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ABSTRACT 

Background: Accurate and reliable estimates of violence against women statistics form the backbone 

of monitoring efforts to eliminate these human right violations and public health concerns. Estimating 

the prevalence of intimate partner violence (IPV) is challenging due to variations in case definition and 

recall period, surveyed populations, partner definition, level of age disaggregation, and survey 

representativeness, among others. In this paper, we aim to develop a sound and flexible statistical 

modeling framework for global, regional, and national IPV statistics. 

Methods: We modeled IPV within a Bayesian multilevel modeling framework, accounting for 

heterogeneity of age groups using age-standardization, and age patterns and time trends using splines 

functions. Survey comparability is achieved using adjustment factors which are estimated using exact 

matching and their uncertainty accounted for. Both in-sample and out-of-sample comparisons are used 

for model validation, including posterior predictive checks. Post-processing of models’ outputs is 

performed to aggregate estimates at different geographic levels and age groups.  

Results: A total of 307 unique studies conducted between 2000-2018, from 154 countries, and totaling 

nearly 1.8 million unique women responses informed lifetime IPV. Past year IPV had similar number 

of studies (n=333), countries represented (n=159), and individual responses (n=1.8 million). Roughly 

half of IPV observations required some adjustments. Posterior predictive checks suggest good model fit 

to data and out-of-sample comparisons provided reassuring results with small median prediction errors 

and appropriate coverage of predictions’ intervals. 

Conclusions: The proposed modeling framework can pool both national and sub-national surveys, 

account for heterogeneous age groups and age trends, accommodate different surveyed population, 

adjust for differences in survey instruments, and efficiently propagate uncertainty to model outputs. By 

describing this model to reproducible levels of details, the accurate interpretation and responsible use 

of estimates for global monitoring of violence against women elimination efforts are supported, as part 

of the Sustainable Development Goals.  

 

KEYWORDS: Bayesian inferences; Hierarchical models; Domestic violence; Intimate partner violence; 

Spousal violence; Sexual assault; Violence against women.  

 

 

ABBREVIATIONS: DHS: Demographic and Health Survey; GBD: Global burden of disease; IPV: 

intimate partner violence; SDG: Sustainable Development Goals; VAW: violence against women.   
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BACKGROUND 

 Violence against women (VAW) is a human rights violation, and a global health and development 

concern. To address this issue, countries agreed in 2015 to eliminate all forms of VAW as part of the 

Sustainable Development Goals (SDG). Accurate and reliable VAW statistics form the backbone of 

monitoring efforts, can help guide resources allocation, and, ultimately, enable the deployment of 

adequate and sustainable intersectoral responses (UN 2014, WHO 2014, Garcia-Moreno, Zimmerman, 

Morris-Gehring et al. 2015, SDSN 2015, WHO 2016). For VAW elimination to be successful, indicators 

tracking VAW prevalence must be collected, analyzed, and reported. 

 Violence against women encompasses physical, sexual, and psychological violence perpetrated 

by an intimate partner, termed as intimate partner violence (IPV). It also includes sexual violence 

perpetrated by someone other than an intimate partner (e.g., a friend, family member, neighbor, stranger), 

termed non-partner sexual violence. Other types of –often overlapping– VAW include child sexual abuse, 

trafficking of women and girls, female genital mutilation, forced or early marriage, and killings in the 

name of honor (Garcia-Moreno et al. 2015). Previous analyses pointed out that VAW has serious short- 

and long-term impacts on affected individuals, families, and wider societies and that further investments 

in research and data collection are required to better understand and address VAW epidemic trends 

(Devries, Mak, Garcia-Moreno et al. 2013, Abrahams, Devries, Watts et al. 2014, Garcia-Moreno et al. 

2015). 

Estimating prevalence of IPV is challenging for several reasons (Ruiz-Perez, Plazaola-Castano 

and Vives-Cases 2007). First, variations in case definition (definitions based on severity of acts) and 

recall periods (lifetime versus past year) are common. Second, lack of disaggregation between different 

forms of violence (physical, sexual, psychological) can pose comparability issues. Third, differences in 

surveyed population (all women, ever partnered, or currently partnered) and whether the perpetrator of 

violence is the current or most recent partner (versus any previous partners) further compound 

comparability of estimates. Fourth, reported survey estimates are often not age-disaggregated and, when 

available, heterogeneous age-group definitions are often encountered, with few observations for women 

aged 50 years and above. In addition, VAW data are sparse geographically (some countries do not have 

any estimate) and temporally (most countries with data have only one or two estimates). Considering 

these issues, comparing and longitudinally tracking IPV statistics requires overcoming several 

methodological hurdles. 

 In addition to these issues specific to IPV data, other more general issues need to be considered. 

First, VAW statistics, like other health indicators, are noisy (Finucane, Paciorek, Danaei et al. 2014, 

Flaxman, Vos and Murray 2015). This means that the degree of observed heterogeneity can be large; 

larger than what would be expected from random sampling alone. This heterogeneity can be explained 

by differences in survey sampling schemes, geographical coverage, survey instruments and methods, and 

implementation issues, among others. Taken together, these considerations entail that statistical models 

are required to adjust, compare, and monitor VAW statistics within and across countries.  

The objective of this article is to present a flexible statistical modeling framework for monitoring 

global, regional, and national IPV statistics which can inform the development of effective policies and 

programs to address VAW and that are in line with SDG monitoring. Specifically, we focus here on SDG 

indicator 5.2.1: the proportion of ever-partnered women and girls aged 15 years and older subjected to 

physical, sexual or psychological violence by a current or former intimate partner in the previous 12 

months, by form of violence and by age. We first present a brief overview of the global VAW database, 

provide details on the chosen modeling framework, including adjustments and age modeling, present 

selected results and model validation, including posterior predictive checks, and discuss potential further 

steps to improve estimates of IPV statistics.   
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METHODS 

Global Violence Against Women database 

 The World Health Organization (WHO)’s global VAW database includes prevalence 

surveys/studies of physical, sexual and psychological IPV, sexual violence by any perpetrator, and non-

partner sexual violence (NPSV). This database builds on the earlier database and systematic reviews that 

WHO curated (Devries et al. 2013, Abrahams et al. 2014). Briefly, all population-based studies 

conducted between 2000 and 2018, representative at either national or sub-national level, were eligible 

for inclusion. A few surveys that did not use questions referring to specific acts to measure violence were 

excluded as these are known to underestimate prevalence. For each eligible study, age-specific 

prevalence estimates and their denominator, preferably by 5-year age groups, were extracted for the 

different types of IPV (namely, physical IPV, sexual IPV, psychological IPV and physical and/or sexual 

IPV) and sexual violence (namely, sexual violence by any perpetrator, and non-partner sexual violence). 

If only prevalence estimates from a broad age group were available (e.g., 15-49 years old), it was 

extracted instead. Further, if reported, design-adjusted standard errors and lower and upper limit of the 

confidence intervals were recorded. For each observation, the following characteristics were extracted: 

country, author of publication/report, publication year, start and end years of data collection, the type of 

VAW, the surveyed population (all women, currently-partnered, ever partnered women), age-group for 

the estimate, the recall period for prevalence (lifetime, past year, past two years), and whether the study 

is nationally representative and if not, whether it was conducted in an urban, rural, or mixed urban/rural 

region. IPV estimates were further characterized according to whether the perpetrator included only the 

spouse (versus all types of intimate partners) and whether the experience of violence referred to only the 

current or most recent husband/partner (versus any husband/intimate partner).  

Pre-processing 

A conceptual overview of methods used for data analysis is provided in Figure 1. This overview 

describes data inputs, data pre-processing, data analyses, and post-processing to obtain national, regional, 

and global estimates of IPV statistics.  

 The first step of the data pre-processing involves the imputation of some missing survey sample 

sizes. If the overall survey sample size of a specific study was available but the age-specific denominators 

of the prevalence estimates were missing, we imputed them by distributing this overall sample size 

proportionally to the age-specific size of the 2010 female population reported in the United Nations 

World Population Prospect (WPP) 2019 (UNDP 2019). In rare instances where the study’s authors did 

not report information on the survey sample size, we conservatively assumed that the sample sizes would 

be of 3,000 and 1,000 for nationally representative and sub-national surveys, respectively. These sample 

sizes roughly correspond to the lowest tercile of the distribution of all sample sizes in the VAW database. 

 Population-based surveys included in the VAW database often use complex sampling schemes –

for example using stratification and/or clustered sampling– that needs to be accounted for in the analyses. 

In all cases, the extracted estimates of point prevalence considered survey weighting (if applicable) but 

stratification and/or clustered sampling could impact the effective sample size of estimates and, hence, 

the precision of the survey. In cases where design-adjusted standard errors or confidence intervals were 

available, the effective sample size was derived from these quantities. If only a confidence interval was 

available, we used Wilson’s formula and applied it to the upper limit of the confidence interval to obtain 

standard errors (Wilson 1927). For surveys where the effective sample size could not be numerically 

derived, we used a design effect of 2.5. This design effect corresponds to the median design effect 

obtained from standardized analyses of individual-level data from 89 Demographic and Health Surveys 

(DHS). Surveys for which the end date of data collection was not available were imputed using the date 

of publication as a proxy. Finally, where the upper age of the survey sample was missing or not reported, 

we assumed an open-ended age category. 
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Figure 1. Conceptual overview of data inputs, data pre-processing, data analysis, and post-processing steps required to produce global, regional, and 

national violence against women statistics. (DHS: Demographic and Health Surveys; IPV: intimate partner violence; VAW: violence against women; 

WPP: World Population Prospect.) 
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 The final pre-processing step was to create two datasets (Figure 1). The first one is to be used 

to calculate adjustment factors that will enable the combination of different types of estimates. In 

this case, we only kept the prevalence estimates from the broadest age-group (i.e., 15-49 years). The 

second dataset is the one used to model global, regional, and national estimates of IPV statistics. In 

this case, only the finest levels of age-stratification were retained. This was done to avoid double-

counting women and artificially increasing the precision of the estimates. Similarly, if nationally 

representative prevalence estimates were available, observations from rural and urban areas of the 

same study were removed. This process was repeated and, if more than one prevalence estimates 

remained for each age group, we selected the ones from the “optimal set” of observations that used 

gold-standard methods and survey instruments. Specifically, we applied the following rules for each 

survey: 

▪ If a study has estimates from both “severe physical and/or sexual violence only” and “severe 

and non-severe physical and/or sexual violence”, we only keep the latter; 

▪ Keep those from “physical and/or sexual IPV” (if unavailable, “physical IPV only”; and if not 

recorded, “sexual IPV only”);  

▪ Retain observations when the surveyed population is composed of “ever-partnered/married 

women” (if not available, “all women”; otherwise, we retain “currently-partnered women”);  

▪ Preserve observations reflecting IPV perpetrated by “any current/previous intimate 

partners/husbands” (if unavailable, IPV experienced from the “current or most recent intimate 

partner/husband”).  

Multilevel modeling framework 

 Multilevel modeling is a useful statistical approach used to pool together observations from 

different sources. An advantage of the proposed multilevel approach relies on the use of random 

effects that enable the model to “borrow strength” across units. For example, if a country has only 

one sub-national survey with a small sample size, the accuracy and precision of that prevalence 

estimate can be improved by empirical observations from similar countries in the same region. 

Another appealing characteristic of such multilevel models is that the degree of pooling –in other 

words, how much information is shared between observations– is determined empirically by the 

data and not arbitrarily by the user (Gelman and Hill 2007). A Bayesian implementation of these 

models is straightforward and model uncertainty is efficiently propagated to model outputs using 

this approach (Finucane et al. 2014). 

 The chosen model structure is based on similar meta-regressions of health indicators 

(Danaei, Finucane, Lin et al. 2011, Alkema, Kantorova, Menozzi et al. 2013, Devries et al. 2013, 

Abrahams et al. 2014, Finucane et al. 2014, Say, Chou, Gemmill et al. 2014, Flaxman et al. 2015, 

Maheu-Giroux, Filippi, Samadoulougou et al. 2015, Sedgh, Bearak, Singh et al. 2016, Moller, 

Petzold, Chou et al. 2017) and has five nested levels: 1) individual studies, 2) countries, 3) regions, 

4) super-regions, and 5) the world. Here, regions correspond to the classification used by the Global 

Burden of Disease (GBD) study that groups countries in 21 mutually exclusive regions (Figure 2), 

themselves grouped into seven “super-regions” (Figure 3), based on the similarities of their 

epidemiological profiles. The regression model uses a binomial likelihood where yit is the survey-

adjusted number of women reporting violence for observation i at calendar year t and Nit is the 

effective sample size for that observation.  

𝑦𝑖𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑡 , 𝑁𝑖𝑡) 

 Further, the logit-transformed prevalence estimate pit is equal to the sum of the study specific 

intercepts (i.e., the random effects; denoted αs[i]), the country-specific age adjustments (γc[i]), the 
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country-level time trend (𝛿𝑐[𝑖],𝑡), and the sum of the log-odds ratios of the adjustment factors (i.e., 

the crosswalk covariate modeling; Xs[i]). In its simplest form, the model takes the following form: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡) =  𝛼𝑠[𝑖] + 𝛾𝑐[𝑖] + 𝛿𝑐[𝑖],𝑡 + 𝑋𝑠[𝑖] 

 The four terms on the right-hand-side of this equation are detailed in the next sections. 

 

 
Figure 2. Classification of countries into twenty-one Global Burden of Disease “regions”. 
Disclaimer: The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the 
World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers 

or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. 

 

 
Figure 3. Classification of countries into seven Global Burden of Disease “super-regions”. 
Disclaimer: The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the 
World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers 

or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. 

 

Random effects to account for study variability 

 Random effects are useful to account for unobserved heterogeneity and each study is 

assumed to have its own random intercept. We can further impose a hierarchy on these intercepts. 

This means that we can assume that each study, conducted within a selected country, should yield a 

prevalence estimate closer to the average prevalence of that country as opposed to that of other ones. 

We further posit that the average prevalence in a country should be closer to its regional prevalence 

than to that of other regions of the world. Nesting these effects within clear geographical units is 

statistically advantageous because it enables us to borrow strength from other geographical units to 

improve estimate of prevalence in data sparse settings. To model this hierarchy, we have the 

following equation for the intercept (αs[i]) of observation i: 

𝛼𝑠[𝑖] =  𝑢𝑔 + 𝑢𝑧[𝑖] + 𝑢𝑟[𝑖] + 𝑢𝑐[𝑖] + 𝑢𝑠[𝑖] 

 where ug is the overall global intercept, uz is the super-region effect, ur is the regional effect, 

uc is the country effect, and us is the study effect. It is assumed that these effects are normally 
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distributed on the logit scale. The following non-informative priors were assigned to these 

parameters: 

𝑢𝑔~𝑁(0, 1000) 

𝑢𝑧~𝑁(0, 𝜎𝑧) and 𝜎𝑧~ℋ𝒞(0, 25) 

𝑢𝑟~𝑁(0, 𝜎𝑟) and 𝜎𝑟~ℋ𝒞(0, 25) 

𝑢𝑐~𝑁(0, 𝜎𝑐) and 𝜎𝑐~ℋ𝒞(0, 25) 

𝑢𝑠~𝑁(0, 𝜎𝑠[𝑖]) 

 The degree of pooling between the different studies depends on the standard deviation of the 

random effects. A small standard deviation entails that the degree of pooling of prevalence estimates 

will be greater than if the standard deviation is large. The standard deviations for the super-region 

(σz), region (σr), and country (σc) random effects are given weakly informative half-Cauchy (ℋ𝒞) 

priors with a scale parameter of 25, as suggested by Gelman (Gelman 2006). We also consider that 

sub-national studies, such as the ones conducted in only one administrative region of a country, are 

inherently more variable than if they had been nationally representative. As such, they should 

potentially be given less weight than nationally representative surveys. To do so, we modeled the 

standard deviation of the study-level random effect depending on its representativeness at the 

national level (Finucane et al. 2014). This effectively means that sub-national studies have equal or 

more variability than those representative at the national level. 

𝜎𝑠[𝑖] {
𝜎𝑛~ℋ𝒞(0, 25) ;   if study i is nationally representative

 𝜎𝑙 = 𝜎𝑛 + 𝜏;   where 𝜏~ℋ𝒞(0, 25);  if study i is sub-national
 

Age modeling 

 Previous studies suggested that the relationship between age and IPV is not linear (Jewkes, 

Fulu, Tabassam Naved et al. 2017, Loxton, Dolja-Gore, Anderson et al. 2017). Splines are a simple 

and effective way to model non-linear relationships using piecewise polynomials (Greenland 1995). 

Based on our understanding of VAW epidemiology, we investigated several natural cubic splines 

with one knot (at 20, 25, 30, or 35 years) or two knots (at 20 and 35, 20 and 40, 25 and 35, and 25 

and 40 years). The splines providing the best fit for each outcome was informed by the Deviance 

Information Criterion (Plummer 2008) and the Widely Applicable Information Criterion (Watanabe 

2010, Vehtari, Gelman and Gabry 2017). In all cases, age is centered at 30 years old to improve 

model convergence. Because the data in the age groups above 65 years old are very sparse, we 

modified the splines so that prevalence among the ≥65 years age group remains constant. This was 

achieved by recoding all ages above 65 years to that value before calculating the splines and fitting 

the model. 

 An additional complexity to consider is that of heterogeneous age groups. Some prevalence 

observations refer to 5-year age groups (at best), others to much wider ones (i.e., 15+ years old). To 

enable inclusion of all observations and consider these age-heterogeneous categories, an age-

standardizing approach was adopted (Flaxman et al. 2015). The rationale for age-standardization is 

depicted in Figure 4 where it is showed that the prevalence in a wide age group is a function of both 

the age-specific prevalence and the underlying age distribution of the sampled population. 
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Figure 4. Visual representation of an age-standardizing model when age groups are heterogeneous. The left 

graph corresponds to the age pattern for lifetime prevalence of intimate partner violence (IPV). The right 

graph shows that the underlying population distribution is not uniform. If IPV prevalence is estimated for the 

15-64 age group, the resulting prevalence will be a function of the specific age pattern of IPV (left) and 

underlying age distribution (right); where the a subscript indexes age. Hence, the equation below the graphs 

says that the prevalence in the 15-64 age group is a weighted average of the age-specific prevalence estimates 

where the weights correspond to the relative size of the age groups.  

 

 For age-standardization, we used demographic data from the UN World Population Prospect 

(2019 revision) (UNDP 2019) and aggregated the 2010 country-level female age distributions for 

the 21 GBD regions. We used 2010 as this roughly corresponds to the median date of the survey 

data collection. Age-standardization is applied to all age groups for which the width of the age 

interval was larger than five years. In all cases, the midpoint of the 5-year age distribution is used to 

obtain the basis of the natural cubic spline. The effect of age on prevalence is thus modeled as a 

weighted average of the sum of the K coefficients (λc[i],k) of the natural cubic splines (Aa[i]) over the 

lower (li) and upper (hi) limits of the age interval to which observation i belongs, where wa[r] is the 

weight for the corresponding age group in region r: 

𝛾𝑐[𝑖] =
∑ ∑ (𝜆𝑐[𝑖],𝑘𝐴𝑎[𝑖],𝑘 × 𝑤𝑎[𝑟])

ℎ𝑖
𝑎=𝑙𝑖

𝐾
𝑘=1

∑ 𝑤𝑎[𝑟]
𝑢𝑖

𝑎=𝑙𝑖

 

 Our model assumes that each country has its own age pattern but that this pattern is more 

similar across regions, and super-regions. In practice, this means that we have included country-

specific coefficients (random slopes) for the natural cubic spline, denoted λc[i],k : 

𝜆𝑐[𝑖],𝑘 = 𝜂𝑔,𝑘 + 𝜂𝑧[𝑖],𝑘 + 𝜂𝑟[𝑖],𝑘 + 𝜂𝑐[𝑖],𝑘 

 where ηg,k is a vector that contains the coefficients for the global age-prevalence pattern 

common to all studies, and ηz[i],k , ηr[i],k , and ηc[i],k contains the super-region, region, and country-

specific deviations from this overall pattern, respectively. The model specification is completed 

using non-informative normal prior distributions. Hyper-parameters for the standard deviations of 

the random coefficients (νk) are given weakly informative half-Cauchy prior distributions. 

𝜂𝑔𝑘~𝑁(0, 1000) 

𝜂𝑧𝑘~𝑁(0, 𝜐𝑘
𝑧) and 𝜐𝑘

𝑧~ℋ𝒞(0, 25) 
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𝜂𝑟𝑘~𝑁(0, 𝜐𝑘
𝑟) and 𝜐𝑘

𝑟~ℋ𝒞(0, 25) 

𝜂𝑐𝑘~𝑁(0, 𝜐𝑘
𝑐) and 𝜐𝑘

𝑐~ℋ𝒞(0, 25) 

Time trends 

 Prevalence of IPV could exhibit secular changes over the near 20-year study period. To allow 

for potential non-linear changes in prevalence, natural cubic splines with one knot placed at the 

median year of data collection were used (i.e., 2011). Here again, we modeled the country-specific 

time trend (𝛿𝑐[𝑖],𝑡) hierarchically: 

𝛿𝑐[𝑖],𝑡 = ∑ (𝜙𝑔𝑘 + 𝜙𝑧[𝑖],𝑘 + 𝜙𝑟[𝑖],𝑘 + 𝜙𝑐[𝑖],𝑘) × 𝑇𝑡𝑘

𝐾

𝑘=1
 

 where 𝜙𝑔𝑘, 𝜙𝑧[𝑖],𝑘, 𝜙𝑟[𝑖],𝑘, and 𝜙𝑐[𝑖],𝑘 contain the spline’s K coefficients for the global, super-

region, region, and country-specific time trends. 𝑇𝑡𝑘 contains the basis matrix for the natural cubic 

splines for calendar year t. This specification is complemented with the following prior distributions. 

𝜙𝑔𝑘~𝑁(0, 1000) 

𝜙𝑧𝑘~𝑁(0, 𝜔𝑘
𝑧) and 𝜔𝑘

𝑧~ℋ𝒞(0, 25) 

𝜙𝑟𝑘~𝑁(0, 𝜔𝑘
𝑟 ) and 𝜔𝑘

𝑟 ~ℋ𝒞(0, 25) 

𝜙𝑐𝑘~𝑁(0, 𝜔𝑘
𝑐 ) and 𝜔𝑘

𝑐 ~ℋ𝒞(0, 25) 

Covariate modeling 

 To compare and combine prevalence estimates from different surveys, adjustments are 

required if those surveys used different outcome definitions and/or eligibility criteria. Covariate 

modeling, also termed cross-walk in the field of global descriptive epidemiology, is the process by 

which these adjustments values are estimated. A common way to conduct covariate modeling is to 

include indicator variables in the regression model, assuming that these fixed effects are constant 

across all studies and multiplicatively related (Flaxman et al. 2015). Preliminary models using this 

approach suggested that the resulting adjustment factors could be affected by compositional bias. 

This type of bias could occur, for example, if studies that required a specific adjustment are more 

common in countries/regions with lower or higher IPV prevalence, potentially resulting in biased 

adjustment factors. To circumvent this issue, we chose a robust exact matching identification 

strategy (Stuart 2010) where the adjustment factors are calculated outside of the main meta-

regression models. 

 Matching methods enable robust estimation by ensuring that observations, with and without 

the factor to be adjusted for, have the same distribution of other study characteristics (i.e., population 

surveyed, country, time of data collection, etc.). This is operationalized by matching on the survey’s 

identifier and this procedure provides us with the ideal comparison group to obtain unbiased 

adjustment factors. For all adjustment factors except geographical strata, we employed the following 

procedure:  

▪ First, we performed exact matching for each adjustment factor separately (Table 1). If more 

than one match is available from a specific survey, we only kept the one closest to the 

“optimal set” (as described in the preceding section). Studies that surveyed ever-

partnered/married women do not always stratify and report their results by current 

partnership status. To increase the precision of our adjustment factors for this covariate, 89 

DHS surveys with publicly available microdata were analyzed.  
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▪ Second, we calculated the odds ratio comparing prevalence in the observation with the 

adjustment factor as compared to the reference group within each matched set. 

▪ Third, we pooled those odds ratios using meta-analytic approaches. Specifically, we used 

random-effect meta-analysis (Hartung and Knapp 2001) and, to account for potential 

variability of the adjustment between regions, stratified results by the seven GBD super 

regions. This level was deemed appropriate since there were often too few matched 

observations to estimate adjustment factors for the 21 GBD regions separately. Region-

specific adjustment factors were used if a region had more than three estimates; otherwise, 

the overall adjustment factor was chosen. 

 For geographical strata, we used a similar exact matching approach but, since the adjustment 

factor is not binary (i.e., “rural”, “urban”, “national”), we only used surveys that had information on 

all three categories. We then pooled the matched surveys using random effect logistic regressions 

with one random intercept per survey and random slopes that vary by the seven GBD super regions 

for the “rural” and “urban” areas (referent was “national”).  

 Once the adjustment factors are estimated, we create a vector Xs[i] summarizing adjustments 

required for each observation. If the observation pertains to a study in the “optimal set”, all indicators 

in Cs[i] are zeros, meaning that all covariates belong to the reference group. Otherwise, the 

adjustment is the sum of the log-odds ratio in vector 𝛽𝑟[𝑖] multiplied by the binary covariates 

included in Cs[i], as outlined below. 

𝑋𝑠[𝑖] = ∑ 𝛽𝑟[𝑖]𝐶𝑠[𝑖] 

 The approach outlined above does not consider the uncertainty in the meta-analyzed odds 

ratios. To address this, we independently sample values of those odds ratios from their distributions. 

To ensure appropriate coverage of the parameter space, Latin hypercube sampling is used and 

several 𝛽𝑟[𝑖] vectors are created to represent this uncertainty. Whenever the odds ratio is structurally 

bound at the null, truncated distributions were used. This would be the case, for example, for 

estimates of severe IPV that cannot be higher than estimates of severe and non-severe IPV 

combined. The procedure by which we propagate the uncertainty of these adjustments to final results 

is described in the section titled “Computations”. 

 Covariates can also be used to improve out-of-sample predictions. For example, if country 

characteristics like per capita alcohol consumption or gross domestic product can explain between-

country variation in IPV. If that is the case, including them in the model could improve estimation 

of IPV prevalence for countries without any data. However, previous studies on the topic did not 

find consistent relationships between these country-level covariates and IPV estimates (Devries et 

al. 2013, WHO 2013, Abrahams et al. 2014). For this reason, and because data is available for most 

countries, we do not consider inclusion of covariates to improve out-of-sample predictions. 
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Table 1. List of covariates for which adjustments were estimated characteristics used for exact matching. 

 Covariates to adjust Exact matching on 

IPV*  

 IPV definition: “severe violence” (ref.: “all severity”) Survey, population surveyed, violence type, age, 

geographical strata, reference partners. 

 IPV type: “physical only” (ref.: “physical and/or 

sexual”) 

Survey, population surveyed, age, geographical strata, 

severity, reference partners. 

 IPV type: “sexual only” (ref.: “physical and/or 

sexual”) 

Survey, population surveyed, age, geographical strata, 

severity, reference partners. 

 Population surveyed: “all women” (ref.: “ever-

partnered/married”) 

Survey, violence type, age, geographical strata, 

severity, reference partners. 

 Population surveyed: “currently partnered” (ref.: “ever-
partnered/married”) 

Survey, violence type, age, geographical strata, 

severity, reference partners. 

 Reference partners: “current/most recent” (ref.: “any 
current/previous partners”) 

Survey, population surveyed, violence type, age, 

geographical strata, severity. 

 Geographical strata: “urban” or “rural” (ref.: “national”) Survey, population surveyed, violence type, age, 

severity, reference partners. 
IPV=intimate partner violence. 

*Separate adjustments estimated for lifetime and past year IPV. 

 

Constraints 

 Past year IPV should be lower or equal to lifetime IPV. Hence, these two IPV outcomes are 

jointly modelled to ensure that this constraint is respected. This is achieved by jointly performing 

the meta-regression described above and forcing model predictions for past year IPV (�̂�𝑐∗,𝑎,𝑡
𝑝𝑎𝑠𝑡

) in a 

new country 𝑐∗ (and country with data on only one type of estimate), for age group a, and calendar 

time t to be equal or lower to those of their corresponding prediction for lifetime IPV (�̂�𝑐∗,𝑎,𝑡
𝑙𝑖𝑓𝑒

), as 

outlined below: 

𝑙𝑜𝑔𝑖𝑡(�̂�𝑐∗,𝑎,𝑡
𝑙𝑖𝑓𝑒

) = �̂�𝑔
𝑙𝑖𝑓𝑒

+ �̂�𝑧[𝑐∗]
𝑙𝑖𝑓𝑒

+ �̂�𝑟[𝑐∗]
𝑙𝑖𝑓𝑒

+ �̂�𝑐∗
𝑙𝑖𝑓𝑒

+ �̂�𝑐∗,𝑎
𝑙𝑖𝑓𝑒

+ 𝛿𝑐∗,𝑡
𝑙𝑖𝑓𝑒

 

𝑙𝑜𝑔𝑖𝑡(�̂�𝑐∗,𝑎,𝑡
𝑝𝑎𝑠𝑡 ) = �̂�𝑔

𝑝𝑎𝑠𝑡 + �̂�𝑧[𝑐∗]
𝑝𝑎𝑠𝑡 + �̂�𝑟[𝑐∗]

𝑝𝑎𝑠𝑡 + �̂�𝑐∗
𝑝𝑎𝑠𝑡 + �̂�𝑐∗,𝑎

𝑝𝑎𝑠𝑡  + 𝛿𝑐∗,𝑡
𝑙𝑖𝑓𝑒

 

�̂�𝑐∗,𝑎,𝑡
𝑝𝑎𝑠𝑡 ≤ �̂�𝑐∗,𝑎,𝑡

𝑙𝑖𝑓𝑒
  

 The difference between lifetime and past year IPV should also be relatively small for the 

youngest age-group of 15-19 years old as these girls and young women have been exposed to the 

risk of IPV for time periods that are more similar than those of older age groups. Preliminary 

analyses suggested that including a constraint such that the prevalence ratio of predicted lifetime 

versus past year IPV among this youngest age group is equal or smaller than 3 improved out-of-

sample predictions. This conservative value was chosen based on the empirical observation that 

prevalence ratio of lifetime to past year IPV among 15-19 years (𝑎∗) old are always less than 3. This 

constraint was implemented as follow: 

𝑅𝑅 ≤ 3 where 𝑅𝑅 =  �̂�𝑐∗,𝑎∗,𝑡
𝑙𝑖𝑓𝑒

�̂�𝑐∗,𝑎∗,𝑡
𝑝𝑎𝑠𝑡⁄  

Computations 

 The posterior distributions of the parameters of interests were obtained using Markov chain 

Monte Carlo simulations implemented through the JAGS software (Plummer 2016). Inferences are 
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based on 4 chains of 50,000 iterations (with an adaptation phase of 10,000 iterations and an 

additional 5,000 used as warm up), thinned at every 20th iteration.  

 Uncertainty in the estimated log-odds ratios of the adjustment factors are considered by 

sampling a total of 10 vectors from their estimated distributions using Latin hypercube sampling. 

For each set, we fitted the Bayesian model using the procedure outlined above. We then mixed all 

draws from the posterior distributions of the sampled vectors and used these mixed draws to 

summarize the overall posterior distributions of parameter of interests (Zhou and Reiter 2010, 

Gelman, Carlin, Stern et al. 2014). Convergence was examined using traceplots and we ensured that 

the potential scale reduction factor for all parameters and hyperparameters remained close to one 

(Brooks and Gelman 1998). Moreover, we verified that estimates were based on a minimum of 

roughly 1,000 independent samples from the posterior distributions (Plummer, Best, Cowles et al. 

2006).  

Model validation 

 The performance of our models is assessed using posterior predictive checks, and both in-

sample and out-of-sample comparisons. Graphical posterior predictive checks enable one to visually 

assess how well simulations from the fitted model compare to the observed data (Gelman et al. 

2014). This procedure is especially useful to understand the ways in which our multilevel model 

does not fit the observed IPV statistics. By systematically identifying where model predictions are 

not congruent with the observed data, we were able to improve estimates, through the iterative 

process of model building and refinement. In addition to this visual inspection, we computed 

selected summary statistics for in-sample comparisons, such as the median error, absolute error, and 

the proportion of empirical observations outside the lower and upper credible intervals. We also 

quantified model performance through out-of-sample comparisons by randomly excluding 20% of 

countries and 20% of studies from the datasets and comparing their model-predicted age-specific 

prevalence with the known-but-excluded empirical observations.  

Post-processing 

 The model described above provides us with estimated parameters for the global, regional, 

and country-level intercepts (�̂�𝑔, �̂�𝑧[𝑐], �̂�𝑟[𝑐], and �̂�𝑐) that, when combined with the spline’s 

coefficients (�̂�𝑐,𝑎) and the time trend (𝛿𝑐,𝑡), produces estimates of IPV by age and time (�̂�𝑐,𝑎,𝑡) for 

all countries with available data using the equation below: 

𝑙𝑜𝑔𝑖𝑡(�̂�𝑐,𝑎,𝑡) =  �̂�𝑔 + �̂�𝑧[𝑐] + �̂�𝑟[𝑐] + �̂�𝑐 + �̂�𝑐,𝑎 + 𝛿𝑐,𝑡 

 To estimate the prevalence for broader age groups (i.e., 15-49 years), at higher level of 

aggregation (i.e., regional and global), and for countries without data we first weighted the age-

specific prevalence estimates by the age structure of their respective country (in 2018) considering 

the proportion of women who ever had sex. This is required because our denominator of interest for 

IPV is not all women but those ever-partnered/married. The definition of a partnership being variable 

around the world, the proportion of women who have entered the sexually active population is 

believed to be a better proxy of partnership formation than marriage.  

 We aggregated estimates of age-specific prevalence at the country level using the country’s 

own age distribution of the number of women who have ever had sex. If a country did not have any 

empirical observations informing IPV statistics, they are statistically imputed based on the regional 

average. The added uncertainty for that country’s estimate is further considered by sampling from 

the distribution of country-level intercepts (i.e., ~𝑁(0, 𝜎𝑐)). We then aggregate country-specific 

prevalence estimates at the regional level by summing the number of women having experienced 

IPV. The same approach was used to obtain global prevalence estimates. 
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 All analyses are carried in the R statistical software (R Core Team 2018) and selected 

packages (Plummer et al. 2006, Ho, Imai, King et al. 2011, Arel-Bundock, Enevoldsen and Yetman 

2018, Plummer 2018). The code is available from a public repository (https://github.com/pop-

health-mod/vawstats-release). 

Ethics 

 Ethics approval for secondary analyses of individual-level data to estimate covariate 

adjustments factors was obtained from McGill University’s Faculty of Medicine Institutional 

Review Board.  
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RESULTS 

 A total of 307 unique studies conducted between 2000-2018, from 154 countries (Figure 5), 

covering all 21 regions of the world, and totaling 1,767,802 unique women responses, informed 

lifetime IPV (Table 2). Past year IPV had a slightly higher number of studies (n=333), countries 

represented (n=159; Figure 6), totaling 1,763,989 individual responses. For lifetime and past year 

IPV surveys were conducted between 2000-2018, the median year of data collection were both 2011-

2012.  

 

 
Figure 5. Map of data availability informing estimates of lifetime intimate partner violence (IPV) for the 

reference period 2000-2018. (Both nationally and sub-nationally representative studies are included.) 
Disclaimer: The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the 
World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers 

or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. 

 

 
Figure 6. Map of data availability informing estimates of past year intimate partner violence (IPV) for the 

reference period 2000-2018. (Both nationally and sub-nationally representative studies are included.) Disclaimer: 

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health 

Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. 
Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.  
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Table 2. Characteristics of studies conducted between 2000 to 2018 measuring lifetime and past year intimate 

partner violence (IPV) informing estimates of global, regional, and national violence against women 

statistics.  

Characteristics Lifetime IPV Past year IPV 

Sample characteristics and representativeness   

Number of women interviewed* 1,767,802 1,763,989 

Number of age-specific observations 1,551 1,598 

Number of studies 307 333 

Nationally representative studies 260 (85%) 292 (88%) 

Number of countries represented 154 159 

   Countries with 1 study 77 (50%) 81 (51%) 

   Countries with 2 studies 41 (27%) 33 (21%) 

   Countries with 3 studies 16 (10%) 19 (12%) 

   Countries with 4 or more studies 20 (13%) 26 (16%) 

Number of GBD regions represented 21 (100%) 21 (100%) 

Median date of data collection 2011.5 2011.5 

   Studies conducted 2000-2004 53 (17%) 65 (20%) 

   Studies conducted 2005-2009 67 (22%) 67 (20%) 

   Studies conducted 2010-2014 115 (37%) 119 (36%) 

   Studies conducted 2015-2018 72 (23%) 81 (24%) 

Country-years of observations 302 323 

Study types   

Studies requiring adjustments   

   Violence definition: “severe violence only†” 4 (1%) 5 (2%) 

   IPV type: “sexual violence only” 5 (2%) 0 (0%) 

   IPV type: “physical violence only” 63 (21%) 84 (25%) 

   Population surveyed: “all women” 19 (6%) 28 (8%) 

   Population surveyed: “currently partnered” 26 (9%) 39 (12%) 

   Reference partners: “current/most recent” 116 (38%) 80 (24%) 

   Geographical strata: “rural only” 14 (5%) 12 (4%) 

   Geographical strata: “urban only” 18 (6%) 13 (4%) 

   Recall period: “past two years or more” NA 0 (0%) 

Observations not requiring any adjustments 635 (41%) 857 (54%) 
IPV: intimate partner violence; GBD: global burden of disease. 

*Number of women interviewed imputed for surveys with missing denominators. 

†The definition of “severe violence” corresponds to the one reported in the survey description. 

 

Adjustment factors 

 Roughly half of IPV observations pertain to the optimal set of surveys that collected IPV 

information using “gold standard” definitions and methods (Table 2). The most common 

adjustments required for lifetime (38%) and past year (24%) IPV studies was that the outcome 

definition measured violence from a current and/or most recent partner only as opposed to any 

current/previous partner. The second most common adjustment was for “physical violence only”, 

with 21% (lifetime) and 25% (past year) of surveys requiring adjustment. A slightly smaller 

proportion of studies surveyed “currently partnered women” only, whereas the “gold-standard” 

VAW questionnaire would have asked IPV questions to ever-partnered women. Table 3 presents 

these odds ratios for the two IPV outcomes. The detailed forest plots for all meta-analyses are 

presented as supplemental materials (Figure S1-15).  
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 Our meta-analyses indicate that, overall, the odds of having experienced IPV for women 

asked about their experience of only severe violence are 62% (lifetime) and 43% (past year) lower 

than if these women had reported on IPV for all severity levels (Table 3). Examining results by 

super-regions, we notice that contribution of severe violence to IPV is relatively more important in 

Latin America & the Caribbean for both lifetime and past year IPV, followed by Sub-Saharan Africa 

(especially past year IPV), as indicated by the highest odds ratios for these regions.  

 When surveys report “physical IPV only”, we find that the discrepancy with “physical and/or 

sexual IPV” estimates is greatest in South East Asia, East Asia & Oceania, as well as South Asia 

and Sub-Saharan Africa for lifetime IPV (Table 3). In addition to those super-regions, the High 

Income one also exhibited high discrepancy for past year IPV. For both lifetime and past year IPV, 

the odds of reporting IPV are reduced by 14-19% when women are asked about physical IPV only.  

 The surveys’ denominator (i.e. who is eligible to answer the IPV questions) affects IPV 

prevalence. Overall, the odds of reporting IPV –when only currently partnered women are surveyed– 

are reduced by 9% for lifetime IPV and 1% for past year IPV, respectively, as compared to 

observations where all ever-partnered women are included (Table 3). When the surveys’ 

denominator includes all women, and not only those that have ever been partnered, the odds of 

experiencing IPV is lower since a certain proportion of women, namely never-married/partnered 

women, will not have been exposed to the risk of IPV. Since there are no surveys of past year IPV 

that could be matched and compared, the odds ratios for lifetime IPV are used to adjust the surveys 

of past year IPV that recorded violence among all women.  

 Some surveys measured IPV perpetrated by the current and/or most recent partner only 

whereas others referred to IPV by all partners. Overall, the odds of reporting IPV is 16% lower for 

lifetime IPV if the question refers to the current or most recent partner compared to any current or 

previous partner. For past year IPV, the difference is much smaller: a 3% reduction in the odds of 

reporting IPV (Table 3).  

 Our results also show marked regional variations in IPV prevalence by urban and rural areas 

(Table 3). IPV is higher in urban areas of Latin America & Caribbean as compared to the national 

average for both lifetime and past year IPV, whereas the opposite pattern of higher prevalence in 

rural areas is observed for all other regions, especially for North Africa & Middle East and South 

Asia.  
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Table 3. Results of random effects meta-analysis for different adjustment factors, stratified by super region, 

for lifetime intimate partner violence (IPV) and past year IPV.  

Adjustment factors by super regions  

(and overall) 

Lifetime IPV 

OR (95%CI) 

Past year IPV 

OR (95%CI) 

Severe violence (ref. all severity levels)§   

Central Europe, Eastern Europe & Central Asia NA 0.39 (0.34-0.45) 

High Income NA NA 

Latin America & Caribbean 0.51 (0.43-0.60) 0.62 (0.56-0.69) 

North Africa & Middle East NA 0.47 (0.34-0.64) 

South Asia NA 0.52 (0.44-0.61) 

South-East Asia, East Asia & Oceania 0.36 (0.25-0.50) 0.57 (0.48-0.67) 

Sub-Saharan Africa 0.37 (0.33-0.42) 0.61 (0.58-0.64) 

   Overall 0.38 (0.34-0.42) 0.57 (0.55-0.60) 

Physical IPV (ref. physical and/or sexual IPV)  

Central Europe, Eastern Europe & Central Asia 0.93 (0.92-0.95) 0.95 (0.93-0.97) 

High Income 0.86 (0.84-0.88) 0.76 (0.70-0.83) 

Latin America & Caribbean 0.90 (0.87-0.93) 0.84 (0.81-0.88) 

North Africa & Middle East 0.93 (0.90-0.96) 0.83 (0.76-0.91) 

South Asia 0.82 (0.73-0.93) 0.78 (0.67-0.90) 

South-East Asia, East Asia & Oceania 0.79 (0.73-0.84) 0.78 (0.73-0.83) 

Sub-Saharan Africa 0.82 (0.78-0.86) 0.79 (0.76-0.82) 

   Overall 0.86 (0.84-0.87) 0.81 (0.79-0.83) 

Sexual IPV (ref. physical and/or sexual IPV)   

Central Europe, Eastern Europe & Central Asia 0.22 (0.20-0.25) 0.22 (0.18-0.27) 

High Income 0.29 (0.24-0.34) 0.27 (0.22-0.32) 

Latin America & Caribbean 0.26 (0.23-0.29) 0.31 (0.28-0.35) 

North Africa & Middle East 0.19 (0.15-0.25) 0.28 (0.18-0.43) 

South Asia 0.28 (0.21-0.37) 0.36 (0.27-0.47) 

South-East Asia, East Asia & Oceania 0.31 (0.26-0.36) 0.35 (0.28-0.44) 

Sub-Saharan Africa 0.27 (0.24-0.29) 0.32 (0.29-0.35) 

   Overall 0.26 (0.25-0.28) 0.31 (0.29-0.33) 

All women surveyed (ref. ever-partnered)   

Central Europe, Eastern Europe & Central Asia NA NA 

High Income NA NA 

Latin America & Caribbean NA NA 

North Africa & Middle East NA NA 

South Asia NA NA 

South-East Asia, East Asia & Oceania NA NA 

Sub-Saharan Africa NA NA 

   Overall 0.79 (0.74-0.84) * 

Currently partnered women surveyed (ref. ever-partnered)  

Central Europe, Eastern Europe & Central Asia 0.81 (0.71-0.92) 0.88 (0.80-0.98) 

High Income NA NA 

Latin America & Caribbean 0.85 (0.80-0.90) 0.89 (0.82-0.96) 

North Africa & Middle East 0.94 (0.91-0.99) 1.00 (0.99-1.02) 

South Asia 0.98 (0.97-0.98) 1.06 (1.04-1.07) 

South-East Asia, East Asia & Oceania 0.92 (0.89-0.96) 1.00 (0.98-1.02) 

Sub-Saharan Africa 0.93 (0.92-0.94) 1.02 (1.00-1.04) 

   Overall 0.91 (0.90-0.93) 0.99 (0.97-1.01) 
 

95%CI: 95% confidence interval; IPV: intimate partner violence; OR: odds ratio; VAW: violence against women. 
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§The adjustment factors for past year severe IPV is based on the analyses of microdata of Demographic and Health Surveys (DHS) 

where the definition of severe physical and/or sexual violence includes punching, kicking/dragging, trying to strangle/burn, 

threatening with a weapon, attacking with weapon, and any type of sexual violence. 

*Matching for past year IPV for the population surveyed (all women) did not result in enough matches. The OR for lifetime IPV are 

used instead as adjustment factors in the regression. 

 

 

Table 3 (con’t). Results of random effects meta-analysis for different adjustment factors, stratified by super 

region, for lifetime intimate partner violence (IPV) and past year IPV.  

Adjustment factors by super regions  

(and overall) 

Lifetime IPV 

OR (95%CI) 

Past year IPV 

OR (95%CI) 

Partner perpetrating is current or most recent (ref. any current or previous partners) 

Central Europe, Eastern Europe & Central Asia NA NA 

High Income NA 0.68 (0.58-0.81) 

Latin America & Caribbean 0.82 (0.71-0.95) 0.99 (0.98-1.00) 

North Africa & Middle East NA NA 

South Asia NA NA 

South-East Asia, East Asia & Oceania 0.88 (0.82-0.95) 0.99 (0.99-1.00) 

Sub-Saharan Africa 0.89 (0.86-0.92) 0.98 (0.95-1.01) 

   Overall 0.84 (0.77-0.93) 0.97 (0.95-1.00) 

Geographical urban strata (ref. nationally representative)  

Central Europe, Eastern Europe & Central Asia 0.98 (0.89-1.08) 0.90 (0.82-0.98) 

High Income NA NA 

Latin America & Caribbean 1.06 (0.97-1.16) 1.04 (0.96-1.13) 

North Africa & Middle East 0.86 (0.79-0.95) 0.88 (0.81-0.96) 

South Asia 0.76 (0.70-0.84) 0.77 (0.71-0.83) 

South-East Asia, East Asia & Oceania 0.91 (0.83-1.00) 0.93 (0.85-1.01) 

Sub-Saharan Africa 0.99 (0.91-1.08) 0.98 (0.91-1.07) 

   Overall 0.92 (0.85-1.01) 0.91 (0.84-0.99) 

Geographical rural strata (ref. nationally representative)  

Central Europe, Eastern Europe & Central Asia 1.00 (0.92-1.08) 1.05 (0.99-1.12) 

High Income NA NA 

Latin America & Caribbean 0.88 (0.82-0.95) 0.94 (0.89-0.99) 

North Africa & Middle East 1.14 (1.06-1.23) 1.08 (1.03-1.14) 

South Asia 1.14 (1.06-1.22) 1.13 (1.07-1.19) 

South-East Asia, East Asia & Oceania 1.04 (0.96-1.12) 1.03 (0.97-1.09) 

Sub-Saharan Africa 1.00 (0.93-1.08) 1.01 (0.96-1.06) 

   Overall 1.03 (0.96-1.11) 1.04 (0.99-1.09) 
 

95%CI: 95% confidence interval; IPV: intimate partner violence; OR: odds ratio; VAW: violence against women. 
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Model validation 

 The full graphical posterior predictive checks for lifetime IPV (Figure S16) and past year 

IPV (Figure S17) are presented as supplemental materials for all regions. As a representative 

example, the graphical posterior checks for the Western region of Sub-Saharan Africa with both the 

observed age-specific prevalence estimates and the model predictions are presented in Figure 7. 

Overall, we find that the model fits the data well and that differences between data and model 

predictions, if any, are usually small and well within the uncertainty intervals of the prevalence 

estimates and model predictions. Further, in-sample comparisons suggest that prediction errors are 

very close to the expected null values indicating good fit with the empirical data and excellent 

coverage of uncertainty interval (Table 4). We also explored how those in-sample comparisons 

metrics varied by GBD regions and time periods (2000-04, 2005-09, 2010-14, 2015-18). These 

analyses revealed that median errors were smaller than 1% for all regions and time periods. 

 

Table 4. In-sample comparisons of model fits with empirical data. 

VAW outcomes 

(Nb. observations) 

Median (in % point) Outside 95% CrI 

Error Absolute error Below (%) Above (%) 

Lifetime IPV (1,551) 0.0% 1.5% 1.4% 1.2% 

Past year IPV (1,598) 0.1% 1.0% 2.2% 1.9% 
95%CrI: 95% credible interval; IPV: intimate partner violence. 

Comparisons defined as “error = observed – predicted”. 

 

 Our out-of-sample comparisons where we excluded 20% of countries and compared the 

known-but-excluded country-level observations with model predictions are also in accordance with 

empirical estimates for both lifetime and past year IPV prevalence: median errors are reasonably 

close to zero. The median absolute error quantifies the typical magnitude of the predictions’ errors, 

regardless of their direction. It is 7.6% points for lifetime IPV and 3.8% points for past year IPV. 

The models’ predictions include the point estimates of the known-but-excluded observations close 

to 95% of the time (as expected) for the two IPV outcomes, suggesting that the model is 

appropriately propagating uncertainty.  

 

Table 5. Out-of-sample comparisons of age-specific model-predicted prevalence in 20% of randomly 

excluded countries with the empirical observations from these countries.  

VAW outcomes (Nb. 

countries excluded) 

Median (in % point) Outside 95% CrI 

Error Absolute error Below (%) Above (%) 

Lifetime IPV (30) 1.4% 7.6% 1.5% 1.0% 

Past year IPV (31) 0.6% 3.8% 1.7% 1.5% 
95%CrI: 95% credible interval; IPV: intimate partner violence. 

Comparisons defined as “error = observed – predicted”. To improve stability of the metrics used for out-of-sample 

comparison, the process was repeated 20 times and the median estimates are presented above. 

  

 Similarly, we can test the model’s ability to predict new surveys by excluding 20% of studies 

(instead of countries, as above). Here again, the model’s predictions are in accordance with the 

known-but-excluded survey estimates with small median and absolute errors and appropriate 

coverage of uncertainty interval (Table 6).  
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Table 6. Out-of-sample comparisons of age-specific model-predicted prevalence in 20% of randomly 

excluded studies with the empirical observations from these countries.  

VAW outcomes (Nb. 

surveys excluded) 

Median (in % point) Outside 95% CrI 

Error Absolute error Below (%) Above (%) 

Lifetime IPV (61) 0.2% 6.6% 2.1% 1.5% 

Past year IPV (66) 0.2% 3.1% 2.6% 2.6% 
95%CrI: 95% credible interval; IPV: intimate partner violence. 

Comparisons defined as “error = observed – predicted”. To improve stability of the metrics used for out-of-sample 

comparison, the process was repeated 20 times and the median estimates are presented above. 

 

 
Figure 7. Graphical posterior predictive checks for 16 countries of the Western region of sub-Saharan Africa. 

Average prevalence for the observed data (triangle) are presented in grey while the model predictions are in 

yellow (round dots). The vertical lines correspond to the 95% confidence or uncertainty intervals of the data 

and prediction, respectively. The annotations above the country names described the type of prevalence 

estimates displayed, the year of data collection, the age group, the surveyed population, and the type of 

intimate partner violence recorded. (BEN: Benin; BFA: Burkina Faso; CIV: Côte d’Ivoire; CMR: Cameroon; 

CPV: Cabo Verde; GHA: Ghana; GIN: Guinea; GMB: The Gambia; LBR: Liberia; MLI: Mali; NGA: Nigeria; 

SEN: Senegal; SLE: Sierra Leone; STP: Sao Tome and Principe; TCD: Chad; TGO: Togo.)   
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DISCUSSION 

 Elimination of all forms of VAW remains a global priority. Reliable, accurate, and 

comparable VAW statistics are essential to monitor progress towards this goal. This paper describes 

a framework for modeling global, regional, and national estimates of IPV statistics that specifically 

addresses key data and measurement issues (Ruiz-Perez et al. 2007, UN 2014). The principal 

features of this model are its ability to pool both nationally and sub-nationally representative 

population surveys, account for heterogeneous age groups and age trends, accommodate different 

surveyed populations, adjust for differences in survey instruments, and efficiently propagate model 

uncertainty to model outputs.  

 The proposed multilevel framework is especially flexible in its parameterization. For 

example, both age trends and adjustment factors can vary by regions. For the latter, we used a robust 

identification strategy to estimate adjustments through exact matching of observations by survey 

identifier, whenever possible. We find that the relative contribution of physical IPV only to lifetime 

IPV is highest in the Central Europe, Eastern Europe & Central Asia and North Africa & Middle 

East super regions. As for the population surveyed, the inclusion of different groups of women 

according to partnership status influences prevalence estimates, especially for lifetime IPV, with 

ever-partnered women consistently providing higher prevalence than when surveying all women. 

Our estimation of adjustment factors offers interesting insights into the epidemiology of IPV by 

rural/urban areas. In all regions, except in Latin America & Caribbean, IPV is more common in 

rural areas as compared to the national average.  

 Some limitations need to be considered in interpreting our results. First, and most 

importantly, IPV statistics are based on self-reports. Violence is a sensitive topic and it is likely that 

some violence survivors under-report their experiences for a variety of reasons. However, we only 

included surveys that used act-specific questions; questions that are recognized for their ability to 

facilitate disclosure and elicit more accurate reports. Studies comparing men and women reports of 

past-year male-perpetrated IPV concluded that IPV indicators such as the ones included in this study 

are “reasonably reliable” (Jewkes et al. 2017). As evidence accrues on the sensitivity and specificity 

of different methods for measuring IPV, prevalence estimates could be adjusted, if warranted, for 

the imperfect nature of those survey instruments. 

 A second limitation is that our analyses of IPV do not include psychological IPV, a 

widespread form of violence that can takes may different forms (Jewkes 2010). This diversity of 

forms, from engendering fears, to verbal abuse, humiliation, and enforcing social isolation, has 

impeded the adoption of a uniform definition of psychological IPV. This is an active research area 

and WHO has convened several expert meetings on this specific topic over the last few years and is 

currently doing empirical analyses of existing data. The current lack of consensus nevertheless 

hampers the inclusion of psychological IPV in our estimates for the time being. 

 A third limitation is that some populous countries, such as Russia and others in North Africa 

and the Middle East, have yet to conduct recent VAW surveys. The absence of national level data 

on the burden of violence is a significant challenge for establishing the magnitude and patterns of 

IPV. This evidence is crucial to advocating for prioritization of investments in national and local 

policies and programs aimed at eliminating IPV and other forms of VAW. Having said this, most of 

the world’s most populous countries have conducted such surveys in the last 18 years (Bangladesh, 

Brazil, India, Indonesia, Mexico, Nigeria, Pakistan, and the United States) such that more than 90% 

of the world’s women and girls reside in a country with at least one survey data point for both 

lifetime and past year IPV.  
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 In conclusion, we have described to reproducible levels of details a flexible modeling 

framework to estimate global, regional, and national prevalence of IPV, with reassuring results from 

both in-sample and out-of-sample comparisons. Following proposed best reporting practice 

(Stevens, Alkema, Black et al. 2016), the information provided in this study will support the accurate 

interpretation and responsible use of IPV statistics for informing national and international VAW 

prevention interventions and policies, and the monitoring efforts towards the elimination of VAW 

as part of the SDG agenda.  
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