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Abstract23

24

Sea surface temperature conditions in the central-eastern tropical Pacific have indicated a mild El25

Niño event since October 2018, which currently continues throughout the spring of 2019. The global26

El Niño Southern Oscillation (ENSO) forecast consensus is that these generally weak warm patterns27

will persist at least until the end of the summer. El Niño and its impact on local climatic conditions28

in southern coastal Ecuador influences the inter-annual transmission of dengue fever in the region. In29

this study we use an ENSO model to issue forecasts of El Niño for the year 2019, which are then used30

to predict local climate variables, precipitation and minimum temperature, in the city of Machala,31

Ecuador. All these forecasts are incorporated in a dengue transmission model, specifically developed32

and tested for this area, to produce out-of-sample predictions of dengue risk. Predictions are issued33

at the beginning of January 2019 for the whole year, thus providing the longest forecast lead time of34

12 months. Preliminary results indicate that the mild and ongoing El Niño event did not provide the35

optimum climate conditions for dengue transmission, with the model predicting a very low probability36

of a dengue outbreak during the typical peak season in Machala in 2019. This is contrary to 2016,37

when a large El Niño event resulted in excess rainfall and warmer temperatures in the region, and38

a dengue outbreak occurred 3 months earlier than expected. This event was successfully predicted39

using a similar prediction framework to the one applied here. With the present study we continue our40

efforts to build and test a climate service tool to issue early warnings of dengue outbreaks in the region.41

42
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1 Introduction43

Climate is a major driver of dengue incidence and epidemics globally. Regional patterns of climate,44

which are influenced by the El Niño Southern Oscillation (ENSO) phenomenon, have been linked to45

recurring outbreaks of dengue in many locations (Anyamba et al., 2019; Huang et al., 2015; Lowe46

et al., 2017; Sippy et al., 2019; Vincenti-Gonzalez et al., 2018; Xiao et al., 2018). These studies have47

also used measures of local climate conditions, such as temperature, humidity and precipitation, to48

understand variations in dengue incidence (Huang et al., 2015; Sippy et al., 2019; Duarte et al., 2019;49

Zhang et al., 2019). In a series of previous studies (Stewart-Ibarra and Lowe, 2013; Lowe et al., 2017;50

Petrova et al., 2019) we demonstrated that climate information and in particular local seasonal climate51

and ENSO forecasts can be used to improve the prediction of dengue outbreaks in southern coastal52

Ecuador in El Oro Province, and more importantly, to extend the lead time of such predictions to53

several seasons in advance. Both temperature and rainfall are known to affect the physiology of the54

dengue vectors Aedes aegypti and Aedes albopictus mosquitoes in terms of their larval development55

and replication rates (Mordecai et al., 2017). The optimal temperature for dengue transmission has56

been found to be between 26-29◦C (Mordecai et al., 2017). The abundance or scarcity of rainfall can57

increase larval mosquito habitats depending on local access to piped water and local storage practices58

(Stewart Ibarra, Ryan and Beltran, 2013; Lowe et al., 2018). ENSO is known to affect climate patterns59

through atmospheric teleconnections (Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989; Rodó,60

Rodriguez-Arias and Ballester, 2006; Sarachik and Cane, 2010), and southern coastal Ecuador is typi-61

cally associated with heavy rainfall during and after El Niño events (Larkin and Harrison, 2002; Rossel62

and Cadier, 2009; Petrova et al., 2019). Moreover, due to the proximity of El Oro Province to the63

equatorial Pacific area where ENSO occurs, its impact on local temperature is also well-understood64

with increased temperature during and after the warm events (Aceituno, 1988; Bendix and Bendix,65

2006; Santos, 2006; Rossel and Cadier, 2009; Moran-Tejeda et al., 2016). Generally, the climatological66

precipitation and temperature rates are enhanced during El Niño years (Petrova et al. (2019); Figure67

1).68

Dengue is hyperendemic in coastal Ecuador and presents a high burden of disease, particularly in69

young people under 20 years of age (Stewart Ibarra et al., 2018). A dengue early warning system70

would allow the public health sector to better prevent and respond to dengue outbreaks, for example,71

through community mobilization, training of physicians, procurement of diagnostics and insecticides,72

and elimination of vector habitat (Stewart Ibarra et al., 2019). Every year the same number of cases73
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is expected as in previous years, as well as a peak in transmission during the warm and wet season74

(Stewart-Ibarra and Lowe, 2013), which is typically between January and May (Moran-Tejeda et al.,75

2016). Current epidemic surveillance practices consist of monitoring the seasonal evolution of dengue76

compared to the monthly mean incidence calculated using retrospective dengue case reports from the77

past 5 years (Lowe et al., 2017). Importantly, local climate and ENSO information is not included78

in these calculations. In order to improve the dengue forecast, in the last several years we designed79

and tested a prediction framework for dengue in El Oro Province and in its capital city of Machala,80

in which local minimum temperature, precipitation, and ENSO forecasts are used within a Bayesian81

hierarchical dengue model, to predict dengue outbreaks a few seasons in advance (Stewart-Ibarra and82

Lowe, 2013; Lowe et al., 2017; Petrova et al., 2019). These studies found that ENSO was the most83

important climatic predictor in the dengue model. In 2016, when one of the strongest El Niño events84

on record occurred (CPC, 2017), we tested the prediction framework in real time and managed to85

successfully issue probabilistic forecasts of dengue incidence in the city of Machala, from January to86

November 2016 (Lowe et al., 2017).87

In the present study, we similarly document a real-time forecast of the dengue season in 2019, fol-88

lowing the weak, indeed borderline El Niño event that developed at the end of 2018 and beginning89

of 2019. We define an El Niño event to occur when there are five consecutive 3-month periods with90

temperature in the Niño3.4 region that exceeds 0.5◦C. The aim of this study is to test the prediction91

system during a mild El Niño year in order to investigate the sensitivity of the system to the amplitude92

of the warm events, given the importance of ENSO in the dengue model.93

El Niño conditions have prevailed in the tropical Pacific since October 2018. As of June 2019, El94

Niño is still ongoing, with sea surface temperatures (SST) above average, especially in the eastern95

part of the basin. The wind patterns are also consistent with an El Niño event, with westerly wind96

anomalies in the western and central equatorial Pacific from January to May 2019 that propagated97

all the way to the eastern Pacific at the end of May (see the CPC ENSO diagnostic discussion for98

June). The main area of convection and precipitation has also shifted eastwards towards the central99

equatorial Pacific since January (CPC, 2019). The warm event is most likely to extend until the end100

of the summer (70% chance according to the CPC ENSO diagnostic discussion for June) and some101

models foresee the event lingering until the end of the year. SST anomalies over May-June have been102

∼ 1◦C in the central equatorial Pacific, ∼ 0.7◦C in the eastern Pacific, and ∼ 1◦C near the coastal103

regions of southern Ecuador. The upper-ocean heat content (0-300m depth) has also been above av-104

erage since early 2018 with a peak in October, while the thermocline has been anomalously deep in105

the eastern equatorial Pacific. Subsurface temperature anomalies across the whole equatorial Pacific106

4



have been positive with slight weakening over the past month, but they increased in the central part107

of the basin. All of these characteristics are consistent with a mild El Niño event.108

In the following sections, we describe the data and methods used to formulate the models, present109

the forecasts generated by the modelling framework, and discuss the implications of our findings for110

local decision making.111

112

2 Methods113

2.1 Study area114

Machala is the capital of El Oro Province, located in southern coastal Ecuador (projected 2019 popu-115

lation: 286,120, location: 3◦15’ S, 79◦57’ W, elevation: 9 meters). It features a tropical climate with116

a rainy (January-May) and dry (July-November) season (Figure 1b) with temperatures ranging from117

20.8 to 31.0◦ Celsius. The city and surrounding area are dominated by agricultural (banana, coffee,118

and cacao), aquacultural (shrimp), and mining industries; Machala is also a commercial shipping hub119

due to its proximity to Peru, the presence of a major port, and transportation routes (via the Pan-120

American highway or the Pacific coast).121

Machala has high burden of dengue, chikungunya, and Zika with strong seasonal patterns of ar-122

bovirus transmission (Stewart-Ibarra et al., 2017). Depending on the year, all four dengue serotypes123

(DENV 1-4) may be in co-circulation (Stewart Ibarra et al., 2018). Healthcare services for the diagno-124

sis of arboviral infections are readily available, with Ministry of Health clinics providing primary care125

and a large public health hospital (Hospital Teófilo Dávila, the reference hospital for the province)126

with more comprehensive healthcare in central Machala.127

128

2.2 Data129

2.2.1 Climate data130

Predictors in the ENSO model used for the prediction of SST in the Niño3.4 region [120◦-170◦W, 5◦S-131

5◦N] include zonal wind stress, surface and subsurface temperature in different parts of the equatorial132

Pacific Ocean. Zonal wind stress is obtained from the NCEP/NCAR reanalysis (Kalnay et al., 1996),133

SST from NOAA-OI-SST-V2 (available at www.esrl.noaa.gov/psd/), and subsurface temperature un-134
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til 2012 is from the Subsurface Temperature And Salinity Analyses by Ishii et al. (2005), archived at135

the National Center for Atmospheric Research, Computational and Information Systems Laboratory136

(www.rda.ucar.edu/datasets/ds285.3/), and from the Hadley Centre EN4.0.2 analyses data (Good,137

Martin and Rayner, 2013) afterwards.138

Local daily weather data, minimum temperature and precipitation in the city of Machala is derived139

from the Granja Santa Ines weather station (location: 3◦17’26” S, 79◦54’5” W, elevation: 10 m) and140

from the Hospital Teófilo Dávila weather station (location: 3◦15’35.2” S, 79◦57’12.9” W, elevation: 8141

m), both located in Machala and operated by the National Institute of Meteorology and Hydrology142

(INAMHI) of Ecuador.143

Monthly summary data (minimum, mean, maximum temperature and total precipitation) were cal-144

culated for each weather station. For modelling, summaries from Granja Santa Ines were used from145

January 2002 to December 2016, and summaries from Hospital Teófilo Dávila were used from January146

2017 to present.147

148

2.2.2 Disease surveillance data149

Data on the total monthly cases of dengue in Machala were provided by the Ministry of Health of150

Ecuador for the period January 2002 to present. Cases were diagnosed by clinical presentation, epi-151

demiological nexus, and laboratory diagnostics in some cases. Due to limited resources, only a subset152

of cases were confirmed by laboratory diagnostics (by ELISA) at the national reference laboratory153

(INSPI) in Guayaquil.154

155

2.2.3 Population data156

Annual population projections were obtained from the Ecuador National Statistics and Census Insti-157

tute (INEC). These projections are based on the 2010 National Census (Censosnd., 2017).158

159

2.3 ENSO forecast model160
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The ENSO model used here to predict SST in the Niño3.4 region in 2019 is the dynamics components161

model described in Petrova et al. (2017, 2020), as well as applied in our previous studies on dengue162

prediction in El Oro and Machala (Lowe et al., 2017; Petrova et al., 2019). The model is composed of163

unobserved components - trend, time-varying seasonal cycles, and four cycle components correspond-164

ing to inter-annual and decadal variability of SST in the Niño3.4 region, as well as of sets of predictor165

variables - SST, subsurface temperature and zonal wind stress from different regions in the tropical166

Pacific Ocean, which are also used at different lead times. The model has been successful in predicting167

retrospectively the ENSO events in the period 1970-2013 at a lead time of more than 1.5 years, and it168

predicted operationally the events thereafter with the exception of the 2017/18 La Niña event when169

the model predicted neutral conditions instead (Petrova et al., 2017, 2020). Forecasts of the Niño3.4170

index in 2019 were run using the observed data up until December 2018. In this way, the forecast for171

January 2019 is a one-month lead forecast, while the forecast for December 2019 is a 12-month lead172

forecast.173

174

2.4 Local climate forecasting175

Monthly minimum temperature (Tmin) and precipitation (precip) in Machala for 2019 were predicted176

using two unobserved components statistical models (Harvey and Koopman, 2000; Durbin and Koop-177

man, 2012). The two models have the same core structure, but different regression predictor variables178

are incorporated. The core structure is as follows:179

yt = µt + ψt + x′tδ + εt180

where yt is the dependent variable (Tmin or precip), µt is a trend, ψt is a time-varying seasonal cyclic181

component, x′t represents a regression predictor variable with coefficient δ, and εt is a noise term.182

Minimum temperature from January to December 2019 was forecast using the Niño3.4 SST forecasts183

from the ENSO model as regression predictors at 1 month lag time. We previously identified the184

highest correlation of 0.63 between these two variables at lag 1 (Petrova et al., 2019). Precipitation185

from January to December 2019 was then forecast using the Tmin forecasts obtained in this way as186

regression predictors at 1 month lag time. We similarly identified the highest correlation between the187

Tmin and precip variables of 0.42 at lag 1 (Petrova et al., 2019). As for the ENSO model, the trend188

and seasonal cyclic components are modeled as linear dynamic stochastic functions of time (Harvey189

and Koopman, 2000). More information about the components is given in (Durbin and Koopman,190
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2012). This type of models can be put in a state-space framework, in which all unknown parameters191

associated with the model components (e.g. initial trend, frequency and persistence of the cycle,192

variances, and the regression variable coefficients) are collected in state and disturbance vectors and193

estimated simultaneously in a dynamic way using the Kalman Filter (Kalman, 1960). The software194

packages STAMP, SsfPack and OxMetrics (Koopman, Shephard and Doornik, 2008; Koopman et al.,195

2010; Doornik, 2013) were used for the estimations of parameters and for forecasting.196

197

2.5 Dengue forecast model198

Following Lowe et al. (2017), a Bayesian hierarchical mixed model was fitted to counts of dengue cases199

from January 2002 to December 2018 using climate data and random effects, and used to produce200

probabilistic forecasts of dengue cases per month in 2019 (Stewart-Ibarra and Lowe, 2013; Lowe et al.,201

2013).202

yt ∼ NegBin(µt, k)

log(µt) = log(PT ′(t)) + α+ βt′(t) + γT ′(t) +
∑
δjxjt203

Briefly, dengue cases, yt, were assumed to follow a negative binomial distribution with mean µt204

and overdispersion parameter k. The model comprises a model offset (log population PT ′(t)), a ran-205

dom effect to account for seasonality βt′(t), t
′(t) = 1, ..., 12, using a first order autoregressive model,206

and exchangeable non-structured random effects for each year γT ′(t), T
′(t) = 1, ..., 17, to account for207

interannual changes in dengue risk attributable to unknown factors between 2002 - 2018, such as208

changes in vector control practices or the circulation of new serotypes and viruses (e.g. introduction209

of chikungunya in 2015 and Zika in 2016). The explanatory variables, xjt, included precipitation210

(x1t) and minimum temperature (x2t), lagged by one month with respect to dengue, and the Niño3.4211

index (x3t), lagged by three months with respect to dengue (i.e. two months with respect to the local212

climate). The model was trained using monthly dengue data from January 2002 - December 2018213

and observed climate variables (precipitation, minimum temperature and Niño3.4 index). The model214

was then used to produce forecasts for January to December 2019, using the Niño3.4 index forecasts215

and associated precipitation and minimum temperature forecasts (see methods above). Model pa-216

rameters were estimated in a Bayesian framework using Integrated Nested Laplace Approximation217

(INLA, www.r-inla.org), and posterior predictive distributions were generated by sampling from an218

approximated posterior of a fitted model (Lowe et al., 2017).219
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220

3 Results221

3.1 ENSO forecasts for 2019222

Figure 2 shows predictions of SST anomalies in the Niño3.4 region from January to December 2019 at223

lead times between 1 and 12 months, together with the available observed anomalies until May 2019.224

The ENSO forecast indicates a slight decrease of SST from February to April 2019 and an increase225

after May, with a peak anomaly of ∼ 1.4◦C at the end of the year and beginning of 2020 (Figure 2).226

The forecast underestimates the anomaly between February and April 2019 when compared to the227

observations. The prediction, however, is consistent with the typical seasonal decay of an El Niño228

event in spring time. The forecast clearly indicates the return to a warm event after May, and predicts229

a slightly stronger event for the end of 2019 and the beginning of 2020 than the one at the end of230

2018. Note that the mild El Niño event in 2018 was also predicted by the model at 12 months lead231

time (Figure S1).232

233

3.2 Local climate forecasts for 2019234

The minimum temperature forecasts for the city of Machala for 2019 together with the 70% confidence235

intervals, and the available observed Tmin values from the Hospital Teófilo Dávila weather station236

until April 2019 are shown in Figure 3. The minimum temperature forecast is also underestimated237

during the months between February and April 2019. The model for Tmin includes the predicted SST238

in the Niño3.4 region as a predictor at 1 month lag, as well as a trend, some seasonal effects and noise.239

It appears that the model in this configuration cannot capture the full variability of the Tmin time240

series, and some of the warming trend in 2019 is unaccounted for at least until April 2019. Still, the241

model predicts temperature in 2019 that well exceeds the long-term mean value of Tmin (∼ 22◦C).242

The observed temperature in Machala has also been higher than normal since 2015 (Figure 1c), most243

probably due to the very strong El Niño event that occurred at the end of that year, as well as due to244

the coastal El Niño event that happened in 2017. The trend in the time series has also increased after245

2015, possibly indicating a shift due to the effect of the global climate warming, but it could also be246

due to the new location of the weather station used for data collection after 2016.247
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The precipitation forecasts for the city of Machala for 2019 together with the 70% confidence inter-248

vals, and the available observed precipitation values from the Hospital Teófilo Dávila weather station249

until April 2019 are shown in Figure 4. The precipitation forecasts are also underestimated during250

the months between January and March 2019, but they fall within the 70% CI, and overestimated251

for the month of April 2019. The model for precipitation includes the minimum temperature forecast252

as a predictor at 1 month lag, as well as trend, some seasonal effects and noise. It appears that the253

model cannot capture the full variability in the precipitation time series. The precipitation response in254

Machala has been variable after mild El Niño events (for e.g. in year 2003 and 2015; Figure 1b) with255

an increase of the normal precipitation rate after some weak events and a decrease in precipitation256

after other weak events.257

258

3.3 Probabilistic dengue forecasts for 2019259

The model was trained using dengue cases and observed climate data from January 2002 to December260

2018. The probabilistic forecasts of dengue incidence for January - December 2019 was then produced261

using the 2019 climate forecasts as predictors in the dengue model (Figure S2). Figure 5 shows the262

posterior predicted mean and 95% prediction interval for log dengue incidence rates (cases per 100,000263

population) for January to December 2019. The five-year mean dengue incidence (lower threshold;264

blue curve) and upper 95% confidence interval (upper threshold; red curve), calculated for the period265

2014-2018, are included to illustrate the typical thresholds used by the national dengue surveillance266

system to track dengue outbreaks. In Figure 6, the posterior predictive distribution for each month267

is shown, indicating the posterior predictive mean (dashed pink curve) and the moving threshold of268

the upper 95% confidence interval (solid red curve), calculated using incidence over the preceding five269

years (2014-2018). The probability of exceeding the upper threshold is shown for each month.270

The predicted mean was greater than the moving upper threshold in January and February but271

lower than both thresholds for the majority of the season. The probability of exceeding the upper272

threshold was 35% in March 2019 (compared to 85% in March 2016, see Lowe et al. (2017)) and 2% in273

June, the month in which dengue would be expected to peak based on the previous 5 years (Figure 6).274

The observed dengue incidence data available for 2019 is included (black curve), confirming no dengue275

outbreaks thus far. The model has successfully distinguished this year as having a lower probability of276

a dengue outbreak and did not indicate high risk of an early season peak, in contrast to the forecast277

in 2016 (see Figure S3).278
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4 Discussion279

In this study we used an already tested dynamic components ENSO prediction model (see Petrova280

et al. (2017); Lowe et al. (2017); Petrova et al. (2020)) to forecast the SST in the Niño3.4 region in281

2019. The forecast indicated a continuation of the mild El Niño event from 2018 over the summer,282

autumn and winter months of 2019, with a slight increase in the warm anomaly at the end of 2019283

as compared to the end of 2018. This is in agreement with the International Research Institute (IRI)284

ENSO forecast (IRI, 2019), which in January 2019 issued a forecast of a mild El Niño event, reaching285

an amplitude ∼ +0.7◦C in September-October-November of 2019. Long-lead El Niño forecasts of one286

or more years ahead of the peak are important mainly due to their implication for more accurate287

seasonal forecasts in many regions of the world (Sarachik and Cane, 2010). In this case, based on the288

well-established atmospheric teleconnection between ENSO and the local climate in Ecuador, we used289

the ENSO forecasts for 2019 with a maximum lead time of 12 months to predict minimum temperature290

and precipitation in the city of Machala for 2019. This real-time climate forecast information (the291

ENSO and local climate forecasts) was then incorporated in a dengue prediction framework developed292

for El Oro Province and the city of Machala, which allowed a prediction of dengue incidence to be made293

at the start of the year and for the entire dengue season in 2019, something that was only possible294

through the incorporation of the climate forecasts. The dengue model predicted the dengue incidence295

to be lower than the mean incidence over the previous 5 years (2014-2018) for the majority of the296

season, with incidence starting to decline from June onwards as expected by the seasonal evolution of297

dengue in the region (Figure 5). This decision-support tool can assist public health decision makers298

in improving the allocation of resources to more pressing issues in 2019, including the migrant crisis299

from Venezuela, which is currently overwhelming the public health service in Ecuador.300

Given the effects of climate on arboviral disease transmission, the World Health Organization and301

other health experts recommend developing climate services - tools to predict and prevent disease302

outbreaks (Chen, Chadee and Rawlins, 2006; Trotman et al., 2018), especially in light of the warming303

climate. These tailored products could include early warning systems or epidemic forecasts. Climate304

services can provide important timely information to health sector decision makers within the context305

of a future climate event (Racloz et al., 2012), as we have shown here. The results presented in this306

study represent a major step forward in the design of a routine operational early warning system307

for dengue in urban Machala, and demonstrate the ability of the prediction framework to distinguish308

dengue risk levels during strong (Lowe et al., 2017), but also weak to moderate El Niño years. Future309
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challenges include refining the presentation of probabilistic information and design of the forecasting310

scheme in consultation with local stakeholders; testing of the model at a larger scale, i.e. for all311

coastal cities in Ecuador; attracting senior leadership from the climate and health sectors to come312

together and identify climate services for health as a high priority (ideally with designated resources);313

agreeing upon a data sharing platform and data-sharing protocols; and increasing the capacity of the314

health and climate sectors through joint training. Dengue will persist in the region because of the315

dynamics of the four different dengue serotypes, and other arboviruses (chikungunya, Zika) may also316

sweep through in periodic outbreaks. Previous experience in Barbados indicates that a dengue model317

could have a harder time predicting dengue transmission after the introduction of chikungunya and318

Zika (Lowe et al., 2018). Thus, in the future it is necessary to also test how sensitive the model is to319

the circulation of these other arboviruses. Another area for improvement of the proposed system is to320

incorporate information about the spatial diversity of ENSO. There are the so-called Eastern Pacific321

and Central Pacific El Niño events that project differently on the local climate in southern coastal322

Ecuador.323

Finally, there is an opportunity to include climate services for health and epidemic early warning324

systems as part of the integrated actions for the implementation of a National Adaptation Plan for325

the health sector in Ecuador (NDC, 2019). Thus, the early warning system prototype presented here326

is timely and very relevant for the climate and health communities in the country.327

328
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Supporting information329

330

Figure S1: Forecast of the sea surface temperature anomaly (◦C) in the Niño3.4 region from January331

to December 2018 at 12 months lead time (magenta curve), and observation values from January332

to December 2018 from NOAA-OI-SST-V2. The anomalies are calculated by subtracting the mean333

annual cycle over the period 1982-2012.334

335

Figure S2: Posterior predicted median (dashed purple curve) and 95% prediction (credible) in-336

terval (purple shaded area) for dengue incidence rates (cases per 100,000 population) in Machala,337

Ecuador, 2002-2018. Observed values for 2002-2018 (solid black curve) and 2019 (data available at338

time of submission; dashed black curve) are included.339

340

Figure S3: Posterior predicted median (dashed purple curve) and 95% prediction (credible) in-341

terval (purple shaded area) for log dengue incidence rates (cases per 100,000 population) in Machala,342

Ecuador, January - November 2016. The five-year mean dengue incidence (blue curve) and upper 95%343

confidence interval (red curve), for the period 2011-2015, is shown. Observed dengue incidence rates344

are also included (dashed black curve).345

346
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Figure 1: (a) Dengue incidence in Machala, Ecuador (cases per 100,000 inhabitants) (b) precipitation
(mm/month) and (c) minimum temperature (◦C), from the Granja Santa Ines weather station (2002-
2016) and Hospital Teófilo Dávila weather station (2017-2018), located in Machala and (d) Niño 3.4
index (sea surface temperatures (SST) anomalies (◦C) in the Niño 3.4 region) at the monthly time
scale from January 2002 to December 2018.
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Figure 2: Forecast of the sea surface temperature anomaly (◦C) in the Niño3.4 region from January
to December 2019 at progressively increasing lead time from 1 to 12 months (beige curve), and
observation values from January to May 2019 from NOAA-OI-SST-V2. The anomalies are calculated
by subtracting the mean annual cycle over the period 1982-2012.

Figure 3: Monthly forecasts of minimum temperature (◦C) for Machala, Ecuador, from January to
December 2019 (thick red curve), 70% CIs (thin red curves), and observations from the Hospital
Teófilo Dávila weather station located in Machala for January to April 2019.
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Figure 4: Monthly forecasts of precipitation (mm/month) for Machala, Ecuador, from January to
December 2019 (thick blue curve), 70% CIs (thin blue curves), and observations from the Hospital
Teófilo Dávila weather station located in Machala for January to April 2019.
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Figure 5: Posterior predicted median (dashed purple curve) and 95% prediction (credible) inter-
val (purple shaded area) for log dengue incidence rates (cases per 100,000 population) in Machala,
Ecuador, January - December 2019. The five-year mean dengue incidence (blue curve) and upper 95%
confidence interval (red curve), for the period 2014-2018, is shown. Observed dengue incidence rates
are also included (dashed black curve).
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Figure 6: Posterior predictive distribution of dengue cases (logarithmic scale) for January - December
2019, showing the probability of exceeding the upper 95% confidence interval (red solid line). The
posterior predicted mean (dashed line), 95% credible intervals (dotted lines) and observed dengue
cases (where available, arrow) are indicated.
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