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Abstract 
Introduction: Contact tracing has the potential to control outbreaks 
without the need for stringent physical distancing policies, e.g. civil 
lockdowns. Unlike forward contact tracing, backward contact tracing 
identifies the source of newly detected cases. This approach is 
particularly valuable when there is high individual-level variation in 
the number of secondary transmissions (overdispersion). 
Methods: By using a simple branching process model, we explored 
the potential of combining backward contact tracing with more 
conventional forward contact tracing for control of COVID-19. We 
estimated the typical size of clusters that can be reached by backward 
tracing and simulated the incremental effectiveness of combining 
backward tracing with conventional forward tracing. 
Results: Across ranges of parameter values consistent with dynamics 
of SARS-CoV-2, backward tracing is expected to identify a primary case 
generating 3-10 times more infections than average, typically 
increasing the proportion of subsequent cases averted by a factor of 
2-3. The estimated number of cases averted by backward tracing 
became greater with a higher degree of overdispersion. 
Conclusion: Backward contact tracing can be an effective tool for 
outbreak control, especially in the presence of overdispersion as was 
observed with SARS-CoV-2.
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Introduction
Isolation of symptomatic cases and tracing and quarantine of 
their contacts is a staple public health control measure, and has 
the potential to prevent the need for stringent physical distanc-
ing policies that result in detrimental impacts on the society  
(e.g., civil lockdowns)1,2. By identifying and quarantining those 
who have been recently in contact with infected individuals, epi-
demic control may be achieved without broad restrictions on 
the general population. Contact tracing is typically triggered by 
a confirmed index case identified via symptom-based surveil-
lance. Contacts of this index case are identified via interviews 
by public health officials (manual contact tracing) or by track-
ing proximity records on digital devices (digital contact tracing),  
and asked to quarantine in order to prevent further transmissions.

Contact tracing often targets ‘downstream’ individuals, who 
may have been infected by the index case (‘forward tracing’); 
i.e. those who have been in contact with the index case after the 
index case likely became infectious (often assumed as 2 days  
before illness onset for COVID-193,4). However, ‘backward trac-
ing’ can also be used to identify the upstream primary case who 
infected the index case (or a setting or event at which the index 
case was infected) by retracing history of contact to the likely 
point of exposure up to the upper bound of incubation period. 
For example, contact history of 14 days prior to symptom onset 
is collected in Japan, where backward tracing has been operated 
from the early phase of the COVID-19 outbreak5,6. If this pri-
mary case is identified, a larger fraction of the transmission chain 
can be detected by forward tracing each of the contacts of this  
primary case.

Unlike forward tracing, backward tracing is more effective when 
the number of onward transmissions is highly variable, because 

index cases are disproportionately more likely to have been gen-
erated by primary cases who also infected others (an example of 
the “friendship paradox”7,8). Because there is evidence that the 
number of secondary transmissions of SARS-CoV-2 per case 
exhibits substantial individual-level variation (i.e. overdisper-
sion), often resulting in so-called superspreading events9–11,  
a large proportion of infections may be linked to a small pro-
portion of original clusters. As a result, finding and target-
ing originating clusters in combination with reducing onwards 
infection may substantially enhance the effectiveness of tracing  
methods12,13.

In the present study, we explore the incremental effective-
ness of combining ‘backward’ tracing with conventional ‘for-
ward’ tracing in the presence of overdispersion in SARS-CoV-2  
transmission, using a simple branching process model.

Methods
Overdispersion and the coverage of contact tracing
We used a branching process model to compare the perform-
ance of forward and backward contact tracing triggered by an 
index case found by symptom-based surveillance (Figure 1).  
We enumerate generations of transmission chains linked to the 
index case so that the index case belongs to generation-1 (G1). 
Backward tracing first identifies the primary case (G0) that  
infected the index case and then applies forward tracing to those 
infected by the primary case (G1). We represent the transmission 
chains of COVID-19 by a branching process where p(x) denotes 
the offspring distribution, i.e. the probability mass function of the 
number of secondary transmissions caused by a single case. If 
an individual is identified as a primary case, they are more likely 
to have generated more cases than any random case because the 
probability that a primary case is identified is proportional to 

Figure 1. Schematic illustration of forward and backward contact tracing.  Two cases (index cases #1 and #2) from a transmission 
tree originating from an (initially) undetected primary case are assumed to be detected by surveillance. Possible results of contact tracing 
are shown where (A) only forward tracing is performed or (B) both forward and backward tracing are performed. Some cases may remain 
undetected because contact tracing can miss cases.
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the number of cases it generates. Therefore, the number of off-

spring of the identified primary case follows 0

( )
( | G ) ,

( )
=

xp x
p x

xE
  

where 0( ) ( ).xx xp x∞
=∑=E  The mean number of G1 cases able 

to be identified by backward tracing (including the index case)  

is 

2
2

00

( )( )
( | G ) (1 ),

( ) ( )

∞
= = = +∑= x

xxp x
x x R v

x x

E
E E E

 where 

𝔼(x) = R is the reproduction number and v is the coefficient of 
variation (the standard deviation of x divided by its mean). With 
a high overdispersion (large v), backward tracing of the index 
case can substantially increase the number of G1 cases to trace. 
Conversely, the mean number of cases that can be identified  
by forward tracing is R regardless of the degree of overdispersion.

When we assume p(x) follows a negative-binomial distribution10,14  
with an overdispersion parameter k, backward tracing on  
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cases. Existing studies suggest k for SARS-CoV-2 transmission is 
small and likely to lie within the range of 0.1–0.510,15,16. A small 
k indicates that the primary case identified through backward 
tracing typically generates more secondary cases than does a  
randomly selected case (i.e. 𝔼(x|G

0
) > E(x) = R).

The higher probability of identifying a large cluster by backward 
tracing can also be demonstrated by looking at the tail probabil-
ity of the offspring distribution. Given a negative-binomial off-
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For different combinations of the reproduction number R and 
overdispersion parameter k, we estimated the mean size of an 
identified cluster in backward tracing and the probability of  
observing a size of at least 5, 10 and 25.

Simulation of the effectiveness of forward and 
backward contact tracing
Using our simple branching process model with a  
negative-binomial offspring distribution, we assessed the poten-
tial effectiveness of forward and backward contact tracing. We 
assumed that contact tracing is triggered by the detection of 
an index case whose primary case is initially unknown so that 
our simulation would guide decision making at the operational 
level (i.e. whether it is worthwhile to implement contact trac-
ing when a case is found). We compared two scenarios: for-
ward tracing only and the combination of forward and backward  
tracing (Figure 1). In the forward only scenario, G2 cases result-
ing from an index case are potentially traced and quarantined; 
in the combined scenario, more G1 cases can be identified  

through backward tracing of the primary infection and thus a 
larger number of G2 cases can be traced and quarantined. As the 
infectious period of G1 cases is likely to have already passed 
when they are identified by contact tracing because tracing only 
starts after the index case is confirmed, we assumed that second-
ary transmissions caused by G1 cases would not be prevented and 
that only G2 cases successfully traced could be put in quarantine  
(which confers a relative reduction c in transmission). To account 
for potential limitations in the effectiveness of contact tracing, 
we assumed that the primary case is identified with probability b 
and that each offspring of identified cases are traced with prob-
ability q. G1 cases not traced may be independently found by 
symptom-based surveillance; we accounted for such independent 
case finding with a detection probability d (although we excluded 
backward tracing triggered by these cases from analysis), which 
is expected to be low due to frequent subclinical infections17.  
All parameters used for simulation are listed in Table 1.

We estimated the expected number of G3 cases averted and 
defined the effectiveness of contact tracing by the relative reduc-
tion in the total number of G3 cases. Assuming a negative-binomial  
branching process with a mean R and overdispersion param-
eter k, the mean total number of generation 3 cases given an  
index case found by surveillance is
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Of the secondary cases generated by these G1 cases  
(R cases each on average), proportion q are successfully traced, 
i.e. Rq(1+Rd(1+1/k)) G2 cases are traced and asked to quar-
antine on average. The effective reproduction number of  
quarantined G2 cases is assumed to be R(1-c); therefore, the  
estimated number of G3 cases averted is given as
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also be detected by backward tracing. Of the mean 
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G1 cases potentially under the scope of backward tracing, pro-
portion (1 – d)(1 – bq) will remain undetected either by back-
ward tracing or independent detection. As a result, (1-(1-d)(1-bq)) 
R(1+1/k) G1 cases are identified on average in addition to the 
index case, leading to tracing of Rq(1+(1-(1-d)(1-bq))R(1+1/k))  
G2 cases. By asking these traced G2 cases to quarantine, G3  
cases are expected to be averted by
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The simulation was implemented in R-3.6.1. The replication  
code and Extended data are reposited on GitHub (https://github.
com/akira-endo/COVID19_backwardtracing) and archived with 
Zenodo18.

An earlier version of this article can be found on medRxiv  
(DOI: https://doi.org/10.1101/2020.08.01.20166595).

Results
Larger clusters are likely to be detected through 
backward tracing in the presence of overdispersion
The estimated mean and the tail probabilities of the secondary 
transmissions caused by a primary case identified via backward 
contact tracing suggests the potential strength of this tracing 
approach (Table 2). With a substantial individual-level variation 
in the number of secondary transmissions per case, characterised 
by a small overdispersion parameter k of a negative-binomial  
distribution ranging 0.1-0.5, backward tracing typically leads 
to a primary case generating 3-10 times more infections than 
a randomly chosen case (whose mean defines the reproduc-
tion number R). The tail probabilities, ranging from 25%  
to 88% (Table 2), suggest that backward tracing is likely to find 
a relatively large cluster (≥5) under the plausible parameter  
settings. These values are striking because the probability of 
finding such clusters in forward tracing will be much lower. In a 
case of R = 1.2 and k = 0.2, only 6% of random cases results in 
5 or more secondary infections, as opposed to 53% of primary  
cases identified by backward tracing.

Backward tracing typically results in multiple-fold 
increases in the overall effectiveness of contact tracing
Using a branching process model, we simulated the effective-
ness of contact tracing. Across plausible ranges of parameter 

values, we found that introducing backward tracing in addition 
to forward tracing increased the effectiveness of contact trac-
ing by a factor of 2-3 (Figure 2 and Extended data, S1 and  
S218). Although the relative improvement in effectiveness by  
introducing backward tracing is similar between different values  
of k (0.2 and 0.5), the coverage of backward tracing scales up 
with overdispersion. We found that a higher degree of overd-
ispersion (i.e. small k) resulted in a larger absolute number of 
cases averted by backward tracing (Figure 3 and Extended data,  
S3). In the presence of substantial overdispersion (k = 0.1),  
backward tracing is expected to avert 2–3 times more G3 cases  
than it does in a less-dispersed outbreak (k = 0.5).

Discussion
Using a simple branching process model, we showed that back-
ward contact tracing has the potential to identify a large propor-
tion of infections because of the observed overdispersion in 
COVID-19 transmission. For each index cases detected, forward 
tracing alone can, on average, identify at most the mean number 
of secondary infections (i.e. R). In contrast, backward trac-
ing increases this maximum number of traceable individuals by  
a factor of 2–3, as index cases are more likely to come from clus-
ters than a case is to generate a cluster. Furthermore, backward 
tracing contributes to epidemiological understanding of high-
risk settings because transmission events with a common source 
are more likely to be identified. While standard tracing mostly 
focuses on forward tracing3,4, there has been increasing interest in a  
possible combination of forward and backward tracing to  
control COVID-1913,19. Our results provide further evidence for 
this approach by quantifying the possible benefit of backward  
tracing, especially when the offspring distribution is highly  
variable, as is the case with SARS-CoV-2.

There are a number of operational challenges to implementing 
such contact tracing approaches. Since the number of contacts 
that lead to transmission is likely to be only a fraction of total 
contacts experienced by detected cases, expanding the coverage 
of contact tracing may involve a substantial logistical burden20,21.  
With a longer timeline of contact history to be interviewed, 
recall bias may affect the success rate of backward tracing. In 

Table 1. Parameter notations and values assumed in simulation.

Parameter Notation Assumed value in Figure 2 
and Extended data, Figures 
S1 and S218

Reproduction number R 1.2, 2.5

Overdispersion parameter k 0.2, 0.5

Relative reduction in transmission due to quarantine c 0.2 – 1.0

Probability of identifying the primary (G0) case by 
backward tracing

b 0.5, 0.8

Probability of identifying each offspring of an already 
identified case

q 0.0– 1.0

Probability of a G1 case identified by surveillance 
independently of contact tracing

d 0.1, 0.2
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practice, interviewed cases might be asked not only for specific 
individuals they know to have contacted but also for a history 
of locations or events visited, as happens during outbreak inves-
tigations so that those who were present can be notified and/or 
tested. Backward tracing can in effect be viewed as an outbreak 
investigation process in which new cases and their contacts 
can be routinely linked via their shared exposure events, sup-
ported by cross-referencing over epidemiological, diagnostic and  
quarantine datasets, with additionally identified infections trig-
gering further tracing. Due to the difficulty in determining the 
direction of transmission, backward tracing may find a cluster 
of cases rather than a single primary case. However, our results 
still apply as long as subsequent forward tracing is conducted for  
all of the identified cases.

Our model makes some simplifying assumptions. Delays in  
confirmation and tracing were such that only generation-2 (G2) 
cases were assumed to be traced and quarantined before becom-
ing infectious. In reality, cases are identified at different points in 
time and the reduction in infectiousness may be partial if cases 
are quarantined after becoming infectious (which can be a con-
cern for backward tracing with an additional generation to trace).  

To allow intuitive comparison, the effectiveness of tracing was 
measured by the proportion of G3 cases averted given an index 
case detected by surveillance, and long-term dynamics were 
not considered. We believe our focus on assessing the effective-
ness of a single practice of contact tracing triggered by a detected 
case is more relevant to operational-level decision making given 
finite resources. We also did not consider in our model that  
independently detected multiple index cases may have the same 
primary case, which can cause duplicated effort of backward  
tracing. However, such duplication may be minimised if infor-
mation of each index case is shared among health officials;  
moreover, overlapping backward tracing still has a benefit 
because it increases confidence in the identification of primary  
cases or infection settings.

With these limitations, our results suggest a significant poten-
tial benefit to backward tracing, which should be balanced 
against finite resources. Because backward tracing is opera-
tionally a set of forward tracing measures targeting multiple G1  
cases in parallel, additional effectiveness requires a propor-
tional amount of effort, in addition to the ‘overhead’ investiga-
tion effort to identify other G1 cases. Cost-effectiveness analysis 

Table 2. Characteristics of transmissions from a primary case identified by backward contact tracing 
for different combinations of the reproduction number (R) and overdispersion parameter (k).

Reproduction 
number (R)

Overdispersion 
parameter (k)

Mean number of 
transmissions from 

primary case (𝔼(x | G0))
Probability 
(x ≥ 5 | G0)

Probability 
(x ≥ 10 | G0)

Probability 
(x ≥ 25 | G0)

0.8

0.1 9.8 67% 39% 7%

0.2 5.8 49% 18% 0.7%

0.3 4.5 38% 9% 0.1%

0.4 3.8 30% 5% 0.02%

0.5 3.4 25% 3% 0.003%

1.2

0.1 14.2 77% 53% 17%

0.2 8.2 62% 32% 4%

0.3 6.2 53% 20% 0.9%

0.4 5.2 45% 13% 0.2%

0.5 4.6 40% 9% 0.07%

2.5

0.1 28.5 88% 74% 43%

0.2 16.0 81% 59% 21%

0.3 11.8 75% 48% 11%

0.4 9.8 71% 40% 6%

0.5 8.5 67% 34% 3%
𝔼(x | G0): the mean number of offspring generated by a primary case identified by backward tracing (G0 case). Note that this is 
larger than the mean number of offspring of a random case.

Probability (x ≥ n | G0): the probability that the number of offspring generated by a G0 case is n or greater.
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Figure 2. The estimated effectiveness of forward and backward contact tracing for different parameter values.  Left panels 
(A, D, G): the effectiveness (the proportion of G3 cases averted) of forward tracing alone; middle panels (B, E, H): the effectiveness of a 
combination of forward and backward tracing; right panels (C, F, I): incremental effectiveness by combining backward tracing with forward 
tracing. Colours represent the relative reduction in transmission from G2 cases if traced and held in quarantine. R: the reproduction 
number; k: overdispersion parameter; q: proportion of secondary infections caused by a detected case successful traced; c: relative 
reduction in transmission from quarantined cases; b: probability of successful identification of the primary case; d: probability of detection of  
generation-2 (G2) cases independent of contact tracing.
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Figure 3. The estimated absolute number of generation-3 (G3) cases averted by forward and backward contact tracing. Left 
panels (A, D, G): the number of cases averted by forward tracing alone; middle panels (B, E, H): the number of cases averted by a combination 
of forward and backward tracing; right panels (C, F, I): additional cases averted by combining backward tracing with forward tracing. Colours 
represent the assumed reproduction number R. R: the reproduction number; k: overdispersion parameter; q: proportion of secondary 
infections caused by a detected case successful traced; c: relative reduction in transmission from quarantined cases; b: probability of 
successful identification of the primary case; d: probability of detection of generation-2 (G2) cases independent of contact tracing.
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combined with finer-scale dynamic modelling would help further  
identify the conditions under which backward tracing is most  
efficient and feasible.

Data availability
Underlying data
All data underlying the results are available as part of the article  
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Extended data
Zenodo: akira-endo/COVID19_backwardtracing: Implication of  
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60% success rate of tracing and 60% relative reduction  
in transmission during quarantine.
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In the study, the authors use a branching process model to explore the implication of combining 
backward contact tracing with forward contact tracing for control of COVID-19. They use the 
model to estimate: (i) the mean size of an identified cluster in backward contact tracing; (ii) the 
probability of identifying a large cluster by looking at the tail probabilities of the offspring 
distribution; (iii) assess contact tracing effectiveness, measured by generation-3 (G3) cases 
averted. With the observed overdispersion SARS-CoV-2 transmission, the findings suggest 
backward contact tracing can be an effective tool for outbreak control. 
  
I found the manuscript to be very clear and concise. The study premise is well motivated and the 
methodological approach is appropriate. Sufficient details are provided, via the manuscript and 
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supporting code, to enable others to undertake a similar analysis. 
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Abstract 
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Final sentence: Suggest amending “of overdispersion as was observed” to “of overdispersion as is 
observed”. 
 
Introduction 
Para 1, L5-8: The sentence beginning “By identifying…” repeats, in my view, much of the 
information given in the opening sentence and could be removed. 
 
Para 2, L9: Amend “upper bound of incubation period” to “upper bound of the incubation period”. 
 
Para 4, L4: Propose repositioning the phrase “using a simple branching process model” to the first 
line, following “In the present study”. 
 
Methods 
Check the first usage of G2 and G3 and that the acronyms are introduced alongside the full phrase 
(i.e. generation-2 (G2), generation-3 (G3)). 
 
Simulation subsection, Para 2, L5: Replace “generation-3” by G3. 
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Simulation subsection, Para 4, Equation for ΔF+B: I think there is a typo with regards to the 
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Results 
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been encountered as the pandemic continues. For example, user uptake and retention with digital 
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Table 1: As Figure S2 uses d=0.5, should the assumed values for d listed be expanded to “0.1, 0.2, 
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the caption title (e.g. “The estimated proportion of generation-3 (G3) cases averted by forward and 
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