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Abstract 
Background: 

 

Short-term forecasts of infectious disease can aid situational awareness and planning for outbreak 

response. Here, we report on multi-model forecasts of Covid-19 in the UK that were generated at 

regular intervals starting at the end of March 2020, in order to monitor expected healthcare 

utilisation and population impacts in real time.  

 

Methods: 

 

We evaluated the performance of individual model forecasts generated between 24 March and 14 

July 2020, using a variety of metrics including the weighted interval score as well as metrics that 

assess the calibration, sharpness, bias and absolute error of forecasts separately. We further 

combined the predictions from individual models into ensemble forecasts using a simple mean as 

well as a quantile regression average that aimed to maximise performance. We compared model 

performance to a null model of no change. 

 

Results: 

 

In most cases, individual models performed better than the null model, and ensembles models were 

well calibrated and performed comparatively to the best individual models. The quantile regression 

average did not noticeably outperform the mean ensemble. 

 

Conclusions: 

 

Ensembles of multi-model forecasts can inform the policy response to the Covid-19 pandemic by 

assessing future resource needs and expected population impact of morbidity and mortality. 

 

Introduction 
Since the first confirmation of a case on 31 January 2020, the Covid-19 epidemic in the UK has 

caused a large burden of morbidity and mortality. Following a rapid increase in cases throughout 

February and March, triggered by repeated introduction and subsequent local transmission 1, the UK 

population was advised on 16 March to avoid non-essential travel and contact with others, and to 

work from home if possible. This advice became enforceable law a week later, which was followed 

by a decline in reported cases and deaths starting in the first half of April. During the same period, 

hospitals prepared for a rapid increase in seriously ill patients by maximising inpatient and critical 

care capacity2. 
 

Short-term forecasts of infectious diseases are increasingly being used to inform public health policy 

for a variety of diseases 3. Models for short-term forecasts can be statistical (investigating the 

changing distribution of variables over time), mechanistic (explicitly incorporating plausible 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.11.11.20220962doi: medRxiv preprint 

https://paperpile.com/c/mmkuPk/xLWr6
https://paperpile.com/c/mmkuPk/ozBUn
https://paperpile.com/c/mmkuPk/3QNdl
https://doi.org/10.1101/2020.11.11.20220962
http://creativecommons.org/licenses/by/4.0/


biological and social mechanisms of transmission), or a hybrid of the two. While the best choice of 

models for short-term infectious disease forecasts is an ongoing topic of research, there  is some 

evidence that introducing mechanistic assumptions does not necessarily improve short-term 

predictive performance compared to statistical models that have no specific assumptions related to 

the disease transmission process 4. While short-term forecasts are most prominent for seasonal 

influenza, more recently they have also been made for outbreaks such as Ebola, measles, Zika, and 

diphtheria 5–9. Developing accurate and reliable short-term forecasts in real time for novel infectious 

agents such as SARS-CoV-2 in early 2020 is particularly challenging because of uncertainty about 

modes of transmission, severity profiles and other relevant parameters 7,10. 

 

Here, we report on short-term forecasts of the Covid-19 epidemic produced by six groups in the UK, 

representing a mixture of academic and government institutions and using a variety of models and 

methods. A system for collating and aggregating these forecasts was set up through a short-term 

forecasting subgroup of the Scientific Pandemic Influenza Group on Modelling (SPI-M) on 23 March, 

2020. The aim of these efforts was to predict the burden on the healthcare system, as well as key 

indicators of the current status of the epidemic faced by the UK at the time. Aggregate forecasts 

were made available to the Strategic Advisory Group of Experts (SAGE) and the UK government, 

marking the first time that a multitude of models for short-term forecasting models were explicitly 

combined to inform health policy in the UK. We review forecasts between the end of March and July 

and assess the quality of the predictions made at different times. 

Methods 

Targets and validation datasets 

Initially seven forecasting targets were set: 1) The number of intensive care unit (ICU) beds occupied 

by confirmed Covid-19 patients, 2) the total number of beds (including ICU) occupied by confirmed 

Covid-19 patients, 3) the total number of deaths by date of death, 4) the number of deaths in 

hospitals by date of report, 5) the number of new and newly admitted confirmed Covid-19 patients 

in hospital, 6) the number of new admissions to ICU and 7) the cumulative number of infections.  

 

Validation data sets for England and the seven English National Health Service (NHS) regions into 

which it is divided were derived from NHS England situational reports, and for the devolved nations 

in Northern Ireland, Scotland and Wales from their distinct reports and data sets. Because of 

differences in the structure of these reports and the data included in them, validation data sets 

started being used for the short-term forecasts at different times. Over time, this was reduced to 

four targets: the number of ICU beds and any beds occupied by confirmed Covid-19 patients, 

respectively; the number of new and newly admitted Covid-19 patients in hospital; and the number 

of deaths by date of death. Data sources and their interpretation changed at several points and 

definitions were updated as time progressed. Data sources that were not available at the time 

forecasts were made were excluded from the evaluation. 
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Forecasts 

Starting on 24 March 2020, modelling teams produced probabilistic forecasts for every day three 

weeks ahead for all targets except the cumulative number of infections, for which only a single time 

point at the date of report (i.e., a nowcast) was produced. Initially, teams submitted forecasts three 

times a week (with deadlines on Sunday, Tuesday and Thursday nights) and provided a best 

predicted estimate with lower and upper bounds of each forecast metric. On 31 March, this was 

changed to the median, 1%, 5%, 25%, 75%, 95% and 99% predictive quantiles. On 14 April it was 

decided to change to a schedule of submission twice a week (Sundays and Wednesdays, with an 

initial submission on a Thursday), and on 18 April the prediction quantiles were changed to 5% 

intervals from 5% to 95%. On 25 May the submission was changed to weekly on Tuesday mornings. 

Models 

The number of models providing forecasts changed over time, with 11 models from six institutions 

used from the end of March. Some of these 11 models were only used on a few occasions owing to 

the time required in producing forecasts at regular time intervals along with shifting priorities. Other 

models were changed over time as discussions over the nature of the validation data sets evolved 

and more information became available about the intricacies of the data used to model the 

epidemic. One of the models (NHSBHM) was purely statistical, one a statistical/mechanistic hybrid 

(EpiSoon) and all others mechanistic. In brief, the models used were: 

 

NHSBHM : A statistical Bayesian hierarchical model fitted individually to ICU and hospital admissions 

data to produce forecasts at the level of individual health trusts. The growth (decay) of the recorded 

values in each trust were assumed to follow a negative binomial distribution, whose mean was 

parameterised as a generalised logistic growth (decay) function. These forecasts were then 

aggregated to the regional and national level. 

  

Microsimulation 11: A spatial microsimulation model of Covid-19 transmission, fitted to hospital 

prevalence and incidence and death data by region of Great Britain via a sweep over a 

multidimensional parameter grid of the basic reproduction number R0, seeding and infection timing 

and effectiveness. A posterior distribution is calculated via Monte-Carlo sampling based on the 

(assumed negative binomial) likelihood of each model run. 

 

SIRCOVID 12: An age-structured stochastic compartmental Susceptible-Exposed-Infectious-Recovered 

(SEIR)-type model incorporating hospital care-pathways and transmission within care homes. A 

Bayesian evidence synthesis approach is applied to fit the model to multiple regional data sources, 

namely: daily deaths in hospital- and non-hospital settings, ICU and general bed prevalence data, 

Pillar 2 Polymerase Chain Reaction (PCR) testing data and serological survey data from blood-donors. 

Particle Markov-chain Monte Carlo (MCMC) methods are used to sample from the joint posterior 

distribution of model parameters, including disease-severity and time-varying transmission rates, 

and epidemic trajectories. The future epidemic trajectories are then simulated via posterior 

predictive forecasting. 
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Exponential growth/decline 13: An exponential model based on assumed doubling/halving times, 

applied to daily hospital admission data to forecast future admissions, broken down by general 

hospitalisation and ICU. For each admission, the duration of hospitalisation is simulated from 

discretized Gamma distributions parameterised with published estimates of length of stay in 

ICU/non-ICU. Beds are counted for each day to derive bed occupancy in each. 

  

EpiSoon 14: A semi-mechanistic model that combines a time series forecasting model with an 

estimated trajectory of the time-varying reproduction number over time. Cases, hospitalisations and 

deaths are simulated forward separately using a renewal equation model. Changes in the 

reproduction number are estimated from probabilistic reconstruction of infection dates, separately 

for each geography. 

  

Transmission 15: An age-structured dynamic transmission model that uses Google mobility data to 

parameterize the impact of social distancing measures in each NHS region. The model is fitted to 

deaths and hospital bed occupancy in each region. 

  

DetSEIRwithNB 16: A deterministic SEIR-type model without age structure, but with differential rates 

between compartments depending on the next state individuals are progressing to (e.g. 

symptomatic cases recovering naturally or being admitted to hospital spend different times in their 

infectious state, reflecting different underlying progression processes). Infected cases can be 

asymptomatic or symptomatic, symptomatic cases recover or go to hospital, hospitalised cases 

recover, die or proceed to ICU, and ICU cases die or step down to hospital and then recover. The 

model fits new and newly confirmed cases in hospital, hospital and ICU beds occupied, and hospital 

deaths, using a negative binomial likelihood around the deterministic mean, to data for each region 

and nation independently. Transmission, and hence the reproduction number, are piecewise 

constant, with change points at the time of the lockdown (24 March), 1 month later (suggested by 

visual inspection of the data stream) and 6 weeks before the most recent data point.  Two different 

variants for the fitting procedures are employed, one based on Maximum Likelihood Estimation 

(MLE) and one on MCMC. 

 

Regional/age 17: An adaptation of a Bayesian modelling framework developed for pandemic 

influenza18, this approach combines parallel deterministic SEIR transmission and disease reporting 

models for each NHS region, fitted to age-specific death and serological data. The parallel regions 

are linked through common parameters for the infectious period and the IFR. The model outputs 

Bayesian posterior probability distributions for parameters of interest and predictive distributions 

for the trajectory of the epidemic.  

 

Secondary care ABC : A model which accounts for individuals admitted to ICUs and general hospital 

admissions, taking into consideration the potentially different timescales of fatality and recovery, 

fitted to hospital deaths, hospital admissions, ICU prevalence and hospital prevalence using 

Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC). 

 

StructuredODE19,20: An age-structured model based on SEIR-type equations but extended to include 

symptomatic and asymptomatic individuals, and to account for household isolation and 

quarantining. Susceptibility, risk of symptoms, risk of hospitalisation and risk of death are all 

age-dependent and based on reported data for England. For the seven regions in England and the 
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three devolved nations (Wales, Scotland and Northern Ireland) solutions are matched to number of 

deaths (using date of death), hospital occupancy, ICU occupancy and hospital admissions; for 

England this is supplemented with serological data from blood donor sampling - this fitting 

procedure infers early growth and the strength of controls in each area as well as the appropriate 

scaling between symptomatic cases and observable health-care metrics.  

Assessment metrics 

We assessed weekly forecasts using the weighted average interval score (WIS) across all quantiles 

that were being gathered 21. This WIS is a strictly proper scoring rule, that is, it is optimised for 

predictions that come from the data-generating model and, as a consequence, encourages 

forecasters to report predictions representing their true belief about the future22. The WIS 

represents a parsimonious approach to scoring forecasts when only quantiles are available:  

 

 

It is a weighted average of the interval score 22 over  central  prediction intervals bounded 

by quantile levels , where  is an observed outcome,  the forecast,  the 

median of the predictive distribution, and  and  are the predictive upper and lower quantiles 

corresponding to the central predictive interval level , respectively. The interval score is optimised 

at 0, representing a point forecast which is exactly correct. It penalises wide prediction intervals as 

well as data that lies outside the intervals. 

 

We further assessed the calibration, sharpness and bias of forecasts separately, in line with the 

premise that forecasts should “maximise sharpness subject to calibration”, that is as narrow as 

possible while consistent with future observations 22,23. For calibration, we assessed coverage at the 

central 50% and 90% prediction intervals. For sharpness metric, we used the sharpness term in the 

WIS definition, 

 

. 

 

As bias metric, we estimates the proportion of predictive probability mass below/above the 

observation using the discrete quantiles, approximating a previously defined bias metric23, 

 

 

where we define the outermost quantiles corresponding to  as  and . 
 

We lastly compared weekly forecasts by the mean absolute error (MAE) of the median forecast. 
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Ensembles 

We combined all the model forecasts into a single ensemble using two stacking procedures, with the 

aim to compare them in order to select an optimum procedure. Firstly, we produced an ensemble 

with equally-weighted quantiles (EWQ) by calculating each combined quantile as the mean or 

median of all the individual model predictive quantiles 24,25. Secondly, we generated an ensemble 

using quantile regression averaging (QRA) to calculate each combined quantile as a weighted 

average of the individual model quantiles for each location and metric, where weights were 

estimated from past data to optimise past performance with respect to the one-week ahead WIS 26,27. 

We tested a range of past data from 1 to 5 weeks to include in QRA, and several variants of this 

procedure, including constraining the weights to be non-negative and sum up to one or not, 

estimating weights per quantile (with an additional constraint to avoid quantile crossing) or one 

weight across quantiles, estimating common weights for NHSE regions or separate weights, and 

having an intercept in the regression or not. Weights were calculated using the quantgen R 

package 28. 

Null model 

We compared the performance of both the individual models and the ensembles with a null model 

that assumed that each target would stay at its current value indefinitely into the future, with 

uncertainty levels given by a discretised truncated normal distribution with lower bound 0 and a 

standard deviation given by past one-day ahead deviations from the value of the metric. 

Results 
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Figure 1: Median weekly 7-day ahead forecasts of each individual model for selected targets 
across the four nations of the UK (only publicly available data shown). Forecasts are shown 
on the day for which the forecast was made a week earlier (dots: median; whiskers: 90% 
prediction intervals; one colour per model) and compared to the observations (black lines). 
Data sources are marked in grey where they were not available at the time of the forecasts. 
 
The initial forecasts were made just before the peak in confirmed Covid-19 hospital 
occupancy in early April. The 11 models were used to provide a total of 71,887 predicted 
days across the four final forecast targets and different geographies, during the 13 weeks up 
to 14 July 2020 or 8 weeks up to 9 June 2020 (for new and newly confirmed patients in 
hospital), respectively. Overall, the individual models broadly followed the trajectory of the 
epidemic in their forecasts but struggled to correctly predict the timing and height of the peak 
in early April (Fig. 1). Almost all individual models performed consistently better than the null 
model (no change) in median predictions at a 2 week horizon, but less clearly so at a 1 week 
horizon, when a model null model of no change sometimes outperformed individual models 
(Fig. 2). More details of individual model performance are given in the Supplementary Table 
1. 
 

 
Figure 2: Performance against a null model of no change, shown as the proportion of 1-week 
and 2-week forecasts of each model that performed better than the null model with respect 
to the WIS (dots: proportion; lines: 95% binomial confidence intervals). Only models that 
were used to make forecasts at more than 2 time points are shown. Data sources are 
marked in grey where they were not available at the time of the forecasts. 
 
While there was little consistency amongst the models with respect to performance against 
the four targets considered and no model clearly outperforming the others, all the ensemble 
models considered performed as good as or better than the best individual models against 
each target with respect to the WIS (Fig. 2 and Table 1). The best-performing QRA 
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ensemble according to the WIS used only the latest set of historical forecasts to estimate the 
weights and assigned separate weights for each quantile and each geographical region, 
constrained to sum up to 1 and without intercept (Supplementary Table S2). The 
best-performing EWQ combined models by taking the median of quantiles at each quantile 
level (Supplementary S3). Compared to the equal-weighted ensemble, the best-performing 
QRA yielded some improvement (Figs. 2 and 3 and Table 1).  
 

 
 
Table 1: Performance of the ensemble models (n: number of weeks for which forecasts were 
generated) with respect to calibration, shown as the coverage at the 50% and 90% level 
(Cov 0.5 and Cov 0.9, respectively), bias, sharpness (Sharp), WIS and MAE of the median. 
A well calibrated model would have 0.5 coverage at the 50% level and 0.9 coverage at the 
90% level and a bias of zero. Models making narrower predictions have lower values of the 
sharpness metric, and models that are closer to the truth have lower WIS and MAE. 
 

 
Figure 3: Weekly 7-day ahead forecasts of the ensemble models for selected targets across 
the four nations of the UK (only publicly available data shown, and only ensembles 
comprising more than one model). Forecasts are shown on the day for which the forecast 
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was made a week earlier (dots: median; whiskers: 90% prediction intervals) and compared 
to the data as subsequently observed (black lines). Data sources are marked in grey where 
they were not available at the time of the forecasts. 
 

Both the ensemble methods yielded well-calibrated models for daily deaths and new and newly 

confirmed cases in hospital at both 1-week and 2-week time horizons, but less so for hospital and in 

particular ICU occupancy (Table 1, Cov 0.5 and Cov 0.9). The forecasts were positively biased, i.e. 

overestimated ICU beds occupied as well as new and newly confirmed cases in hospital, while they 

were much less biased in either direction for total beds occupied and deaths (Table 1, Bias). The 

ensemble methods had similar sharpness, with the QRA model slightly sharper than the EWQ in 

most cases (Table 1, Sharp). Overall, the EWQ models performed better than most variants of the 

QRA in terms of both WIS and MAE, but the best QRA models tended to outperform the EWQ (Table 

1, WIS and MAE, and Supplementary Tables 2 and 3). The QRA as a model that could learn from past 

performance, gave widely fluctuating weights to models over time (Fig. 4). 

 

 

Figure 4: Weights given to the different models in the median prediction of the best-performing QRA 

at each forecast date for England. 

Discussion 
A system for collating and combining short-term forecasts was set up during the early phase of the 

Covid-19 epidemic in the UK as a response to an urgent need for predictions of the epidemic 

trajectory and health system burden. This led to rapid model building and left little time for 

systematic testing. The results shown here highlight some of the challenges in predicting an 

emerging epidemic, where calibration and predictive performance are difficult to achieve and 

considerable uncertainties exist 10,23,29. The forecasts reflect a large variation in models that had been 

designed for a variety of purposes and, at least in some cases, rapidly adapted to the task. The 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.11.11.20220962doi: medRxiv preprint 

https://paperpile.com/c/mmkuPk/vAJO+U5zX6+I7HVD
https://doi.org/10.1101/2020.11.11.20220962
http://creativecommons.org/licenses/by/4.0/


models have been and are being developed and improved as additional information becomes 

available, both on the validation data sources and the properties of the epidemic. This makes it 

difficult to create like-for-like comparisons across different dates at which forecasts were made. 

 

Given these difficulties, it is important that models are synthesised in a meaningful and principled 

manner in order to derive greater value from different methodological perspectives on the 

epidemic. We found that stacking the models using a quantile regression average that optimises 

historical forecast performance resulted in good calibration against most targets and tended to 

outperform the equally-weighted quantile combination. Having said this, this result was based on 

testing a wide range of ways to combine models in a quantile regression, and only the 

best-performing variants performed better than a simple equal-weighted quantile average, which in 

turn performed better than most individual models. It has been observed in other fields that a 

simple model average tends to outperform individual models, which can, to some degree, be 

explained theoretically30. 

 

Over the three months analysed here, the models, as well as the inclusion and interpretation of the 

different data sources, were undergoing continuous change. At the same time, not every model was 

submitted every week due to the time pressures involved and shifting priorities in a rapidly evolving 

public health emergency. The lack of significant improvement from weighting by past forecast 

performance would indicate that these issues change the performance of the individual models on a 

week-by-week basis, potentially to a degree that reduces the expected benefits from systematically 

taking into account the past performance of each model. For these reasons, the model combination 

produced from the equally weighted quantiles can serve as a good and principled ensemble forecast, 

while the performance of different ensemble methodologies remains an ongoing topic of 

investigation.  

 

Throughout the period investigated in this study, the epidemic in the UK steadily declined, and good 

performance in this period need not correlate with good performance in other regimes, such as a 

resurgence of cases or a steady-state behaviour. The difficulty of the models to correctly predict the 

turnaround of the epidemic around the peak (albeit often acknowledging their own uncertainty) 

indicates that there may be value in incorporating external information, e.g. from changing social 

contact studies or behavioural surveys 31,32. All models received some weight in the QRA at least 

during some periods, indicating that there is value in the contributions of all of the models. 

Extensions to the simple regression used here33, or alternatives such as isotonic distributional 

regression 34, may yield future performance gains, as may the inclusion of model types and structures 

that are currently not represented in the pool of models that are part of the ensemble. 

 

Much discussion on real-time modelling to inform policy has focused on the value of the 

reproduction number, R. A real-time estimate of R indicates whether new infections are expected to 

increase or decrease and is, therefore, a valuable quantity to signal the need for control measures 

and their required strength. However, it does not provide a direct prediction of the estimated 

burden on the healthcare system or expected morbidity and mortality in the near future. By 

forecasting these directly, decision makers can be equipped with a more complete set of indicators 

for short-term planning than through considering R alone. Unlike scenario models, which are a key 

tool for long-term planning but are difficult to validate rigorously because of unsurmountable 

long-term uncertainty, modelling for short-term forecasts can be numerically evaluated and, 
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consequently, improved in real-time. Conversely, models that are optimised for short-term forecasts 

usually decline in predictive performance after only a few generations of transmission 23. Together, 

these two types of modelling have played a key role in informing the response to the Covid-19 

pandemic in the UK and elsewhere. 

 

As SARS-CoV-2 continues to spread in populations around the world, real time modelling and 

short-term forecasting can be key tools for short-term resource planning and pandemic 

management. The short-term forecasts described here and related initiatives in the US 35, Germany 

and Poland 36, and elsewhere are reflecting efforts to provide decision makers with the information 

they need to make informed decisions. In the UK, similar methodologies to the ones presented here 

are now used to generate medium-term projections, that is extrapolations over time periods longer 

than three weeks of what would be expected to happen if nothing changed from the current 

situation. As SARS-CoV-2 continues to affect populations around the world, short-term forecasts and 

longer-term projections can play a crucial part in real-time monitoring of the epidemic and its 

expected near-term impact in morbidity, healthcare utilisation and mortality. 

Code and data availability 
All code and data used to generate the results in this paper are available as an R package at 
https://github.com/epiforecasts/covid19.forecasts.uk.  
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35. COVID-19 Forecast Hub Consortium. Ensemble Forecasts of Coronavirus Disease 2019 

(COVID-19) in the U.S. medRxiv (2020) doi:10.1101/2020.08.19.20177493. 

36. German and Polish COVID-19 Forecast Hub. 

https://github.com/KITmetricslab/covid19-forecast-hub-de. 
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Supplementary Table S1: Individual model 
performance 

 

Supplementary Table S1: Performance of individual models (n: number of weeks for which 
the model was used to contribute short-term forecasts) with respect to calibration, shown as 
the coverage at the 50% (Cov 0.5) and 90% level (Cov 0.9), bias, sharpness (Sharp), WIS 
and MAE. A well calibrated model would have 0.5 coverage at the 50% level and 0.9% 
coverage at the 90% level and a bias of zero. Models making narrower predictions have 
lower sharpness, and models that are closer to the truth have lower WIS and MAE. Note that 
performances between models are not directly comparable because they cover varying time 
periods. 
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Supplementary Table S2: QRA ensemble 
performance 

 
 
Supplementary Table S2: Performance of all permutations of QRA models with respect to 
the WIS. Model options were: the number of previous forecasts (history) to include in the 
regression, whether to force the weights to be non-negative and sum to 1, whether to model 
an intercept, whether to estimate separate weights by quantile, and whether to estimate 
separate weights by English region. 
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Supplementary Table S3: EWQ ensemble 
performance 

  
Supplementary Table S3: Performance of mean- and median-based EWQ models with 
respect to the WIS. 

Supplementary Text S4: ISARIC4C Investigators 
Consortium Lead Investigator: J Kenneth Baillie. 
Chief Investigator: Malcolm G Semple. 
Co-Lead Investigator: Peter JM Openshaw. 
ISARIC Clinical Coordinator: Gail Carson . 

Co-Investigators: Beatrice Alex, Benjamin Bach, Wendy S Barclay, Debby Bogaert, Meera 
Chand, Graham S Cooke, Annemarie B Docherty, Jake Dunning, Ana da Silva Filipe, Tom 
Fletcher, Christopher A Green, Ewen M Harrison, Julian A Hiscox, Antonia Ying Wai Ho, 
Peter W Horby, Samreen Ijaz, Saye Khoo, Paul Klenerman, Andrew Law, Wei Shen Lim, 
Alexander J Mentzer, Laura Merson, Alison M Meynert, Mahdad Noursadeghi, Shona C 
Moore, Massimo Palmarini, William A Paxton, Georgios Pollakis, Nicholas Price, Andrew 
Rambaut, David L Robertson, Clark D Russell, Vanessa Sancho-Shimizu, Janet T Scott, 
Thushan de Silva, Louise Sigfrid, Tom Solomon, Shiranee Sriskandan, David Stuart, 
Charlotte Summers, Richard S Tedder, Emma C Thomson, AA Roger Thompson, Ryan S 
Thwaites, Lance CW Turtle, Maria Zambon. 

Project Managers: Hayley Hardwick, Chloe Donohue, Ruth Lyons, Fiona Griffiths, Wilna 
Oosthuyzen. 

Data Analysts: Lisa Norman, Riinu Pius, Tom M Drake, Cameron J Fairfield, Stephen Knight, 
Kenneth A Mclean, Derek Murphy, Catherine A Shaw. 

Data and Information System Managers: Jo Dalton, James Lee, Daniel Plotkin, Michelle 
Girvan, Egle Saviciute, Stephanie Roberts, Janet Harrison, Laura Marsh, Marie Connor, 
Sophie Halpin, Clare Jackson, Carrol Gamble . 

Data integration and presentation: Gary Leeming, Andrew Law, Murray Wham, Sara 
Clohisey, Ross Hendry, James Scott-Brown. 

Material Management: William Greenhalf, Victoria Shaw, Sarah McDonald. 

Patient engagement: Seán Keating 
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Outbreak Laboratory Staff and Volunteers: Katie A. Ahmed, Jane A Armstrong, Milton 
Ashworth, Innocent G Asiimwe, Siddharth Bakshi, Samantha L Barlow, Laura Booth, 
Benjamin Brennan, Katie Bullock, Benjamin WA Catterall, Jordan J Clark, Emily A Clarke, 
Sarah Cole, Louise Cooper, Helen Cox, Christopher Davis, Oslem Dincarslan, Chris Dunn, 
Philip Dyer, Angela Elliott, Anthony Evans, Lorna Finch, Lewis WS Fisher, Terry Foster, 
Isabel Garcia-Dorival, Willliam Greenhalf, Philip Gunning, Catherine Hartley, Antonia Ho, 
Rebecca L Jensen, Christopher B Jones, Trevor R Jones, Shadia Khandaker, Katharine 
King, Robyn T. Kiy, Chrysa Koukorava, Annette Lake, Suzannah Lant, Diane Latawiec, L 
Lavelle-Langham, Daniella Lefteri, Lauren Lett, Lucia A Livoti, Maria Mancini, Sarah 
McDonald, Laurence McEvoy, John McLauchlan, Soeren Metelmann, Nahida S Miah, 
Joanna Middleton, Joyce Mitchell, Shona C Moore, Ellen G Murphy, Rebekah 
Penrice-Randal, Jack Pilgrim, Tessa Prince, Will Reynolds, P. Matthew Ridley, Debby Sales, 
Victoria E Shaw, Rebecca K Shears, Benjamin Small, Krishanthi S Subramaniam, Agnieska 
Szemiel, Aislynn Taggart, Jolanta Tanianis-Hughes, Jordan Thomas, Erwan Trochu, Libby 
van Tonder, Eve Wilcock, J. Eunice Zhang. 

Local Principal Investigators: Kayode Adeniji, Daniel Agranoff, Ken Agwuh, Dhiraj Ail, Ana 
Alegria, Brian Angus, Abdul Ashish, Dougal Atkinson, Shahedal Bari, Gavin Barlow, Stella 
Barnass, Nicholas Barrett, Christopher Bassford, David Baxter, Michael Beadsworth, Jolanta 
Bernatoniene, John Berridge, Nicola Best, Pieter Bothma, David Brealey, Robin 
Brittain-Long, Naomi Bulteel, Tom Burden, Andrew Burtenshaw, Vikki Caruth, David 
Chadwick, Duncan Chambler, Nigel Chee, Jenny Child, Srikanth Chukkambotla, Tom Clark, 
Paul Collini, Catherine Cosgrove, Jason Cupitt, Maria-Teresa Cutino-Moguel, Paul Dark, 
Chris Dawson, Samir Dervisevic, Phil Donnison, Sam Douthwaite, Ingrid DuRand, 
Ahilanadan Dushianthan, Tristan Dyer, Cariad Evans, Chi Eziefula, Chrisopher Fegan, 
Adam Finn, Duncan Fullerton, Sanjeev Garg, Sanjeev Garg, Atul Garg, Effrossyni 
Gkrania-Klotsas, Jo Godden, Arthur Goldsmith, Clive Graham, Elaine Hardy, Stuart 
Hartshorn, Daniel Harvey, Peter Havalda, Daniel B Hawcutt, Maria Hobrok, Luke Hodgson, 
Anil Hormis, Michael Jacobs, Susan Jain, Paul Jennings, Agilan Kaliappan, Vidya 
Kasipandian, Stephen Kegg, Michael Kelsey, Jason Kendall, Caroline Kerrison, Ian 
Kerslake, Oliver Koch, Gouri Koduri, George Koshy, Shondipon Laha, Steven Laird, Susan 
Larkin, Tamas Leiner, Patrick Lillie, James Limb, Vanessa Linnett, Jeff Little, Michael 
MacMahon, Emily MacNaughton, Ravish Mankregod, Huw Masson, Elijah Matovu, 
Katherine McCullough, Ruth McEwen, Manjula Meda, Gary Mills, Jane Minton, Mariyam 
Mirfenderesky, Kavya Mohandas, Quen Mok, James Moon, Elinoor Moore, Patrick Morgan, 
Craig Morris, Katherine Mortimore, Samuel Moses, Mbiye Mpenge, Rohinton Mulla, Michael 
Murphy, Megan Nagel, Thapas Nagarajan, Mark Nelson, Igor Otahal, Mark Pais, Selva 
Panchatsharam, Hassan Paraiso, Brij Patel, Natalie Pattison, Justin Pepperell, Mark Peters, 
Mandeep Phull, Stefania Pintus, Jagtur Singh Pooni, Frank Post, David Price, Rachel Prout, 
Nikolas Rae, Henrik Reschreiter, Tim Reynolds, Neil Richardson, Mark Roberts, Devender 
Roberts, Alistair Rose, Guy Rousseau, Brendan Ryan, Taranprit Saluja, Aarti Shah, Prad 
Shanmuga, Anil Sharma, Anna Shawcross, Jeremy Sizer, Manu Shankar-Hari, Richard 
Smith, Catherine Snelson, Nick Spittle, Nikki Staines, Tom Stambach, Richard Stewart, 
Pradeep Subudhi, Tamas Szakmany, Kate Tatham, Jo Thomas, Chris Thompson, Robert 
Thompson, Ascanio Tridente, Darell Tupper-Carey, Mary Twagira, Andrew Ustianowski, 
Nick Vallotton, Lisa Vincent-Smith, Shico Visuvanathan, Alan Vuylsteke, Sam Waddy, 
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Rachel Wake, Andrew Walden, Ingeborg Welters, Tony Whitehouse, Paul Whittaker, Ashley 
Whittington, Meme Wijesinghe, Martin Williams, Lawrence Wilson, Sarah Wilson, Stephen 
Winchester, Martin Wiselka, Adam Wolverson, Daniel G Wooton, Andrew Workman, Bryan 
Yates, and Peter Young. 
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