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ORIGINAL ARTICLE

Abstract: Observational data are increasingly used with the aim of 
estimating causal effects of treatments, through careful control for 
confounding. Marginal structural models estimated using inverse 
probability weighting (MSMs-IPW), like other methods to control 
for confounding, assume that confounding variables are measured 
without error. The average treatment effect in an MSM-IPW may 
however be biased when a confounding variable is error prone. Using 
the potential outcome framework, we derive expressions for the bias 
due to confounder misclassification in analyses that aim to estimate 
the average treatment effect using an marginal structural model esti-
mated using inverse probability weighting (MSM-IPW). We compare 
this bias with the bias due to confounder misclassification in analyses 
based on a conditional regression model. Focus is on a point-treat-
ment study with a continuous outcome. Compared with bias in the 
average treatment effect in a conditional model, the bias in an MSM-
IPW can be different in magnitude but is equal in sign. Also, we use 
a simulation study to investigate the finite sample performance of 
MSM-IPW and conditional models when a confounding variable is 
misclassified. Simulation results indicate that confidence intervals of 

the treatment effect obtained from MSM-IPW are generally wider, 
and coverage of the true treatment effect is higher compared with 
a conditional model, ranging from overcoverage if there is no con-
founder misclassification to undercoverage when there is confounder 
misclassification. Further, we illustrate in a study of blood pressure-
lowering therapy, how the bias expressions can be used to inform a 
quantitative bias analysis to study the impact of confounder misclas-
sification, supported by an online tool.
Keywords: Inverse probability weighting; Marginal structural 
models; Misclassification; Point-treatment study; Quantitative bias 
analysis

(Epidemiology 2020;31: 796–805)

The aim of many observational epidemiologic studies is to 
estimate a causal relation between an exposure and an out-

come, through careful control for confounding. In the case of a 
point-treatment, that is, estimating the effect of a treatment at 
a single time point on a subsequent outcome, many methods 
exist that aim to estimate average treatment effects. These in-
clude traditional conditional regression analysis and marginal 
structural models estimated using inverse probability weighting 
(MSMs-IPW).1,2 Unlike conditional regression, MSMs extend 
to estimation of joint treatment effects over multiple time points 
in longitudinal settings with time-dependent confounding.1,3

To obtain valid inference, MSMs-IPW, like other meth-
ods to control for confounding, assume that confounding vari-
ables are measured without error, an assumption hardly ever 
warranted in observational epidemiologic research.4–7 A type 
of measurement error is classification error, which occurs 
when categorical variables are misclassified. For instance, 
smoking status (smoker versus nonsmoker) is prone to classi-
fication error but has been used as a confounding variable in 
studies investigating dialysis on mortality8 and iron supple-
ment use during pregnancy on anemia at delivery.9 Another 
example of the use of a potentially misclassified confounding 
variable is alcohol use during pregnancy (yes versus no) in 
studies investigating associations between exposure to trip-
tans during fetal life and risk of externalizing and internaliz-
ing behaviors in children.10 In all aforementioned examples, 
MSMs were used to estimate the exposure–outcome relation, 
but the assumption of error-free confounding variables is 
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possibly violated and may lead to bias in the treatment effect 
estimator.

There is a substantial literature on bias due to meas-
urement error in confounding variables in conditional regres-
sion analyses,11–15 but the impact of measurement error in 
confounding variables in causal inference methods, such as 
MSMs-IPW, has not received much attention. One exception 
is a study by Regier et al16 that showed by means of a simula-
tion study that measurement error in continuous confounding 
variables can introduce bias in the average treatment effect es-
timator in a point-treatment study. McCaffrey et al17 proposed 
a weighting method to restore the treatment effect estimator 
when covariates are measured with error.

We provide a discussion of measurement error in a con-
founding variable. In addition, we derive expressions that 
quantify the bias in the average treatment effect estimator if a 
dichotomous confounding variable is misclassified, focusing 
on a point-treatment study with a continuous outcome. These 
expressions allow us (1) to quantify the bias due to classifica-
tion error in a confounding variable in MSMs-IPW and to com-
pare this with the bias from a conditional regression analysis and 
(2) to inform quantitative bias analyses.18–20 We use simulation 
results to study the finite sample performance of an marginal 
structural model estimated using inverse probability weighting 
(MSM-IPW) compared with that of conditional regression mod-
els if classification error in a confounding variable is present. We 
illustrate our quantitative bias analysis in a study of the effect of 
blood pressure-lowering drugs on blood pressure.

SETTINGS AND IMPACT OF MEASUREMENT 
ERROR, NOTATION, AND ASSUMPTIONS

Let A  denote the treatment indicator and Y  the out-
come. Let there be a variable L  that confounds the associa-
tion between treatment and outcome and suppose that, instead 
of confounding variable L , the error-prone confounding vari-
able L*  is observed. We consider two settings in which meas-
urement error in confounding variables may occur and discuss 
the impact of measurement error in both settings.

Settings and Impact of Measurement Error
The directed acyclic graph (DAG) in Figure 1 illus-

trates setting 1. In this setting, treatment initiation is based 
on the error-prone confounding variable. Consider, for ex-
ample, a study investigating the relation between the use of 

antidepressant drugs (A) and the risk of a hip fracture (Y ).21  
Benzodiazepine use may be a confounding variable but is 
prone to classification error because only prescription infor-
mation may be available and over-the-counter use is often un-
known. The clinician initiating the antidepressant drugs might 
not know their patient’s over-the-counter use and initiates 
treatment based on the observed error-prone benzodiazepine 
use (L* ) instead of actual use (L ), as depicted in Figure 1A. 
Here, conditioning on the error-prone L* will block the back-
door path from treatment A  to outcome Y . Thus, it is suf-
ficient to control for the error-prone confounding variable 
to estimate the causal effect of treatment on outcome. This 
means that measurement error in a confounding variable will 
not always lead to bias.

The DAG in Figure 1B illustrates setting 2, in which 
treatment initiation is based on L , but only a proxy of L  is 
observed (L*). An example here might be a study investigat-
ing the effect of influenza vaccination ( A ) on mortality (Y )  
in the elderly population.22 Frailty ( L ) possibly confounds 
the association between influenza vaccination and mortality. 
Frailty is observed by a clinician, but only a proxy of frailty 
(L*) may be available in electronic health records, as depicted 
in Figure 1B. Here, conditioning on L* will not fully adjust for 
confounding by L , because conditioning on L* does not block 
the backdoor path from A  to Y  via L.

Notation and Assumptions
We will now continue investigating the impact of clas-

sification error in setting 2, by focusing on the setting where 
L  is a dichotomous confounding variable and Y  a continuous 
outcome. We use the potential outcomes framework.23,24 Let 
Y a=0  denote the outcome that an individual would have had if 
treatment A  was set to a = 0, and let Y a=1  denote the outcome 
if treatment A  was set to a =1. We assume that L* is nondif-
ferentially misclassified with respect to the outcome (L Y L* |⊥⊥ ) 
and to the treatment (L A L* |⊥⊥ ). Let p1  denote the sensitivity of 
L* and 1 0− p , the specificity of L* (i.e., P L L l pl( | = ) =* =1 ). We 
also denote the probability of treatment given the level of L  by 
P A L l l( =1| = ) = π  and the prevalence of L  by P L( =1) = λ . 
Here, we assume that 0 < <1λ  because we are not interested in 
populations where L  is present or absent in everyone. Finally, 
we assume no measurement error in exposure and outcome.

FIGURE 1. Measurement error ε  in 
variable L  that confounds the associ-
ation between treatment A  and out-
come Y  in two settings illustrated in 
directed acyclic graphs. A, Setting 1: 
Treatment A  is initiated based on the 
error-prone confounding variable L*. 
B, Setting 2: Treatment A  is initiated 
based on confounding variable L.
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We also assume that the following causal assumptions 
are satisfied to recover the causal effect of treatment on the 
outcome. Under the consistency assumption, we require 
that we observe Y Y a= =0  if the individual is not exposed or 

Y Y a= =1  if the individual is exposed.25 Further, we assume 
that the potential outcome Y a  for an individual does not de-
pend on treatments received by other individuals and that 
there are not multiple versions of treatment, also referred to as 
Stable Unit Treatment Value Assumption.26 Additionally, we 
assume conditional exchangeability, i.e., given any level of L ,  
if the untreated group had in fact received treatment, then their 
expected outcome would have been the same as that in the 
treated, and vice versa.25 In notation, A Y La⊥⊥ | , for a = 0, 1 .  
Finally, we assume π L > 0  for L = 0, 1  (positivity).27

For causal contrasts, we compare expected potential out-
comes (i.e., counterfactual outcomes) under the two different 
treatments. The average causal effect of the treatment on the 
outcome is β = [ ] [ ]=1 =0E EY Ya a− . Under the above defined 
assumptions, the conditional effect of treatment A  on out-
come Y  can be defined through the following linear model:

E E[ | ] = [ | = , ] =Y L Y A a L a La α β γ+ + .  
(1)

Estimates for β  in the above model can be obtained by 
fitting a conditional regression model. Alternatively, the effect 
of treatment A  on outcome Y  may be estimated by fitting an 
MSM:

E E[ ] = , = [ ]Y a La α β α α γmsm msmwhere+ + .  (2)

Estimates for β  in the above model can be obtained by 
IPW estimation: by fitting a linear regression model for Y  on 
A  where the contribution of each individual is weighted by 

1 over the probability of that individual’s observed treatment  
given L, estimating the marginal treatment effect.2 Because 
our focus is on linear models and we make the simplifying 
assumption that the effect of A  on Y  does not vary between 
strata of L , the conditional and marginal treatment effects, 
denoted by β  in model equations 1 and 2, respectively, are 
equal. This is not generally true for nonlinear models due to 
noncollapsibility.2 We assume that the effect of A  on Y  does 
not vary between strata of L , to derive bias expressions that 
are easier to use in practice and require fewer parameters.28

QUANTIFICATION OF BIAS DUE TO 
CLASSIFICATION ERROR IN A CONFOUNDING 

VARIABLE
Our aim is to study the effect of using the misclassified 

confounding variable L* in place of the confounding variable 
L  in the conditional regression model or in the model for the 
weights used to fit the MSM on the average treatment effect 
estimator in the setting where L, not L*, influences treatment 
initiation (setting 2 above).

Conditional Model
By the law of total expectation, the expected value of 

the outcome Y  given treatment A  and L* is (see eAppendix 
1; http://links.lww.com/EDE/B698 section 1 for further detail),

E E E[ | = , ] = [ [ | = , , ]] = { }*
| = , *

*
00 0Y A a L Y A a L L u

L A a L
α γ δ+ +φ

+ + − +{ ( ) }10 00β γ δφ φ u aA

+ − +{ ( ) }01 00 *
*γ δφ φ u L

L

where φ
al

P L A a L l*
* *= ( =1| = , = ), δ γ= [ | =1, =1] =*E Y A L  

×( )11 10 01 00φ φ φ φ− − +  and u u uA L0 *, ,  represent the coefficients 

of the linear model E[ | , ] =* *
0 *

*AL A L u u A u LA L
+ + , modeling 

the mean of A  times L* (i.e., AL* ) given A  and L* (see next par-
agraph for an explanation of why these appear). The coefficient 
for treatment A  in the above model is β γ δ+ − +( )10 00φ φ uA , 
and is therefore biased for the parameter of interest (i.e., β ). By 
rewriting uA  in terms of λ , π0 , π1 , p0  and p1  (see eAppendix 
1 section 1), we find that the bias due to classification error in L* 
in the average treatment effect in a conditional regression model 
is as follows:
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where π
l

P A L l*
* * *= ( =1| = ), � = ( =1)*P L  (see eAppendix 1 

section 1 for a derivation).
We focused on a model for Y  conditional on A  and L* 

which includes only main effects of A  and L*, as this is typi-
cally done in practice when replacing L  with L*. In fact, it can 
be shown that when the model for Y  given A  and L  includes 
only main effects of A  and L, the implied correctly specified 
model for Y  given A  and L* also includes an interaction between 
A  and L*, explaining the appearance of u uA0 , , and uL  in the 

above because the interaction is not modeled. See eAppendix 1  
section 1 for the bias in case an interaction is modeled

Marginal Structural Model Estimated Using 
Inverse Probability Weighting

An MSM-IPW proceeds by fitting a linear regression 
for outcome Y  on treatment A , where the contribution of 
each individual is weighted by 1 over the probability of that 
individual’s observed treatment given misclassified L*.2 An es-
timator for the average treatment effect β  is as follows:

β̂=

=1
1
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It can be shown that E[ ]= ( 10 00 )(1 ) ( 11 01)ˆ .β β γ γ+ − − + −φ φ φ φ� �   
Consequently, the bias in the average treatment effect in an 
MSM-IPW is as follows:

Biasmsm ( ) = ( ) (1 ) ( )10 00 11 01β γ γφ φ φ φ− − + −� �.  (4)

We refer to eAppendix 1 section 2 for a derivation of the 
above formula.

EXPLORATION OF BIAS
To study the bias due to misclassification from the con-

ditional model and MSM-IPW, we explore bias expressions 
(equations 3 and 4).

Null Bias
To confirm the derived bias expressions, we consider three 

trivial conditions where bias in the average treatment effect es-
timator is expected to be null, in line with general understanding 
of causal inference.29 (1) If there is no classification error in 
L*, i.e., specificity is 1 ( p0 = 0) and sensitivity is 1 ( p1=1),  
it follows that L  corresponds to L*, irrespective of treatment 
level (i.e., φ10 = 0 , φ00 = 0 , φ11=1 , and φ01=1 ). (2) If the true 
relation between L  and Y  is null (i.e., γ  is zero, thus there is 
no arrow from L  to Y  in Figure 1B). (3) If L  does not affect 

the probability of receiving treatment (i.e., π π0 1= , thus there 
is no arrow from L  to A  in Figure 1B), the probability that 
L  is 1 depends on the value of L* but no longer on A  (i.e., 
φ φ00 10=  and φ φ01 11= ). Bias is null under these conditions for 
both models (MSM-IPW and conditional model). Because the 
bias expressions are strictly monotonic, the bias in an MSM-
IPW cannot be negative if the bias in the conditional model is 
positive and vice versa (i.e., the bias will be in the same direc-
tion for both models).

Equal Biases
The bias in the average treatment effect in a condi-

tional regression analysis is equal to that in an MSM-IPW if 
bias in both models is null (see above). We also see that bias 
expressions (equations 3 and 4) show that bias for the two 
methods is equal if the term between curly brackets in equa-
tion 3 is equal to 1, which is the case if (1) � =1; (2) π π0

*
1
*= ;  

and (3) π π0
*

1
*= 1− . If conditions (1) and/or (2) are met, there 

is no bias in an MSM-IPW nor in a conditional model. Under 
condition (3), bias is generally non-null (except if, for ex-
ample, γ = 0, see Null Bias).

Sign and Magnitude of Bias
Figures 2–4 illustrate the contributions to bias in the 

average treatment effect due to misclassification components 
(sensitivity and specificity) and due to confounding compo-
nents (prevalence of confounding variable, strength of as-
sociation between confounding variable and treatment and 
outcome) in a conditional model and an MSM-IPW, obtained 
by using the bias expressions.

FIGURE 2. Visualization of the direction and magnitude of the bias in the average treatment effect estimator in relation to the prev-
alence of treatment among individuals with the confounding variable present. In this visualization, the confounding variable L  is 
misclassified with a sensitivity of 0.9 and specificity of 0.95. Consequently, the average treatment effect estimated in an MSM-IPW or 
conditional regression model is biased, independent of true average treatment effect. The prevalence of L  is 50% (i.e., P L( =1) = 0.5 ).  
The direction and magnitude of the bias depend on (1) the strength and direction of the association between L  and treatment 
(denoted by π1= ( =1| =1)P Ltreatment  and π0= ( =1| = 0)P Ltreatment , here set at π0= 0.5  in the left-hand-side plot and π0= 0.8  
in the right-hand-side plot); and (2) the strength and direction of the association between L  and the outcome (denoted by γ  in 
the text and here set at γ =2 ). Larger values of γ  will result in steeper curves; γ = 2−  will mirror the graph in y =0.
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Figure 2 shows that (1) the bias is positive if both the 
association between L  and treatment and L  and outcome are 
positive (i.e., π π1 0>  and γ = 2 , respectively) and (2) the bias 
is greater if the difference between π1  and π0  is greater (i.e., 
if the strength of the association between L  and treatment is 
greater). In contrast, the bias is negative if π π1 0< , whereas γ  
is positive. In case γ = 2− , Figure 2 is mirrored in y = 0 , and 
consequently, bias is negative if π π1 0>  and positive if π π1 0< .  
An increment in γ  will result in greater bias and steeper 
curves in Figure 2. Figure 3 shows that the magnitude of the 
bias depends on the prevalence of L . Further, it shows that 
bias is greater if the strength of association between L  and 
treatment is greater. Figure 4 shows that, generally, the bias 
is greater if L* has lower specificity and sensitivity. Moreover, 
for a fixed sensitivity, bias is minimal if specificity equals 1 
and is maximal if 1 − specificity equals sensitivity; by fixing 
specificity, bias is minimal if sensitivity equals 1 and is max-
imal if sensitivity equals 1 − specificity. Figure 4 shows that 
the bias is greater if the strength of the association between 
L  and treatment is greater. An increment in γ  will result in 

greater bias and steeper curves in Figure 4. An online appli-
cation can be used to obtain bias plots for other combinations 
of the parameters available at https://lindanab.shinyapps.io/
SensitivityAnalysis.

Simulation Study
We conducted a simulation study to study the finite 

sample properties of MSMs estimated using IPW and condi-
tional models if there is classification error in the confounding 
variable. Five thousand data sets were generated with sample 
sizes of 1,000 and 100, using the following data-generating 
mechanisms:

L Bern AL Bern L L∼ ∼λ π π( ) ( )−, | 0
(1 )

1 ,

L L Bern p p Y A L N A LL L*
0
(1 )

1| | 1 1∼ ∼−( ) + +and , ( , )β γ
.

We studied five different scenarios, of which the param-
eters values can be found in Table 1. In all scenarios, the av-
erage treatment effect β  (estimand) is 1 and the association 
between the confounding variable L  and outcome Y  is 2 
(i.e., γ = 2 ). In scenario 0, we assume no classification error. 
In scenarios 1–4, we assume that L* has a specificity of 0.95 
(i.e., p0 = 0.05 ) and a sensitivity of 0.90 (i.e., p1 = 0.9 ). In 
scenario 1, bias in the average treatment effect estimator is 
expected to be negative because the probability of receiving 
treatment given that L  is not present is greater than receiving 
treatment given that L  is present, and the association between 
L  and Y  is positive (i.e., π π0 1>  and γ = 2 ). In contrast, in 
scenarios 2 and 3, bias in the average treatment effect esti-
mator is expected to be positive, because π π0 1<  and γ = 2 . 
Further, after investigation of Figure 3, we expect that bias in 
the average treatment effect estimated in a conditional model 
is greater than that in an MSM-IPW in scenarios 2 and 3. Fi-
nally, in scenario 4, we expect that bias in the average treat-
ment effect from the conditional model is equal to that in an 
MSM-IPW.

Model Estimation and Performance Measures
We obtained the average treatment effect β  (estimand) 

by fitting a conditional model using conditional regression 
and by fitting an MSM-IPW, both using the misclassified L* 
instead of L  from the data-generating mechanism. For the 
MSM-IPW analysis, we used the R package ipw.30,31 Perfor-
mance of both models was evaluated in terms of the bias, the 
mean squared error of the estimated treatment effect (MSE), 
the percentages of 95% confidence intervals that contain the 
true value of the estimand (coverage), the empirical standard 
deviation of the estimated treatment effects (empSE), and 
mean model-based standard error of the estimated treatment 
effect. We estimated robust model-based standard errors of the 
average treatment effect in an MSM-IPW using the R pack-
age survey.32 We calculated Monte Carlo standard errors for 
all performance measures,33 using the R package rsimsum.34 
Additionally, we calculated the theoretical bias of the average 

FIGURE 3. Visualization of the magnitude of the bias in the av-
erage treatment effect estimator in relation to the prevalence of 
a confounding variable. In this visualization, the confounding 
variable L  is misclassified with a sensitivity of 0.9 and specificity 
of 0.95. Consequently, the average treatment effect estimated 
in an MSM-IPW or conditional regression model is biased, inde-
pendent of true average treatment effect. The confounding var-
iable is positively associated with treatment (i.e., here π π1 0> , 
where π1= ( =1| =1)P Ltreatment  and π0 = ( =1| =0)P Ltreatment ),  
and outcome (denoted by γ  in the text and here set at γ = 2 ).  
The magnitude of the bias depends on the prevalence of the 
confounding variable (i.e., P L( =1) ). Larger values of γ  will 
result in steeper curves.

https://lindanab.shinyapps.io/SensitivityAnalysis
https://lindanab.shinyapps.io/SensitivityAnalysis
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treatment effect in both methods based on the bias expressions 
(equations 3 and 4).

RESULTS
Table 2 shows the results of the simulation study. Bias 

found in the simulation study corresponds to the theoret-
ical bias derived from the bias expressions. The empirical 
standard deviation of the average treatment effect estimates 
(empSE) from the MSM-IPW is equal to or greater than that 
from the conditional model. Yet, in the scenarios where bias 
in the average treatment effect in the MSM-IPW was smaller 
than bias in the conditional model (scenarios 2 and 3), empSE 
of both methods was equal, and hence, MSE is smaller for 
one method if also bias is smaller. Furthermore, the (robust) 
model-based standard errors of the average treatment effect 
in an MSM-IPW are conservative and greater than the empir-
ical standard errors, because the uncertainty in estimating the 
treatment weights is not taken into account. Allowing for the 

estimation of the weights will shrink the standard errors.2,35 
We chose not to use a less conservative standard error estima-
tion for MSM-IPW, such as bootstrapping, because our goal 
was to frame this simulation as investigating the properties of 
the commonly used MSM-IPW estimation procedure. Conse-
quently, confidence intervals of the treatment effect obtained 
in an MSM-IPW are generally wider and coverage of the true 
treatment effect is higher compared with a conditional model, 
ranging from overcoverage if there is no classification error to 
smaller undercoverage when there is classification error.

ILLUSTRATION: QUANTITATIVE BIAS 
ANALYSIS OF CLASSIFICATION ERROR IN A 

CONFOUNDING VARIABLE
Quantitative bias analysis provides a tool to incorporate 

uncertainty in study results due to systematic errors.18,20 Using 
an example study of blood pressure-lowering therapy, we il-
lustrate how the bias expressions (equations 3 and 4) can be 
used to perform a quantitative bias analysis for misclassifica-
tion of a confounding variable.

Application
For our illustration we use data of the National Health 

And Nutritional Examination Survey (NHANES),36,37 more 
details can be found in the Supplement 2; http://links.lww.
com/EDE/B698. Specifically, we study the effect of diuretic 
use (A=1) in comparison to beta blocker use ( =0A )  on sys-
tolic blood pressure (Y ) using two approaches: by inverse 
weighting with the propensity for diuretic or beta blocker use 

TABLE 1. Values of the Parameters in the Five Different 
Simulation Scenarios

Scenario p0 p1 λλ ππ0 ππ1 ββ γγ

0 0 1 0.50 0.50 0.75 1 2

1 0.05 0.90 0.50 0.90 0.45 1 2

2 0.05 0.90 0.80 0.25 0.75 1 2

3 0.05 0.90 0.80 0.50 0.75 1 2

4 0.05 0.90 0.45 0.50 0.75 1 2

FIGURE 4. Visualization of the magnitude of the bias in the average treatment effect estimator in relation to specificity and sensitivity 
of a misclassified confounding variable. In this visualization, the prevalence of the confounding variable L  is 50% (i.e., P L( =1) = 0.5 ),  
the association between L  and treatment (denoted by π1 = ( =1| =1)P Ltreatment  and π0= ( =1| =0)P Ltreatment ) and outcome is 
positive (denoted by γ  in the text and here set at γ = 2 ). Given these values, if L  is misclassified, the average treatment effect 
estimated in an MSM-IPW or conditional regression model is biased, independent of true average treatment effect. The magni-
tude of the bias depends on the specificity and sensitivity of L  and is maximal if sensitivity equals 1 − specificity. The strength 
of the association between L  and treatment is greater in the right-hand-side plot ( π π0 1= 0.25, = 0.75 ) compared with the left-
hand-side plot ( π π0 1= 0.5, = 0.75 ), and consequently, bias is greater. Larger values of γ  will result in steeper curves.

http://links.lww.com/EDE/B698
http://links.lww.com/EDE/B698
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given self-reported categorical body mass index (BMI) (L*) 
and using a conditional linear regression with adjustment for 
self-reported categorical BMI. For this illustration, we cate-
gorize self-reported BMI into two distinct categories: under-
weight/normal weight (BMI < 25  (L* = 0)) and overweight/
obese (BMI ≥25 (L* =1)). However, we stress that one should 
preferably not categorize BMI in most practical applications.38 
Moreover, we assume that dichotomizing self-reported BMI 
does not introduce differential misclassification.7

We assume that blood pressure-lowering therapy is initi-
ated based on the true BMI (L) instead of the observed self-
reported BMI (setting 2, Figure 1B). Further, we consider BMI 
the only confounding variable, and treatment and outcome to 
be measured without error, which is a simplification of re-
ality. Additionally, we assume that the classification error in 
self-reported BMI category is nondifferential for the subject’s 
treatment or blood pressure (given true BMI category). Expert 
knowledge is needed to inform this assumption. To quantify 
how large the bias in the average treatment effect estimator 
is expected to be due to classification error in self-reported 

BMI category, we perform a quantitative bias analysis using 
the bias expressions (equations 3 and 4).

Average Treatment Effect
Table 3 shows the average treatment effect of diuretics 

use in comparison to beta blocker use on mean systolic blood 
pressure. In an MSM-IPW, we estimated an average treatment 
effect (95% confidence interval [CI]) of −3.52 (−1.21, −5.74). 

TABLE 2. Results of Simulation Study Studying the Finite Sample Properties of a marginal structural model estimated using 
inverse probability weighting (MSM-IPW) and a CM If There Is Classification Error in the Confounding Variable

Method Sample Size Scenarioa Bias (Formula)b Bias MSEc Coverage empSEd modelSEe

MSM-IPW 1,000 0 0.00 0.00 (0.001) 0.00 (0.000) 0.99 (0.001) 0.07 (0.001) 0.10 (0.000)

  1 −0.42 −0.42 (0.001) 0.18 (0.001) 0.03 (0.002) 0.10 (0.001) 0.11 (0.000)

  2 0.14 0.14 (0.001) 0.03 (0.000) 0.67 (0.007) 0.08 (0.001) 0.09 (0.000)

  3 0.29 0.29 (0.001) 0.09 (0.001) 0.08 (0.004) 0.08 (0.001) 0.09 (0.000)

  4 0.15 0.15 (0.001) 0.03 (0.000) 0.68 (0.007) 0.08 (0.001) 0.10 (0.000)

 100 0 0.00 0.00 (0.003) 0.05 (0.001) 0.99 (0.001) 0.22 (0.002) 0.31 (0.000)

  1 −0.42 −0.42 (0.005) 0.29 (0.005) 0.78 (0.006) 0.34 (0.003) 0.37 (0.001)

  2 0.14 0.14 (0.004) 0.08 (0.002) 0.94 (0.003) 0.25 (0.003) 0.29 (0.000)

  3 0.29 0.29 (0.004) 0.15 (0.002) 0.84 (0.005) 0.26 (0.003) 0.28 (0.000)

  4 0.15 0.15 (0.004) 0.08 (0.002) 0.95 (0.003) 0.25 (0.002) 0.31 (0.000)

CM 1,000 0 0.00 0.00 (0.001) 0.00 (0.000) 0.95 (0.003) 0.07 (0.001) 0.07 (0.000)

  1 −0.34 −0.34 (0.001) 0.12 (0.001) 0.02 (0.002) 0.09 (0.001) 0.08 (0.000)

  2 0.16 0.16 (0.001) 0.03 (0.000) 0.46 (0.007) 0.08 (0.001) 0.08 (0.000)

  3 0.32 0.32 (0.001) 0.11 (0.001) 0.02 (0.002) 0.08 (0.001) 0.08 (0.000)

  4 0.15 0.15 (0.001) 0.03 (0.000) 0.49 (0.007) 0.08 (0.001) 0.07 (0.000)

 100 0 0.00 0.00 (0.003) 0.05 (0.001) 0.95 (0.003) 0.22 (0.002) 0.22 (0.000)

  1 −0.34 −0.33 (0.004) 0.19 (0.003) 0.73 (0.006) 0.29 (0.003) 0.27 (0.000)

  2 0.16 0.16 (0.004) 0.09 (0.002) 0.90 (0.004) 0.25 (0.003) 0.25 (0.000)

  3 0.32 0.32 (0.004) 0.17 (0.003) 0.74 (0.006) 0.26 (0.003) 0.25 (0.000)

  4 0.15 0.15 (0.003) 0.08 (0.002) 0.90 (0.004) 0.24 (0.002) 0.24 (0.000)

aIn all scenarios, the average treatment effect (estimand) is 1 ( β =1 ) and the effect of the confounding variable on the outcome is 2  (γ = 2). Five thousand data sets were generated. 
Monte Carlo standard errors are shown between brackets. In scenario 0, there is no classification error (specificity and sensitivity of the misclassified confounding variable are 1, i.e., p0 = 0   
and p1=1 ). In scenarios 1–4, the specificity of the misclassified confounding variable is 0.95 (i.e., p0 =0.05 ) and the sensitivity is 0.9 (i.e., p1 =0.9 ). The prevalence of the 
confounding variable ( λ ) and the probability of receiving treatment if the confounding is not present or present ( π0  and π1 , respectively) are set as follows in the scenarios: scenario 
0: λ=0.5, π0 = 0.5, π1 = 0.75; scenario 1: λ = 0.5, π0 = 0.9, π1 = 0.45 ; scenario 2: λ= 0.8, π0 = 0.25, π1 =0.75; scenario 3: λ=0.8, π0 = 0.5 , π1 = 0.75; and scenario 4: λ= 0.45 ,  
π0 = 0.5 , π1= 0.75.

bBias based on bias expressions (equations 3 and 4) in the text.
cMean squared error.
dEmpirical standard error.
eModel-based standard error.

TABLE 3. Average Treatment Effect of Diuretics Use 
Compared with Beta Blocker Use on Mean Systolic Blood 
Pressure in NHANES36,37

Model Effect Size (CI)

Unadjusted −4.03 (−6.30, −1.76)

Marginal structural modela −3.52 (−1.21, −5.74)

Conditional modelb −3.48 (−1.27, −5.76)

aEstimated in a marginal structural model, by inverse weighting with the propensity 
for diuretic or beta blocker use given self-reported categorized body mass index (BMI).

bEstimated in a conditional regression model with adjustment for self-reported 
categorical BMI.
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In a conditional regression model, we estimated an average 
treatment effect (95% CI) of −3.48 (−1.27, −5.76).

Quantitative Bias Analysis
To inform the quantitative bias analysis, we need to 

make assumptions on the sensitivity and specificity of the self-
reported BMI and that classification errors are nondifferential 
with respect to blood pressure and treatment. For the purpose 
of this illustration, we speculate ranges for the sensitivity and 
specificity of self-reported BMI category of 0.90 to 0.98. 
In practice, these parameters should be informed by reports 
in the literature and/or a researcher’s expert experience. 
Researchers may also decide to investigate how extreme the 
misclassification (measured using sensitivity and specificity) 
would need to be to change the conclusions of their study. We 
refer to the Shiny application (introduced in the subsequent 
section) for other choices for the sensitivity and specificity of 
self-reported BMI category.

By uniformly sampling from the range of plausible 
values of p0  and p1  and using the bias expressions (equa-
tions 3 and 4), a distribution of possible biases is obtained 
(eAppendix 2; http://links.lww.com/EDE/B698 for further 
details). The solid line in Figure 5 shows the distribution of 
bias in an MSM-IPW. Mean bias is −0.31, and median bias is 
−0.30 (interquartile range, −0.40 to −0.20). We also consid-
ered sampling p0  and p1  from a trapezoidal (with modes at 
one third and two thirds between the minimum and maximum) 

or a symmetrical triangular distribution. Sampling from these 
distributions results in mean bias approximately equal to when 
uniform sampling is applied, but with less spread (dashed and 
dotted line in Figure 5). This result suggests that the results 
in Table 3 are not affected much by the classification error in 
self-reported BMI category. In the NHANES, anthropometric 
measures were also taken by trained technicians. The average 
treatment effect when BMI measures taken by trained tech-
nicians were used instead of self-reported BMI measures is 
given in eAppendix 2; http://links.lww.com/EDE/B698.

SHINY APPLICATION: AN ONLINE TOOL FOR 
STUDYING THE IMPACT OF A MISCLASSIFIED 

VARIABLE
We developed an online tool for creating bias plots 

(Figures 2–4) and performing quantitative bias analyses (il-
lustrated in the previous section), available at https://lin-
danab.shinyapps.io/SensitivityAnalysis. The bias plots can 
be used to predict the implications of classification error in 
a confounding variable in specific study settings by varying 
the strength of association between the confounding variable 
and treatment and between the confounding variable and out-
come; prevalence of the confounding variable; and specificity 
and sensitivity of the misclassified confounding variable. The 
quantitative bias analysis can be used for studying the impact 
of classification error in a confounding variable at the analysis 

FIGURE 5. Density of predicted bias due to classification error in self-reported BMI category in NHANES.36,37 Bias in the average 
treatment effect of diuretics use compared with beta blocker use on mean systolic blood pressure by inverse weighting with the 
propensity for diuretic or beta blocker use given self-reported categorical BMI (MSM-IPW), and using a conditional linear regres-
sion with adjustment for self-reported categorical BMI. The specificity and sensitivity of self-reported BMI category range from 
0.90 to 0.98 and are sampled from a uniform distribution, trapezoidal (with modes on one third and two third), and symmetrical 
triangular distribution.

http://links.lww.com/EDE/B698
http://links.lww.com/EDE/B698
https://lindanab.shinyapps.io/SensitivityAnalysis
https://lindanab.shinyapps.io/SensitivityAnalysis
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stage of a study and to investigate how sensitive conclusions 
are to the assumption of no classification error. These bias 
plots can also be used to inform decisions about measurement 
methods or choice of variables to be extracted in the planning 
stage of studies.

DISCUSSION
Inverse probability weighting and conditional models 

are both important and frequently used tools to adjust for con-
founding variables in observational studies. In this article, we 
derived expressions for the bias in the average treatment effect 
in an MSM-IPW and a conditional model. These expressions 
can inform quantitative bias analyses for bias due to a misclas-
sified confounding variable.

Quantitative bias analysis of misclassified confounding 
variables is one example of quantitative bias analyses for ob-
servational epidemiologic studies. Several approaches exist to 
assess sensitivity of causal conclusions to unmeasured con-
founding.28,39,40 These aim to quantify the impact of violations 
of the assumption of no unmeasured confounding, although 
our approach aims to quantify the impact of violations of 
the assumption that all confounding variables are measured 
without error.

Several methods have been proposed to adjust for meas-
urement error in covariates in MSMs-IPW. Pearl41 developed 
a general framework for causal inference in the presence of 
error-prone covariates, which yields weighted estimators in the 
case of a dichotomous confounding variable measured with 
error. The framework relies on a joint distribution of the out-
come and the confounding variable. Conversely, the weight-
ing method proposed by McCaffrey et al17 does not require a 
model for the outcome. Additionally, regression calibration,42 
simulation-extrapolation,43,44 and multiple imputation45 have 
been proposed for correcting for measurement error in covari-
ates of MSMs. These methods assume that the measurement 
error model is known, which may often be unrealistic. In this 
context, it is also important to mention previous studies of the 
impact of measurement error in the exposure or the end point 
in MSMs, which has been studied by Babanezhad et al46 and 
Shu and Yi,47 respectively.

If treatment is allocated based on an error-prone con-
founding variable, the treatment effect will not be biased (see 
DAG in Figure 1A). However, investigators should be care-
ful in concluding that covariate measurement error will not 
affect their analysis. Suppose that there is an unmeasured 
variable U  that acts as a confounding variable between the 
error-prone covariate L* and treatment A. Conditioning on L* 

will then open a path between A  and L  via. U  and thus con-
found the relation between A  and Y .

This article considered classification error in a dichoto-
mous confounding variable in a point-treatment study with a 
continuous outcome. The same principles apply to measure-
ment error in a categorical or continuous confounding vari-
able or when multiple confounding variables are considered, 

although more elaborate assumptions should then be made.48 
Moreover, we assumed that the relation between exposure and 
outcome does not vary between strata of the confounding var-
iable, i.e., that there is no treatment effect modification. Fu-
ture research could extend our bias expressions by relaxing 
this simplifying assumption, therefore extending our results 
to more general settings.

MSMs-IPW are increasingly applied to longitudinal 
data to estimate the joint effects of treatment at multiple time 
points on a subsequent outcome, including time-dependent 
outcomes, addressing the problem of time-dependent con-
founding.1,3 There has been little work to understand or correct 
for the impact of misclassified or mismeasured confounding 
variables in this more complex setting. Our results extend di-
rectly to the time-dependent setting when the aim is to es-
timate the effect of a current treatment on a time-dependent 
outcome measured at the next time point.49 An area for future 
work is to extend our results to the setting in which the aim 
is to estimate the joint effects of treatment at multiple time 
points and to the time-dependent setting with time-varying 
treatments and confounding variables. An additional factor to 
consider in the time-varying setting is the impact of stabilized 
versus unstabilized weights on the bias if both numerator and 
denominator of the stabilized weights involve conditioning on 
an error-prone covariate.

The bias expressions derived in this article can be used 
to assess bias due to classification error in a dichotomous 
confounding variable. If classification error in confounding 
variables is suspected, a quantitative bias analysis provides an 
opportunity to quantitatively inform readers on the possible 
impact of such errors on causal conclusions.
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