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Abstract

In cluster randomized trials (CRTs), the outcome of interest is often a count at the cluster level. 

This occurs, for example, in evaluating an intervention with the outcome being the number of 

infections of a disease such as HIV or dengue or the number of hospitalizations in the cluster. 

Standard practice analyzes these counts through cluster outcome rates using an appropriate 

denominator (eg, population size). However, such denominators are sometimes unknown, 

particularly when the counts depend on a passive community surveillance system. We consider 

direct comparison of the counts without knowledge of denominators, relying on randomization to 

balance denominators. We also focus on permutation tests to allow for small numbers of 

randomized clusters. However, such approaches are subject to bias when there is differential 

ascertainment of counts across arms, a situation that may occur in CRTs that cannot implement 

blinded interventions. We suggest the use of negative control counts as a method to remove, or 

reduce, this bias, discussing the key properties necessary for an effective negative control. A 

current example of such a design is the recent extension of test-negative designs to CRTs testing 

community-level interventions. Via simulation, we compare the performance of new and standard 

estimators based on CRTs with negative controls to approaches that only use the original counts. 

When there is no differential ascertainment by intervention arm, the count-only approaches 

perform comparably to those using debiasing negative controls. However, under even modest 

differential ascertainment, the count-only estimators are no longer reliable.
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1 ∣ INTRODUCTION

Randomized controlled trials are the gold standard for evaluating the efficacy of health 

interventions. Randomization makes comparison groups as similar as possible in all factors 

except for the intervention under study and provides a basis of nonmodel based inference. 

When an intervention is delivered to groups of individuals, for example, in neighborhoods, 

or may have a community-wide health impact, randomization of the intervention necessarily 

occurs at the group, rather than individual, level. Such a trial is termed a cluster randomized 

trial (CRT).1 The nonindependence of individuals within each cluster in CRTs causes 

statistical inefficiency—the “design effect”—necessitating inflation of the sample size to 

achieve power equivalent to an individually randomized trial.1-3

In many CRTs, outcome measurements are made at the cluster—rather than individual—

level for a variety of reasons. For example, counts of events across a cluster may be collected 

by existing or designed surveillance systems. For CRT count outcome data, common 

estimators of the intervention effect include estimation of absolute and relative rate 

differences, usually based on demographic information on relevant population years of 

observation, or population size, per cluster.1 When adjustment for cluster-level covariates is 

desirable, model-based regression modeling approaches are often used, including marginal 

generalized estimating equation (GEE) approaches and mixed effects models with random 

effects at the level of the cluster. The latter models can be extended to allow for individual-

level information.

In many situations, these standard approaches require modification. For example, in settings 

where few clusters are available for randomization, model-based estimation and inference 

may be less accurate and require small sample size adjustments.1 In such cases, a 

randomization-based strategy (eg, permutation tests) presents an attractive alternative. 

Furthermore, population-based denominators may sometimes be unavailable or not 

appropriate. The latter can occur when the count ascertainment system does not cover the 

entire cluster populations, perhaps due to access to care issues. The statistical analysis then 

depends solely on randomization balancing the unobserved population denominators across 

intervention arms. This risks unobserved bias—particularly in unblinded studies—due to 

differential ascertainment coverage across arms that will confound any intervention effect.

As noted, it is possible to estimate and test an intervention effect using only cluster-level 

case counts given intervention randomization. Here, we discuss such inference, focusing on 

the relative risk and its permutation distribution (under permuted intervention assignments). 

We subsequently consider the impact of differential ascertainment bias and introduce a 

method to remove, or reduce, such bias through the use of negative controls.4 We discuss 

briefly the required properties for a valid negative-control count. We use simulations to 

address bias and precision comparisons between the various methods.
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An example of a design that explicitly uses negative controls is the test-negative design 

(TND) that was recently extended to allow for cluster randomization of an intervention.5 

Test-negative designs are explicitly used to address ascertainment bias caused by differential 

health-care seeking behavior.6,7 We thus interpret our findings in the context of cluster 

randomized TNDs with analytic methods that either only use case count data or use negative 

control (in addition to case count) information. Test-negative designs also directly 

accommodate the absence of population-level denominator information underlying the 

observed counts of interest.

These issues are motivated by the World Mosquito Program's ongoing balanced parallel-arm 

Cluster Randomized Test-Negative Design (CR-TND) trial to evaluate the efficacy of 

Wolbachia-infected mosquitoes in reducing the burden of dengue transmission in 

Yogyakarta City, Indonesia. In this study, Yogyakarta City, and its population of 

approximately 400,000, was divided into 24 contiguous clusters each measuring 

approximately 1 km2 in size but with varying population density and socioeconomic status. 

Twelve of the clusters were randomly assigned to an intervention arm that received releases 

of Wolbachia-infected mosquitoes. Wolbachia successfully transinfected in nonnative hosts 

such as Aedes aegypti mosquitoes, the primary vectors of dengue, have been shown to 

disrupt the transmission of dengue and other flaviviruses by minimizing virus replication 

within the vector.8 The remaining 12 clusters were assigned as control clusters. Count 

ascertainment depends on individuals seeking care at puskesmas (community health clinics) 

who present with general symptoms consistent with the clinical case definition of dengue. 

Such individuals who consent to enroll in the trial are subjected to laboratory testing for 

dengue, which determines their test-positive (case) or test-negative (control) status. The trial 

has been described in greater detail elsewhere.9,10

2 ∣ DIRECT COMPARISON OF COUNTS IN THE ABSENCE OF 

POPULATION DENOMINATORS

We consider here a CRT for which the outcome is measured at the cluster level and 

comprises of a count of a number of “events" in each cluster. For example, the counts could 

represent the number of incident dengue infections over the study period as obtained through 

some well-defined ascertainment system. We let Aj denote the observed count in the jth 

cluster assigned to the intervention and, analogously, Gj is the count in the jth control cluster. 

Then, AT and GT are the total sum of the j cluster-level case counts (Aj, Gj) in the treatment 

and control arms, respectively. That is, AT = ∑j = 1
m  Aj and GT = ∑j = 1

m  Gj, where we 

assume, for convenience, that m clusters are randomly assigned to both the intervention and 

control arms.

Given randomization, differences in the cluster counts between the intervention and the 

control arms should only arise through the intervention so long as case ascertainment is not 

differentially applied across arms. In particular, the underlying population denominators for 

a rate should be balanced across arms. Thus, to test the null hypothesis that there is no 

difference in the rate of case counts between the intervention and control arms, we can use 

the test statistic in Equation (1).
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T = ∑Aj − ∑Gj
= AT − GT

(1)

With small numbers of clusters, we focus on the permutation distribution of T (across all 

permutations of clusters' intervention assignments). In the simple case considered here, there 

are 
2m
m  possible intervention assignments and computation of an estimate for each of these 

(while holding each cluster count fixed) yields the permutation distribution that can form the 

basis of randomization inference. It is immediate that EP[AT] = EP[GT] = nD/2, where EP 

refers to the expectation under the permutation distribution and nD is the total of all counts 

across all clusters, that is, AT + GT, held fixed over all permutations. Furthermore, from 

finite sampling methods, VarP(AT) = mVD/2 where VD is the variance of the combined 

counts A1, … , Am, G1, … , Gm in the intervention and control clusters combined, with this 

variance calculated using (2m − 1) in the denominator. This follows since, for a random 

permutation, the Aj counts are simply randomly selected from the combined counts across 

all clusters.

Thus, EP[T] = EP[AT] − Ep[GT] = 0, and the permutation variance of T is just VarP(T) = 

2mVD. Thus, to evaluate the null hypothesis of no intervention effect we can either use the 

full permutation distribution or approximate such an approach by comparing a standardized 

statistic, T ∕ 2mV D—using an appropriate estimate of VD—to a t distribution with the 

appropriate number of degrees of freedom.

VD can be simply estimated by the empirical variance of the Ajs in the intervention clusters 

or the Gjs in the control clusters (or the variance of the counts combined across both arms). 

Since the arms contain the same number of clusters, a simple average of these two arm-

specific variance estimates could be used, leading to the so-called pooled variance estimator 

for the two-sample t test with 2(m − 1) as the appropriate number of degrees of freedom. 

The combined variance, and, to a lesser extent, the pooled estimator are likely to be biased in 

estimating VD in the presence of an intervention effect. This suggests an alternative 

approach when using the permutation distribution, or its approximation, as the basis for 

confidence intervals, which we discuss below.

We now turn to estimation of λ, the relative risk comparing intervention and control arms. 

One can think of λ as the ratio of the underlying rates that generates the cluster counts in 

each arm. Alternatively, λ is simply the ratio of the mean of the cluster counts across the two 

arms. Here, we focus on the estimator λR = AT/GT = AT/(nD − AT), where R simply stands 

for ratio (of the counts). For confidence intervals, we move to the symmetrically distributed 

version, log(λR). By definition, EP log(λR) = 0 at the null. Away from the null, we need to 

evaluate the permutation distribution of the log(λR) assuming an intervention effect. Note 

that the delta method can be used to approximate the permutation variance of 

log(λR) ≈ (16 ∕ nD
2 )(m ∕ 2)V D.

Note that the intervention only affects the counts A1, … , Am by assumption. These are each 

replaced in turn by A1
∗, … , Am

∗  which reflect altered counts in the intervention clusters. For 
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large populations, Aj
∗ ≈ λAj ≈ λAj for the intervention clusters, assuming that the 

intervention effect is the same for all clusters. The common modification of the A1, … , Am 

has two immediate implications: first, under the permutation distribution, EP log(λR) 

« log(λ) and second, there is no change to the variance formula log(λR) ≈ (16 ∕ nD
2 )(m ∕ 2)V D

since all count ratios for different permutations are shifted by approximately log(λ).

However, away from the null, we have to modify the estimates of nD, VD due to the 

replacement of each Aj with Aj
∗. The necessary adjustment is achieved by simply increasing 

the observed Aj
∗s by the common factor 1/λR to obtain an estimate of Aj (in the j 

intervention clusters), en route to an estimate of nD, VD as at the null.

3 ∣ DIFFERENTIAL CASE ASCERTAINMENT

A fundamental threat to the validity of the approach of Section 2—even with randomization

—arises when there is differential “counting” methods across the two arms. In such cases, 

when passive surveillance approaches are used to generate the necessary counts, differential 

case ascertainment may occur across treatment arms. For example, individuals' health-care-

seeking behavior may be differential based on knowledge of their intervention assignment 

and this will affect any ascertainment system that is based on attendance in some health-care 

setting. This behavior is particularly relevant in trials where blinding of the participants 

and/or investigators to the intervention is infeasible for logistical, ethical, or other reasons. 

We refer to this phenomenon as differential count ascertainment. We stress that this threat to 

validity persists even if the relevant denominator information is known for the cluster counts.

We quantify this effect through the relative propensity π of treated and untreated populations 

to “be counted”, for example, seek health care. We allow this propensity to differ across 

treatment arms denoted by E here, for convenience. That is, E refers to individuals in the 

intervention arm and Ē to those in the control arm. Then we let

αRA = Pr(A = 1 ∣ E, D)
Pr(A = 1 ∣ Ē, D) ,

where A stands for ascertainment, RA for relative ascertainment, and the binary indicator D 
denotes a “case” that would be counted if ascertainment was guaranteed.

It is obvious that with the comparison of counts across arms as described in Section 2, the 

effects of risk reduction and relative ascertainment are completely confounded and could not 

be disentangled without direct knowledge of αRA. One approach to address this fundamental 

bias is through use of negative controls. Negative controls, commonly used to calibrate 

measurements in laboratory experiments, have recently been reexamined for 

epidemiological applications.4 The key requirements for a useful negative control outcome is 

that (a) no intervention effect is expected on the negative control outcome and (b) negative 

control outcomes must be affected by identical relative ascertainment effects as our outcome 

of interest. Note that the latter assumption allows differential ascertainment across 

intervention arms but this must occur in identical fashion as to what occurs for the outcome 
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of interest as quantified by αRA. It is exactly this assumption that allows estimation of αRA 

and subsequent removal of ascertainment bias in estimation of λ.

The second of these conditions may appear difficult to achieve in any practical intervention 

study. We nevertheless introduce exactly such an example in the context of what are referred 

to as TNDs.

3.1 ∣ The test-negative design

In infectious disease research, issues relating to differential case ascertainment, typically 

under the influence of differential health-care-seeking behavior, have been mitigated by the 

implementation of the TND. TNDs represent a variant on a traditional case-cohort design: 

studies enroll subjects who seek care for a clinical syndrome, defining those who test 

positive and negative for a pathogen of interest as “cases” and “controls,” respectively. 

Specifically, the popularity of the TND arose from its ability to use existing surveillance 

systems (eg, clinic data) to estimate seasonal influenza vaccine effectiveness while 

minimizing bias due to health-care-seeking behavior. A nuanced discussion of this design 

can be found in the recent literature6,11,12 that includes a formal analysis of causal diagrams 

associated with the design. The design and analytical methods were recently extended to 

cluster randomized interventions,9,10 yielding the so-called cluster randomized test-negative 

design (CR-TND). A recent review of TNDs to mosquito vaccine effectiveness discusses 

348 such studies.13

In a TND, test-positives play the role of our case counts in Section 2 and are ascertained 

through attendance, diagnosis, and testing at a clinic or other health-care setting. 

Subsequently, a critical component of the TND is the definition of test-negatives. As 

negative controls, the objective is to identify a disease that is unaffected by the intervention 

of interest and symptomatically similar to the disease outcome of interest. Upon recruitment 

at a clinic, a highly sensitive and specific laboratory test is used to distinguish test-positive 

cases (those with the disease of interest) from the test-negative controls (those without). The 

full extent of these assumptions have been critically discussed in the literature.5,6 The key 

property of negative controls regarding differential ascertainment is explicitly achieved since 

participants do not know their disease status until they are ascertained and so it theoretically 

not possible for the test-positives and test-negatives to suffer from differential relative 

ascertainment, that is, the relative ascertainment αRA is the same for Ds (test-positives) as 

for Ds (test-negatives).

Using the cumulative notation provided in Table 1, that describes totals across clusters, the 

negative control assumption that the intervention has no impact on test-negatives leads to the 

proportion of test-negative individuals among the intervention care-seeking population (BT/

NIO) being approximately equivalent to the proportion of test-negative individuals among 

the negative control care-seeking population (HT/NCO). Note that, in this context, NIO and 

NCO represent the unobserved denominators discussed in Section 2. It is then possible to 

approximate the natural, but unobserved, estimate of the relative risk of disease across the 

intervention and control populations ((AT/NIO)/(GT/NCO)) by substituting the ratio of test-

negative individuals from the intervention and control subpopulations (HT/BT) as a proxy for 
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the unobserved relative sizes of the care-seeking intervention and control denominators 

(NIO/NCO). This results in the simple TND estimator, λTND = ATHT/BTGT.6

3.2 ∣ Estimation of differential case ascertainment

Note that the assumptions of an appropriate negative control allow for estimation of the 

common relative ascertainment parameter αRA. The first assumption indicates that the 

relative counts of test-negatives in the intervention and control arms is not affected by the 

intervention which has a null effect on the negative control outcome. The second assumption 

then yields that the relative ascertainment of test-negatives is the same as for test-positives 

representing the outcome of interest.

Consider the scenario in which individuals within the intervention arm are ascertained 

differentially from individuals within the control arm. Focusing on the test-negatives, our 

assumptions show that αRA = Pr(A = 1 ∣ E, D) ∕ Pr(A = 1 ∣ Ē, D). Provided the other CR-TND 

assumptions hold,5 and with the assumption of no intervention effect on the negative 

controls, αRA can be estimated by the identical approach previously outlined for case count-

only estimation of the RR, that is, αRA = BT ∕ HT . This provides an unbiased estimator of 

the relative ascertainment parameter.

The variance of αRA can be estimated exactly as we described for the intervention effect 

estimate in Section 2: Varp(αRA) ≈ (16 ∕ nD
2 )(m ∕ 2)V D, where V D is the variance of the 

clusters' test-negative counts combined across intervention arms and nD = BT + HT . To 

assess whether ascertainment (of the negative controls) differs across arms, a suitable test 

statistic is, again, the difference in counts, T = BT − HT, scaled by the variance 

Varp(T ) = 2mV D, where V D is the population variance of the 2m test-negative counts, and 

compared with a t distribution with 2(m − 1) degrees of freedom (assuming we use a 

variance estimate that averages variability across the two arms as described in Section 2). 

This test is of interest in its own right when negative control information is available as it 

assesses differential ascertainment effects across arms independently of any intervention. 

Such information may be useful in planning and interpreting future trials.

3.3 ∣ Estimating the intervention effect, λ, in the presence of differential case 
ascertainment

When αRA ≠ 1, the estimated intervention effect given by λR is necessarily biased, as noted 

above, that is, the estimate is shifted multiplicatively by αRA (or, additively, by log αRA on 

the log scale). Without further information, this reflects the vulnerability to bias of the 

“count-only” approach of Section 2. However, knowledge of the negative control counts 

allows estimation of αRA as shown in Section 3.2. Thus, a “debiased” intervention relative 

risk can then be estimated by λ = λR × αRA
−1 =

ATHT
GTBT

. This, of course, is precisely the simple 

TND estimator (λTND) proposed for all TNDs including the CR-TND. Randomization-

based inference associated with this estimator is presented in previous work.9
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4 ∣ SIMULATIONS

Data-based simulations evaluate the performance of the proposed estimation methods. As a 

practical basis for simulations, historical counts of dengue from 24 contiguous clusters 

within a city in Indonesia collected from 2003 to 2014 were divided into nine consecutive* 

2-year periods. Other febrile illnesses (OFIs) with similar presenting symptoms will be used 

as negative controls. Counts of OFIs for each of the 24 clusters from 2014 to 2015 provided 

the historical distribution of these negative controls. Exact distributions of these historical 

counts can be found in supplemental material previously published.9 For each historical 

period, complete random assignment was performed such that m = 12 of the total 24 clusters 

were assigned to a putative intervention and the remainder to control.

Instead of building an exhaustive permutation distribution of the more than two million 

distinct intervention allocations for each time period, each simulation assigned intervention 

according to the same 10,000 distinct potential intervention allocations and examined the 

results of these intervention allocations across all nine historical time periods.

For a specific period, the distribution of the case counts (nD) and negative control counts 

(nD) among clusters is assumed to follow multinomial distributions parameterized by the 

observed historical cluster-level proportions of cases (or negative controls) that fell in cluster 

j, pDj, or pDj, respectively. Given an intervention effect λ, pDj∗ = λpDj for all clusters in the 

intervention arm with the other proportions in the control cluster left unchanged. These 

adjusted proportions are then standardized such that 

∑i = 1
2m I(E = 1) × λpDi + {1 − I(E = 1)} × pDi = 1. The negative control distribution is 

unaffected by the intervention by definition.

To allow for potential differential ascertainment by intervention arm, we assume that αRA 

can be applied in a similar manner except that it also modifies the distribution of negative 

controls. Since αRA is a relative measure of differential ascertainment, we modify all case 

counts and negative control counts within the intervention arm only. After this modification, 

the proportions are again standardized such that the proportions of case counts and negative 

control counts each sum to one across all clusters.

The marginal ratio of cases (Ds) to negative controls (Ds) was 1:4, with 1000 cases and 4000 

controls selected for each simulation. Five†intervention relative risks (λ = 1, 0.8, 0.6, 0.4, 

0.2) are examined and four different levels of differential ascertainment (αRA = 1, 0.95, 

0.85, 0.5). The performance of the count ratio method of Section 2 (λR) was compared with 

the bias-adjusted method of Section 3 (λTND) using the variance estimates noted earlier.

For model-based comparisons we also consider mixed effects models and GEE. For the 

estimation of the relative risk using only case counts in the absence of a population-based 

denominator, the GEE and mixed effects models assume Poisson distributed counts and use 

*There are two exceptions to the consecutive 2-year period counts. Data were missing in 2004 and 2009 which were ignored in 
making a 2-year time period in both cases.
†The supporting material also shows results for two additional intervention relative risks λ = 0.5, 0.3.
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a canonical log link. To estimate the relative risk with the inclusion of negative controls 

counts, the GEE and mixed effects models assume binomially distributed counts and use a 

canonical logit link. All mixed effects models include a random intercept for each cluster 

and all GEEs assume an exchangeable correlation structure.

All simulations and subsequent analyses were performed in R version 3.6.1 “Action of the 

Toes”.14 GEE models were fit using “geeglm” from the “geepack” package.15-17 Mixed 

effects models used “glmer” from the “lme4” package.18 Plots were generated using the 

“ggplot2” package.19 All additional simulation code is available as a GitHub repository 

managed by the first author.‡

5 ∣ RESULTS

5.1 ∣ Detecting an intervention effect

Figures 1 to 3 compare the performance of the count ratio estimator (λR) to the simple 

debiased estimator (λTND), as well as the mixed effects, and GEE approaches. The 

simulation results are averaged across the 10,000 unique intervention allocations applied to 

each of the nine different observed historical time periods. Thus, the simulations reflect 

overall performance over nine somewhat different scenarios. These results are summarized 

numerically in Tables S1 to S3 included in the Supporting Material.

Power, shown in Figure 1, is estimated as the proportion of permuted allocations that return 

a significant test result at a significance level of .05. Significance for the count ratio method 

is determined on the basis of the test statistic proposed in Equation (1), standardized by its 

estimated variance, compared with a t-distribution with 2(m − 1) degrees of freedom. In the 

case of the simple ascertainment debiased estimator (λTND), a significant result is 

determined by the absence of the null value in the 95% confidence interval around the 

estimated intervention RR, as performed on the log scale. Finally, significance is determined 

by the model-based coefficient P-value corresponding to intervention in the mixed effects 

and GEE models. The power for each intervention and differential ascertainment scenario is 

relatively stable for the approaches that make use of both count and negative control 

information (Figure 1B). The count-only approach shows the most desirable estimated type I 

error in the setting where there is no differential ascertainment (power = 0.058). However, it 

seriously deteriorates for a high level of differential ascertainment. This is explained by the 

introduced bias in estimation. This does not affect the approaches that use the negative 

control information (Figure 1B), although there is some anticonservativeness in the simple 

TND estimator for a high level of differential ascertainment. The increasing power of the 

count-only methods (Figure 1A) for any fixed value of λ is an artifact of the fact that, for the 

simulations considered here, the intervention effect and the differential ascertainment work 

in the same direction (of reducing counts in the intervention clusters); for simulations with 

αRA > 1 (not shown here), the power of the count-only approaches substantially worsens as 

differential ascertainment widens.

‡https://github.com/sdufault15/case-only-crtnd
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Bias (Figure 2) is estimated as Ep[λ] − λ. The estimated bias is reported on the scale of the 

relative risk for inter-pretability. In the setting of no differential ascertainment (αRA = 1), the 

estimators perform similarly, as expected, as most of the estimators enjoy zero asymptotic 

bias (note that the mixed effects model estimates a cluster-specific odds ratio that is not 

identical to the marginal odds ratio targeted by GEE and the other methods). The small gain 

when using the count ratio estimator is less than 1% which is negligible. Furthermore, as 

differential ascertainment increases, the count-only estimators (Figure 2A) are unable to 

reliably estimate the intervention effect. The simple TND estimator, binomial GEE, and 

binomial mixed effects methods (Figure 2B) all maintain low bias (bias ≤ 0.05).

Finally, coverage (Figure 3) represents the proportion of estimated 95% confidence intervals, 

which contain the true intervention relative risk. Again, in the absence of differential 

ascertainment, the count ratio estimator (λR) enjoys slightly improved coverage across each 

of the examined intervention RRs (≈ 93.4% coverage). As expected, however, the coverage 

deteriorates as the bias from differential ascertainment increases (Figure 3A). Slight 

deterioration in coverage as differential ascertainment worsens was observed across each of 

the estimators, though for the approaches accounting for negative controls (Figure 3B) 

coverage fell only to 90%.

5.2 ∣ Detecting differential ascertainment

As described in Section 3, the count ratio estimator can be used to estimate the relative risk 

of differential ascertainment (αRA) using the negative control counts, when available. Table 

2 presents the bias, power, and coverage statistics for estimation of αRA when the true αRA 

is null (αRA = 1), low (αRA = 0.95), medium (αRA = 0.85), and high (αRA = 0.5). As the 

distribution of the negative controls is assumed unaffected by the intervention, these results 

are true for any size of intervention effect λ. Despite the low bias in estimation, good 

coverage, and type I error (ie, power when αRA = 1), the power to detect differential 

ascertainment away from the null (ie, αRA ≠ 1) is necessarily low except with high 

differential ascertainment.

Note that, in Table 2, when αRA = 1 (ie, at the null of no differential ascertainment), the 

power represents the Type I error and should be complementary to the coverage rate in that 

the two values should sum to 1. However, for the count ratio estimator, hypothesis testing is 

based on the normalized t statistic of Section 3, whereas coverage is based on the confidence 

interval associated with the ratio estimator of the relative ascertainment αRA, also introduced 

in Section 3. Thus, the corresponding entries only approximately add to one.

6 ∣ CONCLUSIONS

The count-only approaches for CRTs perform comparably in estimation of an intervention 

relative risk compared with alternatives that use additional negative control information 

(albeit at reduced power), but only in the absence of differential ascertainment. The count-

only methods have reasonable bias and coverage properties (near 94%) and comparable 

power while maintaining a desirable type I error rate. These properties depend entirely on 

randomization and so cannot be used directly when the clusters are not randomized.
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Furthermore, the performance of the count-only approaches falter in the presence of even 

relatively low-differential ascertainment (αRA = 0.95) as demonstrated by increases in bias 

and decreases in coverage. By contrast, methods that adjust for differential ascertainment by 

incorporating proposed negative control counts maintain desirable performance even under 

major differential ascertainment. Thus, the count-only estimators should only be used when 

there is no other alternative (despite this being currently standard) and should be treated with 

considerable caution if there is any possibility of differential ascertainment. The use of 

negative controls in CRTs provides an attractive option to remove, or reduce, the effect of 

differential ascertainment and should be used more widely.

Potentially, the results have more significance when considering stepped wedge designs 

rather than the parallel arm scenario considered here. Currently, almost all stepped wedge 

studies only consider an outcome of interest and do not employ negative controls to remove 

bias. Analytical results for the stepped wedge design in this context will be provided 

elsewhere.

Finally, determining whether differential ascertainment exists by the estimation approach 

proposed here is informative but lacks sufficient power to detect moderate differences by 

intervention arm. As such, determining whether a setting is appropriate for future estimation 

by the count-only approach will likely return uninformative results unless ascertainment is 

exceptionally differential (αRA ≤ 0.5 or αRA ≥ 2.0).

6.1 ∣ Recommendations

The findings suggest two key recommendations. First, in CRTs where only counts are 

available for analysis, the proposed estimator is a viable option with desirable statistical 

properties. However, even with randomized interventions, it is only appropriately employed 

in settings where there is little to no differential ascertainment by intervention arm. This is 

likely most plausible under blinded intervention assignment. Second, in CRTs where 

differential ascertainment is likely or inevitable, negative control data are important for 

validity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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OFI other febrile illness

RA relative ascertainment

RR relative risk

TND test-negative design

TP test-positive
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FIGURE 1. 
The power, and Type I error rates, in testing departure from the null of no intervention effect 

based on various estimation methods for a range of relative risks (RR), over 10,000 

intervention allocations applied to each of nine historical time periods with 1000 cases and 

4000 negative controls (when applicable). Differential ascertainment (αRA) is allowed to 

increase in severity. A, Results from count-only methods in the absence of a population 

denominator. The mixed effects and generalized estimating equations (GEE) models assume 

the case counts are Poisson distributed and use the canonical log link. B, Negative control 

bias-adjusted results. The mixed effects and GEE models assume the case and negative 

control counts are binomially distributed and use the canonical logit link
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FIGURE 2. 
Bias in estimation of the intervention relative risk (RR) for various methods over 10,000 

intervention allocations applied to each of nine historical time periods with 1000 cases and 

4000 negative controls as differential ascertainment increases in severity. A, Results from 

count-only methods in the absence of a population denominator. The mixed effects and 

generalized estimating equations (GEE) models assume the case counts are Poisson 

distributed and use the canonical log link. B, Negative control bias-adjusted results. The 

mixed effects and GEE models assume the case and negative control counts are binomially 

distributed and use the canonical logit link
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FIGURE 3. 
95% confidence interval coverage based on estimation of the intervention relative risk (RR) 

for various methods over 10,000 intervention allocations applied to each of nine historical 

time periods with 1000 cases and 4000 negative controls as differential ascertainment 

increases in severity A, Results from the comparison of counts in the absence of population 

denominator. The mixed effects and generalized estimating equations (GEE) models assume 

the case counts are Poisson distributed and use the canonical log link. B, Bias-adjusted 

results. The mixed effects and GEE models assume the case and negative control counts are 

binomially distributed and use the canonical logit link
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TABLE 1

Stratification of population based on intervention status, infection, and health-care-seeking behavior

Seek care Do not seek care

Test-positive
cases

Test-negative
controls Not infected Total

Test-positive
cases

Test-negative
controls Not infected Total

Intervention (E) AT BT CT NIO DT ET FT NIU

Control (Ē) GT HT IT NCO JT KT LT NCU

Note: Adapted from figure 1 of Jackson and Nelson.7
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TABLE 2

Bias, power (type I error when αRA = 1), and 95% confidence interval coverage based on estimation of 

differential ascertainment by intervention arm from 10,000 permuted intervention allocations across nine time 

periods of historical data for a ratio of 1000 cases to 4000 negative controls

Bias Power Coverage

αRA = 1 0.0215 0.0583 0.935

αRA = 0.95 0.0207 0.0479 0.934

αRA = 0.85 0.0181 0.0443 0.935

αRA = 0.5 0.0108 0.6870 0.934
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