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Abstract

We present a general framework which describes the systematic (binary) scenario of indi-

viduals either taking treatment or not for any reason, over the course of mass drug adminis-

tration (MDA)—which we refer to as ‘adherence’ and ‘non-adherence’. The probability

models developed can be informed by observed adherence behaviour as well as employed

to explore how different patterns influence the impact of MDA programmes, by the use of

mathematical models of transmission and control. We demonstrate the interpretative value

of the developed probability model employing a dataset collected in the TUMIKIA project, a

randomised trial of deworming strategies to control soil-transmitted helminths (STH) by

MDA conducted in coastal Kenya. We stratify our analysis by age and sex, although the

framework which we introduce here may be readily adapted to accommodate other stratifi-

cations. Our findings include the detection of specific patterns of non-adherence in all age

groups to varying extents. This is particularly apparent in men of ages 30+. We then demon-

strate the use of the probability model in stochastic individual-based simulations by running

two example forecasts for the elimination of STH transmission employing MDA within the

TUMIKIA trial setting with different adherence patterns. This suggested a substantial reduc-

tion in the probability of elimination (between 23-43%) when comparing observed adher-

ence patterns with an assumption of independence, with important implications for

programmes. The results here demonstrate the considerable impact and utility of consider-

ing non-adherence on the success of MDA programmes to control neglected tropical dis-

eases (NTDs).
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Author summary

Mass drug administration (MDA) is an important tool in the prevention of morbidity

caused by various NTDs and in the reduction of their transmission. Due to a variety of

social and behavioural reasons, many people will either not be offered or refuse such treat-

ment, and if this behaviour is recurring at an individual level, then control measures may

face a challenge in achieving their stated goals. Accurately describing the patterns of indi-

vidual adherence or non-adherence to MDA control measures for NTDs from data, fol-

lowed by their use in simulated scenarios is a relatively recent development in the study of

NTDs. Past analyses assessing individual adherence have informed the approach we take

in this work. However, we have sought to provide a framework which encapsulates as

many types of adherence behaviour as possible to facilitate the assessment of impact in

mathematical models of parasite transmission and control. Our example application to

the TUMIKIA data highlights the importance of such a general framework as we find a

dependence on past behaviour that may have been missed in standard statistical analyses.

1 Introduction

Recent reviews, guidelines and analyses predicting the outcome of mass drug administration

(MDA) to control the transmission of various neglected tropical diseases (NTDs) all emphasise

the importance of individual adherence in successfully reaching elimination targets [1–9].

Such analyses have taken a variety of approaches in describing how participants in a given

MDA programme with multiple rounds can either not be offered, or actively avoid, treatment

in a potentially repetitive manner. There are a wide range of published studies of treatment

adherence in the literature and mathematical plus statistical models of adherence are included

in micro-simulations of infectious agent disease control strategies across a great variety of

infectious agents including HIV, tuberculosis and NTDs [1, 3–8, 10]. A much larger literature

exists for non-infectious diseases such as blood pressure control and statin use.

Although a range of terms have been used to describe this phenomenon [7], here we refer

to the binary scenario of individuals either taking treatment or not, for any reason, over the

course of multiple rounds of MDA as ‘adherence’ or ‘non-adherence’. Ultimately, the effect

that this behaviour has on the success or failure of control through MDA is of great importance

and not fully recognized in policy formulation concerning the monitoring and evaluation of

MDA programmes by WHO and national governments.

In this paper, we develop a general approach to describe individual adherence or non-

adherence to MDA. Our principal aim is to provide a framework within which as many pat-

terns or adherence behaviour as possible are captured by a general probability model so that

the evaluation of the importance of adherence patterns on the impact of MDA programmes

can be precisely quantified. This also involves employing, for example, models of parasite

transmission and control by MDA. To illustrate how our methodology may be implemented

and interpreted in practice, we apply it to data collected during the TUMIKIA project: a recent

cluster randomised, controlled trial of the impact of MDA on the transmission of STH infec-

tions in Kwale County, Kenya [11–13]. A statistical analysis has already been performed on

this dataset, as described in Ref [13], and so the analysis we present here is to illustrate the

application of our probability model only.
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2 Methods

2.1 Model definitions

In this section, we will lay out a general probability model for the treatment of adherence

across multiple rounds in an MDA intervention programme. In S3 Appendix, we discuss

other implementations of adherence in probability models and how they fit within our general

framework.

At the level of an individual involved in an MDA treatment programme, we describe adher-

ence as a binary ‘choice’, made at each round of MDA, of whether to receive treatment or not

(or if treatment is, or is not, accessible to the individual). We associate a probability with this

‘choice’, which is composed of both an individual’s access to treatment and their personal

choice to take it, making each round a Bernoulli trial for each individual.

We identify three main ways in which the probability of adherence can vary in a population

over the course of an MDA intervention.

1. Dependence on past behaviour: An individual’s probability of adhering in the current

round may depend on their individual history of adherence in past rounds. This could be

alternating (for example, being treated in the previous round may make individuals feel

their participation in this round is less important, or prior experience of unpleasant side-

effects may prevent adherence) or may be persistent (for example, those who live in hard-

to-reach or marginalised households may be consistently missed).

2. Time dependence: everyone involved in the trial may be subject to external influences that

change over time. For example, enthusiasm or funding for the treatment programme may

decline as it proceeds, or unforeseen sociological or political events may change the popula-

tion’s inclination to take part in the programme. This will result in the probability of treat-

ment in a given round for a given individual being explicitly dependent on time and is

distinct from dependence on past behaviour.

3. Population-level heterogeneity: the probability of adherence may vary systematically across

the population on the basis of socio-demographic stratifying characteristics. That is, indi-

viduals may have a individual probability of adherence that they retain across multiple

rounds of the intervention. In this case, the probability of adherence will have a distribution

across the population. Typically, population-level heterogeneity may be strongly correlated

with covariates such as sex or age, in which case it can be represented by a stratification of

the population into sub-groups, each with their own adherence probability.

In reality, any model of adherence might include one or more of these sources of variability,

or none at all in the default case in which the adherence probability is constant across all indi-

viduals and all treatment rounds and does not depend on past history. For the purpose of illus-

tration, we can create a tree of possible model types based on the possible sources of variability

(see Fig 1). Models can be stratified into types which have some degree of dependence on the

past behaviour of individuals and those that do not. Within each group, there are models with

and without population heterogeneity in adherence (heterogeneous and homogeneous popu-

lations, respectively) and those with and without time-dependent adherence probabilities

(time-dependent and independent, respectively).

The distinctions above are of critical importance as it is possible for example for a treatment

programme to suffer severely from past behaviour-dependent non-adherence without any

apparent heterogeneity in adherence within the population. They also allow us to categorise

and clarify models of adherence already described in the literature [1, 4–8].
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The Plaisier model assigns a propensity score of adherence to each individual which they

then retain for the duration of the MDA programme [14, 15]. As such, in its original time-

independent form, this model would be characterised by us as a heterogeneous population,

time-independent model with no explicit individual dependence on past behaviour. Note,

however, that more recently developed versions of the Plaisier model include time dependent

effects through coverage variability between rounds. We discuss the relationship of the Plaisier

model (and others [5]) to our categorisation of adherence models with more detail in S3

Appendix. Additional technical details and calculations may also be found in S1 Appendix for

the three adherence categories.

2.2 Individual past behaviour-dependent adherence

2.2.1 Basic model. When the probability of an individual taking treatment is not depen-

dent upon any of their past behaviour, then it is simply given by the coverage cn in each round

n of MDA. In the absence of population heterogeneity, this probability would then apply to all

individuals within a given cohort—a case which corresponds to either the 6th or 8th row of Fig

1, depending on whether the coverage changes over time, i.e., between rounds.

For the case of a homogeneous population with a dependence on past behaviour between

successive rounds, let us consider the dynamics of a single individual. In this case, the model

becomes a simple Markov chain. The possible patterns of adherence behaviour by an individ-

ual after two successive rounds of treatment are TT, TF, FT and FF, where T and F are receiv-

ing and not receiving treatment, respectively. Let the probability of receiving treatment in the

first round be set to P(T) = α. In round 2, we now fix the conditional probability of getting

Fig 1. A decision tree illustrating the possible classes of behaviour which may be characterised in adherence models. In the illustrations, colours of

individuals denote unique probabilities of receiving treatment and arrows to previous rounds denote dependency of these probabilities on past

behaviour.

https://doi.org/10.1371/journal.pntd.0009112.g001
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treated, given treatment in the first round as P(T0|T) = β. Let us also set a corresponding condi-

tional probability for not being treated in the second round given that there was no treatment

in the first round as P(F0|F) = γ. As such, β and γ are now measures of consistent behaviour.

To avoid unnecessary repetition, we shall once again use the notation pn to denote the prob-

ability of treatment in the n-th round. Assuming that the conditional probabilities β and γ are

constant, the time-independent Markov model may be mapped to the following recursion

relation

pn ¼ bpn� 1 þ ð1 � gÞð1 � pn� 1Þ : ð1Þ

In S1 Appendix, we demonstrate how to obtain the following solution to Eq (1)

pn ¼ al
n� 1
þ qð1 � ln� 1

Þ : ð2Þ

Where we have defined

p0 � a ; l � bþ g � 1 ; q �
1 � g

2 � g � b
: ð3Þ

Notice that by matching pn to the coverage of treatment in a given population, one may

directly compare the impact of adherence models such as Eq (1) to those with past behaviour-

independent adherence. Furthermore, by setting λ = 0 in Eq (2) one finds the model for past

behaviour-independent adherence that is time-independent, i.e., pn = β = 1 − γ.

Any sequence of treatments can be seen as a set of alternating adherent and non-adherent

runs. A key statistic in the context of preventive chemotherapy is the run length (in rounds)

over which an individual adheres or fails to adhere. For an adherence run, this is the number

of consecutive treatment adherences, given an initial adherence. This can also be thought of as

the first passage time to failure. Since the P(T0|T) = β is constant, the run length is distributed

according to a geometric distribution, with

Pðn
T
Þ ¼ b

n� 1
ð1 � bÞ ; Eðn

T
Þ ¼

1

1 � b
¼

1

1 � l

1

1 � q
: ð4Þ

Correspondingly, for a run of failures,

Pðn
F
Þ ¼ gn� 1ð1 � gÞ ; Eðn

F
Þ ¼

1

1 � g
¼

1

1 � l

1

q
: ð5Þ

Any long run of treatment choices by an individual will breakdown into an alternating

sequence of F and T runs. Hence, the probability of a round chosen at random being T, P(T),

is

PðTÞ ¼
Eðn

T
Þ

Eðn
F
Þ þ Eðn

T
Þ
¼ q : ð6Þ

From Eqs (4) and (5), it is clear that as λ approaches 1, the length of both success and failure

runs grows as 1/(1 − λ). In the absence of past behaviour dependence, λ = 0 and the adherent

and non-adherent run lengths are given by 1/(1 − q) and 1/q, respectively.

2.2.2 Statistical inference from data. Let us now only consider two rounds of treatment

to illustrate how we may calculate the important quantities for statistical inference of the time-

independent Markov model from a real dataset. Recall that the possible patterns of adherence

behaviour by an individual after two successive rounds of treatment are TT, TF, FT and FF,

where T and F are receiving and not receiving treatment, respectively. Once again, let: the

probability of treatment in the first round be set to P(T) = α; the conditional probability of
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getting treated in the second round, given treatment in the first round be set to P(T0|T) = β;

and the conditional probability for not being treated in the second round given that there was

no treatment in the first round be set to P(F0|F) = γ.

In this model, there are effectively 4 types of people with probabilities and behaviours,

mapped out in Table 1. Using the probability table, one may infer directly that the the likeli-

hood LðDjθÞ of the data D = {NT, NF, NTT, NTF, NFT, NFF}—where NT and NF are the number

treated and not treated in the first round and NTT is the number treated in the first and the sec-

ond rounds, etc.—is a multinomial distribution, where θ 2 Oθ is now a 3-vector defined over

the model parameter space θ = (α, β, γ) within the prior domain Oθ = {θ|θ1 2 [0, 1], θ2 2 [0, 1],

θ3 2 [0, 1]}. The multinomial can then be factored into independent functions of the three

parameters, such that

LðDjθÞ ¼ aNTð1 � aÞ
NFb

NTTð1 � bÞ
NTFgNFFð1 � gÞ

NFT : ð7Þ

The likelihood above is effectively three independent beta distributions, one in each of the

parameters, such that the posterior distribution PðθjDÞ becomes

PðθjDÞ ¼
1

E
Betaða;NT þ 1;NF þ 1ÞBetaðb;NTT þ 1;NTF þ 1ÞBetaðg;NFF þ 1;NFT þ 1Þ ;

ð8Þ

where we have assumed a flat prior π(θ)/ 1 to derive the following Bayesian evidence normal-

isation

E ¼
GðNTT þ 1ÞGðNTF þ 1ÞGðNFT þ 1ÞGðNFF þ 1Þ

ðNT þ 1ÞðNF þ 1ÞGðN þ 2Þ
; ð9Þ

and N = NT + NF is defined as the total number of individuals.

Note here that Eqs (7) and (9) may be generalised to the case where n rounds of treatment

have taken place. We have provided these expressions in S1 Appendix.

2.3 Time-dependent adherence and more general behaviour

2.3.1 Introducing the choice matrices. A significant generalisation of Eq (1) introduces

the lower triangular matrices, with elements CT
nn0 and CF

nn0 corresponding to the conditional

probabilities of treatment and non-treatment in round n given treatment and non-treatment

in round n0, respectively, such that

pn ¼
Xn� 1

n0¼1

½CT
nn0pn0 þ CF

nn0 ð1 � pn0 Þ� : ð10Þ

We shall hereafter refer to the above matrices as ‘choice matrices’. In S1 Appendix we demon-

strate that the model parameterisation defined in Eq (10) is extremely general—encapsulating

all of the possible adherence behaviours illustrated in Fig 1.

Table 1. Probability table corresponding to two successive rounds of treatment.

Behaviour Probability

TT αβ

TF α(1 − β)

FT (1 − α)(1 − γ)

FF (1 − α)γ

https://doi.org/10.1371/journal.pntd.0009112.t001
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2.3.2 Lower diagonal choice matrices: The time-dependent Markov model. When the

only nonzero elements of the choice matrices in Eq (10) are along the lower diagonals, i.e.,

such that only CT
n n� 1
¼ bn n� 1 6¼ 0 and CF

n n� 1
¼ 1 � gn n� 1 6¼ 0, the system is described by a

time-dependent Markov process with recursion relation

pn ¼ bn n� 1pn� 1 þ ð1 � gn n� 1Þð1 � pn� 1Þ : ð11Þ

Following a similar argument to the one used in solving the homogeneous Markov model

(which is provided in detail in S1 Appendix), we may obtain a solution to Eq (11), which is

given by

pn ¼ a
Yn

n0¼2

on0 þ
Xn

n@¼2

ð1 � gn@n@ � 1Þ
Yn

n0¼n@

on0 ; ð12Þ

where we have defined an important new quantity

on � bn n� 1 þ gn n� 1 � 1 : ð13Þ

Notice, firstly, that when ωn = 0 the system reverts to a time-dependent past behaviour-

independent adherence model, i.e., without past behaviour dependence such that pn = βnn−1 =

1 − γnn−1. By analogy with the time-independent Markov model, |ωn| 6¼ 0 signals the presence

of some degree of past behaviour-dependent adherence behaviour. In more detail, for succes-

sive rounds over which ωn> 0, the system will relax towards the steady state and when ωn< 0

this will be accompanied by oscillatory behaviour. Note also that ωn may act as an indicator for

the severity of adherence and non-adherence behaviour in the system—where larger absolute

values for ωn approaching a maximum of 1 will indicate increasingly past behaviour

dependence.

At the extrema of: ωn = 1, individuals repeat their past behaviour exactly and indefinitely,

i.e., TTTTT. . . and FFFFF. . .; and ωn = −1, individuals repeat the opposite of their past behav-

iour exactly and indefinitely, i.e., TFTFT. . . and FTFTF. . .. The value of ωn is therefore a useful

indicator for the type of adherence behaviour in the relatively general description of time-

dependent Markov models.

2.3.3 Fitting the model to adherence data. The universality of the choice matrix

approach suggest that it is an ideal candidate for parameterisation of the inference problem

from data and model comparison. Let the data now correspond to a set of n-vectors D = {X}

where each individual’s adherence or non-adherence behaviour in the n-th round is recorded,

such that Xn = T, F. Using Eq (10) the full generalisation of the likelihood (which supports all

of the possible adherence models) becomes

LðDjθÞ ¼
Y

8Xn2D

Yn

n0¼1

Xn0 � 1

n@¼1

½CT
nn01Xn0 ¼T

þ CF
nn01Xn0 ¼F

�

( )

; ð14Þ

where 1A denotes an indicator function which takes value unity when condition A is satisfied,

else it vanishes.

The large number of available degrees of freedom in Eq (14) motivates a systematic

approach to inferring the choice matrix components from a given set of data. To isolate the

many degrees of freedom and compared between the relative evidence for them in the data, we

construct models where past behaviour-dependent adherence only occurs for a single round

and is past behaviour dependent to only one other round. In the choice matrix, all other

degrees of freedom are assumed to be time-dependent past behaviour-independent adherence,
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i.e. CT
nn0 ¼ CF

nn0 ¼ cn. The likelihoods and Bayesian evidence normalisations for this more

restricted set of models are calculated in S1 Appendix.

2.4 Population heterogeneity in adherence

The probability of adherence may vary greatly across a population of individuals. The first pos-

sible form that this heterogeneity may take can be attributed to age, gender and social plus

behavioural factors. In such cases, stratification of the population into separate cohorts for

study is an appropriate tool to quantify this variation.

The second possible form that population heterogeneity could take may not be immediately

attributable to social or demographic groupings. In such situations, the adherence probability

for an individual can be drawn from a distribution which applies to the entire population or

defined sub-group of the population within the study. This approach is the same as used in

other models in the literature (see S3 Appendix for more details). We shall now briefly elabo-

rate on how one might include this form of heterogeneity in the formalism we have introduced

in this work through a simple, generic example.

To illustrate the generic effect of the population heterogeneity described above on our indi-

vidual adherence probabilities, let us consider the time-independent Markov model we intro-

duced earlier. The long-term probability of adherence q in Eq (2) may itself be randomly

drawn from a population heterogeneity distribution Ppop(q) for an individual within the speci-

fied cohort of study, such that q ~ Ppop(q). Note also that λ in Eq (2) need not vary between

individuals at the same time. Using the results given in Eqs (4) and (5) for the same model one

may deduce that the mean adherent and non-adherent run lengths are modified by

Eðn
T
Þ ¼

1

1 � l
Epop

1

1 � q

� �

ð15Þ

Eðn
F
Þ ¼

1

1 � l
Epop

1

q

� �

; ð16Þ

where Epop(�) denotes taking an expectation value with the distribution Ppop(q). Hence,

depending on the choice for this distribution, one may either shorten or lengthen the mean

run lengths across the population accordingly. Note that due to the fact that q is a probability,

a possible and widely applicable candidate for Ppop(q) is the beta distribution.

2.5 Dataset used

In the four rounds of individual adherence data recorded in the TUMIKIA project of MDA to

control STH infections, we have split the study population into pre-school-aged children (pre-

SAC, ages 0-4—where only ages 2-4 were eligible for treatment), school-aged children (SAC,

ages 5-14) and other adult age categories. The individuals considered in the TUMIKIA dataset

comprise a randomly sampled cohort of 21978 individuals living in 40 ‘community units’

(each constituting around 1000 households) in the biannual treatment arm, in which albenda-

zole was targeted to all individuals aged over two years during house-to-house delivery cam-

paigns conducted by community health volunteers every six months. Importantly, the

movement of individuals between age groups is not explicitly specified in the model, and so

some time variation in the inferred compliance behaviour may be attributable to the process of

an individual moving into a new age category over the course of the trial.
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3 Results

3.1 Overview of statistical analysis

In Fig 2 we provide one example set of plots from S2 Appendix for the SAC (4-15) age group

of the TUMIKIA adherence dataset which gives the maximum likelihood as well as the limits

of the marginalised 95% credible region for the conditional probabilities given treatment (filled

points) or non-treatment (hollow points) in a previous round of the overall, male and female

participants in the top, middle and bottom rows, respectively. Note that we are using the sym-

bolic representation for behaviours which we introduced in Sec 2—receiving treatment in a

given round is denoted by a ‘T’, whereas not receiving treatment in a given round is denoted

by an ‘F’. In the left column the constant conditional probabilities between any given sequen-

tial pair of rounds have been inferred, which corresponds to the time-independent probability

model. In the right column all possible round pair dependencies are considered (indicated by

the arrows on the horizontal axis), where in each case the components corresponding to a

given round were measured assuming all other respective rounds were inferred to be from

past behaviour-independent adherence. In all plots, above each pair of components we have

also provided the log-Bayes factors [16] (see S2 Appendix for further explanation), where the

evidence for has been evaluated using the relations provided in S1 Appendix and the reference

model evidence has been set to that of time-dependent past behaviour-independent adherence

for all components.

From Fig 2, the pre-SAC age group appears to be well-described by a time-dependent prob-

ability model and past behaviour-dependent non-adherence is clearly present. This may be

identified by the largest log-Bayes factor values being given in the red-coloured right column

plots for all three sets of plots. However, the conditional probabilities in all groups appear to

drift closer together by round 4 of treatment, which signals a gradual transition from past

behaviour-dependent to independent adherence. From these plots we also report no evidence

for the existence of dependencies between rounds in the pre-SAC age group that depart from a

Markovian description (as can be inferred from the comparatively small log-Bayes factors for

the blue and green conditional probabilities in the right column of all plots). We also have a

detailed description of all of these findings and those for all of the other age categories in S2

Appendix.

In Table 2 we have also provided the ωn values, calculated using Eq (13), for each age group

and sex inferred from the TUMIKIA project dataset. This value was shown in Sec 2 to be an

indicator of how past behaviour influences the adherent and non-adherent behaviour of indi-

viduals in a future round of MDA treatment, with larger (positive or negative) values corre-

sponding to a greater degree of dependence on past behaviour (individuals systematically non-

adhering and adhering with more probable repetition, respectively) and smaller (positive or

negative) values corresponding to an individual’s adherence pattern showing less of a depen-

dence on their past behaviour.

We can see quite clearly from Table 2 by the values of the conditional probabilities that a

degree of past behaviour-dependent non-adherence is indeed present in all the age groups,

with the exception of the final round ω4 values for those in the pre-SAC (which have mostly

aged into SAC by this point) and SAC categories. This effect is explained in more detail by Ref

[13]. Table 2 also shows that the most past behaviour-dependent non-adherent age group and

sex appears to be males aged 30+ (they have the largest conditional probability values across all

rounds of treatment). In addition to these results, Eq (1) appears to require extension to an

equivalent time-dependent model—see Eq (11)—in order provide a good descriptive model

for many of the past behaviour-dependent non-adherent age groups and sexes.
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Fig 2. Left column: The maximum likelihood as well as the limits of the marginalised 95% credible region for the conditional probabilities of receiving

treatment for any given pair of sequential rounds (these are hence homogeneous in time and the process is Markovian) given treatment (filled points)

or non-treatment (hollow points) in a previous round. Right column: The same as the left column but with allowed time-dependent in the conditional

probabilities of receiving treatment in each respective round (highlighted in orange on the horizontal axes). In each case the components

corresponding to a given round were measured assuming all other respective rounds were inferred to be from time-dependent past behaviour-

independent adherence and hence the likelihood is given in S1 Appendix. Different colours for each point correspond to different lengths in time for

the dependencies in behaviour. The datasets used are from the standard SAC (4-15) age category from a cohort of individuals from the biannual

treatment arm of the TUMIKIA project where the: top row corresponds to the overall group; middle row corresponds to the male sub-group; and

bottom row corresponds to the female sub-group.

https://doi.org/10.1371/journal.pntd.0009112.g002
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3.2 The impact of adherence on forecasts

In this section we illustrate the impact of adherence, as described by our probability model, on

the predictions made by simulations for the impact of MDA on the chances of elimination of

transmission by considering the case study of TUMIKIA and forward-projecting the impact of

continued MDA treatment. The adherence models fitted to the TUMIKIA adherence data in

the previous section are applied within a stochastic individual-based simulation of hookworm

transmission for two example communities that were treated in the TUMIKIA project [17].

The resulting effect that the known TUMIKIA adherence has on the transmission elimination

probability of hookworm in these two clusters is given in Table 3, where an equivalent trans-

mission elimination probability assuming past behaviour-independent adherence is also pro-

vided for direct comparison in each case. The results we show here suggest a substantial

reduction in the probability of elimination (between 23-43%) when comparing observed

adherence patterns with an assumption of independence. This finding has important implica-

tions for MDA programmes as it is clear for progress to be made (and indeed quantified)

towards transmission elimination in communities, an additional priority must be placed in

accurately discerning the local patterns of adherence.

Note that the TUMIKIA adherence pattern that we have used in these representative clus-

tered communities has been inferred across all clusters. For a specific forecast of the TUMIKIA

trial outcome, one should input both cluster-level posterior uncertainties on the deworming

simulation parameters at baseline as well as the cluster-level inferred adherence model param-

eters—from which one might expect even more substantial heterogeneity in outcomes at the

cluster level. The impacts we quote here are representative of the significance of adherence pat-

terns to programs, rather that specific forecasts for the TUMIKIA trial clusters.

Table 2. A measure of how past behaviour influences the adherent and non-adherent behaviour of individuals is in the n-th round of treatment, ωn� βnn−1 + γnn−1

− 1, which was introduced in Eq (13). This value is given for each age group and sex inferred from the TUMIKIA project dataset and is computed using the maximum

likelihood values for the conditional probabilities. The uncertainties quoted with each value correspond to the standard deviation of ωn in each case.

Age group ω2 (Male) ω3 (Male) ω4 (Male) ω2 (Female) ω3 (Female) ω4 (Female)

Pre-SAC 0.294 ± 0.012 0.241 ± 0.011 0.051 ± 0.006 0.237 ± 0.013 0.250 ± 0.012 0.046 ± 0.006

SAC 0.209 ± 0.006 0.141 ± 0.006 0.027 ± 0.003 0.213 ± 0.007 0.226 ± 0.007 0.021 ± 0.003

15-29 0.228 ± 0.010 0.210 ± 0.010 0.111 ± 0.008 0.223 ± 0.009 0.182 ± 0.009 0.066 ± 0.007

30-49 0.259 ± 0.009 0.308 ± 0.009 0.268 ± 0.008 0.223 ± 0.009 0.174 ± 0.008 0.118 ± 0.007

50+ 0.244 ± 0.010 0.286 ± 0.010 0.259 ± 0.009 0.195 ± 0.011 0.181 ± 0.011 0.139 ± 0.009

https://doi.org/10.1371/journal.pntd.0009112.t002

Table 3. The transmission elimination probability evaluated by fully age-structured stochastic individual-based simulations of hookworm (with adult worm and

eggs/larvae mortality rates set to μ1 = 0.5 and μ2 = 26.0 per year, respectively and the density dependent fecundity factor is set to γ = 0.01, as considered in Ref [17])

with two different clustered community types specified by the TUMIKIA transmission parameters inferred from the baseline epidemiological data in Ref [17]. The

parameters quoted are the endemic prevalence P, parasite aggregation parameter k, basic reproduction number R0 and cluster population number N, where the age profiles

are all assumed to be exactly flat for simplicity. The transmission elimination probabilities are evaluated after 100 years post-cessation of MDA and are quoted assuming

either past behaviour-independent adherence (i.e., simple time-dependent coverage in age groups and only population heterogeneity at the level of age bins) or the adher-

ence behaviour inferred from our model in this paper for the TUMIKIA project (see S2 Appendix). In parameter set 1: (P, k, R0, N) = (0.15, 0.05, 2.1, 1000) and parameter

set 2: (P, k, R0, N) = (0.4, 0.15, 2.5, 1000).

Community type (see Ref [17]) Transmission elimination probability (Past

independent adherence)

Transmission elimination probability

(TUMIKIA adherence)

1: Lower baseline prevalence, less intense transmission but

higher aggregation.

0.582 0.148

2: Higher baseline prevalence, more intense transmission

but lower aggregation.

0.902 0.672

https://doi.org/10.1371/journal.pntd.0009112.t003
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4 Discussion and conclusions

The causes for non-adherent behaviour are undoubtedly varied as a result of both the type of

treatment, and social plus behavioural factors in any defined treated community. In this paper

we have been able to develop a simple but comprehensive framework which describes the sys-

tematic binary ‘choice’ of individuals to either take treatment, or not for any reason, over the

course of multiple rounds of MDA—which we have referred to as ‘adherence’ and ‘non-adher-

ence’, respectively.

Here, we introduce a flexible adherence framework, which can be used to account for a

range of behaviours not yet considered in existing models of MDA. This analysis defines a

summary parameter, ωn, which can be used as a guide to indicate the strength of adherent or

non-adherent behaviour in any given sitting. An equivalent, frequentist interpretation for this

parameter is that of a correlation coefficient between the (binary) behaviour of an individual

being treated (1) or not (0) in the n-th round of MDA and their behaviour in the (n − 1)-th

round of MDA.

In order to demonstrate the application of our probability model, we applied it to the

recently collected adherence data from the TUMIKIA project in Kenya, which aims to control

STH infections by repeated drug treatment, in Sec 3. Findings from the analyses presented

here extend and support previous work [13], which include past behaviour-independent

adherence or non-adherence for school-aged children (SAC) and the detection of past behav-

iour-dependent non-adherence to treatment in nearly all other age groups and both sexes. A

full description of our results and analysis is given in S2 Appendix.

The validity of interpreting the inferences made in Sec 3 as directly due to individual behav-

iour patterns using the TUMIKIA project adherence data [13] should be considered carefully.

An important caveat to this interpretation is that, for various reasons, some individuals were

not offered treatment and were hence automatically accounted for as ‘non-adherent’ within

the data, and as such we cannot discriminate between refusing, and not being offered, treat-

ment. The impact of these two reasons for non-adherence to the success of an MDA pro-

gramme is however the same, and hence, the practical use of inferring this pattern of

adherence for simulation forecasts of MDA outcome is still appropriate. We cannot discrimi-

nate this behaviour pattern from simply not being offered treatment in the TUMIKIA dataset.

Using the adherence behaviour patterns for a series of age groups from the Kenyan TUMI-

KIA dataset, we then demonstrated the use of a stochastic individual-based simulation model

for STH transmission and control by MDA by running two example forecasts for the likeli-

hood of elimination of hookworm transmission with the adherence behaviour recorded in

Kenya by comparison with runs that assume random adherence at each round of treatment

for any given treatment coverage level. From Table 3 it is immediately clear that although

there is relatively high coverage of MDA in the TUMIKIA project [11, 12], the occurrence of

past behaviour-dependent non-adherence has an important effect on the transmission elimi-

nation probabilities, shifting the chances of hookworm elimination in both communities

lower by 43% and 23%, respectively, when compared to the standard forecasts which assume

that current and future adherence behaviour is independent of past adherence. The difference

between the two assumptions is striking. These results show clearly the great importance of

measuring adherence if the outcome of any given MDA based control programme is to be cor-

rectly predicted. Note that a full forecast of TUMIKIA would also include posterior uncertain-

ties evaluated for the simulation parameters and initial conditions, hence the simulation

results we have provided in this work are intended only as guide to the importance of includ-

ing adherence patterns into forecasting simulations.
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In Table 3 when the baseline (equilibrium) prevalence is lowered, but the aggregation

increases, this typically has the seemingly counter-intuitive effect of lowering the overall prob-

ability of eliminating transmission. This result arises from the relationship we have assumed

between baseline (equilibrium) prevalence and the aggregation of worms within hosts, which

was statistically inferred from the TUMIKIA data in Ref [17]. When aggregation of worms

within hosts is higher for the population at equilibrium, this means that fewer people are

required to sustain transmission indefinitely. In contrast, when the aggregation of worms

within hosts is lower for the population at equilibrium, this means that a larger number of

individuals are required to sustain transmission indefinitely.

For perspective on how our new adherence framework fits into the wider context of analysis

approaches, we investigated the Plaisier model, which assigns a probability of adherence to

each individual which they then retain for the duration of the MDA programme [14, 15]. In

our categorisation scheme—which is illustrated in Fig 1—this model would be characterised

by us as a heterogeneous population, time-independent model with no explicit individual

dependence on past behaviour. We also discussed the relationship of other models [5, 18] to

our categorisation of adherence models, where all of our comparisons can be found in S3

Appendix.

WHO recommendations on how best to measure the impact of MDA programmes to con-

trol NTDs only advise recording patterns of treatment coverage round by round with some

rough stratification by the age groupings treated (usually pre-SAC, SAC and adults). No advice

to Ministries of Health is given on trying to record adherence patterns in part because of the

challenges presented in recording these patterns in many communities. As we have demon-

strated, the precise form of the adherence pattern can greatly influence the extent of the

required MDA coverage and the number of treatment rounds necessary to eliminate parasite

transmission. For instance, as we demonstrated with data collected from the TUMIKIA project

in Sec 3.2, if the individual adherence patterns are found to have dependence on past behav-

iour, this can significantly reduce the probability of transmission elimination.

The lack of WHO guidance on adherence is understandable, given the costs and time

involved in longitudinal studies to record adherence of individuals within any given MDA

programme. However, given the importance of these pattens in determining control pro-

gamme impact and outcome, collecting such data should be given a higher priority even if just

focused on a few sentinel sites to broadly capture the prevailing behaviours in defined settings.

It is also likely, the social, environmental and other influences will create some heterogeneity

in adherence patterns within countries and health implementation units. Additional back-

ground research on what degree of heterogeneity exists in a given country would also be of

great value. In the coming few years more data on adherence patterns will emerge from

detailed research studies of MDA impact to add to the information provided by the TUMIKIA

study [11]. These include the ongoing DW3 trial studies in India, Benin and Malawi for the

control of STH [19] and the Geshiyaro study in Ethiopia for the control of STH and schisto-

some infections by MDA [20].

Though we have addressed in this paper how those equipped with modelling capacities

should use this data to improve forecasting pipelines, it remains an open, and important, ques-

tion as to how programme implementers can best use the data directly. We propose in this

case that computing the binomial frequentist estimators of the ωn values we have provided in

Table 2 would be an excellent start towards this end, since these values stratified according to

demographics could potentially be used in real time to optimise policies designed to mitigate

the strength of non-adherence through, for example, targeted interventions.
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