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Abstract 

In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with 

respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping 

sickness and Chagas disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a 

significant socioeconomic burden in low-income countries of sub-Saharan Africa and Latin America, 

respectively. Drug development is under-funded. Moreover, current treatments are outdated and 

difficult to administer, while drug resistance is an emerging concern. The synthesis of adamantane-

based compounds that have potential as antitrypanosomal agents, is extensively reviewed. The critical 

role of the adamantane ring was further investigated by synthesizing and testing a number of novel 

lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the 

adamantane ring generated the most active analogues, illustrating the synergistic effect of the 

lipophilic character of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The 

n-decyl C1-substituted compound G8 (R = C10H21) proved to be the most potent adamantane 

derivative against T. brucei with activity in the nanomolar range (EC50=90 nM). Molecular 
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simulations were also performed to better understand the structure-activity relationships between the 

studied guanylhydrazone analogues and their potential enzyme target. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Neglected tropical diseases (NTDs) constitute a diverse group of chronic bacterial, protozoan, fungal, 

viral and helminth infections [1,2] in 149 countries worldwide [3]. It is estimated that more than a 

billion people — one-sixth of the world’s population, are affected by NTDs in tropical and sub-

tropical regions. These infections are considered to be one of the leading causes of high morbidity 

and mortality in underdeveloped countries [4]. Leishmaniasis, Human African Trypanosomiasis 

(HAT), Chagas disease and malaria are the most serious and prominent protozoan infections, 

accounting for the highest death toll among the existing NTDs annually [5,6]. In this review, we will 

focus on the two trypanosomiases, HAT and Chagas disease, caused by protozoan parasites of the 

genus Trypanosoma. 

 

1.1 Human African trypanosomiasis 

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne disease 

that affects poor populations in the African continent. It is caused by infection with the protozoan 

parasite Trypanosoma brucei and is transmitted by the bite of tsetse flies of the genus Glossina [7]. 

The disease is found in 36 countries of sub-Saharan Africa and about 65 million people are at risk of 

developing the infection [8]. 

Two morphologically identical subspecies of T. brucei are responsible for the onset of the disease in 

humans. They display a different host range, exhibit dissimilar virulence profiles, occur in separate 

geographical regions, and display distinct epidemiological characteristics and clinical manifestations 

[9]. Trypanosoma brucei rhodesiense causes an acute and rapidly progressing form of the disease, 

known as rhodesiense HAT (rHAT), which is localized to 13 countries in eastern and southern Africa 

[10]. It is a zoonotic disease [11], that is transmitted by tsetse flies of the Glossina morsitans group 
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[12] and passes directly or indirectly from animals or insects to humans. Trypanosoma brucei 

gambiense leads to a slow-progressing and chronic form of the disease, Gambian sleeping sickness 

or gambiense HAT (gHAT), which is found predominantly in 24 countries of western and central 

Africa [10]. The palpalis group is the vector of T. b. gambiense, with the main carriers being Glossina 

palpalis palpalis and Glossina palpalis gambiensis [13]. gHAT is an anthroponotic disease which is 

transmitted predominantly from person to person, although pigs and some wild animals have been 

reported as smaller reservoirs [11]. Infections from T. b. gambiense are the most common and 

represent over 97% of current cases [9].  

Three severe outbreaks of the disease have been recorded in Africa. The first occurred between 1896 

and 1906 with 800,000 deaths. The second began in 1920, peaking in 1930 with 70,000 registered 

cases, and ended in the late 1940s. The most recent widespread outbreak began in the 1970s and 

lasted until the end of the 1990s [14,15]. Incidence data from the World Health Organization (WHO) 

for 2009 showed a total of 9,878 new cases, with a sharp drop off observed in 2014. Nowadays, only 

the Democratic Republic of the Congo (DRC) reports an average of more than 1,000 new cases per 

year, comprising over 70% of the total recorded T. b. gambiense cases. However, the real number of 

people affected by this disease is estimated to be much higher due to under-reporting [8,16,17].  

Tsetse flies are hematophagous, cyclical vectors of HAT [18]. Congenital transmission has also been 

demonstrated in newborn children within the first days of life and in older children born in 

nonendemic regions from infected mothers [19-22]. Transmission through sexual contact has been 

described once when the infection was passed from a male with confirmed gHAT to a woman who 

had never been to an endemic country [21-23]. Furthermore, mechanical transmission has also been 

reported via other blood-sucking insects, whereas accidental infections may occur from needle stick 

injuries in laboratories, or through blood transfusion [18,23].  

HAT is clinically defined by two distinct stages. During the early hemolymphatic stage, trypanosomes 

spread and proliferate in the blood and the lymph. In the second or late meningoencephalitic stage, 

parasites are able to cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) 

[16]. Although the progression of each stage involves different clinical features, it is often difficult to 

distinguish reliably between the two stages and they merge into each other, especially upon infection 

with T. b. rhodesiense. rHAT progresses rapidly and parasite invasion of the CNS occurs in a few 

weeks, causing death within months of infection. On the other hand, the neurological stage of gHAT 

generally starts several months or even years after infection, and the disease can take years or decades 

before becoming lethal [9,24].   

After the bite from a tsetse fly, a chancre also known as a trypanome – a local skin reaction, develops 

at the feeding point. This occurs in about 20% of patients with rHAT, but is rarely observed in gHAT 

cases [10,11,25]. After an initial asymptomatic period that lasts one to three weeks in rhodesiense 
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infection, and usually some weeks longer in gHAT, patients develop nonspecific symptoms such as 

fever with chills, fatigue, headache, arthralgia, weight loss and a general sense of discomfort and 

unease. Splenomegaly, or less frequently hepatomegaly, has been observed, while enlargement of the 

posterior cervical lymph nodes, known as Winterbottom’s sign, is common in Gambian sleeping 

sickness [10,11,16]. The meningoencephalitic stage involves symptoms from almost all regions of 

the nervous system. These clinical manifestations are categorized by psychiatric, motor, sensory 

disturbances and sleep abnormalities, the main features that gave the disease its name. Deep and 

painful hyperesthesia is the leading sensory symptom, known as Kerandel’s sign. The disease causes 

deregulation of the circadian clock characterized by daytime somnolence followed by nocturnal 

insomnia. As the disease progresses, patients display an uncontrollable desire to sleep and alterations 

of sleep structure. During the final stage, cerebral edema, coma and systemic organ failure are 

observed, leading to sudden death [10,11,16,26-28].  

The first issue in HAT diagnosis is to identify the disease as soon as possible by confirming the 

presence of parasites in the peripheral blood, or in other infected tissues such as the lymph nodes. 

Subsequently, the key step constitutes the accurate staging of the disease [29]. Τhe non-specific signs 

and symptoms are insufficient for an accurate diagnosis. In rHAT, identification of trypanosomes is 

feasible because of the high levels of parasitemia, by microscopic examination of blood, or by a 

lymph node aspirate. The presence of the trypanosomal chancre is also typical of infection with T. b. 

rhodesiense. In contrast, gambiense infection is typified by cyclical parasitemia, reflecting a process 

of antigenic variation by the parasite, and parasitological diagnosis has poor sensitivity [7,24]. 

However, rapid and reliable serological tests (e.g., Card Agglutination Test for Trypanosomiasis 

(CATT), HAT Sero-K-SeT, SD Bioline HAT), based on the detection of specific antibodies, can be 

used for mass population screening [16,30,31]. Identification of the late stage of both types of HAT 

is based on the examination of cerebrospinal fluid (CSF) collected by lumbar puncture. WHO has 

defined 5 white blood cells (WBC) per μL as a threshold, or the presence of trypanosomes in the CSF, 

or both, as indicators that the infection has progressed to the CNS-stage. In gambiense infections, 20 

cells per μL is used as the cutoff point [30]. Concentrations of immunoglobulin M (IgM) in the CSF, 

neopterin and combined panels of cytokines and chemokines, released after the tissue damage, have 

also been evaluated as biomarkers of HAT, and they reflect the severity of neurological signs [32,33].  

 

Recognition of the causative T. brucei sub-species and correct staging of the disease are critical for 

choosing the appropriate chemotherapeutic regimen [10,34]. Drugs used for the first-stage disease 

are not able to cure second-stage disease, since therapy against the late stage requires drugs that travel 

across the BBB. Treatment of the first stage of sleeping sickness is limited to two drugs, pentamidine 

and suramin [35].  
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Pentamidine isethionate (Fig. (1)) is an aromatic diamidine and was registered as the drug of choice 

for the treatment of infection caused by T. b. gambiense in 1940. As a positively charged molecule, 

pentamidine interacts electrostatically with cellular polyanions. The drug seems to bind to the minor 

groove of DNA and to be involved in the disruption of both kinetoplast (kDNA) and nuclear DNA. 

kDNA is thought to be the primary target with drug activity linked to inhibition of the mitochondrial 

topoisomerase II. It has also been suggested that diamidines may act through other mechanisms, such 

as inhibition of the enzyme S-adenosylmethionine decarboxylase (AdoMetDC), or by deregulation 

of oxidative phosphorylation. [34,36-40].  

Suramin (Fig. (1)) is a polysulphonated naphthylamine and has been used as a standard treatment for 

the hemolymphatic stage of rHAT. Suramin appears to bind to glycolytic enzymes through 

electrostatic interactions and inhibit them, thus interrupting glycolysis. In a recent study, 

dysregulation in cytokinesis was observed following suramin treatment, while parasites with more 

than two nuclei were abundant, indicating a possible new mode of action. Anaphylactic shock, renal 

failure, skin lesions, neurological complications, such as peripheral neuropathy, and bone marrow 

toxicity have been reported as the main adverse reactions [34,36,37,39,40].  

Melarsoprol (Fig. (1)) is a trivalent arsenical and the only effective drug for the second stage of both 

forms of sleeping sickness. It was first used in 1949. Melarsoprol is a prodrug which is converted, in 

trypanosomes, into the active form melarsen oxide. The active metabolite seems to engage in stable 

interactions with sulfhydryl groups and has a high affinity for thiols such as trypanothione, affecting 

the redox (reduction–oxidation) balance of the parasites. It also interacts with a variety of glycolytic 

and pentose phosphate pathway enzymes, and thus, inhibits ATP synthesis. The use of melarsoprol 

is linked with a high frequency of severe and life-threatening adverse effects, with an overall mortality 

rate of 5%. This drug is very toxic, and patients may develop a severe post-treatment reactive 

encephalopathy (PTRE) with mortality rates that climb to 50%. [9,34,36,37,39,40].  

Eflornithine (Fig. (1)) was originally registered as an anticancer drug, but in the 1980s, it was found 

to be an effective therapeutic solution for the second stage of gHAT. It is a specific and irreversible 

inhibitor of ornithine decarboxylase (ODC), the first enzyme involved in the biosynthesis of 

polyamines, which are essential for cell growth and proliferation. The main adverse effects reported 

are fever, pruritus, hypertension, bone marrow suppression, gastrointestinal symptoms and rarely, 

seizures. [34,36,37,39,40].  

Combination regimens of melarsoprol, eflornithine and nifurtimox were assessed for the treatment of 

HAT. Nifurtimox is registered to treat patients with American trypanosomiasis (below). Nifurtimox-

eflornithine combination therapy (NECT) (Fig. (1)) was found to be the most effective and now 

constitutes the first-line therapy for the late stage of gambiense infection. Nifurtimox is a prodrug that 



6 
 

is bioactivated through reduction of the nitro group, yielding nitro-anion radicals and other active 

metabolites. NECT is based on the synergistic actions of the two drugs; nifurtimox leads to oxidative 

stress and widespread damage to macromolecules, while eflornithine reduces the levels of 

trypanothione, the key redox-protecting metabolite. Administration includes oral nifurtimox with a 

daily dose of 15 mg/kg, three times a day for 10 days, and eflornithine infusions of 400 mg/kg per 

day given every 12 hours for 7 days. NECT produced a marked improvement in terms of 

administration (56 infusions reduced to 14), high cure rates, low mortality rates and less adverse side 

effects, especially compared to melarsoprol. Shorter hospitalization is also required, and the cost of 

the therapeutic schedule has been significantly reduced. NECT-treated patients may be affected by 

musculoskeletal and abdominal pain, tremors, vomiting and nausea, headache and gastrointestinal 

disorders [36,41-43].  

Two new drugs are currently undergoing clinical trials, fexinidazole and acoziborole (Fig. (1)). 

Fexinidazole is a prodrug that is rapidly metabolized in vivo – through two different pathways, 

cytochrome P450 and a monooxygenase – into two metabolites, a sulfoxide and a sulfone, both of 

which exhibit trypanocidal activity. It is the only orally administered drug that is effective against 

both stages of HAT caused by T. b. gambiense and T. b. rhodesiense. This drug has been deemed 

broadly acceptable due to the easy administration (one oral dose per day for 10 days), its safety 

profile, its reduced cost in terms of synthesis, and the fact that there is no requirement for disease 

staging. Fexinidazole has received marketing authorization in the DCR for the treatment of gHAT, 

and has successfully entered phase 3 and phase 2 clinical trials in patients infected with gHAT of any 

stage and chronic Chagas disease, respectively [44-47].   

Acoziborole (SCYX-7158) is another oral drug candidate that has been tested as a treatment for T. b. 

gambiense and T. b. rhodesiense infections. After phase 1 clinical trial, completed in 2015, it was 

confirmed that the drug is able to access the CNS, so may have potential against both disease stages. 

Phase IIb/III clinical trials have been ongoing in the DCR since 2016 [46-48].   

A series of amidine-containing compounds have also been studied for their effect on T. brucei and 

some of them were evaluated in animal models and/or in clinical trials. However, the trials were 

discontinued due to high toxicity.  
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Fig. (1). Chemotherapeutic strategy against sleeping sickness and Chagas disease. Highlighted 

regions are reported to play a major role in the mechanism of action.  
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1.2 American trypanosomiasis 

Chagas disease, or American trypanosomiasis, is a systemic, life-threatening zoonotic infection [49], 

caused by the protozoan parasite Trypanosoma cruzi. The disease is endemic in 21 continental Latin 

American countries, with an estimated 6-8 million people infected, mainly in poor rural areas, 

resulting in over 10,000 deaths annually. Chagas disease is also becoming a global public health 

problem. The migration of chronically infected individuals has spread the disease beyond its natural 

geographical boundaries, particularly to the USA and Europe [50]. The main route of transmission to 

humans is via the blood-sucking insect vector. Infection begins after mucous membranes, 

conjunctivae, or breaks in the skin become contaminated with parasites contained in the faeces of 

various species of the triatomine bug. However, other routes of transmission also exist; these include 

blood transfusion, organ transplantation, and vertical transmission from mother to infant [51,52]. 

Numerous outbreaks of the disease related to oral transmission, via food or liquid products 

contaminated with T. cruzi, have also been reported [49]. T. cruzi is able to invade almost all nucleated 

mammalian cells and has a wide host range. 

Progression of the disease is characterized by two distinct clinical phases: an acute phase, and a 

chronic phase that develops over many years. The acute phase has a duration of 4-8 weeks and occurs 

shortly after the initial infection. This first stage is asymptomatic in 60 to 70% of patients. In the 

others, symptoms include inflammation at the inoculation site, fever, enlarged lymph nodes, 

splenomegaly and the highly characteristic unilateral palpebral oedema (Romaña sign). The infection 

is considered to be life-long, with 30% to 40% of patients subsequently developing chronic stage 

pathology, often 20 to 30 years after the acute infection. Symptoms can include cardiac disorders, 

mainly cardiomyopathy and arrhythmias, as well as gastrointestinal and/or neurological alterations 

that can result in death [51,53].  

Currently, two drugs are available for the treatment of Chagas disease; nifurtimox (see above) and 

the most commonly used, benznidazole (BZ) (Fig. (1)). Recent findings suggest that BZ is responsible 

for the induction of potentially lethal double-stranded breaks in parasite DNA. This mechanism of 

action is based on reactive metabolites that are generated following nitroreductase mediated drug 

activation, which can damage DNA and other macromolecules, and result in the incorporation of 

oxidized nucleotides during DNA replication [54]. However, both drugs are only partially effective 

and relatively toxic, which, along with the prolonged administration required, limit their use [55].  

There are no vaccines available against these two parasitic diseases. Vaccine development remains a 

daunting challenge, particularly in the case of HAT, where antigenic variation results in frequently 

changing surface glycoproteins that facilitate immune evasion. Thus, the major ways to prevent 

disease transmission are vector control and effective treatment. New and improved therapeutic 

options for both sleeping sickness and Chagas disease have been limited. The available drugs have 
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been in use for many years and are associated with poor efficacy, emergence of resistance, difficulties 

with administration, and severe adverse effects. Despite the progress made in the development of 

fexinidazole and, to a lesser extent, of acoziborole, both diseases continue to compromise public 

health in some of the poorest regions of the world. More efforts, focused on the discovery of new 

classes of therapeutics, are required [46,56,57].  

 

 

1.3 The role of polyamines in trypanosomatids  

The polyamine biosynthetic pathway is highly conserved across eukaryotic organisms and is crucial 

for the proliferation of trypanosomatids. The polyamines putrescine, spermidine and spermine are 

low molecular weight cationic organic amines that are essential for gene expression and cell growth, 

and play a crucial role in diverse cellular processes such as the biosynthesis of nucleic acids and 

proteins, cell proliferation and differentiation. The building blocks for the synthesis of polyamines 

(Fig. (2)) are the amino acids arginine and methionine. L-arginine is the substrate for the formation 

of L-ornithine, an intermediate of the urea cycle, upon hydrolysis catalyzed by arginase. L-ornithine 

is further decarboxylated to the diamine putrescine by ODC, the main regulatory enzyme in this 

pathway. S-adenosylmethionine synthase (AdoMet synthase) mediates the formation of S-

adenosylmethionine (AdoMet) from methionine and ATP. Then, S-adenosylmethionine 

decarboxylase (AdoMetDC), a pyruvoyl-dependent enzyme, catalyzes the decarboxylation of 

AdoMet to generate an essential precursor (dcAdoMet) for spermidine biosynthesis. Subsequently, 

spermidine synthase transfers an aminopropyl group donated by the decarboxylated AdoMet to 

putrescine, forming spermidine. In mammalian cells and T. cruzi, addition of a second aminopropyl 

moiety leads to the synthesis of spermine via spermine synthase. Unique to trypanosomatid 

organisms, trypanothione, an essential redox cofactor, is required for defense against oxidative 

damage. Synthesis of this thiol is initiated by glutathionylspermidine synthase, which conjugates one 

glutathione molecule to spermidine, forming N1-glutathionylspermidine (Gsp). In the next step, a 

second glutathione is added to Gsp by trypanothione synthase, to generate trypanothione [58-60].  
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Fig. (2). Polyamine and trypanothione biosynthetic pathway. 

 

 

In general, the enzymes involved in polyamine biosynthesis differ between mammalian cells and 

parasites in terms of their structural features, or their presence or absence from the host. Therefore, 

they emerge as potential targets for the development of trypanocidal agents. Of these enzymes, ODC 

and AdoMetDC, which regulate polyamine homeostasis, constitute druggable targets [61-63]. As 

previously described, ODC is inhibited irreversibly by eflornithine, and other approaches toward the 

inhibition of ODC in T. brucei are being considered. T. cruzi lacks this enzyme [64]. However, both 
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parasites do express AdoMetDC. Inhibitors of AdoMetDC have been reported that have potent 

activity against T. brucei and T. cruzi in vitro, as well as in mouse models [65-71]. The 

trypanosomatid AdoMetDC differs from the respective human enzyme, as it possesses a unique 

regulatory mechanism. The enzyme is allosterically activated by formation of a heterodimer between 

the active subunit and a catalytically inactive paralogous pseudoenzyme, referred to as a prozyme. 

Heterodimerization increases enzyme activity by three orders of magnitude. This novel regulation of 

the polyamine pathway in trypanosomatids suggests that selective inhibition of T. brucei AdoMetDC 

may be feasible, supporting the value of the target to combat HAT [72]. 

 

 

1.4 Drug design 

 

Adamantane 

The adamantane scaffold is a polycyclic cage moiety, characterized by high symmetry and a unique 

geometry of three fused cyclohexanes in a chair-like conformation. It is a rigid and practically strain-

free structure that has been applied as a valuable structural subunit in medicinal chemistry for many 

years [73]. The adamantane moiety can either be incorporated into existing drugs to improve their 

pharmacokinetic and pharmacodynamic profile, or used as a starting compound for the development 

of novel therapeutic agents. Therefore, it has been widely used in drug discovery strategies. More 

specifically, it has been demonstrated that the addition of the adamantyl moiety into a molecule 

enhances its overall lipophilicity and subsequently increases cell membrane permeability of the drug 

candidate [73-75]. Another example of adamantane’s usefulness in medicinal chemistry is the 

increased affinity for lipophilic receptors that it confers, presumably due to greater hydrophobic 

interactions, giving rise to higher selectivity. Adamantane can be used to add steric bulk to a 

compound and to protect nearby functional groups from metabolic cleavage, thus offering greater 

stability and prolonged duration of action [73,75,76]. Finally, due to its rigidity and bulkiness, this 

cage scaffold can accommodate β-cyclodextrins (β-CD), resulting in inclusion complexes, or act 

mechanically as a blocker for several ion channels [77,78]. Because of all the above, the adamantyl 

subunit constitutes a privileged building block that provides drug-like properties to lead compounds. 

Amantadine, rimantadine, memantine, tromantadine, adapalene, vildagliptin and saxagliptin are 

seven examples of adamantane-containing marketed drugs (Fig. (3)) that are available today. 

Currently approved uses for the above-mentioned therapeutics range from viral infections (Influenza 

A, Herpes simplex), and neurodegenerative disorders (Parkinson’s disease, Alzheimer’s disease), to 

acne vulgaris and type II diabetes mellitus. It therefore comes as no surprise that many adamantyl 

compounds are under development, yielding a plethora of pharmacologically active analogues that 
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have been studied for various medical conditions, including iron overload disease, cancer, CNS 

diseases, inflammation, hypertension, hyperglycemia, malaria and tuberculosis [74-76,78-81].  

  

 

 

 

 

Fig. (3). Clinically approved adamantane derivatives and their pharmacological profiles. 

 

 

Adamantane-based guanylhydrazone analogues 

Over the years, we have synthesized a variety of structurally diverse adamantane derivatives that 

target influenza A virus, T. brucei and T. cruzi [96-103]. In continuation of our studies, we were 

interested in developing further active adamantane-based compounds that could inhibit the 

proliferation of the above-mentioned trypanosomatids. Intrigued by the in vitro and in vivo 

trypanocidal properties of several guanylhydrazone analogues, that could act as potential AdoMetDC 

inhibitors [104-112], and following a molecular hybridization approach, we designed derivatives of 

the adamantane core bearing the iminoguanidine moiety in position 2 of the cage (Fig. (4)) [113].  
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Fig. (4). Structures of adamantane-substituted guanylhydrazones G1 – G25 described in the present 

study [112-114].  

 

From this perspective, The design strategy was aimed at combining the increased lipophilicity of the 

adamantane cage structure with the trypanocidal properties activity of the guanylhydrazone moiety 

to generate compounds with better antiparasitic activity. The general approach for this class of 

compounds was to use the adamantane component as a lipid carrier for the BBB to counterbalance 

the potential transport limitations conferred by the conjugated polar iminoguanidine side chain. Thus, 

improving their BBB permeability enables enhanced CNS penetration and increased concentration in 

brain tissue, which is of crucial importance for the treatment of the second stage HAT. Finally, the 

incorporation of the guanylhydrazone group into this class of compounds should have the added 

advantage of structural similarity with the guanidine pharmacophore of the licensed trypanocidal drug 

pentamidine. To study the impact of changing the guanylhydrazone position and to evaluate the 

significance of the adamantane scaffold, we proceeded with the synthesis of novel guanylhydrazone 

derivatives (Series 5, Fig. (5)). In analogues G26 and G27, the iminoguanidine group was shifted to 

the methylene carbon of the benzyl substituent, leading to the idea of synthesis of the fused 

adamantane-cyclopentane-benzene guanylhydrazone analogue G28. Finally, replacement of the 
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adamantane cage structure by the tricyclic scaffolds of fluorene and dibenzocycloheptene, and the 

bendable 4-phenyl cyclohexane, afforded led to the analogues G29, G30 and G31, respectively.  

 

 

Fig. (5). Structures of novel guanylhydrazone derivatives G26 – G31, synthesized in the present 

study. 

  

Here, we report the synthesis and structural characterization of novel guanylhydrazones (G26 – G31, 

Fig. (5)), with their subsequent in vitro biological evaluation against bloodstream form T. brucei and 

T. cruzi epimastigotes. We also report, for the first time, the results of the trypanocidal activity of 

previously synthesized adamantane guanylhydrazones (G1 – G5, Fig. (4)) that have been used as 

butyrylcholinesterase inhibitors. Finally, we provide an overview on the chemistry and 

pharmacological activity of adamantane-based guanylhydrazone derivatives (G6 – G25, Fig. (4)), 

synthesized in the recent past, by our research group. Yet Another objective of the study was to 

evaluate the effect of structural modifications and steric parameters on antiparasitic activity and to 

correlate this activity with possible interactions in the active site of AdoMetDC, using docking-

scoring calculations and Quantitative Structure-Activity Relationship (QSAR) studies.  
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2. Experimental 

 

2.1 General Experimental methods and techniques 

Melting points were determined using a Büchi capillary apparatus and are uncorrected. NMR 

experiments were performed to elucidate the structure and determine the purity of the newly 

synthesized compounds. 1H NMR and 2D NMR spectra (COSY, HSQC, HSQC-DEPT and HMBC) 

were recorded on a Bruker Ultrashield™ Plus Avance III 600 spectrometer (600.11 MHz, 1H NMR). 

13C NMR spectra were recorded on a Bruker Ultrashield™ Plus Avance III 600 spectrometer (150.9 

MHz, 13C NMR). Chemical shifts δ (delta) are reported in parts per million (ppm) downfield from 

the NMR solvent, with the tetramethylsilane or solvent (DMSO-d6) as internal standard. Data 

processing including Fourier transformation, baseline correction, phasing, peak peaking and 

integrations were performed using MestReNova software v.12.0.0. Splitting patterns are designated 

as follows: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, 

doublet of triplets; dq, doublet of quartets; td, triplet of doublets; tt, triplet of triplets; ttd, triplet of 

triplets of doublets; qd, quartet of doublets; quin, quintet; complex m, complex multiplet. Coupling 

constants (J) are expressed in units of Hertz (Hz). The spectra were recorded at 305 K (32 °C) unless 

otherwise specified. The solvent used to obtain the spectra was deuterated dimethyl sulfoxide, 

DMSO-d6 (quin, 2.50 ppm, 1H NMR; septet, 39.52 ppm, 13C NMR). Elemental analyses (C, H, N) 

were performed by the Service Central de Microanalyse at CNRS (France), and were within ± 0.4% 

of the theoretical values. Elemental analysis results for the tested compounds correspond to ˃95% 

purity. The commercial reagents were purchased from Alfa Aesar, Sigma-Aldrich, and Merck, and 

were used without further purification. Organic solvents used were of the highest purity.  

 

 

2.2 Synthetic procedure for the preparation of analogues G26 – G31  

Aminoguanidine bicarbonate (1.5 mmol) was suspended in 18 mL of absolute ethanol, and it was 

progressively dissolved by dropwise acidification with concentrated hydrochloric acid, until pH was 

adjusted to 2. Subsequently, the appropriate ketone (1.5 mmol) was added and the mixture was 

refluxed under stirring for 5 h at 105 – 110 °C. After completion of the reaction time, ethanol was 

evaporated under reduced pressure and the residue was treated with dry Et2O. The resulting product 

was cooled at 5 °C for 1 h and filtered off in vacuo. The precipitate was washed with dry Et2O and 

dried to obtain the desired analogues G26 – G31 as crystals.   

 

Tricyclo[3.3.1.13,7]decan-1-yl(phenyl)methylene)guanylhydrazone hydrochloride (G26) 
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Product G26 was obtained using 500 mg (2.08 mmol) of 1-adamantyl phenyl ketone and 283 mg 

(2.08 mmol) aminoguanidine bicarbonate in 25 mL of absolute EtOH, resulting in 690 mg of white 

crystalline solid. Yield: almost quantitative; mp >250 °C (from EtOH/dry Et2O); 1H NMR (600.11 

MHz, DMSO-d6) δ (ppm) [1.57 (dq, 3H, J1=12.2 Hz, J2=2.1 Hz), 1.66 (dt, 3H, J1=12.5 Hz, J2=3.1 

Hz), H4-Ad, H6-Ad, H10-Ad], 1.75 (d, 3H, J=3.0 Hz, H2-Ad, H8-Ad, H9-Ad), 1.96 (~quin, 3H, J=3.2 

Hz, H3-Ad, H5-Ad, H7-Ad), 7.09 (dd, 2H, J1=8.1 Hz, J2=1.5 Hz, H2', H6'), 7.32-8.01 (br s, 3H, 

NHC(NH)NH2), 7.47-7.54 (complex m, 3H, H3', H4', H5'), 9.25 (s, 1H, NHC(NH)NH2); 13C NMR 

(150.9 MHz, DMSO-d6) δ (ppm) 27.6 (C3-Ad, C5-Ad, C7-Ad), 36.0 (C4-Ad, C6-Ad, C10-Ad), 39.4 

(C2-Ad, C8-Ad, C9-Ad), 127.6 (C2', C6'), 129.0 (C3', C5'), 129.1 (C4'), 131.3 (C1'), 155.7 

(NHC(NH)NH2), 164.6 (C=N). Anal. calcd. For C18H25ClN4, C, 64.95; H, 7.57; N, 16.83. Found: C, 

65.00; H, 7.50; N, 16.79. 

 

Tricyclo[3.3.1.13,7]decan-2-yl(phenyl)methylene)guanylhydrazone hydrochloride (G27) 

Product G27 was obtained using 500 mg (2.08 mmol) of 2-adamantyl phenyl ketone and 283 mg 

(2.08 mmol) aminoguanidine bicarbonate in 25 mL of absolute EtOH, resulting in 680 mg of white 

crystalline solid. Yield: almost quantitative; mp >250 °C (from EtOH/dry Et2O);1H NMR (600.11 

MHz, DMSO-d6) δ (ppm) 1.45 (d, 2H, J=12.3 Hz, H4e-Ad, H9e-Ad), 1.66 (d, 2H, J=3.1 Hz, H6-Ad), 

1.69-1.78 (complex m, 4H, H8-Ad, H10-Ad), 1.79 (~quin, 1H, J=3.1 Hz, H5-Ad), 1.86 (~quin, 1H, 

J=3.0 Hz, H7-Ad), 1.93 (dd, 2H, J1=12.8 Hz, J2=2.8 Hz, H4a-Ad, H9a-Ad), 2.04 (q, 2H, J=2.9 Hz, H1-

Ad, H3-Ad), 2.92 (s, 1H, H2-Ad), 7.09-7.29 (br s, 3H, NHC(NH)NH2), 7.28 (dd, 2H, J1=8.2 Hz, 

J2=1.4 Hz, H2', H6'), 7.47 (td, 1H, J1=7.4 Hz, J2=1.4 Hz, H4'), 7.51 (~dd, 2H, J1=8.1, 6.6 Hz, J2=1.5 

Hz, H3', H5'), 9.74 (s, 1H, NHC(NH)NH2); 13C NMR (150.9 MHz, DMSO-d6) δ (ppm) 27.2 (C5-Ad), 

27.3 (C7-Ad), 28.6 (C1-Ad, C3-Ad), 32.0 (C4-Ad, C9-Ad), 37.1 (C6-Ad), 37.9 (C8-Ad, C10-Ad), 50.1 

(C2-Ad), 126.9 (C2', C6'), 129.3 (C3', C5'), 129.4 (C4'), 155.8 (NHC(NH)NH2), 159.5 (C=N). Anal. 

calcd. For C18H25ClN4, C, 64.95; H, 7.57; N, 16.83. Found: C, 64.91; H, 7.63; N, 16.85. 

  

Adamantane[1,2-a]inden-11-ylidene)guanylhydrazone hydrochloride (G28) 

Product G28 was obtained using 500 mg (2.10 mmol) of adamantane[1,2-a]inden-11-one and 286 mg 

(2.10 mmol) aminoguanidine bicarbonate in 25 mL of absolute EtOH, resulting in 575 mg of white 

crystalline solid. Yield: 83%; mp 230 – 232 °C (from EtOH/dry Et2O); 1H NMR (600.11 MHz, 

DMSO-d6) δ (ppm) 1.51 (d, 2H, J=12.5 Hz, H9e-Ad, H13e-Ad), 1.61-2.08 (complex m, 7H, H5, H7, 

H8, H12), 2.31 (t, 4H, J=11.2 Hz, H6, H9a, H10, H13a), 2.81 (s, 1H, H10a), 7.29 (t, 1H, J=7.2 Hz, H3), 

7.48 (t, 1H, J=7.4 Hz, H2), 7.83 (d, 1H, J=7.7 Hz, H1), 7.84-8.11 (br s, 3H, NHC(NH)NH2), 8.22 (d, 

1H, J=7.6 Hz, H4), 10.33 (s, 1H, NHC(NH)NH2); 13C NMR (150.9 MHz, DMSO-d6) δ (ppm) 27.0 

(C8), 27.1 (C6), 27.6 (C10), 32.2 (C7), 36.3 (C9), 36.5 (C12), 42.3 (C4b), 46.7 (C13), 47.8 (C5), 82.6 
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(C10a), 122.2 (C4), 126.0 (C2), 128.0 (C3), 133.8 (C1), 136.1 (C4a), 156.5 (C=N), 158.2 

(NHC(=NH)NH2), 162.5 (C11a). Anal. calcd. For C18H23ClN4, C, 65.34; H, 7.01; N, 16.93. Found: C, 

65.40; H, 7.08; N, 16.88. 

 

2-(9H-Fluoren-9-ylidene)guanylhydrazone hydrochloride (G29) 

Product G29 was obtained using 500 mg (2.77 mmol) of 9H-fluoren-9-one and 377 mg (2.77 mmol) 

aminoguanidine bicarbonate in 33 mL of absolute EtOH, resulting in 695 mg of yellow crystalline 

solid. Yield: 92%; mp 238 – 240 °C (from EtOH/dry Et2O); 1H NMR (600.11 MHz, DMSO-d6) δ 

(ppm) [7.35 (td, 1H, J1=7.4 Hz, J2=0.9 Hz), 7.39 (td, 1H, J1=7.6 Hz, J2=1.2 Hz), H2, H7], [7.44 (td, 

1H, J1=7.5 Hz, J2=1.2 Hz), 7.54 (t, 1H, J=7.5 Hz), H3, H6], [7.79 (d, 1H, J=7.5 Hz), 7.88 (d, 1H, 

J=7.5 Hz), H4, H5], 8.11 [(d, 1H, J=7.5 Hz), 8.76 (d, 1H, J=7.7 Hz), H1, H8], 8.23-8.67 (br s, 3H, 

NHC(NH)NH2), 11.45 (s, 1H, NHC(NH)NH2); 13C NMR (150.9 MHz, DMSO-d6) δ (ppm) 120.2, 

120.9 (C4, C5), 122.7, 127.4 (C1, C8), 128.2, 128.3 (C2, C7), 130.7, 131.9 (C3, C6), 136.3, 139.1 

(C8a/C9a), 141.8 (C4a, C4b), 148.2 (C=N), 157.3 (NHC(=NH)NH2). Anal. calcd. For C14H13ClN4, C, 

61.65; H, 4.80; N, 20.54. Found: C, 61.70; H, 4.89; N, 20.49. 

 

2-(10,11-Dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)guanylhydrazone hydrochloride (G30) 

Product G30 was obtained using 1.0 g (4.80 mmol) of 10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-

one (dibenzosuberone) and 653 mg (4.80 mmol) aminoguanidine bicarbonate in 58 mL of absolute 

EtOH, resulting in 405 mg of beige crystalline solid. Yield: 28%; mp 155-157 °C (from EtOH/dry 

Et2O); 1H NMR (600.11 MHz, DMSO-d6) δ (ppm) [2.87 (dd, 2H, J1=17.8 Hz, J2=10.0 Hz), 3.06 (d, 

1H, J=13.6 Hz), 3.26 (d, 1H, J=17.2 Hz), H10, H11], 7.13 (d, 1H, J=7.7 Hz, H1 or H9), [7.22 (t, 1H, 

J=7.4 Hz), 7.23 (t, 1H, J=7.1 Hz), H3, H7], 7.29 (d, 1H, J=7.4 Hz, H4 or H6), 7.33 (t, 1H, J=7.3 Hz, 

H2 or H8), 7.41 (d, 1H, J=7.3 Hz, H1 or H9), 7.43 (t, 1H, J=7.8 Hz, H2or H8), 7.55-8.13 (br s, 3H, 

NHC(NH)NH2), 7.75 (d, 1H, J=7.7 Hz, H4/H6), 10.13 (s, 1H, NHC(NH)NH2); 13C NMR (150.9 MHz, 

DMSO-d6) δ (ppm) 31.1, 33.5 (C10, C11), 126.1, 126.6 (C3, C7), 127.3, 128.8 (C2, C8), 129.3, 129.6 

(C4, C6), 130.6, 130.8 (C1, C9), 133.4, 135.2 (C4a, C5a), 138.4, 139.4 (C9a, C11a), 156.2 (C=N), 159.1 

(NHC(=NH)NH2). Anal. calcd. For C16H17ClN4, C, 63.89; H, 5.70; N, 18.63. Found: C, 63.93; H, 

5.82; N, 18.66. 

 

2-(4-Phenylcyclohexylidene)guanylhydrazone hydrochloride (G31) 

Product G31 was obtained using 500 mg (2.87 mmol) of 4-phenylcyclohexan-1-one and 391 mg (2.87 

mmol) aminoguanidine bicarbonate in 34 mL of absolute EtOH, resulting in 760 mg of white 

crystalline solid. Yield: almost quantitative; mp 218 – 220 °C (from EtOH/dry Et2O); 1H NMR 

(600.11 MHz, DMSO-d6) δ (ppm) 1.59 (qd, 1H, J1=12.9 Hz, J2=4.1 Hz, H2a or H6a), 1.64 (qd, 1H, 
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J1=12.7 Hz, J2=4.3 Hz, H3a or H5e), 1.98 (~ttd, 2H, J1=9.3 Hz, J2=6.3, 5.8 Hz, J3=3.3 Hz, H2a or H6a, 

H3a or H5e), 2.14 (td, 1H, J1=14.1 Hz, J2=5.1 Hz, H2e or H6e), 2.42 (td, 1H, J1=13.5 Hz, J2=4.8 Hz, 

H3e or H5a), 2.50-2.55 (m, 1H, H3e or H5a), 2.85 (tt, 1H, J1=12.2 Hz, J2=3.5 Hz, H4), 3.15 (dq, 1H, 

J1=14.7 Hz, J2=3.0 Hz, H2e or H6e), 7.25 (d, 2H, J=7.4 Hz, H2', H6'), 7.28 (t, 2H, J=7.5 Hz, H3', H5'), 

7.48-7.95 (br s, 3H, NHC(=NH)NH2), 8.84 (s, 0.25H, NHC(=NH)NH2) 11.34 (s, 0.75H, 

NHC(=NH)NH2); 13C NMR (150.9 MHz, DMSO-d6) δ (ppm) 27.3, 32.5 (C2, C6), 33.8, 34.3 (C3, C5), 

42.2 (C4), 126.1 (C4'), 126.6 (C2', C6'), 128.3 (C3', C5'), 145.5 (C1'), 156.2 (NHC(=NH)NH2), 158.8 

(C=N), 159.2 (C=N). Anal. calcd. For C13H19ClN4, C, 58.53; H, 7.18; N, 21.00. Found: C, 58.50; H, 

7.25; N, 21.07. 

 

 

2.3 Trypanocidal assays 

For compounds G1 – G25: A bloodstream form of T. brucei brucei (strain 427, derivative 221) was 

cultured in 25 mL flasks at 37 °C in modified Iscove’s medium (pH 7.4) [115]. To assess activity, 

parasites were grown for 3 days in the presence of test compounds and the EC50 and EC90 values were 

determined (concentrations that inhibit growth by 50% and 90%, respectively). In these experiments, 

the densities of untreated cultures increased from 0.25 × 104 to 4 × 106 cells mL−1. After determination 

of cell densities at each drug concentration with a hemocytometer (Weber Scientific International 

Ltd.), drug sensitivity was expressed as a percentage of growth of control cells. Data presented are 

the mean of triplicate experiments ± SEM. 

For compounds G26 – G31: Bloodstream form T. brucei (strain 427, derivative 221) were cultured 

in modified Iscove’s medium, as outlined previously [116]. Eight-point potency curves were 

performed in 96-well plates (200 μL volumes), and the compound concentrations that inhibited 

growth by 50% (EC50) and 90% (EC90) were determined. Parasites were first diluted to 2.5 × 104 

mL−1, compounds were added at range of concentrations, and the plates incubated at 37 °C. Resazurin 

was added after 48 h, and the plates incubated for a further 16 h. T. cruzi epimastigotes (strain CL 

Brener) were cultured as previously described [117]. Trypanocidal activity was determined in 

microtiter plates as outlined above, with the following modifications. Experiments were initiated by 

seeding the parasites at 2.5 × 105 mL−1, and after the addition of test compounds, cultured at 28 °C 

for 4 days. Resazurin was added, the plates were incubated for a further 2 days, and then assessed as 

above. Fluorescence intensities were determined using a BMG FLUOstar Omega (excitation 545 nm, 

emission 590 nm). Data were analyzed using Graph Pad Prism 7 software. Values are expressed as 

EC50 ± SD and are the average of three independent replicates. 

 

2.4 In vitro cytotoxicity assays on rat skeletal myoblast L6 cells  
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Cytotoxicity against L6 cells was assessed using microtiter plates. Briefly, cells were seeded in 

triplicate at 1 × 104 mL−1 in growth medium containing different compound concentrations. The plates 

were incubated for 6 days at 37 °C and resazurin was then added to each well. After a further 8 h of 

incubation, the fluorescence was determined using a BMG FLUOstar Omega plate reader. 

 

2.5 Computer-aided drug design  

The discovery of new drugs is undoubtedly an expensive and time-consuming multi-step process. 

However, it is accelerated through our increased understanding of the fundamental principles of 

protein-ligand interactions, in addition to the integration of a computer-aided drug design (CADD) 

strategy. CADD strategies involve application of computer modelling technologies, which ultimately 

aid in selection and filtering of candidate compounds, generation of hypotheses on their mode of 

action, and also facilitate their further development [118,119]. Over the last decades, due to 

advancements in computer technology, CADD has been considered a rapidly growing field and plays 

a crucial role in drug development projects, from hit identification to lead optimization of novel, 

potentially therapeutically valuable small molecules [120-123]. CADD strategies can be mainly 

classified into three broad categories; the ligand-based (LBDD) and the structure-based (SBDD) 

approaches, as well as fragment-based drug discovery (FBDD), a newly emerging lead discovery 

method [124,125]. LBDD approaches utilize structure and activity data from a set of known active 

and inactive compounds in order to retrieve other potential molecular scaffolds based on similarity 

measures, common pharmacophores or descriptor values. LBDD methods include, amongst others, 

similarity and substructure searching, quantitative structure-activity relationships (QSAR), as well as 

pharmacophore and three-dimensional (3D) shape matching [126,127]. Contrarily, SBDD approaches 

are based on direct calculation of protein-ligand interactions utilizing the 3D structure of the 

biological target, determined through X-ray crystallography and NMR, or through homology 

modeling, and include ligand docking-based scoring, molecular dynamics and de novo design [128]. 

Notably, both of the above mentioned knowledge-driven approaches can be synergistically integrated 

to improve the drug design process [129]. In this current study, we are mainly focusing on QSAR 

analysis via 2D fingerprint similarity and docking-based scoring, one methodology from each CADD 

approach.  

 

 

2.6 Docking-based scoring 

 

Introduction 
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The docking process involves the prediction of ligand conformation and posing, as well as binding 

interactions within the targeted protein site. This is a rather challenging task by itself, since even 

relatively simple organic molecules may contain many conformational degrees of freedom, or show 

a diversity of binding modes. Thorough sampling of ligand orientation within the binding domain of 

the target is provided through stochastic search techniques such as the Monte Carlo algorithm [130]. 

Rapid and accurate assessment of protein-ligand complexes is pivotal for docking approaches, since 

a typical ligand docking experiment generates hundreds to thousands of ligand conformations [131]. 

Thus, an efficient scoring function is essential to rank order different docked poses for each ligand, 

and ultimately to discriminate the valid binding mode predictions from the invalid ones [132]. 

Evaluation of docked poses is achieved by four distinct classes of scoring functions that are currently 

applied in computational drug design: force-field-based, empirical, knowledge-based and a rather 

new approach, machine learning-based scoring functions [133], with the first being the scoring 

function of our choice.   

Protocol 

Prior to any docking experiment, protein and ligand databases need to be prepared. The crystal 

structure of T. brucei AdoMetDC/prozyme heterodimer (PDB structure: 5tvf) was computationally 

cleaved to include only AdoMetDC in complex with the bound ligand, CGP. Then, Protein 

Preparation Wizard [134] workflow was executed, as previously thoroughly described in detail 

previously [135], generating a structurally sound model ensuring accuracy on all downstream 

modeling simulations. Preparation of the guanylhydrazone analogues was performed using the 

LigPrep tool [136]. LigPrep generates precise, energy minimized 3D molecular structures with 

correct protonation states, tautomerism and enumeration of all possible stereoisomers. Docking grid 

preparations and docking calculations were accomplished as previously described [135]. Two 

different grids were generated using no scaling for protein van der Waals (VdW) radii and an extended 

ligand centering box of 10 × 10 × 10 Å and 15 × 15 × 15 Å, respectively, to ensure proper fitting of 

the large aliphatic chains of some guanylhydrazone analogues. In this study, the Glide algorithm [137] 

was utilized, which is considered to be one of the most efficient and accurate virtual screening tools 

[138] for structure-based virtual screening of the guanylhydrazone analogues inside the AdoMetDC 

binding site. All docking calculations were performed by using VdW scaling of 0.8 for ligand atoms, 

a maximum of 3 poses per ligand and extra-precision (XP), a rather extensive, accurate and time- and 

CPU- demanding mode [139]. 

 

 

2.7 QSAR analysis 
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Introduction 

Although QSAR was first developed more than 55 years ago [140], it still remains one of the most 

promising research areas in medicinal chemistry and cheminformatics. QSAR aims to reveal a 

quantitative correlation between the structural features of chemical entries and their many different 

properties, such as continuous (pIC50, pEC50, Ki, etc.), categorical/binary (active, inactive, toxic, 

nontoxic, etc.) and biological/toxicological. To this end, the main strategy involves the generation of 

a statistical linear or non-linear regression model that matches experimental values to a diverse set of 

molecular descriptors determined from the structure of the compounds [141]. Chemical descriptors 

constitute the basis of QSAR modeling and reflect a plethora of chemical structure representation. 

These molecular descriptors have been categorized into different classes, including constitutional, 

geometrical, topological, quantum chemical and so on, with 2D (two-dimensional) being the most 

popular among drug developers.  Molecular descriptors compose the basis of QSAR modeling and 

represent different levels of chemical structure representation ranging from single physico-chemical 

properties (1D QSAR) to three-dimensional structures (3D QSAR), and even more intricate, 

multidimensional approaches like simulation of induced fit and solvation scenarios (5D and 6D 

QSAR) [142]. The success of QSAR analysis depends on the quality of the input data, selection of 

appropriate descriptors and statistical methods to validate the developed model. QSAR analysis has 

yielded quite a few success stories, regarding including currently approved drugs [143-145]. In the 

framework of this study, the Canvas cheminformatics software package was utilized [146], in an 

attempt to connect ones and zeros with reliable SAR predictions. Canvas provides a wide range of 

applications for structural and data analysis, including 2D and 3D fingerprints, similarity searching, 

as well as building regression and classification models. 

 

Protocol 

Preparation of the guanylhydrazone analogues was performed with Ligprep, as previously described 

[135], with the exception of generating only the most probable ionization and tautomeric state of each 

analogue, chosen on the basis of energetic considerations. Then, prepared compounds were 

introduced into the Canvas interface and the complete set of 498 physicochemical, topological, 

Ligfilter and Qikprop descriptors were determined for all entries. A total of nine fingerprints were 

calculated using default atom typing and scaling parameters. Seven 2D fingerprints, (linear, radial, 

dendritic, MOLPRINT 2D, atom pairs, atom triplets, and topological torsions) and two 3D 

pharmacophore fingerprints (2p and 3p pharmacophore), with Tanimoto similarity were used for 

ranking. A detailed description of each fingerprint has been realized established by Sastry and 

colleagues [147]. Statistical regression models were then generated, utilizing three diverse and well-

established statistical methods, namely Multiple Linear Regression (MLR), Partial Least Squares 
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regression (PLS) and Kernel-based Partial Least Squares regression (KPLS), in order to successfully 

and efficiently correlate the cell-based in vitro activity of the guanylhydrazone analogues on against 

T. brucei to the aforementioned molecular descriptor and 2D/3D fingerprints. The initial approach 

included the implementation of all guanylhydrazone analogues in the training set. As expected, the 

compounds with none or marginal activity against T. brucei (G12, G14, G15 and G20) seemed to 

impede the generation of an accurate and reliable model. Indicatively, standard deviation (SD), as 

well as the coefficient of determination (R2), resulted from MLR analysis, and proved that the model 

containing all analogues was quite questionable (SD = 1.526; R2 = 0.5720). Therefore, in order to 

improve the predictivity of the model, only active compounds were utilized. A training set of 27 

active compounds were analysed through MLR, PLS and KPLS regression functions with a 20% of 

random test set assignment for model evaluation. The option of five best subsets was used for MLR, 

attempting to find the highest-ranking model containing said number of independent variables, 

utilizing a simulated annealing Monte Carlo technique. For each MLR model generated, the option 

of “best subsets” was chosen, attempting to find the highest-ranking models containing five 

independent variables. Default settings were used for the simulated annealing Monte Carlo technique. 

Selection of the best MLR model was performed through careful evaluation of each model, 

considering taking into account intercorrelation between selected independent variables. For both 

PLS and KPLS, four factors were used. Hierarchical clustering of the guanylhydrazone analogues 

was attempted, based on the 2D fingerprint of atom pairs. Analogues were divided into three clusters, 

which were then statistically processed as previously described. Note that this approach did not yield 

any meaningful results. 

 

 

 

 

 

3. Results and Discussion  

 

3.1 Chemistry 

 

Synthesis of Series 1 compounds 

For the synthesis of the starting ketones 3 and 4 (Scheme 1), adamantan-2-one 1 was first converted 

to 4-oxahomoadamantan-5-one 2 via a selenium dioxide mediated oxidation. Lactone 2 was heated 
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with a 50% sulfuric acid and yielded a mixture consisting of the axial and the equatorial isomer of 3, 

in an approximate ratio of 5 : 1. Oxidation of the latter with chromic acid afforded the adamantane 

dione 4 [148].  

 

 

 

Scheme 1. Synthetic route to the starting compounds 3 and 4 and synthesis of mono and 

bis(guanylhydrazone) adamantanes G1, G2 and G4. Reagents and conditions: (a) SeO2, H2O2, t-

BuOH, 96%; (b) H2SO4 (50%), 5 h, 90 °C; (c) H2CrO4; (d) H2NNHC(=NH)NH2 · HCl, EtOH, reflux, 

5 h, 99% (G1), 97% (G2) and 94% (G4) [114,148]. 

 

The synthetic route for the formation of starting compounds 9 and 10 is described in Scheme 2. 

Oxygen-containing adamantane analogues are provided by functionalization of the adamantane core 

with the use of oxidizing agents. Initially the adamantane hydroxylation was performed upon 

treatment with fuming sulfuric acid (H2O7S2). The products of the oxidative procedure are three diols 

obtained in different ratio. In fuming acid with a SO3 percentage of 20%, 1,4-adamantane diol 6 is 

the main product in an overall yield of 45 – 50%. 1,3-Diol 7 and 2,6-diol 8 were also formed with 15 

– 20% and 5 – 10% yields, respectively. The mixture of diols 6, 7 and 8 was subjected to oxidation 

with chromic acid to give 5-hydroxyadamantan-2-one/1-hydroxyadamantan-4-one 9 and 

adamantane-2,6-dione 10 [149].   
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Scheme 2. Synthetic route to the starting compounds 9 and 10 and synthesis of mono and 

bis(guanylhydrazone) adamantanes G3 and G5, respectively. Reagents and conditions: (a) 20% SO3 

(10 °C), 20 min, 25 °C then 100 °C, 2 h; (b) CrO3, H2O, 30 min, 70 °C; (c) H2NNHC(=NH)NH2 · 

HCl, EtOH, reflux, 5 h, 98% (G3) and 99% (G5) [114,149]. 

 

Adamantyl guanylhydrazones G1 – G5 used in this study were synthesized according to the 

previously published procedure by condensing the corresponding adamantanone with 

aminoguanidine hydrochloride (Schemes 1 and 2) almost quantitatively. Note that compounds G2 

and G4 (Scheme 1) have been isolated as a mixture of diastereoisomers and derivative G2 has three 

possible diastereoisomers while derivative G4 has four possible diastereoisomers. However, for 

guanylhydrazones G1 (Scheme 1), G3 and G5 (Scheme 2), only one diastereomeric form is possible 

due to molecular symmetry [114].  

 

Synthesis of Series 2 compounds 

The synthesis of 1,2-disubstituted adamantane derivatives was the key step for the preparation of 

analogues described in this study and was achieved by rearrangement of the protoadamantane 

framework [150]. The starting compound, protoadamantanone 13, was synthesized by Majerski’s 

group for the first time in 1979. As shown in Scheme 3, the commercially available adamantan-1-ol 

11 reacted with lead tetraacetate and iodine in benzene as a solvent, and the iodo ketone 12 that was 

generated was refluxed with potassium hydroxide to provide protoadamantanone 13 in yields ranging 

from 71% to 82% [151]. The amount of the unreacted starting alcohol was decreased by heating the 
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mixture composed of adamantan-1-ol 11, lead tetraacetate and iodine for 2 h at 75 – 76 °C. The target 

compound 13 was then produced, almost pure, in excellent yields [152]. 

 

 

 

Scheme 3. Synthesis of protoadamantanone. Reagents and conditions: (a) Pb(OAc)4, I2, C6H6, 70 – 

75 °C (b) KOH, MeOH, reflux [151].  

 

As depicted in Scheme 4, synthesis of the starting ketones 18a – d [112] proceeded with formation 

of the acetylenic alcohols 14a – d. More specifically, protoadamantanone 13 reacted with the 

appropriate lithiated acetylide, which was prepared in situ by addition of a substituted acetylene to a 

solution of butyllithium, to give the desired compounds 14a – d as a mixture of endo/exo isomers (1 

: 1) in an overall yield of 82 – 95%. Catalytic hydrogenolysis of the latter with Adams’ catalyst 

yielded the corresponding saturated isomeric alcohols 15a – d. The mixture was refluxed with formic 

acid and the formate esters immediately underwent an intramolecular metathesis to give analogues 

16a – d. Subsequent saponification of the intermediates 16a – d in the presence of an aqueous sodium 

hydroxide solution led to alcohols 17a – d in excellent yields which underwent Jones oxidation to 

form the target 1-alkyl-adamantan-2-ones 18a – d almost quantitatively [112].  

 

For the synthesis of 1-alkyl-adamantane 2-guanylhydrazones G6 – G9, the starting ketones 18a – d 

were refluxed with aminoguanidine bicarbonate in the presence of concentrated hydrochloric acid 

(pH ~ 2) and ethanol as a solvent. The target compounds G6 – G9 were obtained in an overall yield 

of 85 to 94% [112].  
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Scheme 4. Synthetic route to the starting compounds 1-alkyl-adamantan-2-ones 18a – d and synthesis 

of 1-alkyl-adamantane 2-guanylhydrazones G6 – G9. Reagents and conditions: (a) R–C≡CH, n-BuLi, 

dry THF, 1 h, 0 °C then 20 h, rt, 82 – 95%; (b) H2O; (c) H2/PtO2, EtOH, 4 h, rt, 55 psi; (d) HCOOH, 

reflux, 30 min; (e) NaOH, EtOH/H2O, reflux, 2 h, 91 – 96%; (f) CrO3, aq. H2SO4 (8N), acetone, 15 

°C then rt, 1h, 95 – 98%; (g) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 5 h, 85 

– 94% [112]. 

 

Thiosemicarbazones G10 and G11 (Scheme 5), possessing a n-hexyl and a n-tetradecyl chain, 

respectively, were obtained by condensation of thiosemicarbazide with the structurally related 

ketones 18a and 18d [112]. 

 

 

 

Scheme 5. Synthesis of the 1-alkyl-adamantane 2-thiosemicarbazones G10 and G11. Reagents and 

conditions: (a) H2NNHC(=S)NH2, EtOH, reflux, 5 h, 82% (G10) and 89% (G11) [112]. 

 

Synthesis of Series 3 compounds 

Synthesis of the adamantane diol 25 (Scheme 6) [152] starts with a Reformatsky reaction between 

protoadamantanone 13 and bromoacetic acid ethyl ester in the presence of zinc metal, as shown in 
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Scheme 6. Upon saponification with sodium hydroxide in an EtOH/H2O solution, the hydroxyacid 

19 was obtained in poor yields along with some starting ketone. Alternatively, when 

protoadamantanone 13 was used as starting material and treated with LiCH2COOCH3, followed by 

hydrolysis of the intermediate ester 20 under basic conditions, the desired compound 19 was afforded 

with an improved yield of 98%. LiCH2COOCH3 was prepared by lithium bis(trimethylsilyl)amide 

and methyl ethanoate in one pot. Then, the hydroxyacid 19 provided a mixture of the respective ester 

21 as a major product and the lactone 22 in traces, under reflux with formic acid. Subsequent 

saponification of the mixture and oxidation of the intermediate 23 with a solution of chromium 

trioxide in diluted sulfuric acid generated the ketoacid 24. Finally, lithium aluminum hydride 

catalyzed reduction of the latter gave rise to the desired diol 25 [152].  

1-Alkyloxyadamantane 2-guanylhydrazones G12 – G15 and 1-benzyloxyadamantane 2-

guanylhydrazone G20 were prepared as outlined in Scheme 6. The intermediate 1-alkoxy alcohols 

26a – d were synthesized via alkylation with the appropriate alkyl bromide in the presence of sodium 

hydride in N,N-dimethylformamide. Under similar reaction conditions, benzyl chloride was used as 

an alkylating agent for the formation of the benzyl substituted alkoxy alcohol 26e. The 

aforementioned intermediates were oxidized to the respective ketones 27a – e by chromium trioxide 

in an aqueous sulfuric acid solution. Treatment of the latter with aminoguanidine bicarbonate, upon 

pH adjustment to 2 with hydrochloric acid, yielded the guanylhydrazones G12 – G15 and G20 [113].      
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Scheme 6. Synthesis of the starting adamantane diol 25 and synthetic procedure for the preparation 

of the 1-alkyloxy and 1-benzyloxyadamantane 2-guanylhydrazones G12 – G15 and G20, 

respectively. Reagents and conditions: (a) i) BrCH2COOEt, Zn, C6H6, reflux; ii) NaOH, EtOH/H2O, 

90 °C, 2.5 h, (HCl), 25%; (b) [(CH3)3Si]2NLi, CH3COOCH3, dry THF, –75 °C, 20 min and –60 °C, 

30 min; (c) NaOH, EtOH/H2O, 90 °C, 2.5 h, (HCl), 98%; (d) HCOOH, reflux, 30 min; (e) NaOH, 

EtOH/H2O, 90 °C, 2.5 h, (HCl), 87%; (f) CrO3, aq. H2SO4 (1M), acetone, 15 °C then rt, 24h, 92%; 

(g) LiAlH4, dry Et2O, reflux; (h) For compounds 26a – d: i) NaH, dry DMF, 20 min, rt; ii) RBr, dry 

DMF, 16 h, 105 °C, 69 – 87%; For compound 26e: i) NaH, dry DMF, 20 min, rt; ii) PhCH2Cl, dry 

DMF, 2 h, rt; iii) 1 h, 60 °C; iv) 16 h, rt, 82%; (i) CrO3, aq. H2SO4 (8N), acetone, 15 °C then rt, 1h, 

quantitative yield; (j) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 6 h, 56 – 89% 

[113,152].   

 

For the synthesis of the (butoxyethoxy)ethyl substituted adamantane 2-guanylhydrazone G17 

(Scheme 7) [113], the adamantane diol 25 was first treated with sodium hydride and the resulting 

alkoxide anion was subsequently reacted with ethyl bromoacetate. The intermediate ethanoate was 

saponified, and upon acidification with concentrated hydrochloric acid, the hydroxy acid 28 was 

produced with an overall yield of 85%. The latter was reduced with lithium aluminum hydride to the 

respective diol 29, which was alkylated with 1-bromobutane in the presence of sodium hydride in 

poor yields. Jones oxidation of the alcohol 30, followed by coupling of the precursor ketone 31 with 

aminoguanidine bicarbonate, as previously described, led to the desired compound G17 [113]. 

 

 

 

Scheme 7. Synthetic procedure for the preparation of 1-(butoxyethoxy)ethyladamantano 2-

guanylhydrazone G17. Reagents and conditions: (a) i) NaH, dry DMF, 20 min, rt; ii) 

BrCH2COOCH2CH3, dry DMF, 8 h, 110 °C; (b) NaOH, EtOH/H2O, 2 h, 100 °C, conc. HCl, 85%; 

(c) LiAlH4, dry THF, reflux, 8 h, 96%; (d) i) NaH, dry DMF, 20 min, rt; ii) CH3CH2CH2CH2Br, dry 
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DMF, 15 h, 105 –  110 °C, 18%; (e) CrO3, aq. H2SO4 (8N), acetone, 15 °C then rt, 30 min, 89%; (f) 

H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 6 h, 79% [113].   

   

 

As depicted in Scheme 8 [113], a five-step synthetic route was applied for the preparation of the 

guanylhydrazone G18. Starting from diol 25, the ethyl ester 32 was obtained by alkylation with ethyl 

5-bromovalerate. Then, conversion of 32 to diol 33 was carried out by reduction mediated by lithium 

aluminum hydride. Subsequent alkylation of 33, to the corresponding methoxy congener 34 was 

achieved with methyl iodide and sodium hydride as a base. Employment of the above-mentioned 

procedure, oxidation of 34 with Jones reagent and condensation of the intermediate ketone 35 with 

aminoguanidine bicarbonate afforded the analogue G18 in 69% yield [113].  

 

 

 

Scheme 8. Synthetic procedure for the preparation of 1-(methoxypentyloxy)ethyladamantano 2-

guanylhydrazone G18. Reagents and conditions: (a) i) NaH, dry DMF, 30 min, rt; ii) 

Br(CH2)4COOCH2CH3, dry DMF, 15 h, 105 °C, 32%; (b) LiAlH4, dry Et2O, reflux, 15 h, 88%; (c) i) 

NaH, dry DMF, 20 min, rt; ii) CH3I, dry DMF, 24 h, rt, 40%; (d) CrO3, aq. H2SO4 (8N), acetone, 15 

°C then rt, 30 min, 89%; (e) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 5 h, 

69% [113].   

 

The synthetic route to 1-benzyloxyadamantane 2-guanylhydrazone G19 [113] is depicted in Scheme 

9. For the preparation of the adamantane diol 37 [100], protoadamantanone 13 was treated with 

dimethylsulfonium methylide to give a mixture of endo/exo epimers of the epoxide 36 in a 1:15 ratio. 

Then, oxirane ring opening under acidic conditions in acetone produced the target compound 37. 

Alternatively, the cleavage of oxirane rings is pronounced in the presence of formic acid. Reaction of 

epoxide 36 with formic acid, upon heating, yielded the respective formate diester, which was further 

saponified to provide diol 37 [100]. 
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The intermediate 1-alkoxy alcohol 38 was synthesized via alkylation of 37 with benzyl chloride, using 

sodium hydride as a base and N,N-dimethylformamide as solvent. Alcohol 38 was oxidized to the 

corresponding ketone 39 by chromium trioxide in an aqueous sulfuric acid solution. The 

guanylhydrazone G19 was prepared by reacting the precursor ketone 39 with aminoguanidine 

bicarbonate in the presence of hydrochloric acid with an overall yield of 65% [113].  

 

 

Scheme 9. Synthesis οf the starting adamantane diol 37 and synthetic procedure for the preparation 

of 1-benzyloxyadamantane 2-guanylhydrazone G19. Reagents and conditions: (a) (CH3)2S=CH2, 

DMSO, 3 h, 25 °C and 8 h, 55 °C; (b) H2SO4/H2O (0.085 M), acetone, T °C or (c) HCOOH, 30 min, 

T °C; (d) NaOH, EtOH/H2O, T °C; (e) i) NaH, dry DMF, 20 min, rt; ii) PhCH2Cl, dry DMF, 2 h, rt; 

iii) 1 h, 60 °C; iv) 16 h, rt, 80%; (f) CrO3, aq. H2SO4 (8N), acetone, 15 °C then rt, 1h, quantitative 

yield; (g) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 6 h, 65% [100,113].   

 

The key intermediate 43 [152] was obtained by a four-step synthetic procedure as depicted in Scheme 

10. Protoadamantanone 13 undergoes a typical Grignard reaction with the dimagnesium derivative of 

propargylic alcohol to form the acetylenic diol 40, which was hydrogenated in the presence of 

platinum (IV) oxide as a catalyst, to the respective saturated diol 41. The diol 43 was produced in 

good yields upon heating of diol 41 with formic acid and subsequent saponification of the 

intermediate diester 42 [152].  

Compound 43 was alkylated with 1-bromohexane and benzyl chloride to give the alcohols 44a and 

44b, respectively. Employment of the previously described experimental protocol for the preparation 

of guanylhydrazones G12 – G15 and G20 (Scheme 6), Jones oxidation of the intermediates 44a and 

44b, and subsequent condensation of ketones 45a and 45b with aminoguanidine bicarbonate, led to 

the desired analogues G16 and G21 in 94% and 53% yields, respectively [113]. 
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Scheme 10. Synthesis of the starting adamantane diol 43 and synthetic procedure for the preparation 

of 1-alkyloxy and 1-benzyloxy propyladamantane 2-guanylhydrazones G16 and G21.  Reagents and 

conditions: (a) BrMg–C≡C–CH2OMgBr, dry THF, reflux, 6 h and 24 h, 20 °C; ii) NH4Cl, H2O, 82%; 

(b) H2/PtO2, 97%; (c) HCOOH, reflux, 30 min, 100%; (d) NaOH, EtOH/H2O, reflux, 2 h, 81%; (e) 

for compound 44a: i) NaH, dry DMF, 20 min, rt; ii) C6H13Br, dry DMF, 16 h, 105 °C, 78%; for 

compound 44b: i) NaH, dry DMF, 20 min, rt; ii) PhCH2Cl, dry DMF, 2 h, rt; iii) 1 h, 60 °C; iv) 16 h, 

rt, 85%; (f) CrO3, aq. H2SO4 (8N), acetone, 15 °C then rt, 1h, quantitative yield; (g) 

H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 6 h, 94% (G16) and 53% (G21) 

[113,152]. 

 

Synthesis of Series 4 compounds 

The preparation of 1-phenyl substituted adamantan-2-one 49a [153] was achieved following a 

synthetic procedure similar to that of 1-alkyl-adamantan-2-ones 18a – d (Scheme 4). Starting from 

protoadamantanone 13, the tertiary alcohol 46a was obtained upon treatment with phenyl lithium to 

facilitate the formation of the C–C bond. Employment of the previously described methodology, 

heating with formic acid to produce the formate 47a, saponification of the latter and oxidation with 

Jones reagent of the intermediate alcohol 48a, gave the desired ketone 49a in good yields [153]. The 

starting compound 1-benzyladamantan-2-one 49b was synthesized as described above; with the only 

exception being that benzylmagnesium bromide reacted with protoadamantanone 13 instead of 

phenyl lithium. Following the similar procedure for the formation of guanylhydrazones G6 – G9 

(Scheme 4), 1-phenyl adamantane 2-guanylhydrazone G22 and 1-benzyladamantane 2-

guanylhydrazone G23 were obtained almost quantitatively and in 96% and 78% yields, respectively 

[112].  
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Scheme 11. Synthetic route to the starting compounds 1-phenyl and 1-benzyl adamantan-2-ones 49a 

and 49b, respectively and synthetic route for the preparation of 1-phenyl and 1-benzyladamantane 2-

guanylhydrazones G22 and G23, respectively. Reagents and conditions: (a) C6H5Li in 

[CH3(CH2)3]2O (2M), PhCH2MgBr, dry THF, 1 h, 20 °C, 96%; (b) H2O; (c) HCOOH, reflux, 30 min; 

(d) NaOH, EtOH/H2O, T °C, 2 h, 96%; (e) CrO3, aq. H2SO4 (8N), acetone, 15 °C then rt, 1h; (f) 

H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 5 h, 96% (G22) and 78% (G23) 

[112,153]. 

 

The synthesis of 1-(benzyloxy)adamantane 2-guanylhydrazones G24 and G25 [113] was initiated 

with conversion of protoadamantanone 13 to the tertiary alcohols 50a and 50b, upon treatment with 

the appropriate organomagnesium bromide via a Grignard reaction. According to the procedure 

described in Scheme 12, the intermediates 50a and 50b were esterified with formic acid, and upon 

self-metathesis, the respective formates (not presented in Scheme 12) were obtained. Saponification 

of the latter afforded the corresponding alcohols which underwent Jones oxidation. The resulting 

ketones 51a and 51b were coupled with aminoguanidine bicarbonate in an ethanolic solution under 

acidic conditions. The desired guanylhydrazones G24 and G25 were isolated as hydrochloride salts 

in overall yields of 79% and 66%, respectively [113].  
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Scheme 12. Synthetic procedure for the preparation of 1-(benzyloxy)adamantane 2-

guanylhydrazones G24 and G25. Reagents and conditions: (a) XC6H4MgBr, dry THF; (b) HCOOH, 

reflux, 30 min; (c) NaOH, EtOH/H2O, 2 h, T °C; (d) CrO3, aq. H2SO4 (8N), acetone, 15 °C then rt, 

30 min, 93% (51a) and 91% (51b); (e) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, 

reflux, 5 h, 79% (G24) and 66% (G25) [113]. 

 

 

Synthesis of Series 5 compounds 

For the preparation of starting ketone 53, adamantanecarbonyl chloride 52 was allowed to react with 

phenylmagnesium bromide in anhydrous THF and the target compound 53 was obtained in 67% yield 

[154]. The novel guanylhydrazone G26 was prepared following the synthetic protocol described 

above for the formation of analogues G6 – G9 (Scheme 4) [112]. 

 

 

 

Scheme 13. Synthesis of 1-adamantyl methyl guanylhydrazone G26. Reagents and conditions: (a) 

PhMgBr, dry THF (–78 °C), 2 h, rt, Ar, 67%; (b) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), 

EtOH, reflux, 5 h, almost quantitatively [112,154]. 

 

 

The synthetic route to 2-adamantyl phenyl ketone 57 (Scheme 14) involved a typical Horner-

Wadsworth-Emmons reaction of 2-adamantanone 1 with (methoxymethyl)triphenylphosphonium 

chloride, in the presence of n-BuLi as a base, to deprotonate the latter under anhydrous conditions to 

give the unsaturated ether 54. Acid-promoted hydrolysis of the enol ether 54 with a 70% perchloric 
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acid generated the aldehyde 55 in good yields. Then, the latter reacted with phenylmagnesium 

bromide to give the respective alcohol 56. A pyridinium chlorochromate (PCC) catalyzed oxidation 

of 56 yielded ketone 57, almost quantitatively [155]. The reaction of equimolar quantities of the 

precursor 57 with aminoguanidine bicarbonate under the same conditions previously mentioned, 

produced the novel guanylhydrazone G27 almost quantitatively [112]. 

 

 

 

 

Scheme 14. Synthesis of 2-adamantyl methyl guanylhydrazone G27. Reagents and conditions: (a) 

CH3OCH2P(C6H5)3Cl, n-BuLi, dry Et2O (0 °C), 1 h then 15 h, rt, N2; (b) HClO4 70%/H2O, 78%; (c) 

i) PhMgBr, dry THF (0 °C), 5 h, rt; ii) NH4Cl, H2O, 89%; (d) [C5H5NH]+[CrO3Cl]-, CH3COONa, 

CH2Cl2, 2 h, 95%; (e) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 5 h, almost 

quantitatively [112,155]. 

    

The formation of guanylhydrazone G28 is presented in Scheme 15. The synthesis of the intermediate 

epoxide 58 was achieved via the Corey-Chaykovsky reaction which involves the base-mediated 

addition of trimethylsulfoxonium iodide to 1-phenyl adamantan-2-one 49a. Sodium hydride was used 

as a base and the reaction was performed in anhydrous dimethyl sulfoxide. Afterwards, the oxirane 

ring was cleaved by boron trifluoride diethyl etherate and subsequent rearrangement provided the 

aldehyde 59. Upon Jones oxidation, carboxylic acid 60 was produced, and it reacted with thionyl 

chloride to give the respective chloride. Finally, treatment with aluminum chloride in carbon 

disulphide drives cyclization of the latter to ketone 61, almost quantitatively [156]. Following the 

general procedure presented in Scheme 4, the novel guanylhydrazone G28 was obtained upon 

treatment with aminoguanidine bicarbonate under acidic conditions, with an overall yield of 83% 

[112]. 

 



35 
 

 

Scheme 15. Synthesis of guanylhydrazone G28. Reagents and conditions: (a) (CH3)3SO+I-, NaH, dry 

DMSO, 30 min, 20 °C then 2 h, 55 – 58 °C; (b) BF3 · Et2O, dry C6H6; (c) CrO3, aq. H2SO4 (8N), 

acetone, 15 °C then rt, overnight; (d) SOCl2, 15 min, 65 °C; (e) AlCl3, CS2, 30 min, rt then reflux, 30 

min, quantitatively; (f) H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 5 h, 83% 

[112,156]. 

 

 

As previously described [112], the newly synthesized guanylhydrazones G29 – G31 were prepared 

by condensation of the commercially available precursors 62a – c with a suspension of 

aminoguanidine hydrochloride. The latter was prepared in turn from a suspension of aminoguanidine 

bicarbonate and an excess of concentrated hydrochloric acid upon pH adjustment to 2. The desired 

compounds were produced almost quantitatively, with the only exception being G30, which was 

isolated in an overall yield of 28%.    

 

 

 

Scheme 16. Synthesis of novel guanylhydrazones G29 – G31. Reagents and conditions: (a) 

H2NNHC(=NH)NH2 · HCO3, conc. HCl (pH ~ 2), EtOH, reflux, 5 h, 28 – 98%. 

 

 

3.2 Biological evaluation 
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Series 1-5 analogues (G1 – G31) were assessed based on their ability to inhibit proliferation of 

cultured bloodstream form T. brucei in vitro. Series 5 analogues (G26 – G31) were also tested against 

T. cruzi epimastigotes in vitro.  The EC50 and EC90 values for each compound are presented in Tables 

1 – 5. As shown, 20 (G3, G8 – G11, G13, G16 – G19, G21, G22 – G25, G26 – G29 and G31) out 

of the 31 tested compounds had promising EC50 values in the low micromolar to sub micromolar 

range against T. brucei. Most of the compounds were evaluated as hydrochloride salts, with the only 

exception being analogues G10 and G11, which were tested as free bases. 

 

Table 1 Activity of the adamantane mono(guanylhydrazone) 

analogues G1, G4 and G5 and the bis(guanylhydrazone) analogues G2 

and G3 against cultured bloodstream form T. brucei (pH 7.4) in vitro. 

Cmpd Structure 
T. brucei 

EC50 (μM) a 

T. brucei 

EC90 (μM) a 

G1 
 

56.9 ± 3.3 88.6 ± 13.1 

G2 

 

167 ± 6 214 ± 4 

G3  

 

9.67 ± 1.21 21.7 ± 3.9 

G4 

 

>300 >300 

G5 

 

>300 >300 

a Concentrations required to inhibit growth of T. brucei by 50% and 

90%, respectively. EC50 and EC90 data are the mean of triplicate 

experiments ± SEM. 

 

As shown in Table 1, the 2-(guanylhydrazone)adamantane G1 exhibited moderate inhibitory activity 

in the micromolar range, with an EC50 value of 56.9 μM. Introduction of a second guanylhydrazone 

group at position 4 of the adamantane ring resulted in a 3-fold decrease in the activity of G2 (EC50 = 

167 μM). It is of great interest that shifting the pharmacophore moiety from position 4 to position 6 

of the adamantane cage increased the activity to the low micromolar range. The bis(guanylhydrazone) 

analogue G3 was 17 times more potent (EC50 G3 = 9.67 μM) than the structurally related compound 
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G2. Incorporation of the OH functional group at position 4 of mono(guanylhydrazone) analogue G1 

led to a substantial loss of activity for the G4 (EC50 = >300 μM). Changing the position of the 

hydroxyl group to the vicinal carbon atom yielded compound G5, which also showed no activity at 

the highest concentration tested (~300 μM). 

 

 

Table 2 Activity of the 1-alkyl-2-guanylhydrazone adamantanes G6 

– G9 and the 1-alkyl-2-thiosemicarbazone adamantanes G10 and 

G11 against cultured bloodstream form T. brucei (pH 7.4) in vitro. 

Cmpd Structure 
T. brucei 

EC50 (μM) a 

T. brucei 

EC90 (μM) a 

G6 

 

>6.0 - 

G7 

 

>6.0 - 

G8 

 

0.09 ± 0.02 0.11 ± 0.00 

G9 
 

0.84 ± 0.50 1.30 ± 0.50 

G10 

 

2.81 ± 0.09 5.64 ± 0.54 

G11 
 

0.42 ± 0.04 0.54 ± 0.02 

a Concentrations required to inhibit growth of T. brucei by 50% and 

90%, respectively. EC50 and EC90 data are the mean of triplicate 

experiments ± SEM. 

 

Compounds that constitute Series 2, characterized by a lipophilic tail in position 1 of the adamantane 

core, were more potent than those of Series 1. In particular, the EC50 values were at low micromolar 

to submicromolar levels (2.81 μM to 0.09 μM), as indicated in Table 2. The least amount of inhibitory 

activity was displayed by 1-hexyl- and 1-octyl substituted adamantane guanylhydrazones G6 and G7, 

respectively, whose median effective concentration was above 6 μM. 1-Decyl substitution provided 

the most potent analogue (G8) of this series, with an EC50 value of 0.09 μM. Compared to its 

unsubstituted congener G1 (EC50 = 56.9 μM), G8 was 632-fold more active. Larger alkyl groups 
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seem to reduce trypanocidal activity, given that the 1-tetradecyl substituted analogue G9 (EC50 = 0.84 

μM) was 9 times less effective than G8. It is noteworthy that replacement of the C=NH of 

guanylhydrazone moiety by the C=S functional group, which resulted in thiosemicarbazones G10 

and G11, enhanced their activity compared to the structurally related analogues G6 and G9 (EC50 

G10 = 2.81 μM; EC50 G11 = 0.42 μM).   

 

Table 3 Activity of the 1-alkyloxy-2-guanylhydrazone adamantanes G12 – 

G18 and the 1-benzyloxy-2-guanylhydrazone adamantanes G19 – G21 

against cultured bloodstream form T. brucei (pH 7.4) in vitro. 

Cmpd Structure 
T. brucei 

EC50 (μM) a 

T. brucei 

EC90 (μM) a 

G12 

 

Marginal activity Marginal activity 

G13 

 

1.17 ± 0.13 1.61 ± 0.26 

G14 

 

Marginal activity Marginal activity 

G15 
 

Marginal activity Marginal activity 

G16 

 

0.70 ± 0.07 0.98 ± 0.37 

G17 

 

3.64 ± 0.07 4.94 ± 0.05 

G18 

 

3.62 ± 0.28 4.91 ± 0.36 

G19 

 

1.84 ± 0.16 2.42 ± 0.08 

G20 

 

Marginal activity Marginal activity 
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G21 

 

1.78 ± 0.17 3.88 ± 0.33 

a Concentrations required to inhibit growth of T. brucei by 50% and 90%, 

respectively. EC50 and EC90 data are the mean of triplicate experiments ± 

SEM. 

 

Table 3 presents the results of the biological evaluation of the Series 3 analogues, 1-alkyloxy and 1-

benzyloxy adamantane 2-guanylhydrazones (G12 – G21). Most of them exhibited good trypanocidal 

activity, with potency in the range of 0.70-3.64 μM. The 1-hexyloxyethyl substituted adamantane 

G12, had a marginal activity towards T. brucei. Increasing the length of the alkyloxy chain of G12 

by only one carbon atom, resulting in derivative G13 (heptyloxyethyl analogue), appears to have had 

a favorable effect on trypanocidal activity, resulting in an EC50 of 1.17 μM. Somewhat surprisingly, 

further extension of the C1 alkyloxy side chain of G13 by 1 or 3 carbon atoms (octyloxyethyl 

analogue G14 and decyloxyethyl analogue G15, respectively) caused a reduction in activity. These 

biological results prompted the synthesis of homologue G16, whose trypanocidal activity was 

improved compared with G13, by shifting the oxygen atom from position 3 to position 4 of the side 

chain. Compound G16 was the most potent of the mono(oxygenated) alkyl substituted adamantanes 

of this series, with an EC50 value of 0.70 μM. The bis(oxygenated) ten-membered side chain 

substitution in analogue G17 led to a slight decrease in activity, by 3 times with respect to the 

congener G13 (EC50 G17 = 3.64 μM; EC50 G13 = 1.17 μM). Increasing the distance between the two 

oxygen atoms (from 2 to 5 carbons) gave rise to compound G18, which was equipotent to G17 

(approximately 3.6 μM). The same trend was observed for the three benzyl ethers G19 – G21, which 

were either active in the low micromolar range, or inactive. More specifically, the benzyloxyethyl 

analogue G20 showed a marginal activity. On the other hand, incorporation of a methylene and a 3-

carbon propylene linker between the oxygen atom and the adamantane component, in analogues G19 

and G21, had an opposite effect. The resulting EC50s were 1.84 μM and 1.78 μM, respectively. 

 

 

Table 4 Activity of the aromatic-substituted 2-guanylhydrazone 

adamantanes G22 – G25 against cultured bloodstream form T. brucei (pH 

7.4) in vitro. 

Cmpd Structure 
T. brucei 

EC50 (μM) a 

T. brucei 

EC90 (μM) a 
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G22 

 

2.12 ± 0.09 2.81 ± 0.03 

G23 

 

0.41 ± 0.06 0.47 ± 0.01 

G24 

 

1.22 ± 0.17 2.48 ± 0.17 

G25 

 

2.06 ± 0.13 4.08 ± 0.13 

a Concentrations required to inhibit growth of T. brucei by 50% and 90%, 

respectively. EC50 and EC90 data are the mean of triplicate experiments ± 

SEM. 

 

Activity of the aromatic 1-phenyl- or 1-benzyl- substituted 2-guanylhydrazone adamantanes G22 – 

G25 of Series 4 against cultured bloodstream form T. brucei (pH 7.4) in vitro, is presented in Table 

4. Aromatic substituted analogues G22 – G25 were active in the low micromolar range, with EC50 

values between 0.41 μM and 2.12 μM. More specifically, phenyl substitution on the C-1 atom of the 

parent compound G1 led to a 27-fold increase in potency of analogue G22 (EC50 = 2.12 μM). 

Increasing the distance between the adamantane scaffold and the aromatic ring with a methylene 

group in compound G23 appears to conferred a beneficial effect on trypanocidal activity. The EC50 

value of G23 (EC50 = 0.41 μM) was 5 times lower than that of G22. Introduction of the fluorine 

electron withdrawing group, in the para-position of the aromatic nucleus in analogue G24, slightly 

decreased activity (EC50 = 1.22 μM). The presence of the methoxy electron donating group at the 

same position had a similar effect.  The EC50 of G25 (2.06 μM) was increased by 1.7- and 5-fold 

compared to analogues G24 and G23, respectively.  

 

 

Table 5 Activity of the novel guanylhydrazone analogues G26 – G31 tested in vitro 

against cultured bloodstream form T. brucei (pH 7.4) and T. cruzi epimastigotes. 

Cytotoxicity against cultured rat skeletal myoblast L6 cells and selectivity indices. 
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Cm

pd 
Structure 

T. brucei 

EC50 (μM) 

a 

T. brucei 

EC90 

(μM) a 

SI 

T. 

brucei b 

T. cruzi 

EC50 

(μM) a 

T. cruzi 

EC90 

(μM) a 

SI 

T. 

cruzi b 

L6 cells 

CC50 

(μM) c 

G26 

 

1.62 ± 

0.06 

2.16 ± 

0.02 
- - - - - 

G27 

 

1.35 ± 

0.09 

1.71 ± 

0.02 
3.4 

5.40 ± 

1.17 
11.2 ± 1 0.9 

4.65 ± 

0.54 

G28 

 

1.99 ± 

0.06 

2.72 ± 

0.12 
6.5 

3.47 ± 

0.15 

4.90 ± 

0.12 
3.7 

12.9 ± 

0.3 

G29 

 

6.88 ± 

0.72 

13.1 ± 

0.7 
3.7 

6.14 ± 

0.33 

11.6 ± 

0.3 
4.2 

25.5 ± 

0.6 

G30 

 

>30 - - >30 - - - 

G31 
 

14.3 ± 1.2 
21.1 ± 

0.6 
13 >30 - - 186 ± 11 

a Concentrations required to inhibit growth of T. brucei and T. cruzi by 50% and 90%, 

respectively. EC50 and EC90 data are the mean of triplicate experiments ± SEM. b Selectivity 

indices were calculated as the ratio of the CC50 for L6 cells to EC50 for T. brucei or T. cruzi, 

respectively. c Cytotoxicity was determined by establishing the concentration required to 

inhibit growth of cultured L6 cells by 50% (CC50). Data are the mean of triplicate 

experiments ± SEM. 

 

The novel analogues G26 – G31 were tested for their trypanocidal potency against both cultured 

bloodstream form T. brucei and T. cruzi epimastigotes in vitro. The resulting EC50 and EC90 values 

are presented in Table 5.  Cytotoxicity values (CC50) and selectivity indices (SIs) were also 

determined. The compounds bearing an adamantane core (G26 – G28) were the most active, being 

in the low micromolar range, while the replacement of the adamantane scaffold led to compounds 

with decreased potency, in a higher micromolar level, with the exception of compound G30, which 

was inactive. More specifically, compounds G26 – G29 and G31 exhibited considerable activity 

against T. brucei with EC50 values ranging from 1.35 to 14.3 μM. With the G26 analogue, the 

guanylhydrazone group was shifted in the methylene carbon of the benzyl substituent, with respect 

to the parent compound G23. This structural modification resulted in a higher EC50 value by 4 times 

(EC50 G26 = 1.62 μM; EC50 G23 = 0.41 μM). The respective 2-substituted analogue G27 was 
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equipotent to G26 (EC50 G27 = 1.35 μM). Ring closure by formation of the C1 – C2’ bond of G27 

resulted in the adamantane-cyclopentane-benzene fused analogue G28, which exhibited a similar 

inhibitory activity (EC50 G28 = 1.99 μM). Replacing the adamantane component with a second 

benzene ring lowered the activity observed for of the analogue G29 by 3.5 fold (EC50 G29 = 6.88 

μM), while changing the linker cyclopentane ring to the bulkier cycloheptane in compound G30 

abolished the activity. Finally, the use of a completely different and non-rigid scaffold, like the one 

of such as the 4-phenyl cyclohexane (G31), seems to compromise disfavor activity compared to the 

structurally related analogue G29, as G31 was 2-fold less effective. 

Most of the newly synthesized compounds were also tested against T. cruzi epimastigotes. Derivatives 

G27, G28 and G29 were the most potent, with EC50 values being 5.40 μM, 3.47 μM and 6.14 μM, 

respectively. On the other hand, G30 and G31 showed no inhibition in vitro at 30 μM, which was the 

highest concentration tested. The cytotoxicity of the target compounds against mammalian cells was 

determined using the rat skeletal myoblast L6 cell line. The CC50 values ranged between 4.65 for 

analogue G27 and 186 μM for G31. Moreover, selectivity indices observed for T. brucei were 

generally higher than those observed for T. cruzi, as shown in Table 5.  

 

 

3.3 Computational studies 

 

S-Adenosylmethionine Decarboxylase 

Recently, Volkov and colleagues [157] elucidated the crystal structure of the T. brucei 

AdoMetDC/prozyme heterodimer in complex with a carbonimidic dihydrazide derivative well-

known for its AdoMetDC inhibition activity, namely CGP 40215 (CGP) [108]. Structural data from 

the binding site of the protein-ligand complex reveal that CGP forms several interactions, including 

a bidentate H-bond with E266 and monodentate H-bonds with the backbone carbonyl of L83, the side 

chain hydroxyls of S249 and Y243, and with C100. Additionally, CGP is further stabilized through 

π-π stacking between Y243 and F28, as well as cation-π interactions with F28 (Fig. (6)). Due to the 

structural similarity of CGP with our guanylhydrazone analogues, it was thus hypothesized that both 

will share a common binding pattern, rendering these as interesting and novel in drug development 

for AdoMetDC. In order to test this hypothesis, in silico docking experiments were conducted. 

Furthermore, guanylhydrazone compound characterisation and model validation was obtained 

through an extended SAR and QSAR analysis. 
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Fig. (6). Superposition of CGP and docking-fitted guanylhydrazone analogue G8 within the 

AdoMetDC active site. The computationally cleaved three-dimensional crystal structure of T. 

brucei AdoMetDC (PDB: 5TVF) is shown in “ribbon” representation, colored in pink. Selected 

important residues contributing to various interactions are highlighted in “stick” representation. 

The pink “bean”-like shape on the right, symbolizes the hydrophobic cavity of AdoMetDC 

oriented towards the back of the binding site. CGP, the compound co-crystalized with 

AdoMetDC, is colored in green and the nanomolar range T. brucei inhibitor, guanylhydrazone 

analogue G8, is shown in light blue. Intriguingly, the positions of benzene and adamantane 

groups of CGP and G8, respectively, coincide and both compounds share common binding 

patterns with E266, as illustrated. CGP is further stabilized through two more hydrogen bonds 

with S249 and L83. Observed π-π stacking between Y243/F28 and cation-π interactions with 

F28, for CGP are not depicted in this figure.  

 

 

Results of Docking-based scoring 

Docking results shed light on the binding pattern of the guanylhydrazone analogues, which exhibit 

high resemblance compared to the crystal structure of the AdoMetDC and CGP complex, as shown 

in Fig. (6). Generally, all analogues form mono- and/or bidentate H-bonds through their guanyl group, 

either with E266 or with C246, and a minority of them with L83 or E85. Remarkably, the aliphatic 

side chains (that substitute the adamantane group) of some analogues stay inside the active site of 
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AdoMetDC in top-ranked poses scored within the broader 15 × 15 × 15 Å generated grid. However, 

this was not the case with the 10 × 10 × 10 Å grid, which seemingly impelled steric clashes with all 

lipophilic side chains due to space confinement. Therefore, the novel analogues G26 – G28 (Fig. 

(7A)) ranked on top even though their T. brucei activity proves otherwise. Due to this observation, 

all subsequent studies were performed within the broader grid. 

 

 

 

Fig. (7). Docking results for several guanylhydrazone analogues. A) Guanylhydrazone 

analogues G26 (pale green), G27 (pale yellow) and G28 (pale red), three novel low micromolar 

T. brucei inhibitors, share identical polar interaction with E266 and position within the 

AdoMetDC active site, hence their minor activity variance. B) The binding profile of dietheric 

guanylhydrazone analogue G18 (copper yellow). Formation of an intramolecular H-bond 

probably does not occur, due to stabilization via hydrogen bond with C100. Similar interactions 
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are observed for dietheric analogue G17. C) Superposition of guanylhydrazone analogues: G12 

(white), G16 (orange), G13 (purple), G14 (dark grey) and G15 (light grey). Active analogues 

G16 and G13 exhibit indistinguishable binding patterns, in contrast to the inactive analogue 

G12, which despite forming an H-bond with E266 of AdoMetDC, its large aliphatic group bolts 

towards the bulk of the solvent. Inactive analogues G14 and G15 score amongst the bottom 

ranks in docking due to the lack of polar interactions with AdoMetDC, in addition to the “false” 

orientation within the active site; the hydrophilic guanylhydrazone group faces towards the 

solvent and the hydrophobic adamantane group proximates polar E266. 

 

Note that the substitution of the adamantane group at the β-position of the etheric oxygen (G12, G14, 

G15 and G20) eliminates the activity when compared to the α- and γ- position (G19 and G16, G21 

respectively), with the exception of analogue G13 and the dietheric analogues G17 and G18. This 

unexpected bioactivity result was further scrutinized by using molecular mechanics simulations, 

which yielded a high possibility of intramolecular H-bond formation between the etheric oxygen and 

the guanyl-group nitrogen, hence reduction in the in vitro activity. However, this was not applicable 

to the analogue G13. Furthermore, docking structural data show that the aliphatic chain of G12 is 

placed outside of the AdoMetDC active site, resulting in the a lack of activity. Additionally, as 

illustrated in Fig. (7C), analogues G14 and G15 exhibit a dissimilar binding pattern to that previously 

described, with the guanylhydrazone group oriented towards the bulk of the solvent. Thus, no polar 

interactions with the protein are made and the activity becomes marginal. In contrast, dietheric 

analogues G17 and G18 exhibit T. brucei inhibitory activity, probably due to the second etheric 

oxygen interacting with AdoMetDC via an H-bond with the backbone of Cys100 (Fig. (7B)). 

Docking-based structural data also failed to provide a rationale regarding the SAR analysis on slight 

side-chain differentiations among guanylhydrazone analogues. For instance, amongst the analogues 

G6 – G9 (of which G8, with a 10-carbon aliphatic chain, is the most potent guanylhydrazone 

inhibitor), analogue G9, with a 14C substitution, displays slightly diminished activity compared to 

G8. This outcome, could be termed, paraphrasing Schönherr and Cernak [158], as the “magic ethyl 

effect”. It is therefore possible that reliance on solely docking-based approaches could be insufficient 

to interpret the SAR. As an alternative, a thermodynamic-driven approach was therefore 

implemented. 

The thermodynamics of binding is influenced by multiple factors, including hydrogen bonding, 

hydrophobic interactions, protein and ligand rigidification, as well as the solvation and desolvation 

effect [159]. Therefore, avoiding a linearly correlated rule of thumb approach is vital when attempting 

to interpret binding affinity data. Even though H-bonds in theory favour enthalpy, hydrophobic 
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interactions favor entropy and conformational changes are unfavorable for entropy. One needs to 

consider that enthalpy and entropy of an intricate molecular system are vaguely interconnected. The 

theory of Enthalpy−Entropy Compensation (EEC) [160,161], which states that the enthalpy gain of a 

rigid protein-ligand complex is compensated by an entropy loss caused by the decrease of the 

available states for the system, provides partial explanation. However, as Wienen-Schmidt and 

colleagues showed, this is not always the case. Highest flexibility ligands can display, 

counterintuitively, the entropically most favored binding. Thus, the loss of degrees of freedom of the 

ligand does not necessarily monopolize the thermodynamic profile [162]. Adequate explanation for 

this unexpected thermodynamic outcome could be offered by the role of water molecules, which also 

strongly affect protein and ligand stability through their dipolar nature and the entropic gain 

associated with the hydrophobic effect [163]. Water molecules of the protein-ligand complex can be 

classified on the basis of their energetics into either high energy, unstable water molecules trapped 

inside hydrophobic cavities or stable water molecule that are stabilized through extensive interactions 

with the protein over the corresponding solvent accessible surface [164]. Computational tools such 

as SZmap [165] from Openeye, have been used to incorporate the water network in drug design. 

SZmap (solvent-Zap-mapping) is capable of quantitatively predicting water positions and their 

energetics, and is potentially a useful tool for identifying significant favorable or unfavorable regions 

of solvent thermodynamics in the binding site [166]. The hydration analysis via SZmap for the active 

site of AdoMetDC was performed as previously described [167] and the results were visually 

inspected. 

Predictably, SZmap solvation mapping analysis yielded interesting results that compensated for the 

limitations of a merely docking-scoring approach. The binding site of AdoMetDC is rich in both 

stable and unstable water molecules, which through their displacement influence binding 

thermodynamics. Since all analogues are comprised of bulky hydrophobic groups, such as aliphatic 

hydrocarbons, adamantane and benzene moieties, water molecules are inevitably displaced. With the 

introduction of the polar guanylhydrazone group, which ideally contributes to favorable enthalpy via 

structural water molecule displacement, elucidating the complete thermodynamic binding profile 

becomes complex. Specifically, for G8, a nanomolar-range T. brucei inhibitor, SZmap data showed 

that the adamantane group as well as the 10C side chain displace unstable, high-energy water 

molecules (Fig. (8)), thus contributing to the increase of entropy.  
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Fig. (8). SZmap-generated hydration analysis of the active site of AdoMetDC with docking-

fitted G8 analogue. The red spheres define the high energy water molecules, while gold spheres 

depict structural water molecules. Selected amino acids are illustrated for viewing reference. 

The inhibitor is oriented so as to position both hydrophobic adamantane and 10-carbon aliphatic 

groups towards unstable water molecules, thus permitting their displacement and leading to 

affinity enhancement due to favorable entropic contributions. The polar guanylhydrazone group 

thereby provokes the displacement of three highly stable water molecules, from the hydration 

site adjacent to E266, and the enthalpic effect is pronounced. 

 

 

In contrast, the guanylhydrazone group displaces low energy structural water molecules and therefore 

adds to the enthalpic effect. Hydration data for analogue G9 show a contiguity, with the exception of 

the adamantane group, which does not displace water molecules in this context. Apparently, this 

guanylhydrazone analogue poorly docks within the active site of AdoMetDC. Therefore, a 

displacement of three stable water molecules by the adamantane group would occur, resulting in 

enthalpic cost, which conceivably eliminates the activity against T. brucei. Analogous interpretation 

of the displacement of high/low energy water molecules by polar or hydrophobic groups can also be 

made for other guanylhydrazone analogues of similar structure, but different activity (G10 and G11; 
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G24 and G25; G2 and G3). These differences could be related to EEC and should be further 

investigated. 

 

Results of QSAR analysis 

All statistical methods comprised of only the active analogues yielded substantial model fidelity, 

based on their statistical properties, as illustrated in Table 6.  

 

Table 6. Statistical values of Multiple Linear Regression (MLR), Partial Least Squares 

regression (PLS) and Kernel-based Partial Least Squares regression (KPLS) regression 

models.  

Statistical Regression 

Model  

Training 

set 
Test set  R² Q² SD RMSE 

MLR 22 5 0.9339 0.8270 0.2510 0.3569 

PLS 22 5 0.8890 0.3573 0.3350 0.5466 

KPLS 22 5 0.9662 0.9105 0.1752 0.2922 

 

Interestingly, the most accurate regression model was generated through KPLS (R² = 0.9662; Q² = 

0.9105). PLS had less predictive accuracy (R² = 0.8890; Q² = 0.3575). MLR analysis also produced 

an acceptable model (R² = 0.9339; Q² = 0.8270). However, it was challenged by notable inter-

correlation within the Canvas-derived optimal subset of descriptors, thus rendering the respective 

MLR model as one of limited predicting capacity. Out of the molecular descriptors identified as 

significant by the statistical analysis, the most meaningful were the following; average vertex distance 

degree, Balaban distance connectivity index, conformation independent QPlogS, Gutman molecular 

topological and topological charge index of order 9. Details description of these descriptors can be 

acquired from the Handbook of Molecular Descriptors, by Todeschini and colleagues [168]. 

Fundamentally, molecular descriptors, due to the involvement of mathematics, usually lack direct 

structural interpretation of a molecule. Since chemical information is transformed through various 

procedures into sole numeric values, deducing tangible characteristics about the structure of a 

compound is rather difficult. That said, it is important to construct a reliable and highly predictable 

model, regardless of its ability to interpret structural features. Such a model would enable rapid and 

accurate activity predictions, even for novel compounds currently non-synthesized, and provide 

proof-of-concept for further drug development approaches. 

Experimental and predicted EC50 values of active guanylhydrazone analogues for T. brucei are shown 

in Table 7.  
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Table 7. Statistical analysis comparison for the active guanylhydrazone analogues with Multiple 

Linear Regression (MLR), Partial Least Squares regression (PLS) and Kernel-based Partial Least 

Squares regression (KPLS). Experimental and predicted T. brucei inhibitory activity for only active 

guanylhydrazone analogues is presented. IC50 (μΜ) values are logarithmically converted and the 

absolute error is calculated. Error values are color-coded. As the absolute error approximates the 

numeric value of one, activity shifts one order of magnitude. 

Active 

Compound

s 

Activity 

 (-logIC50, 

M) 

MLR PLS KPLS 

Pred(Activit

y) 

(-logIC50, M) 

Abs 

Erro

r 

Pred(Activit

y) 

(-logIC50, M) 

Abs 

Erro

r 

Pred(Activit

y) 

(-logIC50, M) 

Abs 

Erro

r 

G1 4.245 4.4286 0.184 4.3413 0.096 4.264 0.019 

G2 3.777 3.7012 0.076 3.8435 0.066 3.701 0.076 

G3 5.015 4.8865 0.128 3.9843 1.030 5.145 0.130 

G4 3.523 3.5935 0.071 3.4518 0.071 3.789 0.266 

G5 3.523 3.9734 0.451 3.4956 0.027 3.541 0.018 

G6 5.222 5.0027 0.219 5.5995 0.378 5.225 0.003 

G7 5.222 5.9432 0.721 5.9604 0.738 5.483 0.261 

G8 7.046 6.6705 0.375 6.3055 0.741 6.525 0.521 

G9 6.076 5.9545 0.122 6.7108 0.635 6.224 0.148 

G10 5.551 5.5515 0.000 5.3923 0.159 5.396 0.155 

G11 6.377 6.5462 0.169 6.4279 0.051 5.880 0.497 

G13 5.932 6.0622 0.130 5.8398 0.092 6.049 0.117 

G16 6.155 6.0622 0.093 5.8456 0.309 6.242 0.087 

G17 5.439 5.4502 0.011 5.4164 0.023 5.404 0.035 

G18 5.441 5.4502 0.009 5.3975 0.043 5.318 0.123 

G19 5.735 5.9315 0.196 5.8350 0.100 5.771 0.036 

G21 5.75 5.8070 0.057 6.0994 0.349 5.919 0.169 

G22 5.674 5.6424 0.032 5.7052 0.031 5.697 0.023 

G23 6.387 6.1335 0.254 5.9330 0.454 6.417 0.030 

G24 5.914 5.9296 0.016 5.9442 0.030 5.896 0.018 

G25 5.686 5.5693 0.117 5.8503 0.164 5.730 0.044 

G26 5.790 5.9990 0.209 5.8412 0.051 5.951 0.161 

G27 5.870 6.1250 0.255 5.9097 0.040 5.858 0.012 
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G28 5.701 5.6679 0.033 5.7783 0.077 5.590 0.111 

G29 5.162 4.9830 0.179 4.8028 0.360 5.082 0.080 

G30 4.523 4.5656 0.043 4.7354 0.213 4.407 0.116 

G31 4.845 5.4141 0.569 4.8898 0.045 5.069 0.224 

 

As can be observed, all three regression models yielded medium to relatively high absolute error 

values for analogues G7 and G8. A possible explanation for this observation can be, again, related to 

the effect of the solvent. Software implementing the ligand-based drug discovery approach, such as 

Canvas, are exclusively focused on the ligand structure and can thus seriously neglect the exact 

thermodynamic effect that individual water molecules might have on the binding affinity of small 

molecules that can displace them. The displacement of water molecules affects each compound 

differently, hence the almost absolute agreement for analogues G2, G17, G18, G22, G24 among all 

statistical approaches. Generated statistical data should be considered as a stepping-stone for further 

investigation. 

 

 

Conclusion 

In summary, the data obtained from this extended SAR study illustrate: (i) The synergistic effect of 

the lipophilic character of the C1 substitution and C2 guanylhydrazone moiety on trypanocidal 

activity. (ii) The critical role of the adamantane moiety for trypanocidal activity. Replacement of the 

adamantane cage structure by the tricyclic scaffolds of fluorene and dibenzocycloheptene, and the 

bendable 4-phenyl cyclohexane decreases activity against T. brucei. (iii) The great importance of the 

nature and length of the second substitution to antiparasitic activity. Replacement of the lipophilic 

alkyl chain at of the adamantane-based guanylhydrazones with a more polar component (alkyloxy, 

hydroxyl, aminoguanidine) results in a substantial reduction in trypanocidal properties. Finally, a 

number of diverse approaches were undertaken to understand the interplay between the structure of 

the promising bioactive compounds and the activity against their putative protozoan target, 

AdoMetDC. Chemoinformatics-based models afforded a series of molecular descriptors that might 

account for the observed bioactivity and sustain the design of new derivatives. In addition, molecular 

docking simulations, enhanced by a hydration analysis, derived interesting thermodynamic insights 

into the role of structural factors, such as intramolecular hydrogen bonding or displacement of 

energetically unfavorable water molecules on the observed binding affinity. The design of new 

compounds with improved bioactivity against AdoMetDC could greatly benefit from such rational 

approaches. Efforts towards this direction are currently underway.  
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LIST OF ABBREVIATIONS 

3D : Three-dimensional  

AdoMet : S-adenosylmethionine 

AdoMetDC : S-adenosylmethionine decarboxylase 

BBB : blood-brain barrier  

BZ : benznidazole 

CADD : Computer-aided drug design  

CATT : card agglutination test for trypanosomiasis  

CNS : central nervous system  

CSF : cerebrospinal fluid 

CC50 : half maximal cytotoxic concentration, concentration required to cause cytotoxic effect by 50% 

or to inhibit growth of cultured L6 cells by 50% 

CGP : derivative CGP 40215 (AdoMetDC inhibitor) 

DMF : N,N-dimethylformamide 

DMSO : dimethyl sulfoxide 

DRC : Democratic Republic of Congo 

EC50 : half maximal effective concentration, concentration required to give half-maximal response or 

concentration required to inhibit growth of T. brucei and T. cruzi by 50% 

EEC : Enthalpy−Entropy Compensation 

Et2O :  diethyl ether  

EtOH : ethanol 

FBDD : Fragment-based drug discovery 

gHAT : gambiense HAT  

Gsp : glutathionylspermidine  

HAT : Human African Trypanosomiasis 

LBDD : Ligand-based drug design 

IgM : Immunoglobulin M  

IM : intramuscular 

IV : intravenous 

KPLS : Kernel-based Partial Least Squares  

MLR : Multiple Linear Regression 
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NECT : nifurtimox-eflornithine combination treatment 

NTDs : neglected tropical diseases 

ODC : ornithine decarboxylase 

PLS : Partial Least Squares   

PTRE : post-treatment reactive encephalopathy 

QSAR : Quantitative structure-activity relationship 

rHAT : rhodesiense HAT  

SBDD : Structure-based drug design 

SD : Standard deviation 

SI : selectivity index  

SZMAP : solvent-Zap-mapping 

T. brucei : Trypanosoma brucei  

THF : tetrahydrofuran 

VdW : van der Waals 

WBC : white blood cells 

WHO : World Health Organization 
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