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ABSTRACT
A major limitation of road injury research in low- and-middle income countries is the lack of consistent
data across the settings, such as traffic counts, to measure traffic risk. This study presents a novel
method in which traffic volume of heavy vehicles – trucks and buses – is estimated by identifying
these vehicles from satellite imagery of Google Earth. For Rajasthan state in India, a total of �44,000
such vehicles were manually identified and geo-located on national highways (NHs), with no distinc-
tion made between trucks and buses. To estimate population living in proximity to NHs, defined as
those living within 1 km buffer of NH, we geocoded �45,000 villages and �300 cities using Google
Maps Geocoding Application Programming Interface (API). We fitted a spatio-temporal Bayesian regres-
sion model with the number of road deaths at the district level as the outcome variable. We found a
strong Pearson correlation of 0.84 (p< 0.001) between Google Earth estimates of heavy vehicles and
freight vehicle counts reported by a national-level study for different road sections. The regression
results show that the volume of heavy vehicles and rural population in proximity to highways are
positively associated with fatality risk in the districts. These effects have been estimated after control-
ling for other modes of travel.
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1. Introduction

India has suffered a nearly continuous growth of road fatal-
ities over the past few decades. Over the 25-year period
from 1980 to 2015, the number of road deaths grew 17
times, while the death rate rose 6 times, from 2.1 to 12 per
100,000 persons (MoRTH, 2017; NCRB, 2015). The analyses
of crash-level data in various settings of India have shown
that the buses and trucks are involved in 50–75% of fatal
crashes on highways and 40% to 52% in the cities (Mohan
et al., 2016; Naqvi & Tiwari, 2017). These shares are much
higher than their share in total vehicles registered (�5%),
though it is likely that travel distance per vehicle is much
greater than for cars and motorized two-wheelers (Goel
et al., 2016; Malik & Tiwari, 2017). In case of a crash, buses
and trucks also have greater likelihood than cars to result in
fatality, because of their much higher weight as well as the
design of vehicle front (Desapriya et al., 2010; Paulozzi,
2005). Freight movement in India is also dominated by on-
road modes, with up to 60% of the freight mass transported
on roads (RITES, 2014). The movement of trucks is strongly
linked with the economy (Dhar & Shukla, 2015; Tiwari &
Gulati, 2013), which has been rapidly growing in India dur-
ing this period. With a focus on constructing new highways
and widening the existing ones, the propensity of freight to
use the road is likely to increase even further (Datta, 2012).

Given the strong evidence indicating heavy vehicle vol-
ume as a strong risk factor of road deaths in India and high
likelihood of this volume to grow in the future, epidemio-
logical research of traffic crashes needs to develop methods
so that this risk factor can be adequately measured. Traffic
volume is the traditional variable accounting for risk in acci-
dent prediction models (Elvik, 2011). However, data on
freight movement in India are scarce. Vehicle-classified
counts are usually conducted for a specific purpose such as
planning a new road infrastructure, are restricted to a few
locations, and often not in the public domain. Lack of any
systematic efforts in traffic volume counts results in poor
comparability across the settings. Vehicle registration data
for freight vehicles can be misleading as their trips often
span across multiple jurisdictions. For instance, in India,
average distance travelled by on-road freight vehicles from
origin to destination is 300 km (RITES, 2013). Censuses and
travel surveys report data on passenger travel and have often
been used in area-level accident prediction models (Aldred
et al., 2018; Goel, 2018; Schepers & Heinen, 2013).
However, these data sources lack any information on freight
movement. Absence of a variable representing freight can
potentially bring omitted-variable bias in the model results
and significantly modify the effects of other variables (Mitra
& Washington, 2012). For instance, in Goel (2018), effect of
motorized two-wheelers on traffic fatality risk was
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overestimated by 70% when heavy-vehicle traffic measure
was not accounted for in the model.

Researchers have successfully used commonly available
geospatial data sources to fill data gaps in settings with lack
of GIS data on built environment. In Goel et al. (2018),
Google Earth and Google Maps were used to geocode the
locations of traffic built-environment such as grade sepa-
rated junctions, bus stops and traffic lights, as well as for
mapping of built-up area. Further, satellite imagery has been
used for mapping environmental variables for epidemiology
of vector-borne diseases (Chang et al., 2009). Satellite
images can also be used to detect traffic on the roads. There
is a growing literature on developing machine learning
methods for automatic detection of traffic using satellite
imagery (Cao et al., 2016; Eikvil et al., 2009; Larsen et al.,
2013; Tang et al., 2017). However, in these studies, there is
much more focus on improving detection rates by the algo-
rithms. Few studies have compared satellite-based estimation
of traffic counts with ground-based data (Eikvil et al., 2009),
and fewer still have shown application of such methods in
the context of transportation research.

In this paper, we aim to test the use of widely accessible
geospatial data sources to overcome the lack of data
availability for road injury epidemiology in a low-income
setting. We present the novel use of Google Earth satellite
imagery to estimate heavy vehicle volume on highways for
road safety epidemiology. To account for the population
exposure to traffic injury risk, we present the use of Google
Maps Application Programming Interface (API) for large-
scale mapping of villages and towns. This will further dem-
onstrate the use of a novel method to facilitate the develop-
ment of geospatial dataset often unavailable in low- and
-middle income settings (Hamilton et al., 2018). Finally, we
present an ecological model using spatial regression meth-
ods to assess the relationship between road deaths and
heavy vehicle volume.

2. Data and method

The study setting is Rajasthan, the north-western state of
India (Figure 1). Geographically it is the largest state in
India. In 2011, the state had a population of 68.6 million
which is similar to that of France or the United Kingdom.
Its surface area (3,42,000 km2) is comparable to that of
Germany. Through road and rail, the state connects Delhi
to its north-east, the capital city and an important commer-
cial and industrial hub, with the seaports of Mumbai and
Jawaharlal Nehru port (JNPT) on the western coast, and the
latter is the largest container port in India. The state is also
a major tourist destination with more than 30 million tou-
rists per year (Rajasthan Tourism Department, 2014). The
western half of the state, bordering Pakistan, is low-density
desert region while the eastern half is where most popula-
tion resides.

The aerial units of analysis are the 33 districts that repre-
sent administrative divisions within the state, and are com-
parable to counties in many countries. We used district-level
number of road deaths from 2011 to 2016 reported by state

police on their website (http://police.rajasthan.gov.in/default.
aspx). Over the 6-year period, annual road deaths across the
state increased from 9232 to 10,465. In 2011, the death rate
of the state was 13.5 per 100,000 persons compared with
country-wide rate of 11.3, and it is one of the 10 states with
the highest death rates in India (Mohan et al., 2016). We
used district-level population from 2001 and 2011 Censuses
to estimate population of each district from 2012 through
2016 using linear extrapolation. For each district, the average
death rates and 95% confidence interval (CI) using Poisson
distribution over the 6-year period are presented in Figure 1.
The rate varies from 7.7 deaths per 100,000 persons to more
than 21 deaths per 100,000 persons in two districts.

In the 2011 Census of India, mode of travel to work was
reported for workers (Census-India, 2017). We used the
number of workers travelling to work by different modes in
each district to represent passenger travel patterns. The dif-
ferent modes included in this analysis are walk, cycle,
motorized two-wheelers (m2w), car, intermediate public
transport (ipt) modes such as three-wheeled auto rickshaws
or tuk-tuks (Kumar et al., 2016), bus and train. Table 1
presents the descriptive statistics of all the variables.

It is, unfortunately, common in India that highways pass
through populated areas often with no frontage or service
roads for the movement of local population, leading to
population exposure to high-speed traffic on highways. To
estimate the population exposed to highways, we accessed
population of 44,572 villages and 296 cities from the 2011
Census. We geo-located all the villages and the cities using
Google Maps Geocoding API (https://developers.google.
com/maps/documentation/geocoding/intro). In the API, vil-
lage/city name was supplied as an input along with its cor-
responding district name and the name of the state
– Rajasthan.

We used a GIS shapefile of road network downloaded
from OpenStreetMap (OSM; https://download.geofabrik.de/
asia.html). In QGIS (v.2.18.14; QGIS, 2016), we imported
Google Maps using “OpenLayers” plugin. Next, we overlaid
road network shapefile on the Google Maps in order to
detect and correct any discrepancy between actual highway
alignment and those mapped in OSM. For this, we also
used the section-by-section description of the highways pro-
vided by National Highways Authority of India (NHAI) on
their website (NHAI, 2017). The description includes the
different towns and villages that the highways pass through.

We created a buffer of 1 km along the national highways
and the villages lying within the buffer were identified as
those in proximity to the highways (see Figure 2). Cities are
much larger in area than a village and, therefore, a point
location is a limited way to measure its distance from the
highway. We considered cities to be lying within 1 km of
the road buffer if the distance of the edge of the built-up
area to the highway was within 1 km. The built-up of the
cities was visually identified using Google Earth imagery.
The population of the villages and the cities lying within the
buffer was calculated for each of the districts and the two
variables are referred to as rural population and urban
population, respectively.
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We used Google Earth satellite imagery to identify
trucks and buses across the whole network of national
highways (�430 km) in the state. In QGIS, the satellite
imagery was imported using “OpenLayers” plugin. Next,
the GIS layer of national highways was overlaid on the
imagery to guide the data collection. National highways
are constructed and maintained by NHAI, a federally
funded agency, and are intended for interstate long-dis-
tance connectivity. Therefore, long-distance heavy vehicles
are more likely to move on those. A new point layer was
created by geocoding every heavy vehicle identified (see

Figure 2). This work was carried out by one researcher
(RG). The buses and trucks are easily identified given that
their size is much larger than other motorized modes in
India such as cars, vans, and auto rickshaws. We did not
attempt to differentiate between buses and trucks as this
could have resulted in misclassification. The year of the
imagery varied from 2015 to 2018, which is indicated in
the lower right corner of the image. Therefore, observa-
tions of traffic across the state belonged to 1 of these 4
years. Data collection was restricted to national highways
and the abutting land-use (see Figure 3).

Figure 1. Map of India and location of Rajasthan state (top left), districts and national highway network with district census IDs in ellipses (bottom left) and 6-year
average (and 95% confidence interval) of road death rates of the districts (right).

Table 1. Descriptive statistics of study variables for 33 districts.

Variable name Description Mean Standard deviation Median Minimum Maximum

deaths Annual number of deaths 302 228 241 70 1446
population Population of district 2,157,713 1,168,779 1,968,516 672,008 7,289,051
walk commuters Number of commuters

travelling to work by
Walking 81,800 48,401 69,083 25,896 301,476

cycle commuters Cycling 28,910 24,059 19,669 3922 111,328
m2w commuters Motorised two-wheelers 49,851 61,547 26,433 8454 344,930
car commuters Car 7848 13,113 4614 477 77,872
ipt commuters Intermediate public transport modes 8585 6670 6912 947 26,459
bus commuters Bus 35,755 41,458 22,430 5073 236,423
train commuters Train 4705 5102 3088 225 24,739
Heavy vehicle density Heavy vehicle density on national highways 517 449 410 43 1928
rural population Rural population within 1km of national highways 194,870 126,510 172,180 7371 570,559
urban population Urban population within 1km of national highways 405,090 604,313 213,784 1 3,386,644
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Since satellite image is a snapshot and captures traffic
across space, therefore, a greater number of vehicles will be
detected in a district simply because that district covers a
greater length of national highways. Therefore, a better
measure of traffic is traffic density, defined as the number
of vehicles per unit length of roadway, which is a traditional
measure in traffic flow theory. Accordingly, we calculated
the number of vehicles per unit length of national highway
in the district. We refer to this variable as heavy vehicle
density. To calculate this density, we assigned all the geo-
coded points to their respective districts. Next, for each dis-
trict, we calculated heavy vehicle density by dividing the
total number of geocoded heavy vehicles in a district by the
total length of national highways in that district.

2.1. Regression model

We modelled fatalities as Poisson-lognormal mixture using
Bayesian hierarchical modelling. The regression modelling
was done using R-INLA (Rue et al., 2009), an R package,
which employs integrated nested Laplace approximations to
estimate the posterior distributions. The package has been
used for injury modelling by DiMaggio (2015) for census
tracts in New York city, Goel et al. (2018) for wards in
Delhi, and Goel (2018) for states in India. The hierarchical
model is described as follows:

yn ¼ Poisson fnð Þ (1)

log fnð Þ ¼ log pnð Þ þ b0 þ bXn þ ln þ dn þ ut þ ctn (2)

dn � Nð0, 1=sdÞ (3)

logðsdÞ � logGammað1, 0:0005Þ (4)

where, yn are the observed annual fatality counts of all
road users in district n, fn are the expected count of fatal-
ities, Xn represents a vector of explanatory variables, pn is

the population as an offset, b0 is the intercept, b is a vector
of fixed effect parameters, ln is the uncorrelated heterogen-
eity or unstructured error, dn is the spatially structured
error, ut is the structured temporal effect, and ctn is the
spatio-temporal interaction effect. Here dn has the intrinsic
conditional autoregressive (CAR) specification as proposed
by Besag et al. (1991) and ut is the first-order random
walk-correlated time variable. Further details can be seen in
DiMaggio (2015) and Goel et al. (2018).

We first fitted a frailty model with no covariates and
with only spatially structured error (lnÞ, unstructured error
(dnÞ and auto-correlated year effect (ut). The temporal
trendðut) term is shown in Figure 4, and shows that it has
the least variation over the 3-year period from 2014 to 2016.
These years are also closest to the satellite imagery
(2015–2018) used for estimating heavy vehicle traffic.
Therefore, for the regression analysis we included time ser-
ies from 2014 to 2016 . We assume that the traffic move-
ment does not vary greatly over the years, so that the
mismatch between the time period of road fatality data and
that of satellite imagery does not affect our analysis. All
other variables were considered constant across this period.
For sensitivity analysis, we used road deaths for the 6-year
period (2011–2016) in the regression analysis.

The covariates at the district level used in the regression
model are presented in Table 1 and have been described in
Section 2. These include number of workers travelling to
work by different modes of transport denoted as walk com-
muters, cycle commuters, m2w commuters, car commuters,
ipt commuters, bus commuters, and train commuters. The
other covariates include rural population and urban popula-
tion which denote population living within 1 km of the
national highways. Finally, heavy vehicle density denotes the
heavy traffic volume. We fitted two sets of regression mod-
els, each with two models. In the first set, the two models

Figure 2. Snapshot of geocoded heavy vehicles and villages along with 1 km buffer around National Highways.
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include the model with only commuting-related variables
(Model 1) and the second model (Model 2) with commut-
ing-related variables and also controlling for rural and
urban population. In the second set, the same two models
were developed but the four variables walk commuters, bus
commuters, train commuters, and ipt commuters were
replaced by a new variable which combined walk with the
three public transport modes (ipt, bus, and train) and is
referred to as walkþ PT commuters. This variable repre-
sents all the walking-related modes given that in Indian
context each public transport trip is likely to include at least
two walking trips in the form of access and egress. The two
models in the second set with and without controlling for

rural population and urban population are referred to as
Models 3 and 4.

3. Results

Using the observations from satellite images, we geolocated
a total of 43,884 heavy vehicle. Heavy vehicle density on
national highways vary from 43 to 1928 vehicles per km. To
validate the estimate of heavy vehicle traffic, we used the
freight tonnage reported for different national-highway sec-
tions as a part of nation-wide study conducted in
2007–2008 (RITES, 2014). For the corresponding road

Figure 3. A Google Earth screenshot of the satellite imagery showing trucks on the highway and nearby land-use (source: Google Earth snapshot).
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sections reported in the study, we estimated the heavy
vehicle density as described above. We found that the two
variables (freight tonnage and heavy vehicle density) are
strong associated with a Pearson correlation of 0.84
(p< 0.001) (Figure 5). Although it should be noted that the
tonnage data and Google Earth estimates of volume are sep-
arated in time by 7–8 years. Further, we estimated heavy
vehicle traffic including both buses as well as trucks, while
the comparison with the reported data is only for freight.

Figure 6 presents the relationship between heavy vehicle
density and fatality rates. For this plot, fatality rates are the
average over 2014–2016 period. The Pearson correlation
between the two variables is 0.63 (p< 0.001) and excluding
the three highest values of heavy vehicle density, the correl-
ation value is 0.45 (p< 0.01). Figure 7 presents year-specific
plot of fatality rates at the district level. There are some dis-
tricts that have consistently high-risk levels across the years.

The districts highlighted in red lie along the major corridor
that connects Delhi with the Mumbai port.

The results of the four regression models are presented
in Table 2 with mean and standard deviation (SD) of the
posterior distributions of the coefficients. To compare the
performance of Bayesian models, Deviance information cri-
terion (DIC) is estimated which is a Bayesian version of
Akaike information criterion (AIC). Similar to AIC, lower
value of DIC implies higher predictive accuracy.

The most consistent finding across all the models is that
heavy vehicle density and car commuters have positive asso-
ciations with fatality risk, and combined walk and PT usage
have a negative association. Further, the magnitudes of the
effects of heavy vehicle density and car commuters are the
highest, consistently across the models. Rural population liv-
ing in proximity to highways has a positive association, while
urban population has a negative association, though rural
population has a much larger effect size than urban popula-
tion. All these variables except urban population in proximity
to highways also have strong statistical significance.

The two variables, namely cycle commuters and walk
commuters, show changing signs across the models and
weaker statistical significance compared with other variables.
Cycle commuters has a positive sign in Models 1 and 2 and
negative sign in Models 3 and 4. Walk commuters has a
negative sign in Model 1 but a positive sign in Model 2.
The variable m2w commuters (motorized two-wheelers) also
show large variation across the models. This variable has a
high magnitude in Model 2 but its magnitude reduces to
almost zero in Model 3.

Comparison of Models 1 and 3 with their more con-
trolled counterparts (Models 2 and 4, respectively, including
rural and urban population in proximity to highways) shows
that the effect of heavy vehicles is weakened, both in magni-
tude, from 0.18 (Model 1) to 0.13 (Model 2) and from 0.17
(Model 3) to 0.15 (Model 4), as well as in statistical signifi-
cance. In contrast, the effect of car commuters is strength-
ened in both respects (magnitude: 0.24–0.32 and 0.22–0.24).
In other words, the effects of trucks and cars are modified,
though the direction of association remains the same, when

Figure 4. Temporal effect of fatality rates.

Figure 5. Observed freight tonnage and GE estimates of heavy vehicle density for selected road sections.

6 R. GOEL ET AL.



the population directly exposed to highway traffic is
accounted for in the models.

To test the sensitivity of results to the inclusion of variable
of heavy vehicle volume, we compared the results of Models
1 and 3 with their respective models without this variable
(not shown in Table 2). We found that in Model 1, without

the inclusion of heavy vehicle variable, the coefficient of cycle
commuters increases by more than five times in magnitude
(0.02–0.10), while that of bus commuters changes from nega-
tive to positive (�0.04 to 0.02). In Model 3, the effect of
m2w commuters also increases significantly in magnitude.
Therefore, it seems that, in the absence of heavy vehicle vari-
able, its effect is absorbed by other modes. We also present
the results of the four models with data for the 6-year period
(Table A1 in appendix). The results show only slight reduc-
tion in effect size of most variables while the direction of
association remains the same for all. Therefore, the conclu-
sions of the regression models are independent of the years
for which road deaths data has been used.

4. Discussion

4.1. Statement of principal findings

We estimated heavy vehicle (buses and truck) volume on
national highways using Google Earth satellite images. We
found that the estimated volume correlate reasonably well
with the traffic counts reported in a government study, with
a Pearson correlation of 0.84 (p< 0.001) We used Google
Maps API for large-scale mapping of villages and cities to
estimate population living in proximity to the highways. We
further fitted a spatiotemporal regression model using
Bayesian modelling framework with number of road deaths
at the district level as the outcome variable. The model
results indicate that heavy vehicle density has a positive
association with road deaths. Rural population living in
proximity to national highways has a positive association
while urban population have a negative association. Among
the passenger modes of travel, car is positive associated
while combined walking and public transport usage has a
negative association with road deaths. We also found that
not accounting for heavy vehicle volume results in omitted
variable bias in the model results. In our models, this was
reflected in the effects of other modes of travel, which were
biased upwards.

4.2. Strengths and weaknesses of the study

Traffic volume is an important factor contributing to traffic
injuries (Aldred et al., 2018; Elvik et al., 2009) and,

Figure 6. A scatterplot showing district-level death rates and heavy vehicle
density on national highways.

Figure 7. Year-specific fatality rates of districts of Rajasthan state.

Table 2. Regression results.

Mean (SD)

Variable Model 4 Model 3 Model 2 Model 1

Intercept �9.120(1.464) �8.525(1.311) �12.433(1.860) �9.167(1.427)
log(heavy vehicle density) 0.149(0.078) 0.170(0.072) 0.130(0.076) 0.177(0.077)
log(car commuters) 0.238(0.131) 0.218(0.127) 0.323(0.125) 0.243(0.130)
log(m2w commuters) �0.076(0.170) �0.004(0.151) �0.492(0.231) �0.100(0.182)
log(cycle commuters) �0.005(0.115) �0.062(0.098) 0.331(0.174) 0.019(0.130)
log(walk commuters) 0.087(0.195) �0.085(0.197)
log(train commuters) �0.195(0.079) �0.077(0.068)
log(bus commuters) �0.055(0.103) �0.042(0.111)
log(ipt commuters) 0.014(0.078) �0.002(0.085)
log(walkþ PT commuters) �0.238(0.186) �0.222(0.182)
log(rural population) 0.094(0.096) 0.297(0.120)
log(urban population) �0.018(0.029) �0.058(0.031)
DIC 906.62 906.51 906.68 906.57
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therefore, essential for epidemiological investigation of traf-
fic injuries. In countries such as India and other LMICs,
there are no mechanisms to ensure systematic collection of
traffic counts in the cities or highways. In accident predic-
tion models, lack of such variables can result in omitted
variable bias (Elvik, 2011; Goel, 2018; Mitra & Washington,
2012). This study presents a novel method to estimate traffic
volume of heavy vehicles. This is the first study to use
satellite-imagery based vehicle count at a large scale for epi-
demiological research. We also used Google API for large-
scale mapping of rural settlements. The methods presented
here are easily replicable in virtually every setting in the
world as both Google Earth and Google Maps API have a
global coverage, and the use of former is free of cost while
the cost of using the latter can be minimized with a limited
daily use of the API.

While this study presents an area-level analysis, these
methods can potentially be replicated for micro-level stud-
ies. Future studies should investigate the potential of satellite

imagery to estimate traffic volume at the street level and
investigate if these methods work at smaller scale. While the
identification of vehicles in this study was limited to heavy
vehicles, this method can be extended to include other
motor vehicles of smaller size such as cars, vans, and three-
wheeled auto rickshaws. However, with the given resolution
of Google Earth for India, it is not possible to differentiate
between these vehicles. Within Google Earth, there are var-
iations in the resolution of the imagery across the countries.
In India, the images are likely 15m resolution. In North
America and western Europe, Google Earth images are often
obtained through aerial data collection which includes pho-
tography using an aeroplane and such images can have reso-
lution up to 0.15m. High-resolution images of 1m or lower
can also be obtained through other satellites such as
WorldView-2 or Quickbird, however, these are not available
for free.

There are certain limitations in our work. In Google
Earth, the year corresponding to the imagery was found to

Figure 8. A six-lane national highway passing through a village (Source: Google Earth snapshot).
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vary across the state, which is likely to bring spatial bias in
the estimates of heavy vehicles. Further, heavy vehicle iden-
tification was restricted to only national highways. For two
districts with high volume of heavy vehicle, we found that
the volume of state highways is only a minor fraction of the
volume of national highways, therefore, this is less likely to
result in any bias. It is an ecological study and, therefore,
has the limitation arising from modifiable area unit prob-
lem. A district comprises of cities as well as villages, and
highways as well as urban streets. At an aggregate level,
these differences are not accounted for. Further, the traffic
volume estimates from Google Earth needs to be validated
for other settings and road types.

4.3. Meaning of the study: possible mechanisms and
implications for policymakers

The study results highlight the implications of freight poli-
cies on road traffic injuries. India has much higher share of
its freight movement through road compared to other large
countries such as the USA and China (McKinsey, 2009). In
India, policy discussions of mode shift of freight in favour
of railways often occur in the context of transport efficiency,
energy use, greenhouse gas emissions or air quality (Dhar &
Shukla, 2015). However, evidence from this study as well as
from previous research (Goel, 2018; Mohan et al., 2016;
Naqvi & Tiwari, 2017) highlights that on-road freight move-
ment has significant implications for traffic injuries.
Therefore, policy formulation around freight movement
should account for traffic injuries as one of the externalities.

A positive association between rural population living in
proximity to national highways and death rates has import-
ant implications. Highways in India often pass through the
villages and towns or run in their vicinity (e.g. Figure 8).
Since people in Indian villages predominantly travel by
walking, cycling or use motorized two-wheelers (Census-
India, 2017), their exposure to high-speed heavy traffic on
highways results in serious injuries or deaths. As a result, the
three road users contribute up to 60% of all road deaths vic-
tims on Indian highways (Naqvi & Tiwari, 2017). It is a
remarkably high proportion given that highways are often
thought of as being used exclusively by cars and trucks.
Given the rapid growth of highway network in India (NHDP,
2019), it is important that future development of highways
minimize proximity to the inhabited rural areas. In contrast
to the rural population, the association of urban population
in proximity to highways has a negative association with the
fatality rates. It is possible that highways close to urban areas
tend to be congested in the vicinity of urban areas, and as a
result, tend to have lower rates of fatalities. We should note
that the effect size of urban population in proximity to high-
ways is much smaller than rural population.

4.4. Unanswered questions and future research

Google Earth is a freely available data source and covers the
entire world. While the identification of vehicles in this
study was limited to heavy vehicles, this method can be

extended to include other motor vehicles such as three-
wheeled auto rickshaws and cars. Further, distinction can
also be made between trucks and buses. The possibility to
detect pedestrians, cyclists and motorcycles from overhead
satellite images is unlikely.

Further, the potential application of these data are not
limited to traffic safety epidemiology. These new data sour-
ces can be further applied to estimate travel patterns at the
city level. While our study used manual annotation, this
work can be scaled up by using machine learning based
image recognition (Cao et al., 2016). The methods presented
here can be replicated at the city level as well as scaled up
for the whole country.
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