chosen, is
fixed. This is by design, in order that models so expressed remain
tractable.
Similar reasoning applies to optimization of DNA sequences.

This is not our focus in the present work. Here, our main goal is
to capture the dynamics of genetic circuit designs and to
automate the process of model generation. Hence, deriving final
DNA sequences encoding the behaviors captured in models is
not our focus, and related research can indeed be incorporated in
the future.52 Because the language is based on RDF, custom user
based data can be stored as annotations39 to facilitate later
optimization.
We do, however, envision optimization of circuits at the level

of abstraction that we have chosen, and derivation of circuits to a
given specification. A method for doing this, which we only
sketch here, is to define a suitable fitness or distance measure on
the output of simulations with respect to the desired
specification. A starting candidate circuit is chosen, constructed
from a given library of parts, and measured. Parts of the circuit
are swapped, added or removed at random, subject to the
constraint that the circuit remains well formed according to an
operon grammar7,51 and the new circuit is measured with
respect to the specification. If the result is better than the
previous circuit, the change is accepted, and the process is
repeated until a locally optimal solution is found. This
evolutionary algorithm approach is in contrast to the approach
of assembling all possible circuits in vitro seen elsewhere53−56

and is likely to be less efficient in cases where the desired
behavior of the circuit can be measured simply, such as by
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detecting the production of a fluorescent protein. However, for
cases that may be more difficult to measure in vitro such as
oscillations or more complex outputs it can be more
straightforward to measure the output and compare to the
specification when done in silico.
Currently, the templates that we have supplied only handle

single stranded genetic constructs. Parts are composed using
upstream and downstream bonds to create chains of DNA
sequences, and our framework currently does not consider
whether the other strand is free or not regarding the elongation
RNAP or the binding of molecules and so on. One reason why
we have chosen to support the single-stranded case first is
simplicity. Another is that databases of models for double-
stranded parts are not available. Adding support for this in
templates, and developing a library of suitable parts is another
topic for future research.
Here, we presented the application of rule-based models and

Semantic Web technologies to automate the design of genetic
circuits. Representations of cellular activities were captured
using modular rules to support scalability of designs. The
automation process is facilitated by the GCDL high level
language, which is built upon the Semantic Web and is used to
describe genetic circuits. Furthermore, we presented a compiler
that generates rule-based executable models from the high-level
description. The implementation of the compiler is notable in its
use of semantic inference, and the language is sophisticated
enough to support several classes of complex regulatory
mechanisms. Despite the expressive power afforded by this
approach, the language maintains a succinctness and simplicity
that we hope will be a boon to those modeling genetic circuits in
silico. The implicit modularity in our rule-based approach and
the high-level language presented will be beneficial to synthetic
biologists to model complex regulatory relationships through
the use of widely adopted standards.
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