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Background: An effective malaria vaccine affects the risk of malaria directly, through the vaccine-induced
immune response (the primary effect), and indirectly, as a consequence of reduced exposure to malaria
infection and disease, leading to slower acquisition of natural immunity (the secondary effect). The ben-
eficial primary effect may be offset by a negative secondary effect, resulting in a smaller or nil composite
effect. Reports of malaria vaccine trials usually present only the composite effect. We aimed to demon-
strate how the primary and secondary effects can also be estimated from trial data.
Methods: We propose an enhancement to the conditional frailty model for the estimation of primary
effect using data on disease episodes. We use the Andersen-Gill model to estimate the composite effect.
We consider taking the ratio of the hazard ratios to estimate the secondary effect. We used directed acyc-
lic graphs and data from a randomized trial of the RTS,S/AS02 malaria vaccine to illustrate the problems
and solutions. Time-varying effects were estimated by partitioning the follow-up into four time periods.
Results: The primary effect estimates from our proposed model were consistently stronger than the con-
ditional frailty model in the existing literature. The primary effect of the vaccine was consistently stron-
ger than the composite effect across all time periods. Both the primary and composite effects were
stronger in the first three months, with hazard ratios (95% confidence interval) 0.62 (0.49-0.79) and
0.68 (0.54-0.84), respectively; the hazard ratios weakened over time. The secondary effect appeared
mild, with hazard ratio 1.09 (1.02-1.16) in the first three months.
Conclusions: The proposed analytic strategy facilitates a more comprehensive interpretation of trial data
on multiple disease episodes. The RTS,S/AS02 vaccine had modest primary and secondary effects that
waned over time, but the composite effect in preventing clinical malaria remained positive up to the
end of the study.

Clinical trials registration: ClinicalTrials.gov NCT00197041.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Individuals in malaria-endemic areas gradually build up partial
immunity to clinical malaria [1]. Interventions effective in prevent-
ing malaria disease episodes also slow the rate of acquisition of nat-
ural immunity [2]. Thus, an effective malaria vaccine affects the risk

Abbreviations: AG, Andersen-Gill; CF, conditional frailty; DAG, directed acyclic
graph; HR, hazard ratio.
* Corresponding author at: Centre for Quantitative Medicine, Duke-NUS Medical
School, Singapore, 20 College Road, Singapore 169856, Singapore.
E-mail address: yinbun.cheung@duke-nus.edu.sg (Y.B. Cheung).
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of malaria directly, through the vaccine-induced immune response,
and indirectly as a consequence of reduced exposure to malaria
infection and disease, leading to slower acquisition of natural immu-
nity. In malaria vaccine trials, this slower acquisition of natural
immunity among vaccine recipients could have several conse-
quences. Booster doses could appear to have diminishing effective-
ness and, once the vaccine-induced immunity has waned, incidence
of malaria in the vaccine group could exceed that in the control
group, because of the differences in the level of natural immunity
the participants have acquired. Vaccine efficacy may appear lower
in areas of higher transmission intensity because participants in
the control group acquire natural immunity faster than the

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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participants in the malaria vaccine group and this difference is
greater in high transmission areas. Such trends have been observed
in trials of the RTS,S/ASO1 vaccine [3,4], a pre-erythrocytic vaccine
based on Plasmodium falciparum circumsporozoite surface antigen,
with the ASO1 adjuvant. In a phase 2b trial of this vaccine, in a sub-
group with high exposure to malaria, after vaccine efficacy waned
the incidence of malaria in the vaccine group exceeded that in the
control group [3]. A similar pattern was observed in the incidence
of severe malaria in a phase 3 trial, where in children who received
three doses of the malaria vaccine, the initial reduction in severe
malaria cases was offset by a relative increase in incidence after
the efficacy of the primary vaccine doses had waned [4]. Vaccine effi-
cacy against clinical malaria in the phase 3 trial was greater in sites
in low transmission areas than in high transmission areas, and was
lower after the booster dose than after the primary doses [5].

The World Health Organization Malaria Vaccine Advisory Com-
mittee recognized the limitation of time-to-first event analyses of
malaria vaccine trials and recommended analysis of all events (also
called recurrent events) when possible. It also called for further
methodological development for the analysis of recurrent events
[6]. In the studies of recurrent events, the phenomenon that past
disease history may affect one’s present risk of having the disease
is called “event dependence” [7,8]. A vaccine’s effect on the hazard
of the disease at time t, h(t), in its recipient via immunogenicity is
termed the “primary effect”. In contrast, the vaccine’s effect on the
hazard via its impact on event history between time t, and t, W,_,
where t, denotes the time at initiation of the exposure or interven-
tion, is termed the “secondary effect” [7,8]. The secondary effect
can be negative (reflecting reduced acquisition of natural immu-
nity) or positive (when averted episodes, had they occurred, would
have made the individual more vulnerable to the disease) [8]. It is
plausible that for a malaria vaccine the secondary effect is negative
and the composite effect (the net or total effect) is smaller than its
primary effect. Concerns that the primary effect of an intervention
could be outweighed by the secondary effect have been a major
consideration in malaria control [9-11]. Secondary effects are
expected to have the greatest impact when the primary effect of
the intervention is large, transmission intensity is high, and natural
immunity is durable [12,13]. However, the overall public health
impact may still often be beneficial [12,14], especially for interven-
tions that improve survival.

We used a directed acyclic graph (DAG) [15,16] to illustrate the
issues in the estimation of the vaccine effects in a Cox-type model
for recurrent events [7,8,17]. To focus on the core issues at hand,
we do not include observed covariates in this DAG. Panel (i) of
Fig. 1 depicts the true model (adapted from Fig. 1 of [15]). If an

(i) True model

Frailty w

Event History W,_ ——— Hazard h(t)

Exposure x

exposure x can affect the hazard of the outcome event at time ¢,
h(t), it would likely affect event history, W,_, as well. Similarly,
unobserved frailty (w), also called omitted variables or heterogene-
ity, may affect both h(t) and W,_. These causal relationships are
indicated by one-headed arrows. The potential of event depen-
dence is indicated by the one-headed arrow from W,_ to h(t).

In panel (i), there are three paths that connect x and h(t): (a)x —
h(t); (b) x - W, - h(t), and (c) x > W, «— o — h(t). Note that
path (a) represents the primary effect and path (b) represents the
secondary effect. In the terminology of DAG, both (a) and (b) are
“directed” paths, as shown by the single direction the arrows point
to. In contrast, path (c) is a non-directed path, and W,_ is a “col-
lider” (being pointed to by two arrows) and w is a “common ances-
tor” (where two arrows arise from). Note that a collider status is
path-specific: W,_ is a collider in path (c) but an intermediate vari-
able in path (b). In order to estimate the primary effect through
directed path (a), the estimation needs to condition on W,_ (a
non-collider) to block the secondary effect through the directed
path (b). However, conditioning on a collider opens a path, as
opposed to conditioning on a non-collider, which blocks a path
[15,16]. Hence, the conditioning on W,_ opens the non-directed
path (c) and thus generates a bias. Having conditioned on W,_
for the purpose of blocking path (b), it is essential to also condition
on the non-collider @ in order to block path (c) to obtain unbiased
estimate of the primary effect.

However, typical mixed-effects models assume that the
observed variates and the frailty term are uncorrelated [18,19].
This contradicts the DAG in panel (i) that W,_ is affected by w. This
mis-specified model may be seen as assuming the unobserved
frailty as comprising two sub-components, w; and w,, as shown
in panel (ii) of Fig. 1. Each of them has an arrow pointing to h(t),
but only @, has an arrow pointing to W,_. Typical mixed-effects
models attempt to control for only @, and therefore does not block
the non-directed path (c).

Box-Steffensmeier and De Boef [20] proposed to estimate the
primary effect by a conditional frailty (CF) model. This extension
of the Cox model for recurrent events conditions on W,_ by strat-
ification on the total number of previous episodes, and also condi-
tions on w by including a frailty term that is assumed to follow a
parametric distribution. This formulation does not assume inde-
pendence between w and W,_. Its conceptual framework follows
the true model in panel (i) of Fig. 1. It properly accounts for the
frailty and estimates the primary effect. This is achieved at the
expense of not directly modelling event dependence. This method
has been applied to the estimation of the primary effect of seasonal
malaria chemoprevention [7,21].

(ii) Mis-specified model

v
Event History W,_ —— Hazard h(t)

A

Exposure x

Fig. 1. Directed acyclic graph depicting recurrent time-to-event analysis.
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On the other hand, to estimate the composite effect, one should
not condition on the intermediate variable W,_. Furthermore, the
non-directed path (c) is blocked if the model does not condition
on the collider W,_ [15,16]. As such, Cheung et al. proposed to
use the Andersen-Gill (AG) model to estimate the composite effect
[8]. The AG model is another extension of the Cox model for recur-
rent events [17]. We will provide further details about the AG and
CF models in Appendix A.

An assumption of the CF model is that the total number of pre-
vious events sufficiently characterizes a person’s event history.
This is unlikely to be valid in the case of malaria. Partial immunity
decays in the absence of exposure [1], and immune responses lapse
more rapidly in young children [22]. Earlier exposures to malaria
are therefore likely to have less influence on current risk than more
recent exposures. Two persons whose time since last event are dif-
ferent are likely to have different levels of immunity and therefore
hazard despite the same total number of previous events.
Without sufficient control on event history, the CF model may
under-estimate the primary effect. Furthermore, path analysis for
dependent events that directly partitions the composite effect into
primary and secondary effects is feasible only for linear models
[23]. There has been little discussion in the literature on how to
estimate the secondary effect and its standard error. In this article,
we propose a simple modification to the CF model to improve the
estimation of primary effect and a method to estimate the sec-
ondary effect and its standard error. We illustrate the proposed
methods with data from a trial of the RTS,S/AS02 malaria vaccine.

2. Materials and methods
2.1. Design and participants

We use anonymized data from a randomized trial of the RTS,S/
AS02 malaria vaccine conducted in Mozambican children to illus-
trate. The data was kindly made available through GlaxoSmithK-
line’s data sharing platform. Details of the vaccine and study
design have been published previously [24-26]. Briefly, the
double-blind, randomized controlled trial recruited children aged
1-4 years in a moderate to high transmission area (entomological
inoculation rate 38 infective bites per person per year) in southern
Mozambique from 2003 to 2004. The RTS,S/AS02 is a pre-
erythrocytic vaccine candidate based on Plasmodium falciparum
circumsporozoite surface antigen, with the AS02 adjuvant. Epi-
sodes of clinical Plasmodium falciparum malaria were defined by
axillary temperature >37.5 °C and P falciparum asexual para-
sitaemia >2500 per pL. After each episode of clinical malaria, a
child was considered not susceptible for malaria for 28 days. After
receiving malaria drug treatment, a child was considered not sus-
ceptible for 7-28 days, depending on which drug was taken. The
number of children randomized to the control vaccine and malaria
vaccine groups were 745 each. The analysis time started from
14 days after dose three of the vaccines. For brevity, we called this
time since vaccination. The maximum analysis time per person
was 42 months since vaccination. The original trial analysis
adjusted for age at baseline, bednet use at baseline, distance from
health facility, and geographical region as covariates. The analysis
here included the same covariates in all models.

2.2. Statistical models

2.2.1. Andersen-Gill and conditional frailty models

Details of the AG and CF models are provided in Appendix A. Let
Bc denote the log hazard ratio (HR) in the AG model and j, denote
the log HR in the CF model with stratification of the total number
of previous events, as proposed by Box-Steffensmeier and De Boef

[20]. The subscripts C and P stand for composite and primary
effects, respectively. The log HR estimates can be transformed back
to the hazard ratios, HRc and HRp, respectively.

To remove the CF model’s assumption that the persons within a
stratum defined by number of previous events are homogeneous in
risk level, we propose to further stratify within each stratum
according to time since the latest event. Previous researchers have
suggested that the use of tertiles is usually sufficient to control
confounding [27]. Therefore, we consider tertiles. In the stratum
of observations with k previous events, we calculate the tertiles
of time between the k™ and (k + 1)™ observed events. A stratum
in the CF model becomes three strata in the modified CF model.
Let g, and HR;, denote the log HR and HR in the modified CF model.

The AG model can be estimated by the stcox program in Stata.
The CF and modified CF models can be estimated by the strmcure
program in Stata [28].

To avoid data sparsity, it is advisable to pool the last few strata
that have small number of observations [28]. In the analysis of this
dataset, in both the CF and modified CF models we pooled the
observations for times to the seventh or later events into one single
stratum.

Previous researchers suggested that the duration of protection
of the vaccine may be as short as only three months [29]. We par-
titioned the time since vaccination into <3, 3-12, 12-24, and
>24 months and estimated the time-varying effects.

2.2.2. Estimation of secondary effect

While the importance of secondary effects is recognized
[12,14,30], there has been little discussion in the literature on
how to estimate it. In the statistics literature, it is known that
except for linear models, there is no single model that can directly
partition the composite effect into primary and secondary effects
[23]. Assuming a multiplicative model for the hazard of recurrent
events, HRc = HR;, x HRs, or equivalently f- = f; + s, we propose

to estimate the secondary effect by Bs = Bc — B, where B. and

B,, are the estimates obtained from fitting the AG and modified
CF models, respectively. An alternative estimate of secondary effect

based on ﬁp can be obtained similarly but, for brevity, we do not
discuss it in this manuscript.

We used the bootstrapping method, with persons as the re-
sampling units, and 200 replicates to obtain 95% confidence inter-
vals (CI) of all the log HR estimates. Within each bootstrap sample,
we fitted two models to estimate the primary and composite effect
log HR’s and then took their difference to obtain the secondary
effect log HR. The results were transformed back to give the 95%
Cl of HR’s.

3. Results

The total child-months in the control and malaria vaccine
groups were 25,687 and 26,307, respectively. The number of clin-
ical malaria episodes were 774 and 658 in the control and malaria
vaccine group, respectively (Table 1). Without adjustment for
covariates and variation in follow-up time, a Mann-Whitney U test
showed a statistically significant difference between the two
groups (P = 0.002).

Table 2 summarizes the distribution of time since the latest
event, by event order. The median time to first event was
7.7 months (33.3th and 66.7th percentiles 4.1 and 18.1 months,
respectively). Except some minor irregularity, there was a trend
that the more events a child had experienced, the shorter the time
to the next event.

Table 3 shows the estimates of composite, primary and sec-
ondary effects based on the AG, CF and modified CF models. HR¢
did not show a monotonic trend over time. It was strongest in
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Table 1
Number (%) of children in the control and malaria vaccine groups, by total number of
clinical malaria episodes during the study follow-up period.

No. of malaria episodes Control (n = 745) Malaria vaccine (n = 745)

0 375 (50.3) 438 (58.8)
1 185 (24.8) 157 (21.1)
2 85 (11.4) 67 (9.0)

3 49 (6.6) 32 (4.3)

4 21 (2.8) 18 (2.4)

5 7(0.9) 15 (2.0)

6 16 (2.2) 7 (0.9)

7 2(0.3) 7 (0.9)

8 3(0.4) 3(0.4)

9 1(0.1) 1(0.1)

10 1(0.1) 0(0)

the first three months, at 0.68. It then weakened to 0.81 in the
3-12 month interval, rebounded to 0.77 in the 12-24 month inter-
val, and weakened again to 0.86 afterward.

HRp from the first to the fourth time intervals were 0.64, 0.76,
0.76 and 0.84, respectively. In all time intervals, HR;, consistently
showed a stronger reduction in hazard than HRp.

In the first three months, HRs was 1.09. Then it weakened over
time, with 95% CI including the null value.

4. Discussion

In the phase 3 trial of the RTS,S/AS01 vaccine, vaccine efficacy
varied with transmission intensity, with lower efficacy in sites
with higher intensity [4]. A similar pattern has been observed in
rotavirus vaccine [31]. The interpretation of this pattern may affect
whether the products are deployed where they are most needed.
One possible interpretation is that the primary effect of the inter-
vention is actually constant, but the control groups in areas with
high intensity acquired immunity more rapidly than the interven-
tion groups in the same areas. Therefore, the composite effect may
be smaller where disease burden is high. It is likely that malaria
vaccines will require booster doses; the need for a booster and
the timing should be based on primary effects rather than compos-
ite effects.

There has been an emerging consensus on the use of the AG
model to estimate the composite effect [7,8,32]. But the estimation
of the primary and secondary effects has been less discussed. With

Table 2
Percentiles of time since last event (in months).
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unobserved frailty, the estimation is not straight-forward. The CF
model provides a valid framework for the estimation of the pri-
mary effect [20]. Nevertheless, its accuracy may be affected by
the assumption that, having conditioned on the total number of
previous events, time since last event does not affect the outcome.
We have proposed a modification to the CF model, by further strat-
ification for time since last event.

Applying this approach to the RTS,S/AS02 trial data, the time-
varying composite effect, HR., was strongest in the first three
months as expected [29]. But the dip in the 3-12 month interval
was unexpected. In contrast, the primary effect estimates showed
smoother trajectory over the time periods. If there is a secondary
effect, we would expect it to be relatively strong around the time
the primary effect is strong. The dip in HR in the 3-12 month per-
iod appears to be the result of the secondary effect. The median
(33th, 67th percentiles) time to first event was 7.7 (4.1, 18.1), as
shown in Table 2. Hence the secondary effect may have less impact
in the first time period than in the second. Across the whole study
duration, the secondary effect, HRs, was mild. It is not surprising,
given that the primary effect of the RTS,S/AS02 vaccine was modest
to begin with. The secondary effect could be stronger if the primary
effect is strong and the disease incidence is high.

In the analysis of the RTS,S/AS02 trial data, the CF and modified
CF models did not give results that differ hugely (Table 3). Never-
theless, they consistently differed in the expected direction, with
stronger estimate of the primary effect with control of time since
last event. In this dataset, as shown in Table 2, the number of pre-
vious events was associated with the time to the next event. As
such, stratification for the former also indirectly stratified for the
latter. This explained the lack of major difference between them.
Nevertheless, the two methods may give larger difference in the
evaluation of other infectious disease interventions or under other
disease patterns. Since waning of immunity over time is a common
phenomenon, the proposed method is useful in the studies of many
other infectious diseases and prevention measures.

Although finer stratification on event history may more prop-
erly remove the influence of event history in the estimation of pri-
mary effect, caution is needed to avoid data sparsity. In Cox-type
models, having only a small number of observations in a stratum
may lead to a situation that nobody other than the person who
has an event is at risk at that event time. This would cause an
empty risk-set and exclusion of that event from the analysis. The
higher the number of previous events, the more likely this problem

No. of malaria episodes No. of children 33-th percent Median 67-th percent
1 677 4.1 7.7 18.1
2 335 3.0 58 9.5
3 183 1.8 35 6.2
4 102 1.6 2.9 4.2
5 63 0.8 1.8 3.2
6 41 1.2 2.6 44
>7 18 0.6 1.8 3.7

Table 3

Estimates of composite, primary and secondary effect *.
Target Estimates <3 mo 3to< 12 mo 12 to <24 mo >24 mo
Effects HR 95% CI HR 95% CI HR 95% CI HR 95% CI
Composite HR¢ 0.68 (0.54, 0.84) 0.81 (0.66, 0.99) 0.77 (0.65, 0.92) 0.86 (0.72, 1.02)
Primary HRp 0.64 (0.51, 0.80) 0.76 (0.61, 0.95) 0.76 (0.63, 0.93) 0.84 (0.69, 1.02)
Primary HR; 0.62 (0.49, 0.79) 0.75 (0.60, 0.95) 0.74 (0.60, 0.91) 0.83 (0.68, 1.02)
Secondary HRs 1.09 (1.02, 1.16) 1.07 (1.00, 1.16) 1.05 (0.96, 1.14) 1.04 (0.96, 1.13)

* All models adjusted for age at baseline, bednet use at baseline, distance from health facility, and geographical region.
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will occur. For an intervention that is highly efficacious in reducing
event rates, this means the excluded events are mainly from the
non-intervention group. This may cause a bias towards under-
estimation of the vaccine effects. In our application of the CF
model, two events were excluded due to this reason. Both occurred
in the stratum for time to the sixth event; one out of two was in the
control group. In the modified CF model, six events were excluded.
They occurred in the strata for times to the fourth, fifth or sixth
events; four out of six were in the control group. With such a small
number of exclusion (out of 1432 events) and weak efficacy of the
RTS,S/AS02 vaccine, the impact would be tiny. But this needs care-
ful evaluation according to each study’s data pattern; pooling of
strata may be needed [28]. This was also the reason of our using
the tertiles instead of finer stratification in the modified CF model.

We used time since vaccination as the time-scale. In the analy-
sis of recurrent event, some investigators may use time since last
event as the time-scale, with the exception that for the first event
the time-scale is time since study enrolment [21,33]. This formula-
tion re-sets the time to zero after each event. This time-scale can-
not be justified if the model does not stratify for the number of
previous events, because in that case a person may become at risk
of the (k + 1)™ event before having experienced the k™ or even ear-
lier events [33,34]. Therefore it cannot be used in the estimation of
the composite effect. In order to make comparison between the
estimates of the composite and primary effects, this time-scale
should not be used in the estimation of the primary effect either.

5. Conclusions

The proposed analytic strategy can be used to estimate the pri-
mary, secondary and composite effects of an intervention. It offers
a more comprehensive understanding of trial data on all disease
episodes. The RTS,S/AS02 vaccine had moderate primary and sec-
ondary effects that waned over time, but the composite effect in
preventing clinical malaria remained positive up to the end of
the trial at 42 months.
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Appendix A. Statistical models
Andersen-Gill model

For individual i(i=1,2,---,N), we observed n; — 1 event times
{tj,j=1,2,---,n; — 1} with the event indicators
35 =1;j=1,2,---,n; — 1. The individual exits the study at time t;
with no event occurred at the time 7;(ti, = Ti, 6in, = 0). That is,
the last spell represented censoring. In the AG model, the hazard
at time t for individual i with a binary key exposure variable x;
and covariate vector z; is modelled as

hi(tYi(t), %, zi) = Yi(t)ho(t) exp (Bexi + Yczi), (1)

where hy(t) is an unspecified baseline hazard function and Y;(-) is
the at-risk function for individual i [8,17]. In the present context,
x; = 0 and x; = 1 indicates a person in the control and malaria vac-
cine group, respectively. The partial likelihood function is:

N ni-1 exp ﬁcxt ch)
| 2
L(Bc,vc) = 1:_[ 1:1 E Y (tU)EXD(ﬂCXk +VcZk) (2)

Conditional frailty model

In the CF model [20], the hazard function of the j™ event
(j=1,2,---,n; — 1) occurring at time t for individual i with the binary
key exposure variable x; and covariate vector z; is:

hii(6]Y (), 01, %i,2i) = Yii(t) wiho; (£)exp(BpXi + 7pzi) 3)

where Yj(-)is the at-risk process specific for individual i and event
order j, that is, Y;(t) = 1 if at time ¢ individual i has experienced
G-1" = 0 other-
wise. hgj(t) is an unspecified baseline hazard function for the it
event. The frailty term w; is assumed uncorrelated with x; and z;
and independently and identically follows a gamma distribution
with E(w;) = 1 and Var(w;) = . The partial likelihood function for
the model is:

event and is at risk for the j event, and Yi(t)

n—1

H
::]z

L(Bp, VP‘wiv i=1,

I
—_

i j=1
@iexp(BpXi + VpZi)

i Yy (ti) @y exp <ﬁPxf’ + VPZi’)

(4)
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For higher value of j, the number of persons who are at risk of

the /™ event may be small. To avoid sparse data within some strata,
the last few strata may be pooled as one stratum.

Modified conditional frailty model

The CF model assumes that the persons within a stratum
defined by number of previous events are homogeneous in risk
level. To remove this assumption, we propose to further stratify
within each stratum according to time since the latest event. Spec-
ify a set of cut-off values miin(tij) ={o < <

-+ < ikt < (kg = max(ty) that partitions the time since the
1

(j — 1)™ event into K(j) intervals, regardless of key exposure and
covariate values. We consider tertiles and set K(j) = 3 for all j with
one-third of observations within each of the three intervals {j, to
1y G to Cjp, and g, to (3. The model becomes

hije (£Y e (€), 04, X, i) = Y () 0ihoje (£)eXp (BpXi + Vp2i) (5)

where Yi(-) and hgy(t) are the at-risk indicator and unspecified
baseline hazard function for individual i, event order j and time
since latest event interval k. The partial likelihood function becomes

-1

L(ﬁ;ay;‘wi,i: 171\]) —

—-

Il
-

j=1
A w; exp (Bpxi + pzi)

X
N i« *
ko1 |00 Y (ty) @y exp (/},,xl./ + y,,z,)

where &, = I({x1 < tj < (i) and, specifically, 5; = 1 if tj = (.
Coefficients and estimation

The coefficients B in the AG model, §, in the CF and g; in the
modified CF models are the log hazard ratios (HR) representing
the estimates of total and primary effects, respectively. The AG
model is estimated by maximizing the partial likelihood function
by the Newton-Raphson algorithm [35] and the CF and modified
CF models by the expectation-maximization (EM) algorithm via
the strmcure macro in Stata [28]. Assuming a multiplicative model
for the hazard of recurrent events, HRc = HR;, x HRs, or equiva-
lently p.=pp+p;, we estimate the secondary effect by

Bs = Bc — Bp, Where B¢ and f, are the estimates obtained from fit-
ting the AG and modified CF models, respectively. Confidence
intervals are obtained by bootstrapping, with persons as the re-
sampling units. Within each bootstrap sample, we fitted two mod-
els to estimate the primary and composite effect log HR’s and then
take their difference to obtain the secondary effect log HR. The 95%
confidence intervals are then transformed back to the HR scale.
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