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Abstract 
 

Background  

Genome-wide association studies (GWAS) of kidney function have uncovered hundreds of loci, 

primarily in populations of European ancestry. We have undertaken the first continental African 

GWAS of estimated glomerular filtration rate (eGFR), a measure of kidney function used to define 

chronic kidney disease (CKD). 

 

Method 

We conducted GWAS of eGFR in 3288 East Africans from the Uganda General Population Cohort 

(GPC) and replicated in 8224 African Americans from the Women's Health Initiative. Loci attaining 

genome-wide significant evidence for association (p<5x10
-8

) were followed up with Bayesian fine-

mapping to localise potential causal variants. The predictive power of a genetic risk score (GRS) 

constructed from previously reported trans-ancestry eGFR lead SNPs was evaluated in the Uganda 

GPC. 

 

Findings  

We identified and validated two eGFR loci. At the GATM locus, the association signal (lead SNP 

rs2433603, p=1.0x10
-8

) in the Uganda GPC GWAS was distinct from previously reported signals at 

this locus. At the HBB locus, the association signal (lead SNP rs141845179, p=3.0x10
-8

) has been 

previously reported. The lead SNP at the HBB locus accounted for 88% of the posterior probability of 

causality after fine-mapping, but did not colocalise with kidney expression quantitative trait loci. The 

trans-ancestry GRS of eGFR was not significantly predictive into the Ugandan population.  

 

Interpretation  

In the first GWAS of eGFR in continental Africa, we validated two previously reported loci at GATM 

and HBB. At the GATM locus, the association signal was distinct from that previously reported. These 

results demonstrate the value of performing GWAS in continental Africans, providing a rich genomic 

resource to larger consortia for further discovery and fine-mapping. The study emphasizes that 

additional large-scale efforts in Africa are warranted to gain further insight into the genetic architecture 

of CKD. 

 

 

Keywords: Kidney function. GWAS. Fine-mapping. Genetic Risk Score.  
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Introduction 

Chronic Kidney Disease (CKD) is a global public health problem, with adverse outcomes of kidney 

failure, cardiovascular disease, and premature death. CKD is at least three times more frequent 

in Africa, which has limited resources, than in developed countries [1]. With rapidly increasing 

urbanisation, trends towards unhealthy diets, obesity and increases in metabolic risk factors, the 

projected increase in the prevalence of CKD may be even greater in Africa compared to developed 

countries [2]. The interplay of genomic and environmental factors contributes to this complex 

heterogeneous disease. However, CKD heritability is estimated to be as high as 30 - 75% [3]. Genetic 

variants associated with CKD may be population specific, indeed the association of the APOL1 locus 

with CKD, which has risen to high frequencies within West Africa due to selection pressures related to 

protection against Lassa fever, highlights the potential for novel discovery in African populations [3]. 

Given the fundamental significance of Africa to our human origins, there is a strong scientific need to 

establish large-scale efforts examining the genetic contribution to disease susceptibility across diverse 

populations within Africa [2,5,6]. The clear genomic diversity and allelic differentiation among various 

African populations, in addition to the lower linkage disequilibrium (LD) between genetic variants, 

provides an outstanding opportunity to gain new insights into disease aetiology and genetic fine-

mapping that have relevance for all ancestry groups [9, 10]. However, despite the value of conducting 

such research in Africa, there is no known genome-wide association study (GWAS) of kidney function 

in continental Africa, with published studies of African ancestry individuals being limited to African 

Americans [9,10] . Whilst African Americans typically have a large proportion of West African 

ancestry, several studies have shown that the genetic architecture of African Americans is distinct from 

that of Africans from continental Africa [7]. The African American population reflects admixture of 

people of West and central-west African descent, adding to the relevance of studying populations from 

other regions of Africa. 

 

Here, we conducted the first continental African GWAS of estimated glomerular filtration rate (eGFR), 

a measure of kidney function used to define CKD, including 3288 individuals from the Uganda 
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General Population Cohort (GPC). Subsequently, associations were validated through GWAS of eGFR 

in a large sample of 8224 African Americans from the Women's Health Initiative (WHI). Together, 

these GWAS comprised a total of 11,512 African ancestry individuals. We used the Uganda GPC to: 

(i) identify loci associated with eGFR; (ii) fine-map loci by taking advantage of the finer-grained LD 

structure in African ancestry populations; and (iii) evaluate the predictive power of an eGFR genetic 

risk score (GRS) into the Ugandan population that was derived from lead SNPs at previously-reported 

loci from trans-ancestry GWAS meta-analysis [9] and [10]. 

 

Results 

Discovery genetic association 

The characteristics, quality control and imputation of the 3288 Uganda GPC study participants are 

shown in the Methods. We analysed associations of eGFR for 20,594,556 SNPs that met an MAF 

threshold of at least 0.5% in a merged panel of imputed GWAS and whole-genome sequences. We 

tested for association in a linear mixed model implemented in GEMMA, which accounted well for 

population structure and relatedness. Our association analysis in the Uganda GPC showed no evidence 

of residual population structure with a genomic inflation factor (λ) of 1.01. We identified two loci 

attaining genome-wide significance (p<5x10
-8

) in GPC (Table 1, Figure 1) mapping to GATM (lead 

SNP rs2433603, MAF=48%, p=1.0x10
-8

) and HBB (lead SNP rs141845179, MAF=8%, p=3.0x10
-8

). 

Both loci have been previously reported as associated with eGFR in European ancestry and trans-

ancestry GWAS meta-analyses [10, 11].  

 

To investigate the relationships between the association signals identified in the Uganda GPC and 

those reported in other populations, we performed conditional analyses. The identified genetic variant 

at GATM, rs2433603, was distinct from previously reported associations (rs1145077, rs1153855 

and  rs1145093) at this locus (conditional p=4.0x10
-7

 ). This genetic variant is monomorphic in 

European ancestry populations and rare in East Asian ancestry populations in the 1000 Genomes 

Project Phase 3 [12]. This variant has MAF of 48% in Uganda GPC, and 44% and 37%, respectively, 

in Luhya in Webuye (LWK), Kenya and Yoruba in Ibadan (YRI), Nigeria in the 1000 Genomes 
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Project Phase 3 [12].  At the HBB locus, after conditioning on the previously reported SNP (rs334) at 

this locus, the association with the lead SNP (rs141845179) was no longer significant (conditional 

p=0.024). This is because the lead SNP (rs141845179) is in strong LD (r
2
 = 0.95 in Uganda GPC) with 

the sickle cell SNP (rs334), and therefore they reflect the same signal. Of note, the lead SNP has MAF 

of 8% in Uganda, but is much less frequent in admixed Africans in the 1000 Genomes Project Phase 3 

(1% in African Americans from Southwest USA and 2% in Afro-Carribeans from Barbados). The 

variant (rs334) in HBB has also been previously associated with other kidney traits, including urinary 

albumin to creatinine ratio (UACR) and CKD in both African Americans and US Hispanics/Latinos 

[13, 14].  

 

To investigate the association of previously reported eGFR loci in Uganda, we also conducted a look-

up of 308 lead SNPs from the largest published meta-analysis of eGFR [10] (Supplementary Table 1). 

Of these, 281 variants were also reported in the GPC GWAS. We observed an enrichment of SNPs 

with nominal evidence of association (p<0.05) in GPC and with the same direction of effect as in the 

previously reported eGFR meta-analysis (22 SNPs observed, 7.0 expected, binomial test p=3.2x10
-6

). 

We also replicated eGFR associations of important African population specific variants near APOL1/ 

MYH9 [15] (Supplementary Table 2). 

 

The G2 allele is tagged by the deletion rs71785313, which is monomorphic in the Uganda GPC. The 

G1 allele is tagged by two SNPs: rs73885319 and rs60910145. There was no person homozygous for 

the G risk allele for rs60910145 and as such we could not fit the recessive model for this SNP. For 

rs73885319, there were 17 carriers of the homozygous risk genotype, but there was no evidence of 

association with eGFR in the Uganda GPC (p=0.22) [Supplementary Table 3]. This lack of association 

could reflect low power given the low sample size 

 

Replication of eGFR associations in WHI 

Lead SNPs showing strong evidence of association (p<5x10
-5

) in Uganda were considered for 

replication and meta-analysis in WHI (Supplementary Table 4). We replicated the association signal at 
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the lead SNP at the GATM locus in WHI (p=0.00073, meta-analysis p=2.4x10
-9

). The lead SNP at the 

HBB locus was not available in WHI, and it is rare or monomorphic in other populations. However, as 

described above, rs334 is a close proxy for the lead SNP at the HBB locus and represents the same 

eGFR signal. This SNP was available in WHI, where the association was replicated (p=0.017, meta-

analysis p=1.2x10
-6

). No other proxies for the lead SNP at the HBB locus (r
2
>0.9 in the Uganda GPC) 

were associated with eGFR in WHI (Supplementary Table 5). No other loci attained genome-wide 

significant evidence of eGFR association after meta-analysis of the Uganda GPC and WHI. 

 

Fine-mapping of loci attaining genome-wide significance  

Bayesian fine-mapping of the GATM and HBB loci was undertaken in the region mapping 500kb up- 

and down-stream of each lead SNP, based on association summary statistics from the meta-analysis of 

GPC and WHI. At the GATM locus, the 99% credible set consisted of 63 variants, and no variant 

accounted for more than 50% of the posterior probability (the lead SNP, rs1145092 had a posterior 

probability of 13%) (Supplementary Table 6). At the HBB locus, the 99% credible set consisted of 73 

variants, but with the lead SNP, rs141845179, accounting for 88% of the posterior probability 

(Supplementary Table 7).  

 

Colocalization of eGFR association signals with eQTLs 

To gain insight into the causal genes through which eGFR association signals at the HBB and GATM 

loci are mediated, we first considered kidney eQTL in GTEx [16], NephQTL [17], the Human Kidney 

eQTL Atlas [18] and RegulomeDB [19]. The lead SNPs were not significant eQTLs in kidney tissue in 

any of these resources. The lead SNP at the GATM locus, rs2433603, is a significant eQTL for three 

genes in multiple non-kidney tissues in GTEx (Supplementary Table 8). However, rs2433603 is not in 

strong LD with the respective lead eQTL SNPs, and we cannot therefore conclude that the eGFR 

association and eQTLs colocalize. The lead SNP at the HBB locus, rs141845179, is not a significant 

eQTL for any gene/tissue in GTEx. We extended our investigations to other variants in the 99% 

credible set for each locus, and interrogated their regulatory impact using RegulomeDB 

(Supplementary Tables 9 & 10). Two variants at the GATM locus (rs2668747 and rs1153850) have 
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support for regulatory impact from eQTL data and transcription factor binding. These SNPs showed 

the strongest associations with expression of SPATA5L1 in cultured fibroblasts and whole blood in 

GTEx, but were not in strong LD with the lead eQTL SNP (rs1365610; r
2
=0.076 with rs2668747; r

2
= 

0.47 with rs1153850) and thus did not support colocalization with the eGFR signal.  

 

Transferability of trans-ancestry eGFR GRS into Uganda 

We used lead SNPs from trans-ancestry a meta-analysis [9] of eGFR to evaluate the predictive power 

of an unweighted GRS into unrelated individuals in the Uganda population (Table 2). We were unable 

to undertake a weighted GRS because different transformations of the trait were performed in the 

trans-ancestry meta-analysis and in the GPC GWAS.  Because the SNP effects were aligned to the 

eGFR decreasing allele, we expected an increased score to be associated with lower eGFR. Whilst the 

GRS showed the correct direction of effect, it was not significantly associated with eGFR in the 

Uganda population (p=0.076) and accounted for only 0.04% of the trait variance after accounting for 

age, sex and principal components to adjust for population structure. We also leverage the largest 

trans-ancestry meta-analysis of eGFR [10] to assess the predictive power of a weighted GRS into 

unrelated individuals in the Uganda population. This GRS also showed the correct direction of effect 

though not significantly associated with eGFR in the Uganda population (p=0.524) and accounted for 

only 0.01% of the trait variance after accounting for age, sex and principal components to adjust for 

population structure [Table 3]. 

 

 

Sex-stratified analysis of lead SNPs in Uganda GPC 

We performed a stratified analysis by sex in the Uganda samples to determine if any heterogeneity 

between male and female in order to ascertain if this contribute to lack of replication in WHI dataset 

being comprised of only women.  Our analysis shows no heterogeneity (Supplementary table ST11) 

Discussion 

In the first GWAS of eGFR in continental Africa, we validated previously reported eGFR loci mapping 

to GATM and HBB. The association in Ugandans at the GATM locus is driven by an African-specific 
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variant (MAF of 48% in Uganda GPC) and distinct from those previously reported SNP in European 

ancestry and trans-ancestry GWAS [9,10].  The lead SNP at the HBB locus was in strong LD with the 

previously reported sickle cell missense variant rs334 [11], and represented the same underlying eGFR 

signal. GATM encodes a mitochondrial enzyme that belongs to the amidinotransferase family. This 

enzyme is involved in creatine biosynthesis, whereby it catalyzes the transfer of a guanido group from 

L-arginine to glycine, resulting in guanidinoacetic acid, the immediate precursor of creatine.  

The haemoglobin beta (HBB) gene provides instructions for making a protein called beta-globin. Beta 

globin protein changes related to rs334 causes sickle cell anemia. Absence of beta chain causes beta-

zero-thalassemia, and reduced amounts of detectable beta globin cause beta-plus-thalassemia. 

 

Bayesian fine-mapping revealed that the lead SNP, rs141845179, accounted for 88% of the posterior 

probability of driving the association signal at the HBB locus. At the GATM locus, the association 

signal was less precisely refined, with the lead SNP, rs2433603, accounting for just 13% of the 

posterior probability. Unfortunately, the lead SNPs were not significant eQTLs in kidney tissue in 

publicly available kidney gene expression resources. The lack of colocalization could reflect the fact 

that these variants are rare in European ancestry populations, and are thus not well represented in the 

European-centric eQTL resources used in this investigation, reemphasizing the need for well powered 

eQTL studies in Africans. Approaches such as coloc [36] compare patterns of association between the 

trait and expression, and therefore depend on LD. We were concerned that the differences on LD 

structure between the populations contributing to Uganda GPC (African ancestry) and the expression 

resources (European ancestry) would invalidate the colocalization. Glycine amidinotransferase 

(GATM) protein is a renal proximal tubular enzyme involved in the creatinine biosynthetic pathway, 

and recent studies have shown that fully penetrant heterozygous mutations in the GATM gene lead to 

intramitochondrial fibrillary deposition, and clinical manifestations of Fanconi syndrome and CKD 

[20, 21]. It is possible that the signal at the GATM locus reflects associations with the biomarker used 

to estimate kidney function (serum creatinine), but genetic studies in populations are not suited to 

address this. Many serum creatinine-based eGFR loci have not been associated with CKD at genome-

wide significance. Whilst this may reflect lower power to detect association with the disease outcome, 
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a subset of these loci may represent true genetic influences on physiologic variation of eGFR but not 

CKD risk. The GRS derived from previously reported trans-ancestry lead SNPs [11] for eGFR was 

significantly predictive of eGFR in the Ugandan population. These results show that there is a shared 

genetic contribution to eGFR at established loci in continental Africans compared to African 

Americans. 

 

The GRS derived from previously reported trans-ancestry lead SNPs for eGFR was not significantly 

predictive in the Ugandan population. This is mostly likely due to a lack of power in GPC because of 

small sample size. However, the lack of transferability could also be because the way eGFR is 

calculated in continental Africa. Studies have shown that there is potential error measurement of serum 

creatinine in continental Africa that might lead to inaccurate estimates of kidney disease at individual 

and population level [22]. To address this issue, a Laboratory Working Group of the National Kidney 

Disease Education Program published recommendations in 2006 to standardize how the creatinine is 

measured [22].  In this study, eGFR was calculated using the CKD-Epi formula, without use of the 

coefficient for African Americans [22, 23]. The absence of a validated estimating equation for kidney 

function in Africans could be a contributing factor to the lack of GRS transferability. Another potential 

explanation for why the GRS was not significant is because the lead SNPs from the trans-ancestry 

analysis might not themselves be causal variants, and are not in LD with the causal variant in the 

Ugandan population because of differences in LD structure between ancestry groups. The trans-ethnic 

meta-analyses include only variants that are common across populations and therefore disfavour some 

important population specific variants such as APOL1 and HBB variants. 

 

We attempted to replicate signals from the largest previous GWAS meta-analysis of eGFR, which 

included individuals predominantly of mostly European ancestry [10]. After correction for multiple 

testing, none of the previously reported lead SNPs from that study showed significant evidence of 

association with eGFR in the Uganda GPC. There are several reasons why this could occur. First, the 

previously reported lead SNP might not be causal, and is a poor tag for the causal variant in the 

Ugandan population. Second, the causal variant could be very rare or monomorphic in the Ugandan 
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population, and therefore an association would not be detected. Third, the African Americans used in 

the replication set are predominantly west African ancestry individuals which might have limited 

replication of the Uganda GPC of east African ancestry. Finally, because the effect sizes are small, 

there will be limited power to detect association with the sample size available in the Uganda GPC. 

However, we note that there was an enrichment of signals with the same direction of effect from the 

largest published meta-analysis of eGFR [10] and the Uganda GPC, which suggests shared underlying 

causal variants that could be identified with larger sample sizes and/or by testing a better tag for the 

causal variant in the Ugandan population. 

 

Despite the relatively high burden of CKD in Africa [29], there have been no previous GWAS of 

eGFR in continental Africa. One limitation of this first GWAS is that, with a small sample size, we are 

underpowered to reliably detect associations at genome-wide significance thresholds. We have applied 

the traditional threshold of genome-wide significance (p<5x10
-8

), which was originally defined on the 

basis of LD structure in European ancestry populations. A more stringent threshold of p<5x10
-9

 has 

been proposed in African ancestry populations, to account for shorter range LD than in those of 

European ancestry [8]. After meta-analysis, the novel association signal at the GATM locus attains this 

stringent threshold. Whilst the association signal at HBB does not, it has been reported in previous in 

GWAS [11], and thus can be considered confirmation of previous results in a new population, rather 

than novel discovery.  

 

Our findings further highlight the importance of diverse ancestries for uncovering novel associations. 

Larger continental African meta-analyses are warranted to gain further insight on the genetic 

architecture of eGFR. In addition, while GWAS still remains a leading tool to identify loci contributing 

to complex diseases, to follow up significant findings and gain biological insights, the multi-omics 

resources that would inform these analyses need to be better represented in Africans. The study of 

populations in Africa provides a research framework to help characterise ethnic-specific patterns of 

variation in CKD among populations [25] and in a larger framework of studies, might also help 

identify population-specific genetic or environmental factors that may statistically interact with 
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identified genetic loci. Given these scientific opportunities, the ascertainment and collation of genetic 

epidemiological resources with the statistical resolution to examine these associations in African 

populations is a high priority. 

 

Materials and Methods 

GPC study participants 

The recruited African individuals were part of the 9 ethno-linguistic groups from the Uganda GPC. 

GPC is a population-based cohort of roughly 22,000 inhabitants around 25 neighbouring villages of 

Kyamulibwa, which is a subcounty of Kalungu district in the countryside in the south-west of Uganda. 

The cohort study was founded in the late 1980s by the Medical Research Council (MRC) UK in 

partnership with the Uganda Virus Research Institute (UVRI) to primarily investigate the trends in 

incidence and prevalence of HIV infection in Uganda. Samples were collected from research 

participants during a survey from the research study area. The study area is clustered into villages 

defined by governmental borders ranging in size from 300 to 1,500 dwellers and includes numerous 

families who are resident within households [26]. The GPC Round 22 study took place in 2011 through 

collaboration between the University of Cambridge, Wellcome Sanger Institute (WSI) and MRC/UVRI 

in Uganda. This study was approved by the Science and Ethics Committee of the UVRI, the Ugandan 

National Council for Science and Technology, and the East of England-Cambridge South NHS 

Research Ethics Committee United Kingdom. The study was contained within one annual survey 

round of the longitudinal cohort. The focus of the GPC Round 22 study was to investigate the genetics 

and epidemiology of communicable and non-communicable diseases to provide aetiological insights 

into the genetic variation in communicable and non-communicable diseases.  

 

GPC study design 

The data collection of GPC Round 22 study consisted of five main stages, which took place in 2011 

over the course of the year: mobilization (recruitment and consenting), mapping, census, survey, and 

feedback of results and clinical follow-up. The census consisted of a family questionnaire and 

questionnaire for the individual recruited from within the family. The family questionnaire was 
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completed by the head of family or another responsible adult or emancipated minor member of the 

household. The household census questionnaire focused on sociodemographic information about the 

household, such as the quality of the house, property ownership, and employment of workers. The 

individual survey questionnaire captured information on members of a household including position 

within household, marital status, resident status, childbirth, and fertility, tribe, and religion. 

Information on lifestyle and health was obtained using a standard questionnaire. This included 

biophysical measurements and blood samples [26].  We genotyped 5,000 and sequenced 2,000 samples 

from 9 ethno-linguistic groups from the GPC which includes related individuals. 

 

GPC genotyping and quality control. 

Individuals (n=5000) were genotyped on the Illumina HumanOmni2.5-8 array, and 4,872 were retained 

following a pre-quality control stage. GWAS genotype data were subjected to stringent quality control 

filtering. Of a total of 2,314,174 autosomal variants genotyped, 39,368 were excluded because they did 

not pass SNP quality thresholds for call rate (< 97%, n=25,037 SNPs) and deviation from Hardy-

Weinberg equilibrium (HWE) (p < 10
-8

, n=14,331 SNPs) as reported in [8].  We excluded 91 

individuals who failed to meet the quality control for call rate (>97%) or had gender mismatch 

compared to X-chromosome. We carried out further quality control for the GWAS analysis, for which 

3 samples were excluded as heterozygosity outliers (heterozygosity >=3 SD from mean). Additional 

six samples were excluded due to potential contamination.  

 

 

 

Curation of GPC sequence data. 

An additional 2000 Uganda samples (UG2G) underwent low coverage whole-genome sequencing on 

the Illumina HiSeq 2000 with 75bp paired end reads, at low coverage, with an average coverage of 4x 

for each sample. 1,978 of them passed QC.  The workflow for data processing and description of 

UG2G has been previously described in more detail [5, 6].  Briefly, after the generation of raw reads 

on Illumina HiSeq sequencing machine, the reads were converted to BAM format using 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

14 | P a g e  
 

Illumina2BAM. We Mapped the Human samples using the BWA backtrack algorithm with the 

GRCh37 1000 Genomes phase II reference.  

 

GPC haplotype phasing and imputation into genotype data 

Haplotype phasing of GWAS data was carried out using SHAPEIT2 [27] with standard parameters. A 

previous study has shown that phasing with SHAPEIT2 in this cohort with dense genotype data 

provides very high accuracy even when pedigree structure is not explicitly specified during phasing 

[28].  

 

Imputation of the pre-phased genotype data was carried out with IMPUTE2 [29] using a merged 

reference panel of the whole genome sequence data from the African Genome Variation Project [30] , 

the UG2G described earlier and the 1000 Genomes Project phase 3 (1000 Genomes Project 

Consortium, 2015) [12] following standard recommendations. Imputation was carried out in chunks of 

2 MB and then concatenated. Imputed SNPs were further filtered for info quality >0.3 and a minor 

allele frequency (MAF) >0.5%.  “Duplicate variants were removed post imputation. We removed both 

duplicates as we did not consider this to be reliable” 

 

 

Merging of GPC genotype and sequence data 

The final dataset used for this analysis included merged genotype data on 4,772 and sequence data on 

1,978 individuals. We note that there are 343 individuals who have been genotyped and sequenced; for 

these individuals, we only included the sequence data, and not the genotype data. The final dataset, 

therefore, included 6,407 individuals (4,429 with genotype and imputed data, and 1,978 with sequence 

data). 

 

Following merging, we assessed and removed any systematic differences between imputed genotype 

data and sequence data. We did this by carrying out principal component analysis using merged data 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

15 | P a g e  
 

for the 343 individuals who had been genotyped and sequenced in duplicate to examine whether there 

was separation by data mode (imputed genotype data and sequenced data). Full details were reported in 

[5]. For GWAS analyses, we only included a subset of variants (n = 20,594,556) that met a MAF 

threshold of at least 0.5%. 

 

GPC laboratory test and phenotype definition  

Creatinine was measured using the enzymatic method traceable to an isotope dilution mass 

spectrometry method (IDSM) [31]. Collectively, the serum creatinine level was measured in 3288 

Uganda individuals for Round 22 [23]. The eGFR was calculated using the CKD-Epi formula, without 

use of the coefficient for African Americans [22]. We carried out the inverse rank normal 

transformation of eGFR residuals after adjusting for age, age
2
 and sex.  

 

Statistical methods for association analysis in GPC 

GWAS was performed using the standard mixed model approach implemented in genome-wide 

efficient mixed-model association (GEMMA) version 24 [32] for analysis of pooled data from 3288 

individuals (2266 genotyped and 1022 whole genome sequenced individuals have eGFR 

measurements) in GPC and tested association of eGFR, under an additive model, with 20,594,556 

SNPs that met a minor allele frequency (MAF) threshold of at least 0.5% in the merged panel of 

imputed GWAS and whole-genome sequences. To maximise discovery, we used the leave one 

chromosome out (LOCO) approach for analysis [5, 6]. In this approach each chromosome is excluded 

from generation of the kinship matrix in turn, for association analysis for markers along that 

chromosome. This ensures that causal SNPs at a locus on a given chromosome are not used for 

generation of the kinship matrix used in analysis of that specific chromosome. Therefore, we generated 

22 kinship matrices for analysis, each excluding the chromosome being analysed using the given 

matrix. For computational efficiency, and to avoid correlation effects due to LD, we LD pruned the 

data prior to calculation of the kinship matrix for each LOCO analysis. 

 

For all loci attaining genome-wide significance that have been previously reported in GWAS of eGFR, 
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we performed conditional analyses in GEMMA to determine whether the association signals were 

distinct. Specifically, we included genotypes under an additive model at previously reported lead SNPs 

as a fixed-effect in the mixed model. We also searched for evidence of multiple distinct signals of 

association in GPC by including genotypes at the lead SNP as a fixed-effect in the mixed model. 

 

WHI study design: The Women's Health Initiative (WHI) is a study of postmenopausal women and 

health outcomes, funded by the National Heart Lung and Blood Institute. A total of 161,808 women 

aged 50–79 years old were recruited from 40 clinical centers in the United States between 1993 and 

1998. Study protocols and consent forms were approved by the institutional review boards at all 

participating institutions. The WHI SHARe minority cohort includes 8,515 self-identified African 

American women, who provided written informed consent for study participation and DNA analysis.  

 

WHI genotyping, imputation and phenotype transformation.  

African American women who consented to genome-wide scanning underwent genotyping with the 

Affymetrix Genome-Wide HumanSNP Array 6.0 containing 906,000 SNPs. The samples underwent 

initial quality control including removal of samples with poor DNA quality, abnormal sex 

chromosomes, relatedness, and low call rates as previously reported [9]. Additional quality control 

measurements were made at the SNP level assessing for Hardy-Weinberg Equilibrium (goodness-of-fit 

χ2> 10), call rates 90%, monomorphic SNPs, and minor allele frequencies 1%. We used frappe to 

estimate individual admixture, and estimates were included in models to account for population 

stratification.  

 

After quality control, GWAS scaffolds were pre-phased and imputed using MaCH/minimac r
2
≥0.3 and 

13,096,173 SNVs passing quality control were tested for association with eGFR. For each individual, 

eGFR was calculated from serum creatinine (mg/dL, IDSM measured assay) using the Modification of 

Diet in Renal Disease (MDRD) equation. 

 

Replication and meta-analysis 
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All lead SNPs (separated by 500kb) apart showing strong evidence of association (p<5x10
-5

) in the 

Uganda GPC were considered for replication in WHI. In view of the different scales of the effect sizes, 

association summary statistics of Uganda GPC and WHI were aggregated using the fixed-effects meta-

analysis based on the sample size weighting of Z-scores (Stouffer’s method) in METAL [33]. 

 

Sex-stratified Analysis 

In order to ascertain if female-only replication cohort might limit our finding,  we stratified the Uganda 

GPC dataset by sex. eGFR association testing was performed separately in males and females using 

GEMMA version 24 and the results were  combined scores Stouffer’s method implemented in METAL 

[33]  

 

 

Recessive model of APOL1 G1/G2 risk allele 

APOL1 G1/G2 alleles have been reported to be strongly associated with kidney disease in individuals 

of African ancestry. We attempted to fit the recessive model for the two APOL1 risk haplotypes (G1, 

tagged by rs73885319 A > G and rs60910145 T > G; G2, tagged by rs71785313 TTATAA/−). This 

was done by recoding the genotypes of each SNP for carriage of the homozygous risk genotype.  We 

tested for association with eGFR under this recessive model via linear regression while correcting for 

age, sex and principal components as covariates using only unrelated individuals from the Uganda 

GPC.  

 

Fine-mapping 

To fine-map the GATM and HBB loci, we first conducted meta-analysis (as described above) of 

association summary statistics from Uganda GPC and WHI for all SNPs mapping within 500kb of the 

lead SNP at each locus. We used a Bayesian approach [34] to fine-map the two loci, where the meta-

analysis Z-score for the ith SNP, denoted Zi, was used to compute a Bayes’ factor in favour of 

association, denoted  𝑩𝑭𝒊 , given by 
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                                                                      𝑩𝑭𝒊 = 𝒆
[

𝒁𝒊
𝟐−𝐥𝐨𝐠(𝑲)

𝟐
]
,                 

where K is the number of studies.  The posterior probability of driving the association for the ith SNP 

was then computed by  

𝝅𝒊 =      
𝑩𝑭𝒊

∑ 𝑩𝒋 𝑭𝒋
 

where the summation in the denominator is over all SNPs at the locus. Ninety-nine percent credible 

sets for each locus were derived by sorting the Bayes’ factors of  the SNPs from the highest to the 

lowest, and then included SNPs needed to attain a cumulative posterior probability that is greater than 

or equal to 0.99. 

                                                               

Expression quantitative trait locus (eQTL) analysis 

We considered publicly available kidney eQTL resources from the Genotype-Tissue Expression 

(GTEx) Project [16], NephQTL [17], the Human Kidney eQTL Atlas [18] and RegulomeDB [19]. We 

conducted a look up of the lead SNP at each locus for association with gene expression in kidney tissue 

using a range of publicly available resources: (i) kidney cortex in GTEx; (ii) glomerular and 

tubulointerstitial kidney tissue in NephQTL;  (iii) whole kidney, glomerulus and tubules in the Human 

Kidney eQTL Atlas. As secondary analyses, we also conducted a look up of the lead SNP at each locus 

for association with gene expression in other tissues available in GTEx. Where the lead SNP was a 

significant eQTL in a given tissue, we assessed the extent of LD with the lead eQTL SNP in the 

Uganda GPC to evaluate the evidence in favour of colocalization. We also interrogated variants in the 

99% credible set for evidence of regulatory impact using RegulomeDB. 

 

Genetic risk score 

After removing 817 first-degree relatives from the Uganda GPC cohort derived from PIHAT values 

>0.5, we calculated principal components using –pca in PLINK [35]. Lead SNPs with effects on trait 

aligned to the eGFR decreasing allele from a previously published trans-ancestry meta-analysis [9] of 

eGFR (n=120 SNPs) and (n= 246 matching SNPs from [10]) were selected separately and used to 
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compute an unweighted GRS by counting the number of eGFR decreasing alleles, using the allelic 

scoring approach in PLINK [35]. The predictive power of the GRS was evaluated by assessing the 

change in R
2
 (variance explained) when it was added to the linear model of eGFR adjusted for age, sex 

and principal components. 

 

Funding 

SF is an international Intermediate fellow funded by the Wellcome Trust grant (220740/Z/20/Z) at the 

MRC/UVRI and LSHTM. TC is an international training fellow supported by the Wellcome Trust 

grant (214205/Z/18/Z). S.F. received support from NIH U01MH115485 and the Makerere University-

Uganda Virus Research Institute Centre of Excellence for Infection and Immunity Research and 

Training (MUII). MUII is supported through the DELTAS Africa Initiative (grant 107743). The 

DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences 

(AAS), Alliance for Accelerating Excellence in Science in Africa (AESA), and supported by the New 

Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with 

funding from the Wellcome Trust (107743) and the U.K. government.  NF is supported by the National 

Institutes of Health R01-DK117445, R01-MD012765, R21- HL140385. APM is supported by the 

National Institutes of Health R01-DK117445. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements  

We thank all study participants and GPC staff who contributed to this study. This GPC is jointly 

funded by the UK Medical Research Council (MRC) and the UK Department for International 

Development (DFID) under the MRC/DFID Concordat agreement. The WHI program is funded by the 

National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

20 | P a g e  
 

and Human Services through contracts HHSN268201600018C, HHSN268201600001C, 

HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C.” The authors thank the 

WHI investigators and staff for their dedication, and the study participants for making the program 

possible. A full listing of WHI investigators can be found at: 

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investiga

tor%20Long%20List.pdf” 

 

Declaration of Interest   

None. 

 

Availability of data  

All individual level data, phenotype, genotype and sequence data are available to researchers under 

managed access on EGA EGAS00001001558/EGAD00010000965. Requests for access to data will be 

granted for all research consistent with the consent provided by participants.  

 

 

Conflicts of interest/Competing interests  

The authors have no conflict of interest. 

 

Ethics Approval 

This study was approved by the Science and Ethics Committee of the UVRI, the Ugandan National 

Council for Science and Technology, and the East of England-Cambridge South NHS Research Ethics 

Committee United Kingdom. 

 

 

 

Reference 

1. Franceschini, N. and Morris, A.P. (2020) Genetics of kidney traits in worldwide populations: the 

Continental Origins and Genetic Epidemiology Network (COGENT) Kidney 

Consortium. Kidney international, 98(1), pp.35-41. 

 

2. Fatumo, S. (2020) The opportunity in African genome resource for precision 

medicine. EBioMedicine, 54. 

 

3. Cañadas-Garre, M., Anderson, K., Cappa, R., Skelly, R., Smyth, L.J., McKnight, A.J. and 

Maxwell, A.P. (2019) Genetic susceptibility to chronic kidney disease–some more pieces for the 

heritability puzzle. Frontiers in Genetics, 10.  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf


U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

21 | P a g e  
 

4. Friedman, D.J., Kozlitina, J., Genovese, G., Jog, P. and Pollak, M.R. (2011) Population-based 

risk assessment of APOL1 on renal disease. Journal of the American Society of 

Nephrology, 22(11), pp.2098-2105. 

 

 

5. Gurdasani, D., Carstensen, T., Fatumo, S., Chen, G., Franklin, C.S., Prado-Martinez, J., 

Bouman, H., Abascal, F., Haber, M., Tachmazidou, I. et al. (2019) Uganda genome resource 

enables insights into population history and genomic discovery in Africa. Cell, 179(4), pp.984-

1002. 

 

6. Fatumo, S.A., Carstensen, T., Nashiru, O., Gurdasani, D., Sandhu, M. and Kaleebu, P. (2019) 

Complimentary methods for multivariate genome-wide association study identify new 

susceptibility genes for blood cell trait. Frontiers in genetics, 10, p.334 

 

7. Zakharia, F., Basu, A., Absher, D., Assimes, T.L., Go, A.S., Hlatky, M.A., Iribarren, C., 

Knowles, J.W., Li, J., Narasimhan, B. and Sidney, S. (2009) Characterizing the admixed African 

ancestry of African Americans. Genome biology, 10(12), p.R141. 

 

8. Jager, K.J., Kovesdy, C., Langham, R., Rosenberg, M., Jha, V. and Zoccali, C. (2019) A single 

number for advocacy and communication—worldwide more than 850 million individuals have 

kidney diseases. 

 

9. Morris, A.P., Le, T.H., Wu, H., Akbarov, A., van der Most, P.J., Hemani, G., Smith, G.D., 

Mahajan, A., Gaulton, K.J., Nadkarni, G.N. et al. (2019) Trans-ethnic kidney function 

association study reveals putative causal genes and effects on kidney-specific disease 

aetiologies. Nature communications, 10(1), pp.1-14. 

 

10. Wuttke, M., Li, Y., Li, M., Sieber, K.B., Feitosa, M.F., Gorski, M., Tin, A., Wang, L., Chu, 

A.Y., Hoppmann, A. et al. (2019) A catalog of genetic loci associated with kidney function from 

analyses of a million individuals. Nature genetics, 51(6), p.957. 

 

 

11. Hellwege, J.N., Edwards, D.R.V., Giri, A., Qiu, C., Park, J., Torstenson, E.S., Keaton, J.M., 

Wilson, O.D., Robinson-Cohen, C., Chung, C.P. et al. (2019) Mapping eGFR loci to the renal 

transcriptome and phenome in the VA Million Veteran Program. Nature communications, 10(1), 

pp.1-11. 

 

12. Genomes Project Consortium, (2015) A global reference for human genetic variation. Nature, 

526(7571), pp.68-74. 

 

13. Naik, R.P., Derebail, V.K., Grams, M.E., Franceschini, N., Auer, P.L., Peloso, G.M., Young, 

B.A., Lettre, G., Peralta, C.A., Katz, R. et al. (2014) Association of sickle cell trait with chronic 

kidney disease and albuminuria in African Americans. Jama, 312(20), pp.2115-2125. 

 

14. Kramer, H.J., Stilp, A.M., Laurie, C.C., Reiner, A.P., Lash, J., Daviglus, M.L., Rosas, S.E., 

Ricardo, A.C., Tayo, B.O., Flessner, M.F. et al. (2017) African ancestry–specific alleles and 

kidney disease risk in Hispanics/Latinos. Journal of the American Society of Nephrology, 28(3), 

pp.915-922. 

 

15. Genovese, G., Friedman, D.J., Ross, M.D., Lecordier, L., Uzureau, P., Freedman, B.I., Bowden, 

D.W., Langefeld, C.D., Oleksyk, T.K., Knob, A.L.U. et al. (2010) Association of trypanolytic 

ApoL1 variants with kidney disease in African Americans. Science, 329(5993), pp.841-845. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

22 | P a g e  
 

16. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene 

regulation in humans. Science. 2015 May 8;348(6235):648-60 

 

17. Gillies, C.E., Putler, R., Menon, R., Otto, E., Yasutake, K., Nair, V., Hoover, P., Lieb, D., Li, S., 

Eddy, S. et al. (2018) An eQTL landscape of kidney tissue in human nephrotic syndrome. The 

American Journal of Human Genetics, 103(2), pp.232-244. 

 

18. Qiu, C., Huang, S., Park, J., Park, Y., Ko, Y.A., Seasock, M.J., Bryer, J.S., Xu, X.X., Song, 

W.C., Palmer, M. et al. (2018) Renal compartment–specific genetic variation analyses identify 

new pathways in chronic kidney disease. Nature medicine, 24(11), pp.1721-1731. 

 

19. Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M., Karczewski, 

K.J., Park, J., Hitz, B.C., Weng, S. et al. (2012) Annotation of functional variation in personal 

genomes using RegulomeDB. Genome research, 22(9), pp.1790-1797. 

 

20. Reichold, M., Klootwijk, E.D., Reinders, J., Otto, E.A., Milani, M., Broeker, C., Laing, C., 

Wiesner, J., Devi, S., Zhou, W. et al. (2018) Glycine Amidinotransferase (GATM), renal 

Fanconi syndrome, and kidney failure. Journal of the American Society of Nephrology, 29(7), 

pp.1849-1858. 

 

21. Courtoy, P.J. and Henriet, P. (2018) GATM Mutations Cause a Dominant Fibrillar 

Conformational Disease in Mitochondria—When Eternity Kills. 

 

 

22. Fabian, J., George, J.A., Etheredge, H.R., van Deventer, M., Kalyesubula, R., Wade, A.N., 

Tomlinson, L.A., Tollman, S. and Naicker, S. (2019) Methods and reporting of kidney function: 

a systematic review of studies from sub-Saharan Africa. Clinical kidney journal, 12(6), pp.778-

787. 

 

23. Kalyesubula, R., Hau, J.P., Asiki, G., Ssebunya, B., Kusemererwa, S., Seeley, J., Smeeth, L., 

Tomlinson, L. and Newton, R. (2018) Impaired renal function in a rural Ugandan population 

cohort. Wellcome open research, 3. 

 

24. Arogundade, F.A., Omotoso, B.A., Adelakun, A., Bamikefa, T., Ezeugonwa, R., Omosule, B., 

Sanusi, A.A. and Balogun, R.A. (2019) Burden of end-stage renal disease in sub-Saharan 

Africa. Clinical nephrology. 

 

25. McDonald, H.I., Thomas, S.L. and Nitsch, D. (2014) Chronic kidney disease as a risk factor for 

acute community-acquired infections in high-income countries: a systematic review. BMJ open, 

4(4), p.e004100. 

 

26. Asiki, G., Murphy, G., Nakiyingi-Miiro, J., Seeley, J., Nsubuga, R.N., Karabarinde, A., Waswa, 

L., Biraro, S., Kasamba, I., Pomilla, C. et al. (2013) The general population cohort in rural 

south-western Uganda: a platform for communicable and non-communicable disease 

studies. International journal of epidemiology, 42(1), pp.129-141. 

 

27. O'Connell, J., Gurdasani, D., Delaneau, O., Pirastu, N., Ulivi, S., Cocca, M., Traglia, M., Huang, 

J., Huffman, J.E., Rudan, I. et al. (2014) A general approach for haplotype phasing across the 

full spectrum of relatedness. PLoS Genet, 10(4), p.e1004234. 

 

28. Delaneau, O., Zagury, J.F. and Marchini, J. (2013) Improved whole-chromosome phasing for 

disease and population genetic studies. Nature methods, 10(1), pp.5-6. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

23 | P a g e  
 

29. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. and Abecasis, G.R. (2012) Fast and 

accurate genotype imputation in genome-wide association studies through pre-phasing. Nature 

genetics, 44(8), pp.955-959. 

 

30. Gurdasani, D., Carstensen, T., Tekola-Ayele, F., Pagani, L., Tachmazidou, I., Hatzikotoulas, K., 

Karthikeyan, S., Iles, L., Pollard, M.O., Choudhury, A. et al. (2015) The African genome 

variation project shapes medical genetics in Africa. Nature, 517(7534), pp.327-332. 

 

31. Fillée, C., Vranken, G., Othmane, M., Philippe, M., Allaeys, J.M., Courbe, A., Ruelle, J.L. and 

Peeters, R. (2011) Results of the recalibration of creatinine measurement with the modular 

Beckman Coulter® Jaffe creatinine method. Clinical Chemistry and Laboratory Medicine 

(CCLM), 49(12), pp.1987-1999. 

 

32. Zhou, X. and Stephens, M. (2012) Genome-wide efficient mixed-model analysis for association 

studies. Nature genetics, 44(7), p.821. 

 

33. Willer, C.J., Li, Y. and Abecasis, G.R. (2010) METAL: fast and efficient meta-analysis of 

genomewide association scans. Bioinformatics, 26(17), pp.2190-2191. 

 

34. Maller, J.B., McVean, G., Byrnes, J., Vukcevic, D., Palin, K., Su, Z., Howson, J.M., Auton, A., 

Myers, S., Morris, A. et al. (2012) Bayesian refinement of association signals for 14 loci in 3 

common diseases. Nature genetics, 44(12), p.1294. 

 

35. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de 

Bakker PIW, Daly MJ  et al. (2007) PLINK: a toolset for whole-genome association and 

population-based linkage analysis. American Journal of Human Genetics, 81. 

 

36. Wallace, C. (2020) Eliciting priors and relaxing the single causal variant assumption in 

colocalisation analyses. PLoS genetics, 16(4), p.e1008720. 

 

 
 
Legends: 
 
Figure 1:  

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

24 | P a g e  
 

 
Figure 1a: Manhattan plot of genome-wide associations of eGFR in 3288 Ugandan individuals from 

the GPC.  Each point denotes a variant with MAF>0.5%, with the X-axis representing the genomic 

position and Y-axis representing the strength of association (-log10 P-value). The dotted line shows the 

genome-wide significance threshold of p<5x10
-8

. 
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Figure 1b: QQ plot of genome-wide associations of eGFR: the genome-wide genomic control inflation 

factor was 1.01.  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddab088/6203638 by guest on 02 April 2021



U
N

CO
RRE

CTE
D

 M
A
N

U
SC

RIP
T

26 | P a g e  
 

Figure 2:  
Figure 2: Regional association plot for eGFR in 3288 Ugandan individuals from the GPC at the GATM 

locus. The lead SNP rs2433603 (15:45646226) (p = 1.0 × 10-
8
) is coloured in purple. LD (r2) with 

other SNPs at the locus was calculated based on the Ugandan SNP genotypes used in this study.  

 

 
Figure 3:  
Figure 3: Regional association plot for eGFR in 3288 Ugandan individuals from the GPC at the HBB 

locus. The lead SNP rs141845179 (11:5244665) (p = 3.0 × 10-
8
) is coloured in purple. LD (r2) with 

other SNPs at the locus was calculated based on the Ugandan SNP genotypes used in this study.  

 
 
 
 
 
 

 

 

 

Table 1: Loci attaining genome-wide significant (p<5x10-8) association with eGFR 
after meta-analysis of GPC and WHI in up to 11,512 individuals of African ancestry. 
 

  Table 1: Description of  Meta-analysis genome-wide significant loci  

            Uganda 
  

WHI 
Meta-

Analysis 
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Table 2: Regression coefficients for the association of the GRS with eGFR in the Ugandan 

population 

Variable Model without GRS Full Model 

 Beta(SE) P R2 Beta(SE) P R2 

Age -0.92(0.01)  2.0 x 10
-16

 

0.5492 

0.93(0.015) 2.0 x 10
-16

  

 

 

0.5496 

Sex -2.53(0.56) 7.9 x 10
-6

 -2.55(0.53) 6.8 x 10
-6

 

PC1 22.62(21.53) 0.294 21.77(21.53) 0.312 

PC2 -40.46(22.01) 0.066 -41.78(22.01) 0.058 

PC3 32.57(20.17) 0.106 33.18(20.16) 0.099 

PC4 24.34(23.62) 0.303 24.62(23.61) 0.297 

PC5 -2.95(21.05) 0.889 -3.40(21.04) 0.872 

GRS    -0.17(0.09) 0.076 

 

Table 3: Regression coefficients for the association of weighted GRS derived from Wuttke et al 

2019 with eGFR in the Ugandan population 

Variable Model without GRS Full Model 

 Beta(SE) P R2 Beta(SE) P R2 

Age -0.92(0.01)  2.0 x 10
-16

 

0.5513 

-0.92(0.01) 2.0 x 10
-16

  

 

 

0.5512 

Sex -2.45(0.56) 1.49 x 10
-5

 -2.44(0.56) 1.53 x 10
-5

 

PC1 42.86(14.81) 0.294  42.88(14.81) 0.003 

PC2 -11.08(14.82) 0.454 -10.60(14.84) 0.475 

PC3 42.23(14.80) 0.004 42.42(14.81) 0.004 

PC4 -9.59(14.81) 0.517 -10.17(14..83) 0.492 

PC5 29.97 (14.82) 0.043 30.02(14.82) 0.043 

GRS    -12.38(19.43) 0.524 
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