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Abstract

Background

The elimination programme for visceral leishmaniasis (VL) in India has seen great progress,

with total cases decreasing by over 80% since 2010 and many blocks now reporting zero

cases from year to year. Prompt diagnosis and treatment is critical to continue progress and

avoid epidemics in the increasingly susceptible population. Short-term forecasts could be

used to highlight anomalies in incidence and support health service logistics. The model

which best fits the data is not necessarily most useful for prediction, yet little empirical work

has been done to investigate the balance between fit and predictive performance.

Methodology/Principal findings

We developed statistical models of monthly VL case counts at block level. By evaluating a

set of randomly-generated models, we found that fit and one-month-ahead prediction were

strongly correlated and that rolling updates to model parameters as data accrued were

not crucial for accurate prediction. The final model incorporated auto-regression over four

months, spatial correlation between neighbouring blocks, and seasonality. Ninety-four per-

cent of 10-90% prediction intervals from this model captured the observed count during a

24-month test period. Comparison of one-, three- and four-month-ahead predictions from

the final model fit demonstrated that a longer time horizon yielded only a small sacrifice in

predictive power for the vast majority of blocks.

Conclusions/Significance

The model developed is informed by routinely-collected surveillance data as it accumulates,

and predictions are sufficiently accurate and precise to be useful. Such forecasts could, for

example, be used to guide stock requirements for rapid diagnostic tests and drugs. More
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comprehensive data on factors thought to influence geographic variation in VL burden could

be incorporated, and might better explain the heterogeneity between blocks and improve

uniformity of predictive performance. Integration of the approach in the management of the

VL programme would be an important step to ensuring continued successful control.

Author summary

This paper demonstrates a statistical modelling approach for forecasting of monthly vis-

ceral leishmaniasis (VL) incidence at block level in India, which could be used to tailor

control efforts according to local estimates and monitor deviations from the currently

decreasing trend. By fitting a variety of models to four years of historical data and assess-

ing predictions within a further 24-month test period, we found that the model which best

fit the observed data also showed the best predictive performance, and predictive accuracy

was maintained when making rolling predictions up to four months ahead of the observed

data. Since there is a two-month delay between reporting and processing of the data, pre-

dictive power more than three months ahead of current data is crucial to make forecasts

which can feasibly be acted upon. Some heterogeneity remains in predictive power across

the study region which could potentially be improved using unit-specific data on factors

believed to be associated with reported VL incidence (e.g. age distribution, socio-eco-

nomic status and climate).

Introduction

Visceral leishmaniasis in India

The short-term forecasting of diseases targeted for elimination can be a important manage-

ment tool. Visceral leishmaniasis (VL) is the acute disease caused by Leishmania donovani,
which is transmitted through infected female Phlebotomus argentipes sandflies. In India, the

burden of disease is largely contained within the four northeastern states of Bihar, Jharkhand,

Uttar Pradesh and West Bengal, with the rural state of Bihar most broadly affected [1–3].

Incidence of VL in India has decreased substantially since the initiation of the regional

Kala-Azar Elimination Programme (KEP), which aims to tackle the disease across the Indian

subcontinent through enhanced case detection and treatment and reduction of vector density

[4]. As a result, reported cases have fallen from 29,000 in 2010 to less than 5,000 in 2018 [3, 4].

The overall target of the programme is to reduce incidence to less than 1 case/10,000 people/

year within each “block”. Blocks are administrative sub-divisions of a district with population

sizes varying from thirty thousand to several million, depending on geographic area and the

proportion of urban and rural habitation. As a consequence, the target equates to an absolute

total of between three and two hundred cases per year. To support the elimination effort, data

are reported to a central repository (Kala-Azar Management Information System, KA-MIS) to

construct line lists including the date and location of every diagnosed case.

Despite the overall decrease in incidence, there is considerable heterogeneity between

blocks (Fig 1). In some blocks cases are now few and far between, while others remain substan-

tially affected from year to year. The combination of the decrease and the heterogeneity raises

the need for a more targeted approach; the finite resources available must be distributed effi-

ciently to continue progress. Additionally, history has shown that VL has the potential to

develop into large epidemics [5–7] and hence it is important that localised pockets of incidence
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are not overlooked. Intervention when incidence is low is required to prevent the trajectory

from turning upwards again, as cycles of VL incidence appear to occur with a frequency of 10-

20 years [8].

The primary aim of this paper is to ascertain the potential utility of predictions based solely

on routinely-collected surveillance data, within a ready-made, rapid and relatively easy-to-use

framework. Such predictions could serve two purposes; firstly to support logistics, for example

in setting minimum stock levels of rapid diagnostic tests and drugs, and secondly to provide

an early warning if the number of cases starts to resurge. For this modelling framework to

be useful to the elimination programme, it is essential that its predictions are sufficiently accu-

rate. Hence we make predictive accuracy of the forecasting approach the focus of the model

selection.

Forecasting and spatio-temporal analysis

There have been many attempts at forecasting the various forms of leishmaniasis across the

three affected continents. Lewnard et al. (2014) [10] employ a seasonal ARIMA (Auto-Regres-

sive Integrated Moving Average) model to predict cutaneous leishmaniasis in Brazil, incorpo-

rating meterological data and evaluating one, two and three month ahead forecasts. More

recently, Li et al. used an extended ARIMA model to predict incidence in Kashgar prefecture,

China [11]. However, neither of these attempts to capture spatial variation. Epidemiological

data, in particular regarding infectious disease, are often both temporally and spatially corre-

lated. That is to say, as well as incidence at one point in time being related to incidence in the

Fig 1. Estimated incidence per 10,000 population per block in 2018, for Bihar and the four endemic districts of Jharkhand (Dumka, Godda,

Sahibganj and Pakur). Incidence is estimated according to reported cases in KA-MIS with diagnosis date in between 01/01/2018 and 31/12/2018 and block

populations projected from the 2011 census according to decadal, block-level growth rates [9]. Black lines indicate block boundaries. The affected blocks of

Jharkhand on average have much higher incidence than Bihar and can be seen in the bottom right of the map. Blocks marked grey had no reported cases

during the study period.

https://doi.org/10.1371/journal.pntd.0008422.g001
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past, incidence in one area is also related to incidence in nearby areas. Mapping reported VL

incidence in India at the block level demonstrates the presence of spatial correlation (Fig 1),

with concentrated regions of high incidence appearing in West Bihar and Jharkhand. This

could be due to similar geographic and demographic characteristics of neighbouring blocks,

or the spread of infection by regular population movement. The seasonal cycle of incidence

and overall decreasing trend (Fig 2) are clearly evident in aggregated case counts.

Several statistical approaches have been developed to model count data in space and time.

These methods have been largely developed and used for understanding the drivers of pat-

terns, often incorporating additional covariate information describing climate, geography or

demography [12, 13] Dewan et al. [14] employ scanning techniques for a regional analysis

solely of case data, but do not utilise the approach for prediction. Paixão-Seva et al. (2017) [15]

simultaneously model the infected human, vector and dog populations in relation to land-

scape, climatic and economic factors, and in particular use proximity to a highway and gas

pipeline as indicators of human movement. Where aetiology is not the focus, analyses often

incorporate GPS locations of cases to identify hotspots and predict disease spread at a local vil-

lage or household level [16], or across health facilities [17].

In the case of VL on the Indian subcontinent, environmental data are difficult to obtain

in real-time at a sufficient spatial and temporal scale for forecasting purposes, and GPS data

have not been routinely or uniformly collected across the affected region. As such, statistical

Fig 2. Total monthly reported cases across the study region. The annual cycle (peaking between January and April) and overall decreasing trend are clear

at this aggregate level.

https://doi.org/10.1371/journal.pntd.0008422.g002
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approaches to spatio-temporal analysis have been broadly limited to specific study regions

within which additional data were collected [18]. Predictions on a regional level have so far

been the remit of transmission dynamic modelling [19]. We aim to make use of the reliable

and near-complete date and area data within the KA-MIS system, for the whole state of Bihar

and the affected region of Jharkhand, to understand how well future cases could be predicted

solely from the surveillance data of previous cases. As far as we are aware, no previous attempt

has been made to forecast VL at this spatial scale and with this level of coverage for the Indian

endemic region.

Often the model which best fits observed data is selected for forecasting, yet goodness of fit

does not guarantee predictive power. We therefore also investigate the relationship between

the fit and predictive power.

Model framework

A natural modelling approach is to consider the cases in each month in each block as a func-

tion of cases in the previous month and in neighbouring blocks. A model framework devel-

oped in [20, 21] has been applied previously for modelling cutaneous leishmaniasis in

Afghanistan [22]. This framework decomposes the distribution of counts at each point in

space and time into three components (auto-regressive, neighbourhood and endemic):

• Auto-regressive (AR) The contribution of previous incidence in the same block to current
incidence. A choice must be made about time period of previous incidence considered (i.e. the
number of months).

• Neighbourhood (NE) The contribution of previous incidence in surrounding blocks to current
incidence. A choice must be made about both the time period and spatial extent considered (i.e.
neighbours, neighbours of neighbours etc.), with indirect neighbours assigned decaying weights,
for example, according to a power law.

• Endemic (END) A function describing the intrinsic incidence related to block factors (such as
geography or demography) or seasonality.

The sum of these components forms the mean structure for a negative binomial distribu-

tion used to model the count in each block and month. The epidemic component consists of

both auto-regression and spatial/spatio-temporal regression. The maximum distance in space

or time at which we assume one block-and-month count affects another is referred to as the

maximum spatial or temporal lag. The endemic component attempts to explain any remaining

variation, potentially due to overall temporal trends, population size and other unit-specific

factors.

In addition to the genuine epidemiology of VL, there is an intermediary process of detec-

tion and reporting which contributes to the distribution of case counts. A new case in a previ-

ously unaffected area triggers active case detection (ACD) which continues for twelve months,

therefore contributing to the pattern of temporal correlation. In other words, one case is likely

to be promptly followed by more cases—not only because of transmission but also as a result

of increased, localised detection effort. We therefore explored a flexible, distributed lag struc-

ture [23] which extends the range of spatio-temporal interaction by allowing incidence over

multiple previous months to contribute to both the auto-regressive and spatial elements.

The selection of an optimal lag length has been investigated for distributed lag models in one

dimension (i.e. time alone) [24], but the impact of introducing a spatial component has not

been thoroughly discussed. A strong interdependence between the autoregressive and neigh-

bourhood components is introduced by simultaneously incorporating past information from

PLOS NEGLECTED TROPICAL DISEASES Forecasting visceral leishmaniasis diagnoses in India

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008422 July 9, 2020 5 / 21

https://doi.org/10.1371/journal.pntd.0008422


the same block and the neighbourhood of that block in a distributed lag model; each block

affects subsequent incidence in its neighbours, which in turn affects subsequent incidence in

the original block. We apply a semi-systematic approach which attempts to optimise the tem-

poral and spatial lags simultaneously such that one does not mask the effect of the other.

Evaluation of forecasts

The three components described in the previous section (Model Framework) have arbitrary

complexity and lead to a large number of candidate models. A key issue is therefore to iden-

tify the best-fitting model, or a set of well-fitting models, and to assess to which degree good

in-sample (or retrodiction) performance translates to out-of-sample forecasting perfor-

mance. In-sample performance is widely assessed via the Akaike information criterion

(AIC). The AIC balances the model fit and complexity, and has been recommended for

model selection for prediction purposes [25]. To assess performance of probabilistic fore-

casts it is standard to use proper scoring rules [21, 26–29], which offer more detailed scrutiny

of the prediction than measures of absolute or squared error (as used, for example, in [30])

by taking into account the whole predicted distribution. In fact, the ranked probability score

(RPS) can be considered a generalisation of absolute error, to which it reduces if the forecast

distribution consists of a single point. Proper scoring rules measure simultaneously the cali-

bration and sharpness of forecast distributions; they capture the model’s ability to predict

both accurately and precisely but also to identify its own uncertainty in that prediction [28].

With a well-calibrated model the observed values should appear as having come from the

predicted distribution at that point, and we want as precise or sharp a predicted distribution

as possible while maintaining that calibration. In contrast, the mean absolute error for exam-

ple only evaluates how well the central tendency of predictions aligns with the observations.

We utilise the ranked probability score (RPS) [26] averaged over all predicted time points

(502 blocks � 24 months, so 12048 test predictions), which for a predictive distribution P and

an observation x is defined as

RPSðP; xÞ ¼
X1

k¼0

½FPðkÞ � 1ðx � kÞ�2 ð1Þ

Here, FP is the cumulative distribution function of P and 1 is the indicator function. The RPS

thus compares the cumulative distribution function of P to that of an “ideal” forecast with all

probability mass assigned to the observed outcome x. We use this score rather than the loga-

rithmic score as it is considered more robust [31], and we wish to assign some credit to fore-

casts near the observed value. The score is negatively oriented, meaning that smaller values

are better.

Calibration can in addition be assessed using probability integral transform (PIT) histo-

grams. The PIT histogram shows the empirical distribution of FP;i(xi) for a set of independent

forecasts i = 1, . . ., I. We here use an adapted version for count data suggested by Czado et al

[26]. If the forecasts are calibrated, the histogram should be approximately uniform. U and

inverse U-shaped PIT histograms indicate that the forecasts imply too little or too much vari-

ability, respectively.

A closely-related summary measure which is easy to communicate are empirical coverage

probabilities [31]. We will provide coverage probabilities of central 50% and 80% prediction

intervals (reaching from the 25% to 75% and 10% to the 90% quantiles of the predictive distri-

bution, respectively). For a calibrated forecast, the empirical coverage probabilities should be

close to the nominal levels. However, in the context of sparse, low counts the discreteness of

the data often prevents achieving exactly the nominal coverage level. Prediction intervals can
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then either be slightly conservative (too high coverage), which is usually preferred in practice,

or slightly liberal.

Our hypothesis is that models constructed with the surveillance framework to accommo-

date spatio-temporal correlation in disease incidence can provide significantly more accurate

predictions (in terms of sharpness and calibration) than a purely parameter-driven (i.e. inde-

pendent of history and spatial context) model with overall mean and linear time trend. Ini-

tially, we examine and discuss the relationship between model complexity, its ability to

describe past data (i.e. its fit) and its ability to predict the next month. We then apply this

understanding to select an optimal model for prediction with a semi-systematic approach,

before comparing its predictive ability for different time horizons.

Materials and methods

Ethical approval

Ethical clearance was granted by the Observational/Interventions Research Ethics Committee

at LSHTM (ref: 14674), subject to local approval. Local approval to use this data was granted

by Dr Neeraj Dhingra, director of the National Vector Borne Disease Control Programme

(GoI). Individual consent was not required as all data were analysed anonymously.

Data

Access to the KA-MIS database of VL cases was provided by the National Vector Borne Dis-

ease Control Programme (NVBDCP) and facilitated by CARE India. Individual case records

were downloaded for Bihar and Jharkhand, restricted to diagnosis date between 01/01/2013

and 31/12/2018 and then aggregated by block and diagnosis month. This gave reported case

counts for 441 blocks. The KA-MIS data were merged with data from the 2011 census [9]

(compiled by CARE India) for the two states to produce the final data set, including endemic

blocks which had no reported cases during the study period and hence did not appear in

KA-MIS. Because we incorporate spatial correlation into the model, it is necessary to not have

“holes” of missing data in the map. For individual blocks within the assumed “endemic” region

without any reported cases in certain months, case counts were assumed to be “true zeros”

since detection efforts should be consistent with the affected neighbouring blocks. The time

series for these blocks were imputed with zeros and therefore contributed to the fit of the

model. Four entire districts of Bihar, at the edge of the “endemic” region, (Gaya, Jamui, Kai-

mur and Rohtas) had no reported cases during the period, and were excluded from the

analysis.

The final analysis data set included 502 blocks across 38 districts of Bihar and Jharkhand

over 72 months.

Model structure

Due to considerable temporal variation in incidence within blocks, as a result of detection

effort and cases arising in “clumps”, the block-level monthly case counts are widely dispersed.

A negative binomial distribution was therefore used to model the block-level case counts

throughout.

All models fitted conform to the same negative binomial structure for case counts Yit given

previous incidence:

Yit j past � NegBin ðmit;ciÞ ð2Þ
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mit ¼ lt

XQ

q¼1

uqYi;t� q

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
AR

þ�t

X

j6¼1

XQ

q¼1

wijuqYj;t� q

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NE

þnteit|{z}
END

: ð3Þ

where Yit denotes the reported case count in block i in month t with population eit, neighbour-

hood weights wij for neighbours j of block i, and overdispersion parameter ψi> 0 such that

Var(Yit) = μit(1+ ψi μit). Normalised weights uq for distributed lags q = 1, . . ., Q are defined

according to a scalar parameter p which is estimated from the data.

u0
q ¼ pð1 � pÞq� 1

; uq ¼
u0
q

PQ
q¼1

u0
q

ð4Þ

The log-transformed parameter of each model component is then defined by a linear

regression on any relevant covariates, Xit; in this case we consider time with sine and cosine

terms to replicate seasonal waves.

log ðltÞ ¼ βlXl

it; ð5Þ

log ð�tÞ ¼ β�X�

it; ð6Þ

log ðntÞ ¼ βnXn

it; ð7Þ

where β are the regression coefficients.

All models were fit using the R package surveillance [32] and its extension hhh4addon [33]

in R version 3.6.1 (2019-07-05) [34].

Investigating fit and prediction. Thirty random models were drawn from the set of pos-

sible formulations (where all three of the endemic-epidemic components are included in some

form) and compared on the metrics of interest. This informed the subsequent selection process

for the final prediction model.

Code used to produce the results in this paper is available from https://github.com/

esnightingale/VL_prediction_paper, along with a simulated version of the dataset from the

final selected model.

Model selection

During the selection process, all models were fit to the subset of months 5 to 48 in order to

make comparisons between maximum temporal lags up to four months. The remaining 24

months were then predicted sequentially in a “one-step-ahead” (OSA) approach to assess pre-

dictive power (as was applied in [10]), either with rolling updates to the fit (incorporating each

month’s data into parameter estimates to predict the next) or without (using only the training

set of data for all predictions) [22, 26]. The average RPS of these predictions served as the pri-

mary criteria for model selection, comparing between models of increasing complexity by

permutation test with a significance cut-off at 0.001. At the same time, average RPS was com-

pared to AIC from the model’s training period fit to assess the relationship between fit to the

“observed” data and future prediction.

The following elements were considered for inclusion in the model:

• Log of population density as a covariate in the endemic component, in place of population

fraction offset.
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• Seasonal variation and linear trend within the coefficients of all three components, serving

to vary the relative strength of each component over time.

• Distributed temporal lags up to 4 months, with decaying weights according to a geometric

distribution.

• Spatial lags up to maximum of 7th order neighbours, with weights decaying according to a

power law (wij ¼ o� dij , where oij is the neighbourhood order of blocks i and j, and the decay

exponent d is to be estimated).

• Intercept of log population density in the neighbourhood component (Gravity Law), to

reflect that blocks of high population density may be more strongly influenced by their

neighbours due to migration.

• District and state-specific dispersion, allowing the variation in incidence to differ between

spatial units.

It was not feasible to allow a block-specific dispersion parameter since many blocks had too

few cases to obtain stable estimates.

Finer details of the model selection process are included in S1 Text.

Empirical coverage probabilities. As an alternative measure of prediction utility, we

calculated the empirical coverage of prediction intervals produced by each model, with

respect to the observed counts. This describes the proportion of points in the test period for

which the observed count fell within the middle 50% or 80% of the predicted distribution.

For an ideal forecast the empirical coverage will match the nominal level. An empirical cov-

erage probability cannot be considered “strictly proper” [21, 26, 31], as the RPS score is, and

hence does not favour sharpness in addition to calibration. However, a high coverage quan-

tile interval may provide useful lower and upper bounds for expected incidence. For more

detail see S1 Text.

Longer prediction horizons. For the final model, further predictions were calculated

based on a rolling window of three and four months. As with the rolling OSA approach, the

model was initially fit to the training set (months 1, . . ., t) and this fit used to predict month

t + 3. The model was then updated with the data from t + 1 in order to predict t + 4, and so on,

in a similar fashion to Lewnard et al. [10]. The RPS of one, three and four month ahead predic-

tions were compared to assess the loss in accuracy with a longer time horizon.

Results

Preliminary analyses of dispersion and exploration of temporal lags are described in S2 Text.

Random model assessment

According to the thirty random models drawn, fit and prediction were found to be strongly

correlated (Fig 3A). Predictions were calculated based on either a rolling fit (incorporating

each month’s data into parameter estimates to predict the next month) or fixed fit (using

parameters fit to the training set only for all predictions). The scores for both prediction

approaches were very similar for most models, suggesting that the processes defined in these

models are consistent over time and hence the quality of prediction does not depend on reg-

ular model updates (Fig 3B). This is noteworthy since in practice it may not be possible to

update the fits on such a regular basis. Selecting the model based on RPS of predictions from

a fixed model fit would best reflect the constraints of reality and be the more conservative

approach.
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Model selection

As was found with the random model set, the final selected model which demonstrated the

highest predictive power as measured by RPS also achieved the closest fit to existing data. Ini-

tially, no more than two distributed AR lags could be added to the model without yielding

evidence of miscalibration in the predictions. However, once the neighbourhood component

was added in the third stage of selection, increasing the AR lags to four months significantly

improved both AIC and RPS with no evidence of miscalibration. At this point the endemic lin-

ear trend lost significance and therefore was removed in subsequent models. The AIC, RPS

and empirical coverage probabilities for all models considered in the selection process are

shown in Fig 4. Fit and prediction metrics for all models are given in S1 Table. and PIT histo-

grams for the models selected at each stage are compared in S3 Fig.

We found that as RPS and AIC were improved, the empirical coverage probabilities of pre-

diction intervals were increased far beyond their nominal level. With the final model (Model

no. 42), only 5.4% (652/12048) of observations fell outside the 10-90% interval, with an average

interval width of just three possible case counts. This predicted distribution is much more

conservative in its coverage than a simple linear trend model (coverage 10-90% = 0.905) but

attains substantially better fit and RPS, suggesting that more of the improvement comes in the

form of calibration. The conservative 90% predicted quantile provides a reliable upper limit

for the next month’s incidence, to which a management plan could be defined accordingly.

The 25-75% prediction interval was found to be of limited use since, with very low counts

across the majority of the region, this interval often consists of only a single value. The median

would be a more interpretable value to report.

Fig 3. Comparison of predictive performance and model fit, and predictive performance for training period fit and rolling fit updates, for models

with randomly selected components. (A) AIC versus RPS for 30 randomly selected models. AIC is calculated from the fit to the training period only

(months 13 to 48) and RPS from one-step-ahead predictions (months 49 to 72) based on the same fit. According to this random sample, fit and prediction

are strongly correlated; the model which fits best to the observed data produces the best one-step-ahead predictions. (B) RPS of predictions based on the

fixed training set fit versus rolling fit updates. Predictive power is very similar between the two prediction approaches.

https://doi.org/10.1371/journal.pntd.0008422.g003
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Final model

The final model consists of a negative binomial distribution with a single dispersion parameter

and the following mean structure:

mit ¼ lit

X4

q¼1

uqYi;t� q þ �it

X

j6¼i

X4

q¼1

wijuqYj;t� q þ eitnit ð8Þ

log ðnitÞ ¼ an ð9Þ

Fig 4. Measures of fit and predictive power throughout the model selection process. Figures illustrate the models tested in chronological order from left

to right, with each stage indicated by a different colour. Models were selected at each stage based on the biggest reduction in RPS, subject to calibration;

these are identified by hollow points, and the final selected model by a star. For the two variants on the coverage probability, average quantile interval width

(representing uncertainty in the predicted case count) is shown on the right axis and by the grey dashed line. Interval width is determined by the count at

the upper quantile minus the count at the lower, hence an interval width of two covers three possible count values (e.g. 2, 3, 4).

https://doi.org/10.1371/journal.pntd.0008422.g004
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The model fit is dominated by auto-regression; the majority of information with which to

predict the current month comes from incidence in the previous four months, with season-

ally-varying strength. Since the contribution of each component is modelled on a log scale

these parameters have a multiplicative effect, hence the range of the seasonal AR component

(approx. [0.6, 0.8]; see S4 Fig) indicates that each month’s count is expected to be a certain

fraction of the weighted average of the counts over the last four months. This occurs over all

blocks and therefore amounts to an overall decreasing trend. After accounting for auto-regres-

sion, it was found that the neighbourhood effect did not extend beyond directly bordering

blocks with respect to prediction. Seasonality within this component also serves to vary the

magnitude of the effect throughout the year.

The contribution of an endemic trend was found to be negligible, reflecting the lack of

homogeneity across blocks, and was therefore not included; the reduction in total incidence

comes entirely from each block’s autoregressive pattern. Block-specific covariate data (e.g.

relating to socio-economic or geographic features of the area) would contribute to this compo-

nent and potentially reveal associations which are consistent across blocks. Random intercepts

were tested in the endemic component to capture unexplained block variation, yet did not

improve predictive power in a basic model and caused convergence issues in more complex,

distributed-lag models.

The relative contributions of the three model components are illustrated for the four blocks

with highest average monthly incidence (Gopikandar, Kathikund, Boarijor and Sundarpahari)

in Fig 5.

Predictive performance. The final model achieved an overall RPS for one-step-ahead

prediction of 0.420, 36% lower than the null (non-spatial and non-autoregressive) model and

8% lower than the best non-spatial model, with individual block-wise averages ranging from

4.3 × 10−5 to 3.47. This equates to a mean absolute error of 0.58, a 30% reduction from the null

model. That the RPS is lower than the MAE implies the probabilistic forecast is preferable to a

simple point forecast.

Model selection was performed based on the model’s mean RPS across all blocks and the

whole test period but beneath this overall score is a broader distribution of scores for each

block-month prediction, influenced by peaks, troughs and otherwise unusual incidence pat-

terns. The histogram in Fig 6 illustrates the distribution over blocks, demonstrating that the

final model is able to predict accurately and precisely across the majority of the region, yet

there is a small subset of blocks with more widely varying RPS. It should be noted that the

overall performance of the model is strongly influenced by blocks with almost no incidence as

these yield the very lowest scores. Similarly, there is some correlation between the blocks for

which the model performs least well, and the blocks which have historically demonstrated the

highest average incidence since higher counts are harder to predict than zeros or single cases.

The blocks with the highest RPS also tend to exhibit sporadic patterns or have experienced

sudden, sharp changes in incidence (potentially outbreaks) within the test period, which can-

not be reproduced by a model primarily informed by an average of past incidence. Examples

of these patterns are illustrated in S5 Fig.
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Pakur, Maheshpur, Boarijor and Sundarpahari in Jharkhand (RPS ¼ 3:47; 2:70; 2:58

and 2:58; resp:) experienced substantial jumps in incidence between May and July 2017, con-

stituting differences of up to 27 cases from one month to the next. Paroo (RPS ¼ 3:07) showed

a particularly erratic pattern of cases within the test period, with spikes of 21 and 19 cases sepa-

rated by a few months of�5 cases and a subsequent fall to just one case by December 2018.

Incidence in Garkha has also been inconsistent and appeared to have been on the rise in recent

years, until a similar fall at the end of 2018. It should be noted that additional case detection

efforts in Jharkhand at the start of 2017 will likely have contributed substantially to the

observed spikes at this time.

Three- and four-month-ahead prediction. For the final model, further predictions were

calculated based on rolling windows of three and four months. Fig 7 illustrates that the longer

time window did not result in a substantial loss in predictive power, with block-wise RPS very

similar for the majority of blocks. When compared over the same predicted months, the differ-

ences in RPS between one-month-ahead prediction and three-/four-month-ahead were found

to be small but statistically significant (-0.024 and -0.028, resp.; p< 0.0001 for both). In terms

of the empirical coverage, 85.4% of test period observations were captured in the middle 50%

Fig 5. Model fit for the four blocks with highest average monthly incidence (Gopikandar, Kathikund, Boarijor, and Sundarpahari, all in Jharkhand).

The observed case counts are indicated by black points and the coloured regions illustrate the relative contribution of the different model components. The

contribution of the endemic component is negligible therefore barely visible. The fitted value from the model falls at the upper edge of the coloured region.

https://doi.org/10.1371/journal.pntd.0008422.g005
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of the predicted distribution based on a three month window, and 85.7% with a four month

window.

Figs 8 and 9 illustrate the coverage of 45-55%, 25-75% and 10-90% prediction intervals for

the block with the highest RPS of 3.47 (Pakur, Jharkhand) and a block with RPS of 1 (Bhag-

wanpur, Bihar). For Pakur, RPS is strongly influenced by the model’s inability to match the

spike in 2017, yet the incidence in surrounding months is well represented.

Discussion

We have presented the evaluation of a predictive model of VL in Bihar and four endemic dis-

tricts in Jharkhand, demonstrating a substantial (36% lower RPS) benefit from incorporating

spatial and historical case information when compared to a non-spatial, linear trend model.

To the best of our knowledge, this is the first time the spatio-temporal correlation of incidence

at block level across all the endemic districts of Bihar and Jharkhand has been quantified. We

have empirically investigated the performance of different models on prediction performance

rather than model fit and produced a statistical model that is capable of accurate forecasting.

Such a framework can be used as an important tool for management of endemic diseases.

Given the lack of an effective vaccine and evidence that indoor residual spraying of insecti-

cide fails to significantly reduce sandfly densities and VL incidence in sprayed villages [35, 36],

Fig 6. Distribution of time-averaged ranked probability scores across all 502 blocks. Low values reflect accurate and precise prediction. The majority of

blocks fall below 1 with a subset for which predictive power varies widely.

https://doi.org/10.1371/journal.pntd.0008422.g006
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rapid diagnosis and treatment is currently the best method of control. With a block-level esti-

mate of the likely number of cases to arise over the next few months, local management teams

could take steps to ensure they are prepared. For example, the 90% quantile of the predicted

distribution could be used to inform block-specific minimum stock levels for rapid diagnostic

tests and drugs.

In practice, the prediction interval is constrained by the efficiency of the reporting process;

the time taken to process diagnosis reports and input the information into the database sets a

minimum horizon at which predictions would be genuinely prospective and therefore of prac-

tical use. In this paper we have assumed a delay of two months until a month’s data can be con-

sidered complete, which would necessitate making predictions at least three months ahead of

Fig 7. Time-averaged (over months 52-72 for comparability) RPS for three- (A) and four-month-ahead (B) predictions versus one-month-ahead.

Scores are closely matched for the majority of blocks (where RPS < 1:5) but the differences increase for blocks which are harder to predict.

https://doi.org/10.1371/journal.pntd.0008422.g007

Fig 8. One-, three- and four-step-ahead predictions (solid white line) with 10-90%, 25-75% and 45-55% quantile intervals, for Pakur block in

Jharkhand (RPS = 3:47 for one-step-ahead over months 49-72). Observations which fall outside the outer prediction interval are indicated by a cross.

https://doi.org/10.1371/journal.pntd.0008422.g008
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that point. However, conservative predictions based on preliminary month totals would still

likely be of use to the national control programme.

We have demonstrated here that rolling three-month-ahead predictions are a reasonable

approximation to one-month-ahead, but confidence is sacrificed for a minority of blocks as

the time horizon is increased. There is a need for discussion with local disease management

teams to determine the optimal balance between practicality and uncertainty with respect to

predictions. Moreover, the way in which we quantify the accuracy and utility of predictions

would benefit from some public health insight; it is highly likely that over- and under-estima-

tion would need to be weighted differently, which may alter which model is deemed preferable.

Ideally, the model structure would have been optimised according to predictive power on this

slightly longer time horizon, but this is not a trivial task and was deemed beyond the scope of

this paper.

There are also potential issues with movement of VL cases across international borders; in

particular, the international boundary with Nepal cuts through a VL endemic area, artificially

removing some aspects of spatial correlation. Ideally, we would take a regional perspective and

also include areas in neighbouring states that have more sporadic reported VL incidence.

It could be argued that the block-level is too coarse a spatial scale for modelling the spread

of an infectious disease. Outbreaks of VL occur on a smaller spatial and temporal scale than

has been applied here, therefore cannot be anticipated by this model. The transmission

dynamic models which are usually employed for this type of problem can be defined on a vil-

lage, household or even individual level [37], yet this more detailed picture demands many

more assumptions which are difficult to justify in this context. The sparseness of cases at this

point in the elimination process also means that aggregation at a finer temporal scale might

lead to issues with parameter estimation. The block is the unit at which control efforts are co-

ordinated, disease burden is monitored, and control targets are set, therefore predictions at

this level could prove to be a worthwhile compromise while more realistic transmission models

are developed. With more detailed location data, the spread of disease can be modelled as a

point process at the village or household level, potentially giving insight into the size and

movement of disease clusters or “hot-spots” over time. This technique has previously been

applied to the case of VL [38] and may be possible to extend to a larger study region in the

near future, following a recent effort to collect GPS co-ordinates of affected villages across

Bihar.

In this case the best-fitting model was found to be the best-predicting model. The similarity

of prediction and fitting results perhaps reflects the continuity of the processes creating the

Fig 9. Corresponding predictions for Bhagwanpur block in Bihar (RPS = 1:00).

https://doi.org/10.1371/journal.pntd.0008422.g009
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data. However, consideration of predictive power across the whole range of possible values

was key to determining an optimal temporal lag length for short-term prediction. Fit and over-

all predictive power favoured a high number of lags in order to best capture the spatio-tempo-

ral correlation between neighbouring block counts, which appears to contribute to prediction

of sudden changes in incidence. However, auto-regression is the dominant model component

and appears to be captured by lags up to four months. It would be preferable to specify a differ-

ent lag length for the auto-regressive and spatial components but this is not currently imple-

mented in the surveillance framework. By inspection of PIT histograms, we were able to select

the lag length which balanced overall predictive power with capacity to predict at the upper

end of the range.

The model selection approach taken in this analysis is semi-systematic; it was not feasible

to assess every possible combination of model components. Therefore we aimed to home in

on a suitable model by adding components which gave the biggest improvement in predic-

tive performance out of a range of likely options. It was found that once the major compo-

nents were included in some form, further adjustment largely had the effect of redistributing

the variation attributed to each component and did not substantially alter fit or prediction.

There is only so much information within the time series of cases to feed the model, so pre-

dictive power quickly reaches a limit.

The analysis presented here aims to demonstrate the best that can be done with the minimal

information routinely collected by the current programme, but there is evidence that this

model still cannot fully account for the heterogeneity in incidence across the region. The lack

of geographic and/or demographic covariates beyond population size means that the endemic

component in this model is negligible; almost all our information comes from the spatio-tem-

poral correlations, underlining the need for up-to-date data in order to make accurate predic-

tions. Associations between VL incidence and, for example, age and socio-economic quintiles

have been demonstrated [18, 39], which may give rise to varied endemic patterns at the block

level. This unknown variation could in theory be quantified by random effects within this

model framework, but convergence issues (likely due to the large number of zero-counts)

made this infeasible in practice.

There is clearly a limitation of fitting such a model over a large number of highly heteroge-

neous units with minimal unit-specific information. Model selection was performed based on

an average score over all blocks and time points for which predictions were made; a model is

therefore chosen which predicts well overall, but in doing so sacrifices predictive power for a

minority of blocks which do not follow the general trend. Zero counts dominate over all time

and space, and the variance of the negative binomial distribution with a universal dispersion

parameter is still too restrictive to account for blocks with the highest counts. It is in these

areas where additional information on potential predictors of incidence could prove most

valuable.

The variation in case counts may be better explained by a zero-inflated process, and the

extent of zero-inflation will likely become more prominent as elimination is approached.

Bayesian hierarchical models can be used to distinguish sources of variation at different lev-

els and have the benefit of accommodating any informal or incomplete understanding of the

transmission process within prior distributions for model parameters. These models have

until recently been commonly implemented using Markov Chain Monte Carlo (MCMC)

[40], which is computationally intensive for data rich in both space and time. They are how-

ever becoming increasingly accessible as a tool for inference and prediction, thanks to user-

friendly wrappers which take advantage of fast computation using Integrated Nested Laplace

Approximations (INLA) [41]. We will explore this approach in future work.
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Conclusion

We have demonstrated a framework for forecasting VL incidence at subdistrict level in India

which achieves good predictive performance based on the available routinely collected surveil-

lance data. This framework could be used to make short-term forecasts to provide an early

indication of where case numbers are higher (or lower) than expected and to support the logis-

tics of the elimination programme.
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