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Abstract

Background: Tuberculosis, caused by bacteria in the Mycobacterium tuberculosis complex (MTBC), is a major global
public health burden. Strain-specific genomic diversity in the known lineages of MTBC is an important factor in
pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Fast and
accurate tracking of MTBC strains is therefore crucial for infection control, and our previous work developed a 62-
single nucleotide polymorphism (SNP) barcode to inform on the phylogenetic identity of 7 human lineages and 64
sub-lineages.

Methods: To update this barcode, we analysed whole genome sequencing data from 35,298 MTBC isolates (~ 1
million SNPs) covering 9 main lineages and 3 similar animal-related species (M. tuberculosis var. bovis, M. tuberculosis
var. caprae and M. tuberculosis var. orygis). The data was partitioned into training (N = 17,903, 50.7%) and test (N =
17,395, 49.3%) sets and were analysed using an integrated phylogenetic tree and population differentiation (FST)
statistical approach.

Results: By constructing a phylogenetic tree on the training MTBC isolates, we characterised 90 lineages or sub-
lineages or species, of which 30 are new, and identified 421 robust barcoding mutations, of which a minimal set of
90 was selected that included 20 markers from the 62-SNP barcode. The barcoding SNPs (90 and 421) discriminated
perfectly the 86 MTBC isolate (sub-)lineages in the test set and could accurately reconstruct the clades across the
combined 35k samples.

Conclusions: The validated 90 SNPs can be used for the rapid diagnosis and tracking of MTBC strains to assist
public health surveillance and control. To facilitate this, the SNP markers have now been incorporated into the TB-
Profiler informatics platform (https://github.com/jodyphelan/TBProfiler).
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Background
Tuberculosis, caused by bacteria in the Mycobacterium tu-
berculosis complex (MTBC), is a major global burden
causing approximately ten million active cases and killing
1.5 million people in 2018 (www.who.int/tb). The MTBC
consists of Mycobacterium tuberculosis sensu stricto
(Mtb) (lineages 1, 2, 3, 4 and 7) and M. tuberculosis var.
africanum (lineages 5 and 6; M. africanum), which cause
human disease, but others including M. tuberculosis var.
bovis affect predominantly animals [1]. Recently, new Mtb
lineages (8, 9) have been proposed [2, 3]. The MTBC line-
ages vary in their geographic distribution and spread, be-
ing endemic in different locations around the globe,
leading to the hypothesis that the strain types are specific-
ally adapted to different human populations [4]. Lineage 2
is particularly mobile with evidence of recent spread from
Asia to Europe and Africa. Lineage 4 is common in Eur-
ope and southern Africa, with regions of high TB inci-
dence and high levels of HIV co-infection, whilst lineages
5, 6 and 7 appear isolated within West Africa and
Ethiopia, respectively [1].
There is some evidence to suggest that MTBC lineages

can determine the transmission, control, and clinical out-
come of pulmonary and extra-pulmonary tuberculosis. In
particular, variational phenotypes include differences in the
emergence of drug resistance, transmissibility, virulence,
host response, disease site and severity [5, 6]. Such pheno-
types confer advantages for those MTBC lineages and may
lead to an increased likelihood of disease spread and poorer
prognosis for patients. Whether increased virulence is asso-
ciated with poorer prognosis is unclear, with some studies
reporting increased mortality risk with strains thought to
be less virulent [7]. Of particular concern are the emer-
gence of drug-resistant, multidrug-resistant (MDR-TB) and
extensively drug-resistant (XDR-TB) strains, where Beijing
strains show strong linear-resistance associations [8]. How-
ever, there is considerable inter-strain variation within line-
ages. For example, when comparing two different Beijing
sub-lineages, the “ancient” (atypical) and “modern” (typical)
strains show differences in geographical distribution, drug
resistance and virulence patterns [9]. In particular, the
“modern” sub-lineage is distributed worldwide and has
been largely associated with MDR-TB and XDR-TB and
hypervirulence [9].
Tracking the spread of lineages is of great importance in

tuberculosis research and control. Rapid lineage identifica-
tion enables the analysis of phenotypic associations, in-
forms on likely provenance and can assist in the
prediction of potential future outbreaks. The molecular
barcoding of lineages and sub-lineages can be used to clas-
sify clinical isolates to aid in the evaluation of tools to con-
trol the disease, including therapeutics and vaccines,
whose effectiveness may vary by strain type [1, 5]. Histor-
ically, strain identification has involved the genotyping of

tandem repeats (e.g. spoligotypes) and large deletions (re-
gions of difference (RDs)) [10], but these approaches are
being replaced by methods analysing data from whole
genome sequencing (WGS) technologies. These ap-
proaches include in silico spoligotyping and RD detection,
the characterisation of lineage-associated single nucleotide
polymorphisms (SNPs) and higher resolution methods
such as core genome MLST [11]. SNP-based approaches
can be applied in silico or implemented within a labora-
tory typing assay [12, 13]. Although the SNP-defined line-
ages do not offer the same resolution as using the whole
genome, they provide a valuable insight into the epidemi-
ology of circulating strains. A 62-SNP barcode was devel-
oped using WGS data for 1601 MTBC isolates and was
the first to position samples within clades of a global phyl-
ogeny of 7 human lineages and 64 sub-lineages, covering
all common strain types [1].
Here, we update the 62-SNP barcode using WGS for 35,

298 MTBC isolates. In particular, we use WGS data for
17,903 (50.7%) isolates to reconstruct a global phylogeny,
resulting in 30 new (sub-)lineages. This analysis led to the
62-SNP barcode being modified and extended to ninety
robust SNPs to cover 90 MTBC (sub-)lineages or species,
including animal-related M. tuberculosis var. bovis (M.
bovis), M. tuberculosis var. caprae (M. caprae) and M. tu-
berculosis var. orygis (M. orygis), which are similar and
sometimes misclassified. The new barcode was validated
on the 17,395 (49.3%) remaining MTBC isolates. The
ninety SNP markers have been incorporated into the TB-
Profiler software (https://github.com/jodyphelan/TBProfi-
ler) [14], which has been used to profile more than fifty
thousand MTBC for strain types and drug resistance, and
will thereby assist with barcode implementation for re-
search and infection control activities.

Methods
Sample, raw data and sequence analysis
Illumina whole genome sequencing data was publicly
available across 35,298 MTBC isolates, which encom-
passed Mtb lineages (1, 2, 3, 4 and 7), M. africanum (lin-
eages 5 and 6), M. bovis, M. caprae and M. orygis [14],
and the recently proposed lineages 8 [2] and 9 [3] (Add-
itional file 1: Table S1). The data were convenience sam-
pled with the first processed set (n = 17,903; 50.7%)
serving as a training dataset, and the second set collated
subsequently (n = 17,395; 49.3%) serving as a testing
dataset (Additional file 1: Table S1). The test set covers
all the sub-lineages in the training set with at least 10
isolates (range 10–917), except (sub-)lineages 3.1.2.2,
4.6.2.1, 8 and 9, but for these the number of training
samples is relatively small.
All raw sequences were trimmed using trimmomatic

software [15] (v0.36, parameters: PE -phred33 LEAD
ING:3 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:

Napier et al. Genome Medicine          (2020) 12:114 Page 2 of 10

http://www.who.int/tb
https://github.com/jodyphelan/TBProfiler
https://github.com/jodyphelan/TBProfiler


36). Trimmed reads were then aligned with BWA-MEM
software [16] (v0.7.17-r1188, default parameters) using
the H37Rv reference sequence (Genbank accession num-
ber: NC_000962.3). Alignments from BWA-MEM were
converted to “bam” format and sorted using samtools
software [17] (v1.9, default parameters). SNPs were iden-
tified by applying BCFtools [17] (v1.9, mpileup parame-
ters: default, call parameters: -mv) and GATK software
[18] (version: 4.1.3.0) using the HaplotypeCaller function
(parameters: -ERC GVCF). Individual sample “vcf” files
were merged using GATK GenomicsDBImport (default
parameters) and GATK CombineGVCFs (default param-
eters) to perform joint calling using all samples. The
resulting multi-sample vcf file was filtered to remove
indels and heterozygous calls and monomorphic SNPs.
A multi-FASTA file containing all isolates was generated
from the filtered SNP file (N = 1,014,762 SNPs; training
620,652 SNPs; test 533,152 SNPs) and H37Rv reference
genome using bedtools (v2.28.0) [19] and in-house py-
thon scripts. The regions of difference (RDs) were de-
tected using delly software [20] and confirmed using de
novo assembly by applying Spades software [21]. Spoli-
gotypes were called using spolpred software [22].

Principal component analysis and phylogenetic tree
Distance matrices and the principal components of the
multi-FASTA files were computed with Plink software
(v1.90b4; https://www.cog-genomics.org/plink2) [23].
The distance matrices were used for the new cluster
identification. Maximum likelihood phylogenetic trees
were constructed from the multi-FASTA file using IQ-
TREE (v1.6.12) (http://www.iqtree.org/) [24]. A general
time reversible model with rate heterogeneity set to a
discrete Gamma model and an ascertainment bias cor-
rection were used (parameters -m GTR+G+ASC), with
1000 bootstrap samples used to measure branch quality
and robustness. Phylogenetic trees were generated for all
MTBC isolates, as well as for each main lineage separ-
ately. The resulting Newick-formatted tree files were
visualised and annotated with metadata in iTOL (v5.2;
https://itol.embl.de/) [25]. These metadata included the
62-SNP barcode sub-lineage predictions [1], allowing for
the rapid identification of outliers. By annotating the
branches with ancestral mutations, it was possible to in-
form on SNP markers for barcoding.

Lineage revision and new sub-lineage identification
The visual inspection of the phylogenetic trees (and
principal component analysis plots) revealed that some
pre-existing (sub-)lineages (as defined using the 62-SNP
barcode) could be merged or split, as well as new ones
created. The original 62-SNP barcode was constructed
to reflect the original strain-type families used by re-
searchers based on spoligotypes and RDs. We sought to

analyse the phylogenetic tree to further divide these
clades where obvious splits in the phylogeny existed. To
aid in old lineage revision and new lineage identification,
phylogenetic trees relating to lineages 1 to 9 and animal
strains were analysed using a semi-automated procedure.
Each tree was traversed (and each clade inspected) from
root to tip using the ETE3 Toolkit (v3.1.1) package in
Python3 (http://etetoolkit.org/) [26]. We identified met-
rics and parameters such as branch bootstrap support
values and intra/inter-cluster SNP distances to deter-
mine splits in the tree, which led to clusters that are sep-
arated by long branch lengths from other isolates.
Whilst traversing, the following criteria had to be met to
establish clades leading to new or revised sub-lineages:
(1) a minimum clade size of 20, with a branch supported
by a bootstrap value of > 95; (2) differences in the distri-
butions of SNP distances where comparing the isolates
within and outside the clade, using a Welch t test as-
suming unequal variances [27] (P < 0.05) and a Cohen’s
d effect size [28] (d > 0.5); (3) the ratio of the branch
length of the clade compared to the mean branch length
of its descendants (ratio > 1); (4) estimation of the num-
ber of clade-informative SNPs, requiring at least 10
SNPs with a fixation index (FST) [29] value of 1; (5) con-
firmation of the clade through visual inspection of the
tree. Each of the parameter thresholds was based on
established cut-offs or determined using standard point
of inflection methods [1]. The population differentiation
FST statistic assigns a strength of association between
each SNP and (sub-)lineage, with a score of 1 indicating
that the SNP allele is fixed in the sub-lineage of interest
and not present outside that group. Using the five cri-
teria led to the addition of 87 (27 new) sub-lineages or
lineages (including 8 and 9), or changing the branch
position of established others (e.g. 1.2 and 1.1.1.1) (see
Additional file 1: Fig. S1). The SNP-IT tool for identify-
ing species in MTBC [30] was applied to the M. bovis,
M. orygis and M. caprae isolates (N = 110; test set), and
three barcoding SNPs were required for these mycobac-
teria. The overall number of (sub-)lineages or species
covered was 90.

Barcoding SNPs
To ensure that the required 90 clade-specific mutations
(“potential barcoding SNPs”, all with FST = 1) were robust,
where possible, we retained synonymous SNPs in essential
genes [31], and excluded those in drug resistance loci
(from TB-Profiler [14]) and non-essential PE/PPE gene
families [32]. From those retained “robust” SNPs (n =
421), a minimal set of one per lineage included preferen-
tially those already present in the 62-SNP barcode [1] and,
if not possible, (arbitrarily) the lowest position was chosen.
The gene functional categories were extracted from
Tuberculist (tuberculist.epfl.ch), and the frequency of
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ontologies across all potential barcoding, robust and min-
imal SNPs, was assessed for differences across lineage
using the chi-squared tests.

Validation of lineage barcode
To validate the final set of robust 421 clade-defining SNPs
(Additional file 1: Table S2), the 17,395 samples in the
testing set (with 572,021 SNPs) were used. The (sub-
)lineage of these samples was predicted with TB-Profiler
[14]. At the same time, a phylogenetic tree was recon-
structed of the training and test samples together using
FastTree2 software [33]. To assess the sensitivity and spe-
cificity of the predictions, this tree was traversed in the
ETE3 Toolkit, and test samples were examined for their
presence in the clades defined by the training dataset.

Results
MTBC isolates, SNPs and phylogeny
Across a total of 35,298 MTBC isolates with sequencing
data, we identified 1,014,762 high-quality SNPs. The iso-
lates represented all MTBC lineages (1–9), M. bovis, M.
orygis and M. caprae, but the majority were from lineages
4 (51.6%), 2 (25.2%), 3 (11.1%) and 1 (9.5%), with the fre-
quency of others being at most 1% (Additional file 1:
Table S1). Whilst it is a convenience set of sampled iso-
lates, the geographical distribution of the lineages was as
expected, with lineage 2 dominating in Southeast Asia, lin-
eages 1 and 3 predominant in South Asia, lineage 4 abun-
dant in Europe, Americas and Africa and lineages 5 and 6
present in West Africa (Fig. 1). The East Asian lineage 2
had the highest frequency of MDR-TB isolates (36.2%),
driven by a higher prevalence in the Beijing sub-lineage
(lineage 2.2; 36.5%) compared to the Manu ancestor or
proto-Beijing strain type (lineage 2.1, 19.8%) (Table 1).

The 35k isolates were split into training (N = 17,903,
50.7%; all MTBC; 620,652 SNPs) and test (N = 17,395,
49.3%, all MTBC except lineages 8 and 9; 572,021 SNPs)
datasets (Table 1; Additional file 1: Table S1). A phylo-
genetic tree was constructed on the training isolates and
confirmed the clustering by lineage and sub-lineages
(Fig. 2). Similarly, a principal component analysis of the
35k isolates using the ~ 1 million SNPs revealed the ex-
pected clustering by lineage or species (Additional file 1:
Fig. S1(a)). Phylogenetic trees were constructed for each
lineage separately and confirmed the sub-lineage and
strain-type clustering (Additional file 1: Fig. S1(b)-(f)).
However, by assessing the fine-scale clustering of sub-
lineages predicted by the 62-SNP barcode, outlying sam-
ples were revealed and suggested a need for the re-
positioning of mutations underlying the clades or, alter-
natively, the creation of new sub-lineages that were on
long branches (Additional file 1: Fig. S12(b, c)). In some
cases, new sub-lineages reflected existing RD- or
spoligotype-based strain classifications which were im-
perfectly or not captured using the 62-SNP barcode (see
Additional file 1: Fig. S2 (d,e)).

Barcoding SNPs
By traversing the whole MTBC and lineage-based phylo-
genetic trees using a semi-automated algorithm, it was
possible to modify sub-lineages within the flexible no-
menclature structure of the previous barcode [1], as well
as define clade-informative SNPs. The phylogenetic ana-
lyses characterised 27 additional (sub-)lineages covering
lineages 1 (8), 3 (2), 4 (15), 8 (1) and 9 (1). The final
number of (sub-)lineages in Mtb was 85 (L (ineage)1 16,
L2 7, L3 7, L4 52, L7 1, L8 1, L9 1) and M. africanum
was 2 (L5 1, L6 1) (Table 1; Fig. 2), requiring 87 SNP
markers. A further three SNP markers were required to

Fig. 1 The global distribution of the 35,298 Mycobacterium tuberculosis complex study isolates
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Table 1 Mycobacterium tuberculosis complex lineages and sub-lineages across the 35,298 isolates

Lineage No. training
(test)

No. countries train
(test)

% MDR-
TB

No. transmission
[clusters]

Potential barcoding
SNPs*

Robust
SNPs**

1 2162 (1203) 25 (42) 7.8 354 [130] 344 17

1.1 1487 (530) 19 (36) 5.5 218 [82] 23 2

1.1.1 706 (170) 8 (16) 3.8 60 [25] 41 5

1.1.1.1 358 (120) 5 (9) 2.1 28 [11] 52 3

1.1.2 459 (278) 15 (25) 9.0 83 [31] 109 3

1.1.3 299 (80) 11 (16) 3.2 73 [25] 42 2

1.1.3.1 84 (31) 7 (13) 3.5 10 [4] 68 2

1.1.3.2 155 (33) 7 (7) 1.1 57 [18] 113 6

1.1.3.3 32 (7) 5 (4) 10.3 4 [2] 36 2

1.2 309 (550) 13 (21) 7.5 40 [16] 60 2

1.2.1 28 (44) 3 (7) 6.9 6 [2] 78 5

1.2.2 277 (505) 13 (18) 7.5 34 [14] 159 8

1.2.2.1 244 (453) 12 (18) 6.9 34 [14] 34 1

1.3 366 (122) 16 (19) 18.0 96 [32] 71 2

1.3.1 88 (25) 7 (11) 10.6 20 [7] 50 4

1.3.2 278 (97) 16 (17) 20.3 76 [25] 83 4

2 4556 (4322) 45 (56) 36.2 1778 [413] 72 4

2.1 95 (41) 6 (9) 19.8 27 [10] 172 4

2.2 4461 (4281) 45 (56) 36.5 1751 [403] 79 17

2.2.1 4239 (4007) 45 (56) 35.1 1632 [389] 17 2

2.2.1.1 338 (443) 19 (18) 28.0 98 [40] 6 2

2.2.1.2 29 (21) 6 (9) 36.0 10 [3] 5 1

2.2.2 222 (273) 16 (15) 59.0 119 [14] 54 4

3 2654 (1271) 24 (31) 13.4 847 [242] 166 8

3.1 715 (362) 15 (22) 9.5 372 [80] 1 1

3.1.1 387 (280) 11 (16) 6.2 243 [43] 17 2

3.1.2 295 (69) 13 (8) 14.3 124 [35] 8 2

3.1.2.1 98 (25) 8 (7) 19.5 25 [12] 15 7

3.1.2.2 48 (0) 3 (0) 0 36 [2] 85 6

3.2 89 (31) 6 (9) 10.0 31 [7] 85 2

4 8320 (9883) 44 (99) 18.5 3109 [731] 94 3

4.1 2594 (2325) 35 (64) 18.5 1043 [191] 58 3

4.1.1 889 (482) 20 (27) 18.1 403 [72] 30 13

4.1.1.1 210 (158) 14 (16) 9.5 92 [20] 39 2

4.1.1.2 55 (44) 4 (6) 2.0 33 [3] 92 2

4.1.1.3 579 (247) 18 (23) 22.4 266 [44] 58 3

4.1.1.3.1 207 (13) 3 (3) 9.6 158 [5] 46 3

4.1.2 1612 (1743) 32 (61) 17.3 622 [113] 13 1

4.1.2.1 1383 (1087) 32 (60) 22.5 563 [96] 49 3

4.1.2.1.1 231 (18) 1 (1) 97.6 221 [2] 73 3

4.1.3 28 (70) 7 (10) 57.1 4 [2] 124 3

4.1.4 24 (12) 8 (7) 38.9 10 [2] 60 4

4.2 481 (532) 23 (26) 28.0 87 [32] 116 8
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Table 1 Mycobacterium tuberculosis complex lineages and sub-lineages across the 35,298 isolates (Continued)

Lineage No. training
(test)

No. countries train
(test)

% MDR-
TB

No. transmission
[clusters]

Potential barcoding
SNPs*

Robust
SNPs**

4.2.1 206 (240) 13 (20) 28.3 34 [13] 26 2

4.2.1.1 54 (148) 9 (10) 6.9 2 [1] 36 2

4.2.2 274 (288) 20 (18) 28.1 53 [19] 20 2

4.2.2.1 74 (41) 10 (6) 45.2 22 [7] 26 2

4.2.2.2 120 (139) 11 (14) 27.8 15 [7] 31 10

4.3 2507 (2928) 30 (75) 23.1 993 [244] 38 2

4.3.1 58 (67) 7 (15) 6.4 40 [3] 28 1

4.3.1.1 37 (2) 3 (1) 0.0 36 [1] 52 2

4.3.2 409 (1200) 16 (21) 7.2 75 [32] 75 1

4.3.2.1 291 (917) 6 (7) 3.7 50 [23] 55 4

4.3.3 648 (810) 25 (57) 41.3 210 [66] 33 1

4.3.4 1366 (807) 23 (45) 24.1 664 [142] 8 1

4.3.4.1 194 (170) 14 (30) 28.9 49 [14] 19 4

4.3.4.2 1170 (635) 22 (34) 23.1 614 [128] 26 1

4.3.4.2.1 877 (287) 13 (18) 5.6 457 [103] 11 1

4.4 560 (1059) 24 (29) 15.7 190 [63] 37 2

4.4.1 420 (861) 22 (25) 16.0 149 [48] 38 4

4.4.1.1 379 (755) 21 (24) 17.8 136 [44] 16 1

4.4.1.1.1 75 (206) 5 (4) 19.6 22 [9] 60 3

4.4.1.2 39 (106) 8 (6) 1.4 13 [4] 95 9

4.4.2 112 (181) 7 (9) 14.7 33 [13] 7 2

4.5 293 (357) 17 (17) 15.7 49 [22] 50 1

4.6 340 (442) 21 (25) 22.1 139 [39] 12 1

4.6.1 73 (296) 9 (12) 29.8 24 [8] 53 3

4.6.1.1 29 (126) 6 (7) 1.3 14 [3] 22 1

4.6.1.2 40 (154) 9 (11) 54.6 10 [5] 37 1

4.6.2 164 (89) 16 (17) 15.4 65 [20] 22 1

4.6.2.1 2 (0) 1 (0) 0 2 [1] 45 2

4.6.2.2 150 (89) 14 (17) 15.9 60 [18] 106 6

4.6.3 23 (9) 3 (4) 0 20 [3] 135 3

4.6.4 23 (7) 5 (4) 50.0 10 [2] 49 1

4.6.5 23 (18) 5 (5) 19.5 9 [3] 8 2

4.7 158 (200) 18 (23) 10.3 56 [20] 10 3

4.8 1051 (1807) 29 (55) 7.8 419 [88] 17 1

4.8.1 63 (90) 7 (4) 22.2 21 [5] 46 3

4.8.2 116 (5) 3 (2) 0 113 [1] 42 2

4.8.3 21 (3) 1 (1) 0 19 [1] 34 1

4.9 243 (141) 14 (22) 12.5 114 [24] 37 3

4.9.1 74 (15) 6 (3) 5.6 44 [1] 49 3

5 26 (255) 6 (12) 14.6 2 [1] 460 13

6 32 (135) 6 (13) 3.6 5 [2] 214 10

7 38 (26) 3 (2) 0 3 [1] 837 38

8 2 (0) 1 (0) 0 0 [0] 888 43
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discriminate M. bovis, M. caprae and M. orygis, which
have highly similar mycobacterial genomes, and there-
fore, their accurate typing will greatly assist with the
misclassification of M. bovis infections.
To find informative SNPs for each of the 90 MTBC

clades, we used the population differentiation metric FST
to identify mutations that were only present in the iso-
lates in the selected (sub-)lineage of interest (FST = 1).
We identified 8128 potential barcoding SNPs (with FST =

1) across the 90 clades (Table 1). These barcoding SNPs
were distributed evenly genome-wide, with no visible
clustering of informative mutations for individual line-
ages (Additional file 1: Fig. S3). Of these SNPs, 7282
(89.6%) were in genic regions, with mutations leading to
4699 non-synonymous (NS) and 2564 synonymous (S)
amino acid changes, as well as 20 changes in non-coding
genes. By focusing on essential genes, 889 (10.9%) SNPs
remained (499 NS, 390 S). Furthermore, variants in

Table 1 Mycobacterium tuberculosis complex lineages and sub-lineages across the 35,298 isolates (Continued)

Lineage No. training
(test)

No. countries train
(test)

% MDR-
TB

No. transmission
[clusters]

Potential barcoding
SNPs*

Robust
SNPs**

9 3 (0) 1 (0) 0 0 [0] 160 5

M. bovis 81 (281) 9 (12) 0.8 42 [11] 93 3

M.
caprae

3 (7) 2 (3) 0 0 [0] 225 5

M. orygis 26 (12) 4 (4) 0 0 [0] 743 28

Totals 17,903 (17,395) 165 (269) 21.0 6140 [1531] 8128 421

Bolded are changes from the barcode in reference [1]—either new sub-lineages or new barcoding SNPs; MDR-TB multidrug-resistant TB, which is resistant to at
least rifampicin and isoniazid drugs. *All potential barcoding SNPs (FST = 1). **Final robust SNP set, based on synonymous changes in essential and non-drug
resistance genes only (except 12 sub-lineages which had no informative SNPs in essential genes; see Additional file 1: Table S2)

Fig. 2 Phylogenetic tree of Mycobacterium tuberculosis complex isolates. A representative tree with a maximum of 10 isolates per sub-lineage
(important regions of difference (RDs) are also highlighted)
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drug-resistance-associated genes were removed, leaving
824 SNPs (464 NS and 360 S mutations). Across all line-
ages, except lineages 8 (N = 2) and 9 (N = 3) which had
small sample sizes, we compared the distribution of gene
functions for all potential barcoding SNPs in all charac-
terised genes (7060/7282 SNPs) with only those in es-
sential (and non-drug resistance) loci (790/824 SNPs)
(Additional file 1: Fig. S4). The distribution of gene func-
tion for all potential barcoding SNPs is similar across all
lineages. However, after filtering for essential and non-
drug-resistant genes, lineage 2 has a relatively high pro-
portion of non-synonymous SNP mutations in cell wall
and cell process genes, whilst for lineage 6, M. bovis, M.
caprae and M. orygis, there are relatively higher propor-
tions of non-synonymous SNP mutations in intermedi-
ary metabolism and pathway genes. For 11 (sub-
)lineages, there were no potential barcoding SNPs lying
within essential and non-drug resistance genes, so they
were identified in non-essential and non-PE/PPE loci
(Additional file 1: Table S3) (180 SNPs, 61 synonymous
mutations).
By considering only the SNPs with synonymous

changes, similar to the selection strategy applied in [1], a
total of 421 SNPs were considered suitable for barcoding
the 90 (sub-)lineages (Table 1; Additional file 1: Table
S2). Of these, 20 SNPs represented (sub-)lineages in the
62-SNP barcode [1] and were therefore retained, leading
to 70 new SNPs chosen for final (sub-)lineage classifica-
tion (Additional file 1: Table S3). Across the 60 (sub-
)lineages common to the 62- and 90-SNP barcodes, the
40 new SNPs had higher FST values than those in the
old barcode (Additional file 1: Fig. S5). Using the test set
(N = 17,395) which had representation of 86 of the 90
(sub-)lineages, we found that the minimal set of 90 SNPs
had perfect predictive performance for all clades (all sen-
sitivities and specificities of value 1). This analysis ex-
cluded four (sub-)lineages (3.1.2.2, 4.6.2.1, 8 and 9),
which had no test samples.

Comparisons to other software
The barcode was compared to lineage predictions from
SNP-IT [30] software, a 27 strain-type system covering
MTBC, including 6 animal lineages that are not present
in our large dataset. First, we assessed the assigned
major MTBC lineages (1–6) by both barcodes and found
complete concordance. Second, we quantified how the
increased number of strain types in our barcode (n = 90)
improved the resolution of sub-lineage assignment over
the SNP-IT tool. For 14 of the 21 SNP-IT strain types
present in our data, the 90-SNP approach provides
higher resolution of clades (range 2 to 15 sub-lineages
per SNP-IT clade) (Additional file 1: Fig. S6). Six other
strain types have direct mapping between our barcode
and SNP-IT, and there is one instance where isolates

classified as M. bovis with our barcode are further classi-
fied into M. bovis BCG and M. bovis bovis using SNP-IT.

Discussion
MTBC strain types and lineages are distributed phylo-
geographically and have been associated with differences
in the emergence of drug resistance, transmissibility,
virulence, host response, vaccine efficacy, disease site
and severity [5, 6, 34]. However, further research into
lineage, genotype–phenotype associations are required.
Such research needs to be underpinned by molecular
barcodes of MTBC (sub-)lineages, strain types and spe-
cies. Here, we updated a 62-SNP barcode that forms a
highly resolved phylogenetic identification system that
determines 7 lineages, 64 sub-lineages and M. bovis, but
was constructed using ~ 1600 MTBC isolates with WGS
data [1]. Using twenty-fold more MTBC isolates with
WGS data, we identified and validated a set of 90 robust
SNPs (of 421 alternatives) to cover a global phylogeny of
9 lineages, 87 sub-lineages, M. bovis, M. caprae and M.
orygis. These SNPs can be used to construct high-
resolution and reproducible phylogenies, which can be
incorporated within diagnostic assays and assess geno-
type–phenotype associations. By extending an estab-
lished 62-SNP barcode system with a flexible
nomenclature [1], it was possible to update and add
seamlessly (sub-)lineages and species and in the future
include potentially novel strain types should they be re-
ported. Such modifications could involve inclusion of
SNPs to barcode other MTBC animal lineages or parti-
tioning of M. africanum lineages 5 and 6 into sub-
lineages [3]. Further, incorporating drug resistance loci
will further enhance the usefulness of the 90-SNP barcode
as an important tool for tuberculosis control and elimin-
ation activities worldwide. To assist this, the 90-SNP vari-
ants have been incorporated into the publicly available
TB-Profiler informatics tool [14], which predicts resistance
to 14 anti-tuberculosis drugs from WGS data.
Our barcode development focused on SNPs, but future

work could include other types of strain-specific poly-
morphisms (e.g. insertions, deletions and large structural
variants), which are less common than SNPs, but may
have major functional consequences. An analysis of the
gene ontologies of the barcoding SNPs revealed some
differences across lineages, but there is a need to the
characterise functional effects of the lineage-specific
SNP variants, as these could provide insights into disease
control measures. Overall, we have provided an updated
molecular barcode for MTBC strain types, with ninety
robust markers that can be detected from applications of
WGS or integrated within high-throughput genotyping
or sequencing (e.g. amplicon) platforms to inform on-
going TB surveillance and control.
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Conclusions
The use of molecular barcoding of MTBC bacteria caus-
ing tuberculosis can provide insights into outbreaks and
help to reveal strain types that are more virulent and
prone to drug resistance. In an analysis of 35,298 isolates
from MTBC, we update an established 62-SNP barcode
with a minimal set of 90 genetic markers, which now
cover M. tuberculosis (7 lineages, 85 sub-lineages), M.
africanum (2 lineages), M. bovis, M. caprae and M. ory-
gis bacteria. The new barcode has been implemented
within the publicly available TB-Profiler informatics tool,
to assist the rapid, simple and reliable phylogenetic iden-
tification of individual MTBC isolates, thereby aiding
clinical studies in the tracking, maintenance and pheno-
typic determination of MTBC pathogens.
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