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Abstract
Several approaches have been proposed recently to accelerate the pathway from drug discovery to patient access. These 
include novel designs such as using controls external to the clinical trial where standard randomised controls are not feasible. 
In parallel, there has been rapid growth in the application of routinely collected healthcare ‘real-world’ data for post-market 
safety and effectiveness studies. Thus, using real-world data to establish an external comparator arm in clinical trials is a 
natural next step. Regulatory authorities have begun to endorse the use of external comparators in certain circumstances, 
with some positive outcomes for new drug approvals. Given the potential to introduce bias associated with observational 
studies, there is a need for recommendations on how external comparators should be best used. In this article, we propose 
an evaluation framework for real-world data external comparator studies that enables full assessment of available evidence 
and related bias. We define the principle of exchangeability and discuss the applicability of criteria described by Pocock for 
consideration of the exchangeability of the external and trial populations. We explore how trial designs using real-world data 
external comparators fit within the evidence hierarchy and propose a four-step process for good conduct of external compara-
tor studies. This process is intended to maximise the quality of evidence based on careful study design and the combination 
of covariate balancing, bias analysis and combining outcomes.
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Key Points 

The strength of the evidence stemming from clinical 
trials performed with RWD external comparators may be 
evaluated in terms of study design and exchangeability 
between the external and trial populations.

Given the challenge of combining observational data 
from routinely healthcare sources with clinical trial data, 
additional rigor must be integrated into planning and 
analytical execution via careful feasibility assessment 
and quantitative bias analysis.

Bayesian dynamic borrowing methods for combining 
outcomes from RWD external comparators and the inter-
nal comparator arm of an RCT should be considered.

1 Introduction

Medical research strives to ascertain the efficacy and safety 
of novel therapeutic substances using the highest quality evi-
dence while addressing the need to bring life-saving thera-
pies to market as quickly as possible. The use of randomised 
controlled trials (RCTs) has revolutionised the development 

of medicine in the 20th century, providing the gold standard 
for generating evidence to assess the efficacy of medicines. 
Randomised controlled trials may, however, not always be 
possible especially in severe or rare disease for multiple 
reasons including slow recruitment. Recently, approaches 
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have been developed to accelerate the pathway from drug 
discovery to patient access. These include revisions to the 
regulatory framework, such as adaptive pathways [1, 2], and 
the introduction of flexible designs such as adaptive designs 
and umbrella trials [3–8].

As the accelerated approval pathway has matured, the 
number of products receiving marketing approval based 
on data from non-randomised single-arm trials (SATs) 
has increased. Between January 1999 and May 2014, the 
European Medicines Agency (EMA) issued 795 approv-
als, including 44 solely on evidence from SATs, and the 
US Food and Drug Administration (FDA) issued 774 and 
60 respectively in the same period [9]. The primary disease 
area where SAT data were used was oncology, with 49/74 
indications (66%) being for haematological malignancies or 
solid tumours. These findings are echoed in the approval 
of orphan medical products. The European Union approved 
125 orphan medical products between 1999 and 2014, one 
third of which used SAT data and another third did not use 
randomisation [10].

There is interest in designs that use non-randomised ‘con-
trol’ patients external to the clinical trial for comparison 
purposes, to strengthen the evidence of a SAT or RCT where 
patient pools are limited [11, 12]. The external compara-
tor patients are not part of the same trial as those receiv-
ing the investigational product. They may be receiving the 
best standard of care treatment or be untreated, and may be 
sourced from previous trials, observational studies, registries 
or databases of routine healthcare. We refer to these patients 
as ‘external comparators’, but other synonyms include ‘his-
torical controls’, ‘synthetic controls’, ‘natural history con-
trols’ or ‘external controls’. In 2001, European Union guid-
ance on the choice of control groups in clinical trials was 
published including external comparators, but such a design 
was regarded at that time as an undesirable option [13]. Rea-
sons included the re-introduction of biases inherent in obser-
vational studies that randomisation was intended to mitigate. 
Nevertheless, external comparators are increasingly used in 
regulatory decision making. For example, Alecensa (alec-
tinib) received accelerated FDA approval in December 2015, 
and was conditionally approved by the EMA in February 
2017 [14, 15] for the treatment of a specific form of lung 
cancer. Data come from a SAT with additional evidence of 
effectiveness relative to standard of care from an external 
comparator arm. Other examples of EMA approval include 
Blincyto (blinatumomab) for the treatment of a rare form of 
leukemia in 2015 [16] and Zalmoxis, an immunogene ther-
apy for high-risk haematological malignancies in 2016 [17].

In addition to innovation in design, there has been rapid 
growth in the availability and use of electronically captured 
routine healthcare data (sometimes termed “real-world data” 
[RWD] [18]), to evaluate post-market safety and effective-
ness [19]. It is a natural next step that RWD be proposed for 

use in establishing an external comparator arm in clinical 
trials [11, 12]. Real-world data more often reflect the typi-
cal use of treatments and tend to encompass patients with 
widely varying characteristics and co-morbidities than do 
clinical trials. Therefore, studies using RWD can be more 
representative of the population requiring treatment in clini-
cal practice (i.e. externally valid). Accordingly, use of RWD 
in post-authorisation safety studies has become standard 
practice [20]. Real-world data may contain detailed clinical 
information; however, the data arise from systems support-
ing routine clinical practice rather than research. Handling 
such data requires special considerations.

There is a clear need for recommendations on how RWD 
external comparators are best used, both through study 
design and analytical approaches, to maximise the quality 
of evidence. Fears regarding a lack of predictability in regu-
latory requirements and rejection of non-standard methods 
remain real despite publications from regulators such as the 
EMA concept paper on the extrapolation of safety and effi-
cacy data across populations [21]. Furthermore, the EMA 
advised in 2006 that historical RWD may be incorporated 
into the analytical framework through appropriate statisti-
cal methods [22]. While the EMA has offered little direct 
guidance on external comparators since that publication, a 
report by the Head of Medicines Agency/EMA Joint Big 
Data Taskforce may provide the greatest insight into current 
thinking by European regulators [18]. This report provides 
recommendations regarding the regulatory acceptability 
of big data, which in this context also relates to individual 
clinical trials or RWD sources that may be pooled or linked 
such that the data assume characteristics of big data. In that 
report, specific actions were noted to improve regulatory 
guidelines and information for big data. In contrast, the FDA 
has openly endorsed the use of external comparator studies 
drawing on RWD in specific circumstances [23].

This article proposes an evaluation framework for RWD 
external comparator studies that can be applied to assess-
ment of the evidence and related bias. After introducing the 
concept of exchangeability in Sect. 2, we discuss exchange-
ability criteria as applied to the internal trial patients and 
external comparators in Sect. 3. In Sect. 4, we explore how 
the exchangeability of an external comparator arm with the 
trial patients can be improved by careful consideration of 
study design. In Sect. 5, we recommend a four-step approach 
for analysing a trial with external comparators starting with 
a feasibility assessment, and we discuss methods available 
for use in the context of this approach depending upon the 
external comparator study design. We explore what factors 
can be satisfied by the study design as well as those that may 
be controlled by appropriate analytical methods. Finally, in 
Sect. 6 we discuss steps that might be taken in the future.
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2  Exchangeability

The concept of exchangeability relates to how well the unex-
posed (comparator) group provides an approximation for the 
disease experience of the exposed group, had they not been 
exposed. The validity of external comparator patients lies 
in the exchangeability with the internal trial patients. In this 
section, we discuss the minimum criteria that need to be 
met to assume exchangeability exists and explore how RWD 
external comparators might be expected to depart from those 
criteria.

In 1976, Pocock described six necessary conditions for 
the external comparator group to be exchangeable with the 
randomised internal controls of a clinical trial (Table 1) [24]. 
The FDA regulators have cited Pocock’s exchangeability cri-
teria in their reviews [25]. These criteria provide a reference 
for assessment of potential sources of bias when considering 
the use of RWD as a source of external comparators. The 
more exchangeable the two populations (internal and exter-
nal), the better. The more potential discordance that can be 
identified (such that groups may only be partially or non-
exchangeable), the lower the strength of the evidence. Key 

factors include selection criteria, confounders and outcomes; 
these may encompass both measured and unmeasured vari-
ables. In Table 1, the specific biases associated with failure 
to meet each of Pocock’s criteria are listed, together with 
some study design considerations specific to the use of RWD 
for external comparators.

Only a randomised internal control group within the clini-
cal trial would allow us to directly evaluate the similarity of 
the distribution of the outcome(s) and impact of unmeasured 
variables, which is not possible with a SAT. We discuss the 
implications of specific study designs in terms of exchange-
ability in Sect. 3.

3  Trial Study Designs Using Real‑World Data 
External Comparators and Their Place 
in the Hierarchy of Evidence

In this section, we explore how trial designs using RWD 
external comparators fit within an evidence hierarchy. Read-
ers may be familiar with the principle of evidence-based 
medicine and the hierarchy of evidence often displayed as 
a pyramid, reflecting risk of bias (internal validity) with 

Table 1.   Pocock’s criteria of exchangeable populations, potential bias from lack of exchangeability and considerations when using real-world 
data (RWD)

RCT  randomised controlled trial
a  “Real-world data” indicating routinely collected healthcare data

Exchangeability criterion Potential bias if non-exchangeable Study design considerations for  RWDa

Subject to the same eligibility criteria Selection bias/confounding (measured and 
unmeasured)

The RCT eligibility criteria must be adapted 
to data that are routinely captured in RWD 
[12]. Laboratory test intervals will be more 
irregular. When a record of a co-morbidity is 
lacking in the database, that co-morbidity will 
be assumed not to be present in the patient 

Distributions of important patient character-
istics

Confounding (measured and unmeasured), 
information bias

All characteristics important to the natural his-
tory of the disease should be captured where 
possible. These may not be recorded in the 
same manner in both the RCT and RWD

Identical treatment Positive treatment bias (i.e. placebo effect) An active treatment comparator is preferable to 
an untreated comparator, particularly where 
the trial treatment is invasive (i.e. chemo-
therapy). RWD may rely assumptions of 
treatment based on prescription records rather 
than dispensed treatment

Treatment outcome(s) evaluated in the same 
manner

Information bias RWD may need to rely on alternative diagnos-
tics, proxies or passive reporting of outcomes 
of interest by patient to a healthcare profes-
sional

Collected recently Surveillance bias, unmeasured confounding Diagnosis of disease, rates of disease, standard 
of care and reporting of adverse events by 
patients all change over time

Collected in the same setting, by the same 
investigators

Unmeasured confounding RWD will not typically be able to satisfy this 
criterion, leading to a source of unmeasured 
confounding
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weaker designs at the base and stronger designs at the tip. 
Analogously, a hierarchical framework can be considered for 
the quality of evidence offered by RWD external comparator 
designs (Fig. 1). There are two primary study designs mak-
ing use of RWD external comparators:

1. Supplemented SAT: A SAT wherein the sole source of 
controls are RWD external comparators.

2. Augmented RCT: An RCT with reduced sample size 
in the internal control arm (N:1 randomisation ratio), 
which is then augmented with RWD external compara-
tors.

These can be compared with more traditional trial 
designs: a SAT (with no source of controls); and a standard 
RCT with either an equivalent number of patients in each 
arm (1:1 randomisation ratio) or a ratio that favours the com-
parator arm (1:N ratio).

In addition to these two basic designs, one can combine 
a fully powered RCT with the use of RWD in a number of 
ways to gain the advantages of both, i.e. internal and external 
validity, reduction in loss to follow-up, pathway to evaluat-
ing long-term outcomes and potentially establishing refer-
ence values for other trials using external comparators [11, 
26, 27]. Alternatively, a group of external patients may be 
used without any direct comparison to create a benchmark 
or group of natural history comparators.

3.1  Supplemented Single‑Arm Trials

In supplemented SATs, external comparators provide the 
sole source of controls. While supplemented SATs cannot 
replace RCTs [28], our opinion is that when performing a 
SAT it is preferable to supplement with an external compara-
tor to inform safety and efficacy than not to have any com-
parator. While some qualities of exchangeability can be, and 
should be, assessed for a supplemented SAT, the assessment 
is limited to variables measured in both the internal trial and 
the RWD comparator patients, thus only partial exchange-
ability can be achieved. The greater the proportion of meas-
urable key factors that exist will determine to what extent 
exchangeability can be assessed and the resulting quality of 
evidence arising from a trial of this design.

3.2  Augmented Randomised Controlled Trials

In rare circumstances, RCTs may have unequal randomisa-
tion ratios, particularly in rare diseases (see Box 1). In these 
cases, external comparators can be used to augment the RCT 
by adding power to a smaller internal control group. 

Single Arm Trial

Supplemented 
Single Arm Trial

Augmented RCT

Standard 
RCTecnedivE fo ytilau

Q

ytilibaegnahcxE

Study 
Design

Internal Trial Patients

Treated Control
1:1 ratio

Control
N:1 ratio

Control

External Comparators

RCT+

Fig. 1   Study design hierarchy of evidence. The proposed hierarchy 
of evidence for study designs in the context of use of an external 
comparator arm from real-world data in comparison to a standard 
randomised controlled trial (RCT) or a single-arm trial. The quality 
of evidence, as indicated by the filled arrow, is expected to increase 
as one goes from a single-arm trial to an RCT; similarly, within the 
designs for trials using real-world data external comparators, the 

quality of evidence is dependent upon exchangeability, as indicated 
by the striped arrows, as it is expected to increase as the exchange-
ability status between the trial patients and the external comparators 
transitions from being poor (non-exchangeable), partially exchange-
able or completely exchangeable. RCT+ represents study designs that 
go above and beyond by having a fully powered RCT complemented 
by external data
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We expect the quality of evidence produced by an aug-
mented RCT to be between a standard RCT and a supple-
mented SAT. The quality of the evidence depends on the 
evaluation of the exchangeability between the trial patients 
and the RWD external comparators, and whether a signifi-
cant amount of information (i.e. power) is added after appro-
priately adjusting for exchangeability.

4  Methods

To evaluate exchangeability and potential bias in studies 
with RWD external comparators, we propose a four-step 
approach to the design and analysis (Fig. 2). Steps 1–3 are 
applicable to all trial designs using RWD external compara-
tors, and are reminiscent of the steps for the direct com-
parison of randomised and observational studies outlined 
by Lodi et al. building on the work of Hernan and Robins 
in emulating a hypothetical clinical trial (i.e. a target trial) 
[29, 30]. We recommend identifying key factors contribut-
ing to bias (Step 1), adjusting for baseline characteristics 

and confounders in analysis (Step 2), as well as modelling 
and quantifying the potential bias from other key factors, 
in a process called quantitative bias analysis [QBA] (Step 
3). Quantitative bias analysis may be performed at multiple 
points during the design and analysis of an external com-
parator study.

If the study is a supplemented SAT without an inter-
nal control group, steps 1–3 provide a basis for judging 
exchangeability and the quality of evidence. Step 4 is appli-
cable in an augmented RCT with an internal control. In Step 
4, outcomes from the external comparators and the internal 
control group are combined in a Bayesian analysis, termed 
‘dynamic borrowing’ [31]. In this method, power from 
the external comparators is borrowed depending upon the 
exchangeability with the internal control group.

5  Step 1: Identification of Key Factors 
Affecting Bias

Step 1 is the initial planning phase, where key factors influ-
encing bias should be identified. The sources of potential 
bias of highest impact for RWE external comparator studies 
include selection bias, unmeasured confounding and infor-
mation bias (i.e. misclassification, measurement and miss-
ing data). Unmeasured confounding can arise when there is 
differential selection not captured in the eligibility criteria 
or from important patient characteristics not included in the 
study, e.g. when there are gaps in RWD availability and not 
all relevant variables are captured [28]. Misclassification and 
measurement error could result from using different proce-
dures for the measurement of any variable in the RWD vs the 
trial. The level and extent of missingness are also likely to 
vary between RWD sources compared to the intensive data 
collection systems for trials [32–34].

Step 1 Step 2 Step 3 Step 4

Combine Outcomes via 
Bayesian Borrowing

Assess Feasibility
of Data Source and 
Study Design

Adjust for Baseline 
Characteristics and 
Potential Confounders

Assessing the Threat of 
Bias via Quantitative 
Bias Analysis

Figure  2.   Four-step approach to a trial with real-world data exter-
nal comparators. Step 1 includes an assessment of sources of bias 
and exchangeability. Step 2 adjusts for measured confounders using 
analytical approaches. Step 3 uses quantitative bias analysis to quan-
tify the impact of potential bias. Step 4, applicable only to augmented 

randomised controlled trials, combines outcomes between the internal 
and external comparator groups dependent upon the similarity of the 
two cohorts. The dotted line from Step 3 indicates that this step may 
be re-ordered or implemented iteratively
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The availability and validity (in comparison to the 
RCT) of variables representing each factor from the RWD 
source(s) should be assessed in terms of Pocock’s criteria 
of exchangeability. Specific variables for which the popula-
tions are not exchangeable should be highlighted and later 
addressed in Steps 2–4 of the analysis.

For example, where key variables are missing in the 
potential data source, this should be noted alongside the risk 
of bias to the study if this variable were left out (Box 2). 
Assessment of the threat of bias due to the missing vari-
able can be qualitatively categorised into high, medium or 
low. If further information in the literature is available to 
help quantify typical values of missing variables, any further 
quantitative impact may be assessed in Step 3. Variables 
with information bias in the RWD relative to the trial should 
be similarly be identified.

Transparency and documentation in this feasibility pro-
cess will likely bolster confidence in the data and the ability 
to identify sources of bias. Epidemiological and data source 
expertise are required to detect less obvious systematic dif-
ferences in data collection. The outcome of this phase would 
be a report addressing the exchangeability criteria and high-
lighting differences between the two populations and data 
sources, which will inform quantitative bias analysis in Step 
3.

6  Safety Outcomes

In studies with safety outcomes, misclassification of the 
adverse events due to passive reporting in RWD is of 
particular concern. The under-reporting and recording of 

non-serious adverse events in RWD is well known [35]. 
For example, in the evaluation of Heparesc, a treatment of 
ornithine-transcarbamylase deficiency in low-weight infants, 
the EMA assessed that a “comparison of safety data of the 
treated patients with historical patients is also problematic” 
due to “underreporting for the historical controls thus disfa-
vouring the experimental arm” [36].

To effectively use RWD external comparators for safety 
outcomes, it is necessary to validate proxy variables or 
establish reference values for the typical rate of misclas-
sification or measurement error. For example, one initia-
tive by the Friends of Cancer Research is to establish the 
concordance of proxies for common oncology outcomes 
across RWD sources [37] and another to develop real-world 
benchmarks for metastatic pancreatic cancer [38]. In addi-
tion, several publications have called for the routine collec-
tion of RWD for all participants in RCTs, which would aid 
in establishing reference values [11, 26, 27].

6.1  Step 2: Adjust for Baseline Characteristics 
and Potential Confounders

All clinical studies strive to reduce confounding by balanc-
ing covariates between treatment groups. Common meth-
ods of balancing covariates include randomisation, use of 
selection criteria or analytical methods such as adjustment 
within the outcome regression model, aggregate constructs 
such as propensity scores or causal inference approaches 
[39]. Step 2 aims to address the differences in measured 
variables between the trial and external comparators, specifi-
cally selection criteria, baseline characteristics and measured 
confounders.

Propensity score methods are frequently used for covari-
ate balancing in observational studies [41–44]. Propensity 
score matching in particular aims at replicating randomisa-
tion by matching treated patients to comparators based on 
their probability of being treated given patient characteristics 
[44]. The propensity score methodology can also be adapted 
to quantify and illustrate the exchangeability of the exter-
nal comparator population with that of the trial population. 
For a supplemented SAT, there is no difference as all trial 
participants are treated. For an augmented RCT, one would 
want to compare the external comparators to the whole trial 
population to assess exchangeability. Therefore, one esti-
mates the probability of a patient being in the clinical trial 
or the RWD, based on the measured patient characteristics. 
This approach is only to evaluate the exchangeability of the 
populations and not for adjustment of the treatment effect.

In external comparator studies, we suggest that where 
very low scores or little overlap in score distributions are 
observed (i.e. the external comparators have low probabil-
ity of being included in the trial), the feasibility of using 
those patients as external comparators should be questioned. 



629A Framework for External Comparator Studies Using Real-World Data

Where there is overlap in the score distributions, the extent 
of the overlap may provide insight into the limits of gener-
alisability of the trial.

If after adjusting for covariate imbalance there are still 
large differences in the outcomes between trial controls and 
external comparators, it indicates that the populations are 
only partially or poorly exchangeable owing to unmeasured 
factors or other sources of bias. In a supplemented SAT, we 
cannot compare outcomes as there are no internal controls, 
however, it can be assessed, modelled, and incorporated 
into the analysis of augmented RCTs with both internal and 
external controls (Step 4). Even in a supplemented SAT, 
however, we can quantitatively assess the threat of bias from 
unmeasured sources (Step 3).

6.2  Step 3: Assessing the Threat of Bias 
via Quantitative Bias Analysis

The practice of modelling sources of bias, using determin-
istic or probabilistic models, which may impact results of 
research has been termed QBA [45–47]. In formal QBA, one 

defines the model whereby the source of bias may impact the 
treatment effect estimate (i.e. the bias model), the minimal 
set of parameters governing this model (i.e. bias parameters), 
and feasible values for these parameters from the literature 
or using expert knowledge [48]. Most commonly, each 
potential source of bias and the impact is modelled sepa-
rately [45, 49–53]. See the Electronic Supplementary Mate-
rial for a simple example of the application of QBA in the 
context of selection bias in an external comparators study.

In other areas of epidemiology, there is increased demand 
for bias assessment to be integrated at both the peer review 
and regulatory level [54, 55], as QBA quantifies the possi-
ble magnitude, direction and uncertainty around the bias for 
decision makers. Regulators commonly request additional 
data or analysis to address bias in studies making use of 
external comparators (see Box 3) and QBA can be used to 
address this need [25, 56]. However, QBA can be undertaken 
as part of the analytical design or even in Step 1 alongside 
sample size estimates before analysis is undertaken to quan-
titatively assess data source feasibility. 

The most comprehensive form of QBA is to create a 
deterministic model of one or more bias mechanisms fol-
lowed by stochastic modelling by varying key parameters 
in simulations (i.e. Monte Carlo simulations) to estimate the 
magnitude and uncertainty associated with bias in the treat-
ment effect [47]. As this becomes computationally intensive 
as the number of potential sources of bias increases, care 
must be taken in choosing the largest threats of bias based 
on the feasibility assessment in Step 1 [47].

Another form of QBA is nullification analysis, where one 
estimates the ‘E-value’, i.e. the strength of the bias required 
to nullify the observed effect [57]. If very strong confounding 
is required to achieve nullification and subject-matter experts 
find confounding of that magnitude unlikely, then the risk of 
bias to the validity of the study would be considered minimal.

Quantitative bias analysis models may also be imple-
mented in a Bayesian setting by formalising the range of 
bias estimates into Bayesian priors. Our opinion is that this 
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approach may be combined with Step 4, Bayesian dynamic 
borrowing, discussed in the next section, but this combina-
tion of methods requires further research.

6.3  Step 4: Combine Outcomes via Bayesian 
Dynamic Borrowing

Pocock proposed using Bayesian methods to combine the 
evidence from (exchangeable) historical data with the evi-
dence from the control arm of an RCT [24]. An in-depth 
explanation of Bayesian methods can be found in various 
textbooks [58–60] and a quick review of the lexicon is 
provided in Box 4. These methods, referred to broadly as 
“Bayesian dynamic borrowing” or “Bayesian discounting 
functions”, create priors from external comparator data, 
which can then be applied to the internal control data to 
increase the total power of the control group. As an inter-
nal control group is required, Bayesian dynamic borrowing 
can only be applied to augmented RCTs and not to sup-
plemented SATs. It is of note that there is little published 
research applying these methods in the context of RWD. 
Therefore, this section is intended to be suggestive of how to 
evaluate methods for suitability in this context.Two general 
approaches for creating the prior for external comparator 
data are illustrated in Fig. 3. The first is the “power prior” 
approach [61, 62], wherein one first combines an “uninform-
ative” prior distribution [59] with the external comparator 
data to create a new prior distribution (the power prior); 
this power prior is then combined with the likelihood of the 
trial data to form a posterior distribution that incorporates 
both the trial and external comparator information. The sim-
plest implementation of the power prior approach includes a 
weighting parameter, ω, to additionally discount the exter-
nal data where ω = 1 is full exchangeability and ω = 0 is 

non-exchangeability. A review of various implementations 
of the power prior can found in Viele et al. (see Fig. 3A) 
[31]. The second approach is the meta-analytic predictive 
(MAP) prior in which one or more external comparators are 
combined via a meta-analytic model to form a prior distribu-
tion summarising all the information [63].

Figure  3.   Basis for Bayesian dynamic borrowing. a The “power 
prior” [61, 62, 66] is constructed from an uninformative prior, the 
likelihood of the external comparator data and a weighting parameter 
(“the power parameter”; depicted as ω) used to discount the exter-
nal data, accounting for the either the measured or unmeasured dif-
ferences in the populations. This power prior is then applied to the 
likelihood of the randomised controlled trial internal control data to 

estimate a Bayesian posterior distribution of the outcome. b Bayesian 
hierarchical models may assume that each source of data is sampled 
from a larger population [31, 70]. The resulting variability between 
sources is modelled as a random effect whose variance is to be esti-
mated. Many sources of data are required to accurately model the 
variance without robust priors
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Subjectivity in the specification of parameters may be 
problematic. For example, in the basic power prior method 
scenario, ω may be specified based upon the exchangeability 
conclusions from Steps 1–3; however, more research would 
be required to establish appropriate guidance. The weight 
could be considered a random parameter [61, 64], but it has 
been shown that use of random weighting tends to overly 
attenuate the contribution of the external comparators [65].

Methods that more objectively account for differences in the 
observed data sets, i.e. borrow dynamically depending on the 
heterogeneity of the data, have been developed. These include 
the modified (normalised) power prior [66], the commensurate 
power prior [67, 68] and the MAP prior [63]. These methods 
are compared in simulation studies in van Rosmalen et al. [69] 
alongside the original power prior [61] and Pocock’s method 
from 1976 [24]. The methods that account for heterogeneity 
between data sources, and therefore the degree of observable 
non-exchangeability in the data, were found by van Rosmalen 
et al. to provide the best trade-off in terms of power and type I 
error with the MAP prior showing the greatest promise.

Methods that objectively account for heterogeneity in the 
data are only accounting for observable non-exchangeability 
in the outcome and confounders (whereas covariate adjust-
ment methods account for non-exchangeability only in the 
observed confounders). Important variables that are not 
measured or are measured differently in a manner that goes 
undetected may still introduce an element of non-exchange-
ability and therefore bias. For this reason, when using RWD, 
methods that allow for equal weighting of the external com-
parators to the internal control arm may be less desirable.

Application of the methods to only the outcome distribu-
tions or to aggregated data, not including the whole measured 
data set, is at a disadvantage as heterogeneity in the con-
founders is not incorporating into the discounting function. 
Use of traditional covariate adjustment methods to predict the 
outcomes dependent upon inclusion in the trial may be used 
in advance of use of aggregate dynamic borrowing methods, 
but further research comparing this approach to dynamic bor-
rowing approaches using the full data is necessary.

Prior specification may also be subjective and can have 
a large effect on a Bayesian analysis [31], thus sensitiv-
ity analysis of the priors should be standard practice [71]. 
Informative priors should only be used in very special situa-
tions. However, we also suggest using QBA for a sensitivity 
analysis, varying the reliability of specific parameters within 
the Bayesian model to reflect possible bias.

7  Conclusions

In light of the recent increase in regulatory approvals of 
products on the basis of uncontrolled studies [23, 72], hav-
ing an appropriate framework for evaluating data from SATs 

or augmented RCTs using RWD external comparators is of 
urgent importance. While there is discordance in regulatory 
decision making, the need for robust evidence and rigorous 
assessment of bias is clear. In this article, we have proposed 
a framework whereby trials including RWD external com-
parators may be designed in a more deliberate manner and 
evaluated for the quality of the evidence. This framework is 
based on study design (augmented RCT or supplemented 
SAT) and careful evaluation of the non-exchangeability 
between the RWD external comparators and trial population.

None of the methods presented in this article are novel; 
however, we have put them together in a framework to for-
malise their combined use. We have shown that regulators 
have cited exchangeability concerns directly and performed 
an informal bias analysis. There is a concern that only ‘mira-
cle’ drugs can benefit from the use of external comparators. 
We believe the use of QBA can be used to better assess, 
both before and after the conduct of the trial, whether a trial 
would benefit from additional external comparator data. 
Where the line is between what is possible with external 
comparators and what is not will depend on the effect size 
of the therapy, the sample size and the quality of the data/
impact of bias. Assessing this in advance can lead to better 
decisions on what therapies can make efficient use of this 
trial design.

However, there are still many challenges and gaps in this 
area. There have not been enough applications to regulators 
containing RWD external comparators to make an assess-
ment of their response, nor has this framework been applied 
in any such applications. While others have called for greater 
use of QBA in regulatory decisions, the effect of its use in 
more robust applications on submission outcomes is yet to 
be discovered.

While the MAP method was shown to be quite promising 
[69], methods of dynamic borrowing for external comparator 
studies is a developing field. More research and simulations 
in the setting of RWD are required to demonstrate the effi-
cacy of these methods. Furthermore, while we suggest the 
use of dynamic borrowing as the last step in the four-step 
process, the best implementation in RWD is still an area for 
further research.
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