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Environmental flexibility does not explain metabolic
robustness
Julian Libiseller-Egger 1,2,5, Ben Coltman 1,3, Matthias P. Gerstl1 and Jürgen Zanghellini 1,4✉

Cells show remarkable resilience against genetic and environmental perturbations. However, its evolutionary origin remains
obscure. In order to leverage methods of systems biology for examining cellular robustness, a computationally accessible way of
quantification is needed. Here, we present an unbiased metric of structural robustness in genome-scale metabolic models based on
concepts prevalent in reliability engineering and fault analysis. The probability of failure (PoF) is defined as the (weighted) portion
of all possible combinations of loss-of-function mutations that disable network functionality. It can be exactly determined if all
essential reactions, synthetic lethal pairs of reactions, synthetic lethal triplets of reactions etc. are known. In theory, these minimal
cut sets (MCSs) can be calculated for any network, but for large models the problem remains computationally intractable. Herein,
we demonstrate that even at the genome scale only the lowest-cardinality MCSs are required to efficiently approximate the PoF
with reasonable accuracy. Building on an improved theoretical understanding, we analysed the robustness of 489 E. coli, Shigella,
Salmonella, and fungal genome-scale metabolic models (GSMMs). In contrast to the popular “congruence theory”, which explains
the origin of genetic robustness as a byproduct of selection for environmental flexibility, we found no correlation between network
robustness and the diversity of growth-supporting environments. On the contrary, our analysis indicates that amino acid synthesis
rather than carbon metabolism dominates metabolic robustness.
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INTRODUCTION
“Robustness” is a system’s intrinsic ability to maintain functionality
under perturbation. Due to the generality of this definition, a
consensus on an exact quantitative metric, especially in a
biological context, has yet to emerge1–4. Aside from biology,
robustness and reliability are key design goals in many fields of
engineering and particularly paramount in the development of
safety-critical systems5. Thus, some of the theoretical groundwork
relevant in these areas can be borrowed for a systems biology
approach1,2.
Common basic reliability measures consider only the interaction

of binary-state components, i.e. components that are either fully
functional or fully dysfunctional. In such an analysis, a network is
deemed functional if there exists at least one path from the input
node(s) to the output node(s). Some early efforts to quantify
structural robustness in metabolic networks follow the same
principle. They correlate robustness with the number of unique,
minimal pathways6 that provide a given function (in the context of
metabolism usually cell growth)7–9.
Consistent with the characterisation of “functionality” as cell

growth, “dysfunctionality” (i.e. the lack of growth) is caused by
lethal combinations of reaction knockouts, which could arise via
loss-of-function (LOF) mutations disabling vital enzymatic activity.
Similarly to how all paths leading from input nodes to output
nodes can be determined computationally10, the same can be
done for all possible ways of blocking these paths (i.e. lethal
combinations of reaction deletions)11. Analogously, knowledge of
these knockout combinations, termed minimal cut sets (MCSs)12,
allows for computing the network’s PoF, which—in mathematical
terms—is the complement of robustness13.

As we have shown previously, the great advantage in using the
PoF as a surrogate for robustness lies in the fact that only the
lowest cardinality-MCSs are sufficient to approximate it with
negligible error13. As efficient algorithms for finding low-
cardinality MCSs are available14,15, this allows for the examination
of robustness in GSMMs.
Here, we present fundamental improvements—both in theory

and software implementation—of our PoF-calculating algorithm13.
Provided with a list of low-cardinality MCSs and running on a
personal computer, the program is now capable of determining
the PoF of a GSMM at reasonable accuracy in under a minute,
whereas hours of high-performance computing time were
required in the past. With the improved tool at hand we
computed the PoF across a large panel of Enterobacteriaceae as
well as 30 fungal species and show that their structural metabolic
robustness does not correlate with their ability to thrive in
nutritionally diverse environments.

RESULTS
Terminology and definitions
The PoF, F, of a metabolic network with r reactions is defined as
the probability that a given number of random LOF mutations
disables growth (i.e. is lethal). It can be expressed as the
probability-weighted average of the failure frequency

f d ¼ number of lethal combinations of d deletions
number of all combinations of d deletions

(1)

for LOF mutations in exactly d enzymes (reactions) being lethal.
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This gives

F :¼
Xr

d¼1

wdf d (2)

with the discrete binomial distribution

wd ¼ r
d

� �
pdð1� pÞr�d; (3)

which—for a constant reaction-level mutation rate p—describes
the probability that d LOF mutations occur.
Equation (1) can be expressed in a computationally more

approachable way using combinations of MCSs13. In this context,
an MCS is a minimal set of reaction deletions that suppresses
growth12. Essential reactions, synthetic lethal pairs or synthetic
lethal triplets are examples of MCSs with cardinalities one, two, or
three, respectively. In the Supplementary Notes we expand on
ref. 13 and show that, if all MCSs of a metabolic network are
known, Eq. (2) can be formulated as

F ¼
X

;≠J�f1;:::;mg
ð�1ÞjJ j�1 pjMJ j; (4)

where MJ denotes the union ∪ j2JMj of one or more MCSs
with the (multi)-index J running over the power set of the indices
{1, . . ., m} of all m MCSs. In other words, this means that every
possible combination of one or more MCSs is a summand in
Eq. (4). In Supplementary Table 1, we provide an evaluation of
Eq. (4) for the toy network in Fig. 1a.
Note that according to Eq. (4), F solely depends on the total

number of MCSs, m, and the cardinalities of the members of their
power set (i.e. on how the MCSs overlap with each other), but not
on the number of reactions in the network. Thus, the PoF is
independent of network size.

PoF by example
A toy network composed of five irreversible and one reversible
reaction is depicted in Fig. 1a and produces biomass via r6. Any
combination of LOF mutations encompassing the essential
reaction r6, one of the synthetic lethal pairs {r1, r2}, {r4, r5}, or
one of the synthetic lethal triplets {r1, r3, r5}, {r2, r3, r4} is lethal. The
failure frequency, fd (i.e. the probability that a given number of d
LOF mutations results in cell death), is illustrated in Fig. 1b. In
general, the failure frequency for any fixed d is dominated by
single and double LOF mutations (see the hatched bars in Fig. 1b),
while the contribution of higher order combinations is relatively
small. For instance, in Fig. 1b all fd—except for f3—can be
computed exactly with the knowledge of the single and double
LOF mutations alone as all fd with d > 3 are already determined to
be 1 by their respective contributions.
For a constant mutation rate p= 0.1 the likelihood that one,

two, or more LOF mutations occur is binomially distributed, and
the resulting expected value of the probability of a lethal set of

mutations (i.e. the PoF) is p+ 2p2− 7p4+ 7p5− 2p6= 0.11936
(see Supplementary Tables 1 and 2 for details). Note that it is
independent of the network’s size.

Estimating F in large models
Equation (4) determines the PoF exactly as long as all m MCSs are
known and the sum is evaluated over all their possible
combinations (i.e. the full power set with 2m− 1 members). For
GSMMs both requirements cannot be met as the enumeration of
all high-cardinality MCSs in a large network is computationally
intractable and—even if it was not—the number of possible
combinations would soon exceed the number of atoms in the
universe. Thus, approximations are indispensable.
It is possible to systematically construct the first mi MCSs of

lowest cardinality15, which have the greatest impact on the PoF.
Hence, F can still be reliably estimated, even when only a relatively
small number of MCS are known13. This addresses the first issue.
However, even if the number of included MCSs is reduced from m
to mi , the exponential explosion of the summands still remains
critical. In the simplest, least accurate case, we consider only the
essential reactions, i.e. all m1 MCSs with jMjj ¼ 1, and Eq. (4)

Fig. 1 PoF by example. Toy network (a) and failure frequency as
function of the number of LOF mutations (b). Hatched bars indicate
the contributions of the essential reaction (r6, column 1), the two
synthetic lethal pairs ({r1, r2} and {r4, r5}, column 2), and the two
synthetic lethal triplets ({r1, r3, r5} and {r2, r3, r4}, column 3). Note the
increasing overlap between the bars for increasing d, indicating that
large parts of fd can be estimated without knowledge of higher
order combinations of mutations. For a complete list of all lethal
combinations, see Supplementary Table 2.

Box 1 List of symbols

m Number of minimal cut sets (MCSs) disabling growth in a metabolic network
mi Number of MCSs with cardinalities up to i
dm Cardinality up to which all MCSs have been calculated (i.e. for dm= 3 all m3

MCSs with up to three reaction knockouts are known)
d0 Cardinality up to which all supersets of all known MCSs are considered by

pof2.0
fd Failure frequency at d random reaction deletions (i.e. the chance of a metabolic
network not being able to grow given loss-of-function (LOF) mutations in d
random reactions)

f dmd Approximated failure frequency at d random reaction deletions computed
with all MCSs up to cardinality dm

F Probability of failure (PoF) (probability of a metabolic network acquiring a lethal
combination of LOF mutations)

eFdmd0 PoF estimate calculated by pof2.0 given all MCSs up to cardinality dm and
considering all possible unions of MCSs up to cardinality d0
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simplifies to

F � eF1r ¼ 1� ð1� pÞm1 � m1p (5)

(for derivation, see Supplementary Notes). When all MCSs up to a
certain cardinality are known, we call this cardinality dm (in this
case dm= 1). The number of essential reactions, m1, times the
mutation rate, p, is in fact the leading term in the sum of Eq. (4). To
improve accuracy, we resort to Eq. (2) and, rather than summing
over all r, truncate the sum to d→ d0 so that

F � eFdmd0 ¼
Xd0

d¼1

wdf
dm
d : (6)

Here, the superscript dm indicates that eFd0 and fd are computed
with all MCSs up to cardinality dm. However, we show in the
Supplementary Notes that the resulting error can be further
reduced.
Figure 2 serves to illustrate the maximum error εmax for eF310 in

the E. coli GSMMi JO1366 (dm= 3; all MCSs with cardinalities <4
are known). For d ≤ dm= 3 all f 3d are exact. MCSs with cardinalities
>3 have not been calculated and their contributions are unknown.
Therefore, in the worst case all cut sets of cardinality 4 could be
lethal leading to f 3d ¼ 1 for d ≥ 4. The resulting maximum error is
represented by the hatched bars in the inset of Fig. 2. It can be
calculated via

εmax ¼ 1� eFdmd0 �
Xdm

d¼0

wd 1� f dmd

� �
: (7)

For iJO1366 in Fig. 2 the maximum absolute and relative errors peak
around p= 3 × 10−3 and quickly approach zero for p < 0.5 × 10−3.
Note that the sum in Eq. (7) is independent of d0.

Implementation
In our previous work13, we approximated the (total) PoF by
computing f dmd only for d ≤ d0= dm and formulated a parallelised
algorithm to carry out the truncated sum. Here, we present
pof2.0 that includes further algorithmic improvements and

allows us to quickly evaluate eFdmd0 for larger d0. This has two
implications: For a given number of MCSs F can be predicted more
precisely and to achieve a certain accuracy the number of required
MCSs can be reduced.

At the core of our method lies the fact that any lethal cut set

must be a superset of at least one MCS. In order to estimate eFdmd0 ,
jMJ j (the number of knocked out reactions) as well as jJ j (the
number of MCSs in the cut set) need to be found for every
possible combination that can be formed from the network’s
known MCSs (i.e. their power set). The program achieves this by a
recursive procedure, the basis of which has been outlined in ref. 13.
In short, we first sort the list of MCSs by cardinality. Then, for every
element in the sorted list, we iterate over all MCSs that appear
earlier in the list and form the respective unions with jJ j ¼ 2. If a
union with jMJ j � d0 is not a subset of a previously encountered
cut set, we again iterate over all elements in the list up to the
earliest MCS already present in that union to form all cut sets with
jJ j ¼ 3 and so on. jMJ j and jJ j of every lethal combination are
recorded to be evaluated once recursion has finished. The actual
implementation employs a few shortcuts that considerably reduce
the number of recursions required.
Moreover, in metabolic pathway analysis, it is common

practice to compress networks before analysis16. This reduces
the number of metabolites and reactions without losing
information and is necessary for efficient utilisation of computa-
tional resources. Naturally, compressed networks also contain
drastically fewer MCSs. pof2.0 is capable of handling linearly
compressed networks, which entails a major leap in performance.
The code is available at www.github.com/julibeg/PoF.

PoF computes within seconds
To assess the computational efficiency of pof2.0, we analysed its
performance as a function of the number of processed MCSs for
E. coli’s central carbon metabolism model (CCMM)17 and its GSMM
iJO136618 (Supplementary Fig. 1). In both cases, we observed a
considerable reduction in run-time cost per additionally processed
MCS compared to the previous implementation13. For instance,
after processing ~2000 MCSs of the CCMM, we reached a ~100-
fold speedup, the majority of which can be attributed to network
compression. Extrapolating run-times to ~796,070 MCSs (dm= 15)
gives an estimate of ~280 h for the previous implementation while
pof2.0 took less than a second. Due to these advances, the bulk
of the computational burden in estimating structural robustness
now clearly lies at MCS enumeration.
The preceding sections established the theoretical foundation

and computational feasibility of our approach to quantify
structural robustness. Next, we capitalise on the reduced run-
time of pof2.0 by analysing hundreds of GSMMs in order to
showcase the utility of our approach and examine the nature of
metabolic robustness. Unless stated otherwise, all PoF approxima-
tions reported below were calculated with dm= 3, d0= 10,
and p= 10−4.

PoF negatively correlates with carbon source molar mass
To explore the influence of varying carbon sources on the
robustness of growth in E. coli we computed the PoF of iJO136618

growing on minimal medium under aerobic conditions for all its
181 single, growth-supporting carbon sources. As shown in Fig. 3,
the PoF decreased with increasing molar mass of the carbon
source (Pearson: r=−0.30, p= 3 × 10−5; Spearman: r=−0.48,
p= 8 × 10−12).
Figure 3 features two pronounced spikes (marked “1” and “2”).

In spike 1 the PoF increases with the molar mass of the respective
carbon sources, which are all medium- and long-chain fatty acids.
While in reality the same enzymes process fatty acids of different
lengths during beta-oxidation, these steps are represented as
distinct reactions in metabolic models. Thus, contrary to in vivo,
fatty acids are catabolised by increasingly longer linear reaction
chains in silico. Spike 2, on the other hand, is comprised of cases
where a dramatic increase in molar mass has hardly any effect on

Fig. 2 Maximum error of eF. Lower (eF) and upper (eF þ ε) bounds
(blue lines) as well as relative and absolute errors (dashed and solid
grey lines) for the PoF of a GSMM of E. coli with dm= 3 and d0= 10
vs. LOF mutation rate p. Vertical grey lines indicate the position of
the respective maximum value. The inset shows fd for 1 ≤ d ≤ 12
(white bars) and the corresponding maximum error (blue bars) as
well as the shape of the binomial distribution at the mutation rates
with the greatest absolute and relative errors.

J. Libiseller-Egger et al.

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)    39 

http://www.github.com/julibeg/PoF


the PoF. Responsible are oligomaltoses (i.e. starch oligomers),
most of which reach central metabolism via the same number of
reactions in silico. Without the spikes, correlation increases to:
Pearson r=−0.57, p= 5.4 × 10−16; Spearman r=−0.58, p= 1.3 ×
10−16.
We further investigated the impact of the carbon source’s

molecular composition on the PoF, which revealed a hierarchy
based on chemical composition. On average, “pure” carbon
sources (i.e. consisting only of C, H, and—possibly—O atoms)
supported less robust growth than substrates containing either
nitrogen or phosphate or both; see Supplementary Fig. 2.
Growth on “elementally richer” substrates being more robust

can be explained by higher redundancy. For instance, when
growing on an amino acid, otherwise lethal mutations in
ammonium transport and assimilation pathways would become
irrelevant. As an example consider the 298 MCSs of cardinality 1 in
the joint set of MCSs for aerobic growth on either glucose or
glutamate, out of which 285 were identical for both. Only eight
and five were specific to glucose and glutamate, respectively,
which is reflected in a lower PoF for the latter. Three out of the
eight essential reactions unique to growth on glucose are involved
in ammonium transport. This illustrates how F is linked to
topological differences in metabolic networks.

The origin of biological robustness
The evolutionary origin of genetic robustness—despite its
ubiquity1,19—remains strongly debated20,21. Approaches to
explaining its emergence can be roughly split into three
categories: congruent, adaptive and intrinsic21. Contrary to the
adaptive hypothesis, which states that genetic robustness is
selected for directly22–28, the congruent hypothesis postulates that
it rather arises as a byproduct of selection for environmental
resilience29–31. The intrinsic hypothesis, on the other hand,
negates any evolutionary impact and argues that robustness is a
fundamental property of complex systems and networks32–34.
However, due to its multi-factorial nature, it is more likely that no
single mechanism is responsible for the development of biological
robustness. The actual origin may rather comprise a combination
of the hypotheses introduced above.
To test the impact of the congruence mechanism (“environ-

mental robustness breeds genetic robustness”), we speculated
that organisms capable of growing in many different conditions
(robust towards changes in the chemical environment) would
exhibit low PoFs (robust towards LOF mutations). Accordingly,
structural robustness in metabolic networks should correlate with
the number of substrates enabling growth. To evaluate this idea,

we calculated the PoF and counted the aerobic, growth-
supporting carbon sources for GSMMs of 53 E. coli and Shigella35,
406 Salmonella36, as well as 30 fungal37 strains.

Robustness correlates with the diversity of growth media
For the E. coli and Shigella models the PoF was calculated twice—
once with regard to growth on glucose minimal medium and once
for minimal medium with all growth-supporting carbon sources
enabled. Being allowed to grow on all carbon sources the
networks showed considerably higher robustness compared to
growth on glucose alone (Supplementary Fig. 3). In fact, when
testing iJO1366, the average of F decreased monotonically with
the number of carbon sources available (see Supplementary Fig.
4). This confirms the naïve expectation that fatal reaction deletions
are more strongly buffered in richer media. However, the
magnitude of the two PoFs for a given model were correlated
(Pearson r= 0.77, p= 1 × 10−11; Spearman r= 0.60, p= 3 × 10−6).
Similarly, we found growth on minimal glucose medium to be

considerably more robust than optimal growth on the same
medium (Supplementary Fig. 3a). In fact, the distribution of the
PoF across the models was quite consistent for the different
conditions with the exception of Shigella boydii Sb227. This strain
showed the greatest robustness among all E. coli and Shigella
models at glucose-optimal growth while ranking last when all
carbon sources were enabled (Supplementary Fig. 3b).

PoF does not correlate with carbon utilisation capabilities
Figure 4 shows the PoF across all E. coli, Shigella, Salmonella, and
fungal models versus the number of carbon sources that allow the
respective networks to grow. Among the E. coli and Shigella
strains, it ranged from 2.78% (E. coli IAI39) to 2.95% (S. boydii CDC
3083-94) with an average of 2.87%. For Salmonella and the fungi, it
was considerably lower with averages of 2.62% and 1.04%,
respectively. Within the respective groups there was no correla-
tion between F and the number of carbon sources. On the
contrary, most E. coli models sat on a straight horizontal line from
167 to 186 different carbon sources with the PoF being practically
identical at 2.8685%. Similarly, out of 406 Salmonella models, 213
had essentially the same eF of 2.6059% and grow on 143–168
carbon sources. Finally, the fungi showed the highest amount of
variability; yet again no correlation with the number of carbon
sources.
The observation that many strains have (almost) identical PoF

values, although differing substantially in carbon utilisation
capability, suggests that additional carbon sources mostly only
add extra uptake reactions to the network rather than increasing

connectivity. For example, all E. coli models with eF310 � 2:8685%
feature the same set of essential reactions, albeit some can grow
on close to 20 more carbon sources compared to others. The
linear fit in Fig. 5 corroborates this assumption as the number of
reactions increases by ~3.28 for every additional carbon source.
These three reactions usually consist of an exchange reaction for
importing the carbon source across the model boundary and two
transport reactions across the outer and inner membrane.
Therefore, roughly only every third carbon source adds one
non-transport reaction to the model leaving little room for
increasing metabolic connectivity.
To further examine this hypothesis we computed the size of

E. coli’s “shared reactome”, i.e. the set of reactions present in all
E. coli GSMMs. Under the investigated conditions (aerobic growth
on glucose minimal medium), it was 1336/1774= 75%. Consider-
ing only the E. coli strains with virtually equal PoF, it increased to
1447/1772= 82%, indicating that the PoF is a good predictor for
network overlap. Similarly, a pairwise comparison across all E. coli
and Shigella models revealed that the difference in PoF correlates
with the pairwise network dissimilarity, 1− σi,j, of any two

Fig. 3 PoF vs. carbon source molar mass. eF310 as function of the
carbon source’s molar mass for all single, growth-supporting carbon
sources in E. coli iJO1366. The line represents a linear fit to the data.
Ellipses single out two spikes (see main text for details). The inset
shows data with spikes removed and improved fit.
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networks Mi and Mj (see Fig. 6). Here, dissimilarity was defined as
the complement of the pairwise network similarity

σi;j ¼
r2Mi\Mj

rMi rMj

; (8)

where rMi ; rMj , and rMi\Mj denote the number of reactions in the
models Mi, Mj, and of those found in both, respectively.
In addition to greater robustness, the Salmonella models also

displayed reduced nutritional flexibility; being able to grow on
only 164 carbon sources on average as opposed to E. coli’s 179.
Moreover, their relative shared reactome was slightly larger at
1274/1628= 78%.
With only 1383/2153= 64% of reactions belonging to the

shared reactome, the fungal models showed larger diversity. This
is not surprising, since the group of fungal models featured
30 species from different genera as opposed to multiple strains/
species from the same genus for the bacterial models.
In spite of decreased nutritional flexibility, all fungal species

showed considerably larger robustness as opposed to the bacterial
models discussed above. However, it appears that this observation is
an artefact of the different model reconstruction procedures rather
than a genuine biological effect. The fungal models’ biomass
consisted of 44 components, while the bacterial biomass reactions
were considerably more detailed (51 and 68 components for

Salmonella and E. coli/Shigella, respectively), including additional
vitamins and metal ions. Consequently, the growth medium was
more complex for the bacterial models (containing 18 components)
as opposed to the fungal models with only five components (see
Supplementary Table 3). Moreover, the more complex the biomass
composition, the more likely it is affected by LOF mutations. In fact,
when using the fungal biomass reaction as objective in iJO1366, the
PoF decreased from 2.89 to 1.53% (Supplementary Fig. 5). Thus, as
the biomass composition is different for models of the respective
reconstruction groups (fungal, E. coli/Shigella, and Salmonella), we
conclude that comparisons within groups are appropriate, but not
across groups.
When comparing pathogenic and non-pathogenic models

within the same reconstruction group, no differences in the PoF
have been found (Supplementary Fig. 6). However, given the small
number of purely pathogenic strains/species and the lacking
genetic diversity among them, general trends cannot be inferred.

Fig. 5 Reactions vs. C-sources. Number of reactions vs. number of
carbon sources for all native E. coli and Shigella models. The slope of
the linear fit (dotted line) is ~3.28.

Fig. 4 Genetic robustness vs. environmental robustness. a Estimated total PoF, eF310 , as a function of the number of growth-supporting
carbon sources for all models tested. Growth on glucose minimal medium under aerobic conditions was simulated in GSMMs of various

commensal and pathogenic E. coli, Shigella, and Salmonella strains as well as 30 fungal species. b eF310 vs. m1 (i.e. number of essential reactions).
The dotted line represents the PoF approximation using Eq. (5) and the number of essential reactions alone.

Fig. 6 Pairwise difference in the PoF across all E. coli and Shigella
GSMMs vs. network dissimilarity. Strains with different m1 cluster
around ΔeF ¼ 10�4; strains with equal m1 around ΔeF ¼ 10�7 ; equal
m1 and m2 around ΔeF ¼ 10�11 ; equal m1, m2, and m3 around
ΔeF ¼ 10�16. Mixed pairs of strains are in blue; pairs of E. coli and
Shigella strains are in grey and light blue, respectively. Note the
logarithmic scale on the y-axis. The inset shows the same data in
linear scale and a linear fit. Horizontal dotted lines correspond
to Δm1.
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Essential reactions dominate metabolic robustness
For the models assessed here, a comparison with Eq. (5) (right
panel in Fig. 4) reveals that even at the relatively high p= 10−4 the
number of MCSs with cardinalities two and three was not large
enough to contribute noticeably to eF310. This observation—under
the assumption that it can be generalised to most bacterial
models growing on minimal medium—suggests that a reasonably
accurate approximation for the structural robustness of these
networks could be obtained solely from the number of essential
reactions, m1, which is easy to compute.
Figure 6 further highlights the minuscule contribution of the

MCSs with jMj j 2 f2; 3g as all pairwise PoF-differences between
two models with the same number of essential reactions are
smaller than 10−6. Similarly, the PoF differences among pairs of
models with the same number of essential reactions as well as
synthetic lethal pairs (m1,i=m1,j and m2,i=m2,j) lie between 10−12

and 10−10 and are mostly determined by differences in the
number of synthetic lethal triplets Δm3 (Supplementary Fig. 7).
As F is almost exclusively determined by m1, we identified the

essential reactions shared by all E. coli and Shigellamodels and the
corresponding KEGG38 pathways (Fig. 7). Interestingly, (central)
carbon metabolism only hosts a small number of essential
reactions and thus constitutes a minor contribution to the PoF.
Instead, amino acid synthesis appears to be buffered by
redundancy to a lesser extent.

DISCUSSION
Robustness is a key feature of biological systems. Yet, its exact
quantification remains challenging. In a previous work, we have
modelled the robustness of metabolic networks by counting the
frequency of the binary network response (as measured by growth
or no growth under steady-state conditions) upon random
reaction deletions13. Similar mathematical strategies are com-
monly used in engineering to evaluate the reliability of safety-
critical structures, for example in aircraft39. Here, we expanded on
this approach and presented a comprehensive theoretical
description which we validated by confirming the buffering
capabilities of diverse growth media40,41.
Capitalising on reduced run-times for GSMMs, we were able to

evaluate the PoF across 459 members of the family Enterobacter-
iaceae (amongst them commensal and pathogenic E. coli, Shigella,
as well as Salmonella strains) and 30 species of fungi growing on
glucose minimal medium under aerobic conditions. Although the
closely related E. coli and Salmonella strains, whose lineages
separated 140 million years ago42, share a large fraction of their
genetic material43,44, we found the Salmonella models to be
considerably more robust. In fact, Salmonella serovars were shown
to have fewer essential genes (relative to the genome size) than
E. coli MG165545–47, which is also reflected in the corresponding
metabolic models. This indicates higher redundancy and supports
our in silico analysis of the respective GSMMs. However, in this
work we have not undertaken any phylogenetic analyses and thus
cannot discuss evolutionary trajectories that could explain these
differences.
Compared to the bacterial models the fungal species analysed

here showed drastically higher robustness. However, it should be

stressed that, if GSMMs that have been generated via different
reconstruction pipelines are compared, caution has to be
exercised as differences in the reconstructions process add to
the observed PoF. For instance, the biomass composition is more
detailed in the Enterobacteriaceae models as they require metal
ions in their minimal in silico medium to support growth, whereas
the fungal models do not. This prohibits a direct comparison
between the respective groups. In general, we observed an
increase in the PoF with the complexity of the biomass
formulation. This is consistent with earlier reports that the size
of essential networks scales with the number of biomass
components48. However, to turn this drawback into a benefit,
the PoF could be used as a quality indicator. For instance, we were
able to track the smaller PoF of E. coli IAI39 compared to the
average PoF of the E. coli strains back to a lumped reconstruction
of folate biosynthesis.
Within the groups of models that share the same reconstruction

pipeline (E. coli/Shigella, Salmonella, and fungi), our findings do not
support a connection between nutritional flexibility and cellular
robustness. In line with this result, the diversity of genetic
capabilities observed in Salmonella was shown to not be indicative
of strain-specific lifestyle36. Here we find that this is true not only
for Enterobacteriaceae but also for fungi. Although the strain-
specific portions of the pan-reactome are largely associated with
altered carbon metabolism35,36, our analysis reveals that this does
not lead to increased connectivity (Fig. 5)—and thereby structural
robustness—of the respective network. This reflects the notion
that metabolism is organised in a bow tie structure with a large
number of diverse nutrients being “fanned into” a tightly knotted
core network from where just a few key metabolites “fan-out”
again to produce all building blocks and macromolecular
compounds that make up a cell49,50. The observation that on
average the network size of E. coli and Shigella GSMMs increased
by only three reactions for every additional carbon source (Fig. 5)
—a number that is in good agreement with the previously derived
two reactions per carbon source for minimal metabolic mod-
els48—also corroborates this interpretation.
The congruent hypothesis has recently also been challenged by

Ho and Zhang20. Their analysis was based on the reallocation of
growth-optimal flux distributions in a single GSMM of E. coli
MG1655 (computed via minimisation of metabolic adjustments51)
upon genetic and environmental perturbations20. Due to the use
of an optimisation principle, their analysis was inherently biased,
while our approach is more general in the sense that it takes the
complete network structure (i.e. all possible flux re-routings) into
account52. It could be argued that robustness is most relevant in
the fittest states. However, our results show that structural
robustness impacts all levels of growth-optimality in a similar
way (Supplementary Fig. 3).
Classically, an unbiased characterisation of metabolic networks

is achieved in terms of minimal functional units that are able to
characterise all feasible steady-state flux distributions6,53–55.
Alternatively, a network can be equally well described by failure
modes, called MCSs11. This is mirrored by the fact that, according
to Eq. (4), the PoF is solely determined by the MCSs and
independent of the network’s size. Thus, it is a true feature of a
network’s structural topology.

Fig. 7 Essential reactions grouped by pathway. Number of essential reactions grouped by KEGG pathways occurring in (empty bars) and
shared by (solid bars) all E. coli and Shigella models.
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In principle, F can be computed exactly. However, in practice
it suffers from the combinatorial explosion of the number of
MCSs in GSMMs and the exponential explosion of the number
of summands in Eq. (4) (i.e. the power set of the MCSs).
Nonetheless, evaluating the PoF remains feasible as the
(relatively few) low-cardinality MCSs are most dominant13. In
fact, for many models growing on minimal media the number
of essential reactions already suffices. This is due to the fact
that it is far more likely that a randomly selected set of d
deletions contains e.g. one or more essential reaction(s) than a
complete MCS of cardinality d. Hence, high-cardinality MCSs are
not as relevant and can be neglected—provided d0 is
sufficiently large and p is sufficiently small (Fig. 2).
The probability of LOF mutations in a given number of reactions

follows the binomial distribution, consequently depending on the
total number of reactions in the model as well as the per-reaction
mutation rate p. As we reported solely comparative analyses here,
we focused on relative differences in F and chose p to be 10−4 per
reaction. In order to correctly calculate absolute values, a more
accurate, strain-specific estimate for p would be required.
However, quantifying deleterious mutation rates proves challen-
ging as LOF mutations with strong effects are usually cleared from
populations quickly and thereby evading experimental detection.
Kibota and Lynch56 give a lower bound of 2 × 10−4 deleterious
mutations per genome and generation in E. coli, while estimates
for the general mutation rate are in the range of 5 × 10−3 to 10−4

per genome and generation57–60. Hence, the rate for LOF
mutations of a given gene (or reaction) can be confidently
assumed to be very low.
This has implications for the computation of F, as fewer MCSs

are required to give precise estimates in case of smaller mutation
rates. For instance, in a network with 3000 reactions out of which
300 are essential the maximum relative error of the analytical PoF
estimate from the essential reactions alone would be around 1%
with p= 10−6 (see Supplementary Fig. 8c). Thus, in such a case
performing recursion would not be necessary.
In fact, for all models analysed here the number of essential

reactions dominated eF, enabling accurate predictions with Eq. (5)
even at the unrealistically high p= 10−4 (see Fig. 4b). Thus,
genetic robustness could simply be estimated given the number
of essential reactions or genes.
Due to the binary nature of LOF mutations underlying the

concept of the PoF, it can only measure structural redundancy
in metabolic networks by analysing their topology in the steady
state. Alternative forms of resilience or robustness, for instance
absolute concentration robustness61 or regulatory feedback
mechanisms, are not addressed. Moreover, due to its focus on
the reaction level, the PoF disregards some genetic information
(e.g. duplicated genes coding for the same enzyme). However,
we have demonstrated previously that PoF analyses at the level
of genes and at the level of reactions yield qualitatively similar
results13. Incidentally, recent advances in software for the
enumeration of genetic MCSs62,63 allow for extending the
scope of our method to the gene level. Additionally, we have
shown here that the PoF is independent of the network’s size
and mostly determined by the number of essential reactions
(or genes, for that matter). Thus, given knowledge of the
essential genes64 (and potentially the synthetic lethal pairs,
which have been determined for some model organisms like
yeast65), Eqs. (4) and (5) enable us to evaluate the PoF on the
genome level without the need for a metabolic reconstruction
altogether. When relying only on the essential genes for PoF
estimation, the theory simplifies greatly. Therefore, in future
work the theoretical framework presented here could be
expanded such that ways for incorporating gene lengths in
the analysis could easily be devised, which would further

improve the accuracy and reliability of our approach for
quantifying genetic robustness.

METHODS
Model acquisition and preprocessing
Fifty-four GSMMs of E. coli and Shigella strains35 were downloaded from
the BIGG Models database, version 1.666,67. Additionally, 408 Salmonella
GSMMs36 (accession ID: MODEL1807280001) and 56 GSMMs of fungal
species37 (accession IDs: MODEL16042800{00-55}) were retrieved from
BioModels68. The minimal media can be found in Supplementary Table 3.
Native model sizes were ~2600 reactions for the bacterial and ~6700
reactions for the fungal species. To remove any artefacts that might have
emerged in the automated model-reconstruction process, all models were
made consistent with respect to growth on glucose. This means that every
reaction unable to carry any flux when growing on the minimal medium
(as determined by flux variability analysis69) was removed from the
respective model. This reduced model sizes to ~1650 reactions for E. coli/
Shigella, ~1550 reactions for Salmonella, and ~1750 reactions for the fungi.
Note that in terms of the PoF analysis, “consistent” and “native”models are
equivalent as F is independent of the number of reactions and the set of
MCSs is the same for both. However, the models were made consistent
nonetheless as it is commonly considered good practice and also reduces
the computational load on MCS enumeration. Additionally, the E. coli and
Shigella batch was also made consistent with regard to optimal growth on
glucose, removing every reaction not participating in flux patterns
providing the highest possible growth rate. Thereby, model sizes were
reduced to ~500 reactions. To avoid introducing any bias in the process of
making the models consistent, glucose levels in the media were adjusted
on a per-model basis beforehand so that all models would achieve the
same growth rate. Moreover, for reasons stated below, the default upper
and lower bounds on reaction fluxes were relaxed to ±10,000. The 54 E. coli
and Shigella models contained ten auxotrophs, one of which was capable
of growing on its supplementary medium component as sole carbon
source. It was therefore removed from the dataset. Salmonella featured 27
auxotrophs, two of which were able to grow on their supplements alone
and were subsequently excluded from the analysis. The supplements
required by the other auxotrophs were added to their respective media
and can be found in Supplementary Tables 4 and 5. Out of the 56 fungal
models, 26 were unable to grow in the specified conditions and thus
dropped. The remaining 30 species (Supplementary Table 6) underwent
additional preprocessing steps in order to harmonise reaction bounds
prior to making the models consistent. All preprocessing was done in
COBRApy v.0.17.070.

Computation of MCSs and PoF
To enumerate the models’ MCSs, the relevant information required was
extracted from the respective SBML71 or JSON files and reformatted
accordingly. The data was then subjected to

● Linear compression with an in-house Perl script. The target (i.e.
biomass generation) reaction was exempt from compression.

● Transforming the MILP problem inferred from the compressed model
into its dual form, again by an in-house Perl script.

● Solving the dual problem for MCSs with cardinalities up to dm with an
in-house implementation of the algorithm described in ref. 15.

The compressed MCSs were then used for PoF evaluation. For all
models, the LOF mutation rate p was set to 10−4 per reaction.

Single carbon source comparison for E. coli
Every carbon source available in iJO1366 was added separately to the
minimal medium (Supplementary Table 3) except for glucose and the
corresponding PoF with dm ¼ 3 and d0= 10 was determined. To reduce
the computational burden in the MCS-enumeration step, the respective
model was made consistent for every substrate. Again, in order to prevent
introducing bias, the carbon source availability in the medium was tuned
to allow for the same growth rate as glucose. This was infeasible for some
carbon sources with very low yields due to internal model constraints (i.e.
flux bounds). Therefore, these constraints were relaxed to ±10,000 in all
models.
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Benchmarking PoF-implementations
For E. coli’s CCMM17 and GSMM18, low-cardinality MCSs were enumer-
ated up to dm ¼ 15 and dm ¼ 3, respectively. Then, for a range of
m ≤mdm , the first m compressed MCSs were extracted and evaluated for
all d0 ≤ 15 (CCMM) and d0 ≤ 8 (GSMM). Additionally, the MCSs were
decompressed and evaluated again in the uncompressed form with both
pof2.0 and the old implementation available at https://github.com/
mpgerstl/networkRobustnessToolbox. Computation was performed on
an Intel® Xeon® CPU E5-2650 v3 @ 2.30 GHz, and run-times were
recorded using Bash’s72 built-in time command.

Computation of the PoF
pof2.0 was written in C++1173. The implementation relies on Boost74 for
calculating binomial coefficients and uses Luigi Pertoldi’s progress bar75.
The code is available at www.github.com/julibeg/PoF.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All models used for analysis are publicly available35–37. E. coli and Shigella GSMMs can
be obtained from the BIGG database66,67 (http://bigg.ucsd.edu) using the model IDs in
Supplementary Data File 1. Salmonella GSMMs are available on BioModels76 (https://
www.ebi.ac.uk/biomodels) with the accession ID MODEL1807280001. Their individual
IDs are listed in Supplementary Data File 2. Fungal models are available on BioModels
as well. The respective accession IDs can be found in Supplementary Table 6.

CODE AVAILABILITY
Source files for both, old and new, implementations of the PoF calculator are
available at https://github.com/mpgerstl/networkRobustnessToolbox and www.
github.com/julibeg/PoF, respectively.
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