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Abstract

The zoonotic malaria parasite, Plasmodium knowlesi, is now a substantial public health

problem in Malaysian Borneo. Current understanding of P. knowlesi vector bionomics and

ecology in Sabah comes from a few studies near the epicentre of human cases in one dis-

trict, Kudat. These have incriminated Anopheles balabacensis as the primary vector, and

suggest that human exposure to vector biting is peri-domestic as well as in forest environ-

ments. To address the limited understanding of vector ecology and human exposure risk

outside of Kudat, we performed wider scale surveillance across four districts in Sabah with

confirmed transmission to investigate spatial heterogeneity in vector abundance, diversity

and infection rate. Entomological surveillance was carried out six months after a cross-sec-

tional survey of P. knowlesi prevalence in humans throughout the study area; providing an

opportunity to investigate associations between entomological indicators and infection.

Human-landing catches were performed in peri-domestic, farm and forest sites in 11 villages

(3–4 per district) and paired with estimates of human P. knowlesi exposure based on sero-

prevalence. Anopheles balabacensis was present in all districts but only 6/11 villages. The

mean density of An. balabacensis was relatively low, but significantly higher in farm (0.094/

night) and forest (0.082/night) than peri-domestic areas (0.007/night). Only one An. balaba-

censis (n = 32) was infected with P. knowlesi. Plasmodium knowlesi sero-positivity in people

was not associated with An. balabacensis density at the village-level however post hoc anal-

yses indicated the study had limited power to detect a statistical association due low vector

density. Wider scale sampling revealed substantial heterogeneity in vector density and dis-

tribution between villages and districts. Vector-habitat associations predicted from this

larger-scale surveillance differed from those inferred from smaller-scale studies in Kudat;

highlighting the importance of local ecological context. Findings highlight potential trade-offs

between maximizing temporal versus spatial breadth when designing entomological
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surveillance; and provide baseline entomological and epidemiological data to inform future

studies of entomological risk factors for human P. knowlesi infection.

Author summary

The primate malaria parasite, Plasmodium knowlesi, is a common cause of human malaria

in Malaysian Borneo. Most knowledge about the ecology and behaviour of mosquitoes

transmitting P. knowlesi in Borneo comes from a limited number of sites near the major

epicentre of human infection in Kudat District, Sabah. On this basis, human exposure to

vectors was predicted to be higher in human settlement areas than in farming or forest

habitats. Here we aimed to characterise the diversity and abundance of P. knowlesi vectors

over a wider area of Sabah to test hypotheses about vector-habitat relationships and asso-

ciated human exposure risk. Working in 11 villages across 4 districts in Sabah, we found

low densities of the P. knowlesi vector, An. balabacensis. However, vector densities were

higher in farm and forest habitats than in villages across this broader area, in contrast to

findings from small scale study in Kudat. No association was observed between mean An.

balabacensis abundance and P. knowlesi seropositivity in communities; however the abil-

ity to detect such an association, even if present, was limited by the relatively small num-

ber of mosquitoes collected.

Introduction

Human infection with the simian malaria parasite, Plasmodium knowlesi is now widespread

across South East Asia with a large focus of transmission occurring in Malaysian Borneo.

Anopheles mosquitoes in the Leucosphyrus complex are responsible for transmitting P. know-
lesi [1], and the species An. balabacensis has been confirmed as the primary vector in the

largest hotspot of human infection in the Kudat district of Sabah, Malaysian Borneo. Identifi-

cation of vector species responsible for P. knowlesi transmission and habitats associated with

human exposure is a vital first step for planning control measures. However, most of our cur-

rent understanding of P. knowlesi ecology comes from intensive study within the Kudat epi-

centre [2–4]. Although human P. knowlesi cases have been reported throughout the state of

Sabah [5], detailed study of vector ecology has been mostly restricted to a 2x3 km intensive

study site in Kudat (Fig 1) and two sites on the neighbouring Banggi island [2]. One study

compared An. balabacensis vector density, infection rates and survival in a village, plantation

Fig 1. A) Location of Sabah in Malaysian Borneo (Image source: https://commons.wikimedia.org/wiki/Atlas_of_the_world)

and B) Map of Northern Sabah indicating the eleven villages across 4 districts where entomological sampling was conducted

in this study between March to June 2016.

https://doi.org/10.1371/journal.pntd.0008617.g001
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and secondary forest site [2], and concluded that An. balabacensis density was highest in the

peri-domestic setting; challenging the previous paradigm of humans only being at risk if

spending long periods of time in the forest [6]. However, this study also found that vector sur-

vival and infection rates were higher at forest and farm sites than those in the village [2]; indi-

cating a higher “per mosquito bite” risk of infection in these habitats. Further investigations in

villages in Kudat indicated that An. balabacensis were common in peri-domestic settings, and

more abundant at households where human P. knowlesi cases were reported than homes of

uninfected controls [3]. The higher abundance of vectors in peri-domestic settings and associ-

ation between peri-domestic vector abundance and human cases suggests exposure may also

be happening primarily around houses. However, a more recent study at one site in Kudat

reported no difference in An. balabacensis density at peri-domestic, farm and forest edge habi-

tats [7]. Most recently, Fornace et al [8] combined data on habitat-specific vector abundance

and human movement data within Kudat District to show that most human exposure likely

occurs in areas close to both secondary forest and houses. While this body of work is vital for

understanding the current transmission hotspot centred in Kudat [2,3,8], it remains unclear

how generalizable these findings are to other areas of Sabah, Malaysia or SE Asia in general

where P. knowlesi is emerging.

Longitudinal sampling at three sentinel sites in Kudat demonstrated that An. balabacensis
is the dominant vector species (95.1%) [2]. However, other members of the Leucosphyrus

complex and An. donaldi have been implicated in P. knowlesi transmission in other parts of

Malaysia [2,3,9–14]. Evidence suggests that there is substantial heterogeneity in vector diver-

sity and density even between villages only two kilometres apart due to environmental factors

such as land-cover, type of agriculture, availability of mosquito breeding sites, temperature,

topography and elevation [15–17]. The landscape in Kudat is a fragmented mix of forest, farm

and deforested areas, but is relatively similar in altitude, with no major urbanization. However,

across the state of Sabah, there is substantial variation in elevation, the size and distribution of

forest areas, and local agricultural activities thus it is likely that P. knowlesi vector ecology in

Kudat district may not fully represent the state as a whole.

Vector density and sporozoite infection rates are key entomological indicators frequently

investigated as proxies of human exposure risk [18]. Vector density has been associated with

human Plasmodium prevalence and incidence in some contexts [19–23], but not others [24–

27]. Entomological indicators may not be robust predictors of infection burden given the non-

linear relationship between entomological inoculation rates (product of vector biting and

infection rates) and Plasmodium prevalence [28]. Reliable entomological predictors of zoo-

notic malaria risk for humans may be especially difficult to define due to the additional inter-

action between vectors and macaque reservoir populations. At present, no robust

entomological predictors of P. knowlesi human infection risk have been defined.

Investigation of entomological indicators of Plasmodium infection requires high resolution,

spatially and temporally concurrent data on vector bionomics and infection prevalence or inci-

dence. A particular challenge in the study of P. knowlesi epidemiology is that human infection

rates are generally very low, thus requiring often prohibitively large sample sizes to reliably

estimate prevalence. Given these difficulties in measuring “active” infection, serology may pro-

vide a more tractable alternative for indirectly measuring previous infection. As part of an

interdisciplinary study on P. knowlesi epidemiology [“MonkeyBar” project, [29]], a large-scale

cross-sectional survey was conducted throughout Sabah State, Malaysia, to estimate human

exposure based on sero-prevalence (September to December 2015) [30]. This provided a

unique opportunity to carry out complimentary entomological surveillance to assess spatial

heterogeneity in P. knowlesi vector abundance and its concordance with human infection risk

as estimated from serology.
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The goal of this study was to investigate P. knowlesi vector species, density and infection

rates across wider spatial scales in Sabah. Key aims were to identify associations with habitat

type (forest, farm and village) to identify where human biting risk is highest. In addition, we

investigated village-level associations between mean vector abundance and human P. knowlesi
infection risk as estimated from the Monkeybar sero-prevalence study.

Methods

Village selection

A subset of 11 villages were selected from a larger group in Sabah province, Malaysia where a

cross-sectional survey of P. knowlesi sero-positivity in people was conducted (September to

December 2015 [29]). Three to four villages were selected from 4 districts to encompass a

range of altitudes and habitat types: Kudat (altitude: 4–223m), Kota Marudu (8–745m), Pitas

(7–218m) and Ranau (53–1275m) (Fig 1). Entomological sampling was carried out in all 11 vil-

lages approximately six months after the human sero-prevalence survey. All 11 villages were

consecutively sampled over a 3-month period (21/03/16–16/06/16). One village was sampled

per week, with mosquito collections being conducted over four consecutive nights. The

research team attempted to visit a village from a different district on each week, so that dis-

trict-level differences were not confounded by temporal autocorrelation. However this was not

always logistically possible (see S1 Table for sampling dates).

Study sites within villages

Villages were accessible by tertiary or dirt track roads. All villages were rural, with small popu-

lations of< 750 residents. These were generally structured as a group of houses surrounded by

a mosaic of crops (usually largely palm oil and rubber trees) and secondary forest patches.

Thus there was a range of habitats available at each village. Within each village, mosquitoes

were collected in three distinct habitat types: forest patch, farm and peri-domestic settings (e.g.

Fig 2). This range of habitats replicated the sampling design used in a previous study in Kudat

district [2]. The peri-domestic environment was defined as the outdoor garden area immedi-

ately surrounding a household (outside, < 5m from the main house). Farm sites were located

in small plantations, and forest sites were in patches of secondary forest comprising non-agri-

cultural trees. Due to the wide geographical range of our sampling, the farm habitat varied

between villages depending on what crops were locally cultivated (S1 Table). Forest was dis-

tributed patchily throughout the area with patch sizes varying significantly between villages

(0.075–10km2, S1 Table).

Mosquito sampling sites were selected by walking in and around each village at the start of

each visit to identify all accessible locations within each of the 3 habitat types. One location per

habitat type was selected based on the following criteria: peri-domestic- consent from house-

hold residents, farm- a point at least 25m from the nearest house to differentiate from peri-

domestic sites, forest- a minimum patch size of 10x10m, with sampling occurring at least 20m

from forest edge (if not possible, then centre of forest patch). On each night of sampling, one

team of two people performed Human Landing Catches (HLC, details below) in each of the 3

habitat types, then the teams rotated between habitats on subsequent nights. Across all four

sampling nights, a different sampling point was selected within each of the 3 focal habitat types

each night. Each sampling point was at least 25 m from the location used the previous night.

Only three nights of collections were performed for Sungai Pupu and Patiu villages due to

heavy rainfall and fogging (for dengue control) taking place on the fourth day.
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Mosquito sampling

Mosquitoes were collected using the Human Landing Catch (HLC) technique [2]. Previous

studies in Sabah have evaluated a range of different trapping methods for P. knowlesi vectors

(e.g CDC light traps, e-nets, monkey-baited traps, resting traps [31,32]) and found HLC to be

the most effective. Briefly, volunteers were positioned in teams of two with their lower legs

exposed, and trapped mosquitoes which landed on them to feed using 30ml plastic screw-top

vials. One mosquito was trapped per vial and the hour and habitat of collection were recorded

on each. Nightly collections per site represented the total number of mosquitoes caught in

HLC carried out by two people. Catches were performed between 18:00–00:00 to include the

peak biting time of Sabah’s primary P. knowlesi vector, An. balabacensis [2,33]. Previous stud-

ies in this area have shown the majority of An. balabacensis biting activity occurs before mid-

night [3,8]. All HLCs were conducted outdoors because P. knowlesi vectors exhibit exophilic

host seeking behaviour [12].

Mosquito processing

At the end of each 6-hour sampling period, mosquitoes trapped inside vials were transported

to the central field station and put in a -20˚C freezer. Mosquitoes were killed by storing at

-20˚C overnight and identified to genera and species level the following day using the keys of

Fig 2. Photos showing examples of typical peri-domestic (A, B), farm (C = rubber, D = palm, E = cabbage) and forest

(F) habitats where mosquito collections were conducted in this study.

https://doi.org/10.1371/journal.pntd.0008617.g002
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Rattanarithikul et al (2005/6) [34–37]. Species belonging to the Leucosphyrus group were

identified using [38]. Specimens were stored in 95% ethanol until further processing.

Plasmodium detection in Anopheles
DNA was prepared from all Leucosphyrus group Anopheles, and An. donaldi and An. macula-
tus (known malaria vectors, [14,33,39]). First the ethanol preservative was removed from these

sample tubes and then DNA extracted from the whole body using the QIAGEN DNeasy Blood

and Tissue Kit following the manufacturer’s instructions with the following minor modifica-

tions. Specimens were initially ground in 180 μl buffer ATL using a pestle and hand-held

homogenisor, and lastly eluted in a volume of 25 μl TE buffer. Nested PCRs were conducted to

screen samples for Plasmodium DNA using the method of Snounou and Singh [40], which

identifies DNA of any species within the Plasmodium genus. Samples positive for Plasmodium
DNA were subjected to a further PCR to identify the species present. Nine separate reactions

were set up following the method of Ta et al [41] (to detect P. falciparum, P. vivax, P. malariae
and P. ovale), Lee et al [42] (P. coatneyi, P. inui and P. cynomolgi) and Imwong et al [43] (P.

knowlesi) (S2 Table).

Plasmodium knowlesi sero-prevalence in humans

Sero-prevalence data on Plasmodium exposure in humans in the study villages was obtained

from a cross-sectional survey as described in [30]. In summary, no active Plasmodium infec-

tions were observed by either microscopy or PCR [29] in this survey, thus serological measures

of previous P. knowlesi exposure were used to examine associations with the density of Leuco-

sphyrus group Anopheles [44]. Measures of village level sero-positivity (the proportion of indi-

viduals from the total screened per village that were IgG positive for P. knowlesi) were

estimated for the 11 villages in which entomological surveillance was conducted [29]. Serologi-

cal screening can detect individuals infected with P. knowlesi at least within the previous 28

days [44] but it is unknown how long these antibodies can persist for.

Data analysis

Anopheles diversity across habitat types. Data were analysed using the R statistical pro-

gramming software, version 3.4.2. The “vegan” package was used to measure four species

diversity indices: species richness, rarefied species richness, Simpson’s index and the Shannon

index. These measures were used to estimate and compare Anopheles diversity across habitat

types (peri-domestic area, farm and forest). Species richness is the total number of different

Anopheles species collected in each village. The rarefied species richness is the species richness

if collections had the same Anopheles density (ie. set to the group with the lowest total density).

Rarefaction is a method used to standardise unequal sampling sizes [45,46]. The Simpson’s

index,

[λ = (n/n-1) x ∑ ps (1-ps)] [47], where

n = total Anopheles density

ps = each species count/n,

measures the probability that two individuals randomly sampled from the dataset will be of

the same species [48]. The Simpson’s Index is noted to be sensitive to abundant species [49],

thus the Shannon Index was also calculated as a comparison. The Shannon index,

H = -∑ (n/N) log (n/N) (48), where

N = total Anopheles density

ni = each species count,
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measures the uncertainty in predicting the species of an individual randomly sampled from

the dataset [49]. Confidence intervals for Simpson’s Diversity Index were calculated following

Zhang [47].

Analysis of environmental variables. Percentage forest cover in a 100m buffer (circle of

radius 100m) around each sampling location for HLC was calculated using the Hansen global

forest cover 2014 map, with forest defined as 50% canopy cover [50]. GLMMs were con-

structed in R using the lme4 package to extract the mean elevations and proportion of forest

cover at all mosquito collection sites. A negative binomial model was used to predict mean ele-

vation and a model with a binomial distribution was used for percentage forest cover. Eleva-

tion and percentage forest cover were the response variables and habitat was the explanatory

variable, with date and village set as random effects.

Mosquito presence and density analyses. Statistical analysis was performed on two sets

of mosquito data: 1) An. balabacensis only, and 2) All Leucosphyrus group Anopheles. The sec-

ond group was inclusive of An. balabacensis (n = 32), An. latens (n = 7) and suspected An.

balabacensis/An. latens (n = 2); defined as being either of these two species with identification

to species level not being possible due to the loss of fragile scales on the wings necessary for

morphological identification. Both An. balabacensis or An. latens are implicated in the trans-

mission of P. knowlesi in Malaysian Borneo [2,9] thus were analysed as a whole. The packages

lme4 and multcomp were used to analyse mosquito presence and density. Generalised Linear

Mixed Models (GLMMs) were constructed to test for associations between the two response

variables of mosquito presence (binary outcome, 0 = absent, 1 = present) and density (mean

number caught per site per night), and the following explanatory variables: elevation, habitat

type and forest cover. To relieve issues with scaling, elevation was converted from a continuous

to a categorical variable by splitting into three elevation ranges: low (0 – 375m), medium

(376 – 750m) and high (751 – 1125m). Models were fit with a negative binomial distribution

for mosquito density and a binomial distribution for mosquito presence. In all models, ran-

dom effects were included for village and date. The significance of explanatory variables in

each of the models was tested by backward elimination using likelihood ratio tests. A Tukeys’

post hoc test was performed to assess differences between each of the 3 habitat types.

Biting time in Plasmodium vector species. The lme4 package was used to construct

GLMMs in R to extract hourly biting rates of different Plasmodium vector species caught.

Only An. balabacensis, An. donaldi and An. maculatus were examined because the overall den-

sity of An. latens (n = 7) was too low to analyse in this way. The number of mosquitoes of each

species caught per hour throughout the night was examined, with the first hour as 18:00–19:00

and the last as 23:00–00:00. Hourly mosquito abundance was treated as the response variable

with the main fixed effect being biting hour. A negative binomial distribution was used with

date and village set as random effects. A Tukey’s post-hoc test (package multcomp) was used

to assess differences in biting rates between hours within each species.

Associations between vector density and human P. knowlesi exposure. General linear

models (GLMs) were constructed to test for associations between mosquito presence and den-

sity for 1) An. balabacensis only and 2) Leucosphyrus group Anopheles (An. balabacensis/An.

latens) and village-level P. knowlesi sero-positivity. A GLMM with a negative binomial distri-

bution was used to predict mean mosquito density from each village where mosquito density

per night was the response variable and habitat and date were fit as random effects. A binomial

GLMM was used to predict the probability of detecting a mosquito in each village where mos-

quito presence (1) or absence (0) per night was the response variable and habitat and date

were fit as random effects. These village-specific estimates of mean vector density and proba-

bility of occurrence were used to test for associations with the proportion of individuals sero-

positive for P. knowlesi antigens in each village. A binomial GLM was used with village sero-
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positivity as the response variable and mosquito presence or density as the fixed effect. Ento-

mological collections began ~ 6 months after the cross-sectional survey thus did not run in

parallel with human sampling. However, an assumption of this analysis is that entomological

measures were assumed to be reflective of general differences between villages at the time of

the cross-sectional survey. A post hoc power analysis was performed using the pwr.f2.test func-

tion from the pwr package in R (effect size = R2/(1−R2), significance level = 0.05, power = 0.8)

to determine the sample size required to detect an association between village level human P.

knowlesi sero-positivity rates and P. knowlesi vector presence or abundance. All data collected

in this study is available from Harvard dataverse “https://doi.org/10.7910/DVN/3QG1HP”.

Ethics statement

This project was approved by the Malaysian Ministry of Health (NMRR-12-786-13048) and by

the research ethics committees of the London School of Hygiene and Tropical Medicine

(Ref. 6302). Homeowners gave permission to use the area around their houses for mosquito

collection. All volunteers who carried out mosquito collections were adults and signed

informed consent forms prior to the study. Volunteers were provided with antimalarial pro-

phylaxis during participation and one month after performing HLC, volunteers were screened

for Plasmodium by giemsa stained thick and thin blood smears. Participants were asked to

immediately report if they felt ill or feverish and would be taken to the nearest medical facility

for check-up and malaria treatment if required. No participants reported malaria infections

during the study.

Results

In 42 nights of sampling, a total of 5588 mosquitoes belonging to eight genera were collected

(S3 Table). The majority of specimens were from the Culex and Armigeres genera, with only

4% Anopheles and 8% Aedes. Five genera were found in peri-domestic habitats, six in farm and

seven in forests (S1 Fig). Species known to transmit Plasmodium in Sabah (Anopheles balaba-
censis, An. latens and An. donaldi) comprised 1.1% of the total mosquito catch. Six species of

Anopheles were collected (Table 1) with An. maculatus and An. barbumbrosus being the most

abundant. Dengue vector species (Ae. albopictus and Ae. aegypti) comprised 6.9% of mosqui-

toes collected. The majority of Aedes specimens were Ae. albopictus (~90%) with only a few

Ae. aegypti (~1%). The remaining Aedes specimens could not be identified to species level.

Anopheline species diversity was lower in peri-domestic and farm sites than at forest sites

(Table 2). Both the rarefied species richness, Shannon and Simpson Indices estimated similar

trends with forest sites having higher Anopheles species diversity, followed by farm sites and

then peri-domestic sites (Table 2).

Averaging over all villages, there was no systematic difference in the mean altitude of the

forest, farm and peri-domestic mosquito sampling sites (P> 0.05, S4 Table); thus habitat type

was not confounded by altitudinal variation. As expected, the percentage of tree cover above

sampling points in farms and forests was higher than in peri-domestic settings, however this

result was not significant ((P> 0.05, S4 Table).

Vector density and distribution

The major P. knowlesi vector An. balabacensis (n = 32) was found in approximately 14% of col-

lections, with no significant difference in probability of detection between habitats (X2 = 5.33,

df = 2, P = 0.07), or in association with percentage forest cover (X2 = 3.16, df = 1, P = 0.08) or

elevation (X2 = 0.21, df = 2, P = 0.90). Pooling all Anopheles species in the Leucosphyrus group

(n = 41), the probability of detection varied with habitat (X2 = 7.42, df = 2, P = 0.02) but not
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forest cover (X2 = 3.31, df = 1, P = 0.07) or elevation (X2 = 0.34, df = 2, P = 0.85). Leucosphyrus

group mosquitoes were more likely to be caught in farm (P = 0.02) and forest (P = 0.02) sites

than in peri-domestic environments (Fig 3A).

The density of An. balabacensis varied with habitat (X2 = 9.82, df = 2, P< 0.01) but not with

elevation (X2 = 0.13, df = 2, P = 0.93) or percentage forest cover (X2 = 3.16, df = 1, P = 0.08).

Anopheles balabacensis was significantly more abundant in farm (P< 0.01) and forest

(P< 0.01) habitats than in peri-domestic areas (Fig 3B, S2 Fig for raw data). Similarly, habitat

was a significant predictor of the mean density of the Leucosphyrus group in general (X2 =

12.92, df = 2, P< 0.01); with their density being significantly lower in peri-domestic environ-

ments than in farm (P< 0.001) or forest (P< 0.001) habitats (Fig 3C, S2 Fig for raw data).The

mean density of the Leucosphyrus group did not vary in relation to local forest cover (X2 =

4.12, df = 1, P = 0.04) or elevation of the collection site after accounting for habitat differences

(X2 = 1.64, df = 1, P = 0.20).

Biting patterns of Plasmodium vector species

The biting patterns of the three known Plasmodium vector species (An. maculatus, An. donaldi
and An. balabacensis) were assessed. Too few Anopheles latens individuals (a vector of P. know-
lesi) were sampled for robust description (n = 7). These three species were found during all

sampling hours (18:00–00:00), with some tendency for higher activity during the early evening

hours (18:00–20:00). However due to the relatively small numbers collected and high variabil-

ity in hourly catches, no clear peaks in biting time were evident (Tukey’s, P> 0.05, S3 Fig).

Table 1. Anopheles species caught in eleven villages within the four districts: Kudat, Kota Marudu, Pitas and Ranau in Sabah, sampled from March to June 2016.

Village names: SUV–Suvil, SUN–Sungai Pupu, BAR–Barankason, SOR–Sorinsim, PAT–Patiu, KOT–Kotud, PER–Perpaduan, SIN–Sinangip, LIP–Lipasu Lama, SIB–Siba

Bundu Tuhan and GON—Gondohon.

District of sampling

Kudat (villages) Kota Marudu (villages) Pitas (villages) Ranau (villages)

Mosquito genera/ species SUV SUN BAR SOR PAT KOT PER SIN LIP SIB GON Total (%)

Leucosphyrus gp. 0 1 0 8 1 1 0 10 19 0 0 41 (19.3)

An. balabacensis�# 0 1 0 3 1 1 0 7 12 0 0 32 (15.1)

An. latens� 0 0 0 0 0 0 0 0 7 0 0 7 (3.3)

An. balabcensis or An. latens� 0 0 0 1 0 0 0 1 0 0 0 2 (0.9)

Barbirostris gp 3 33 1 19 3 3 0 23 0 1 3 89 (42.0)

An. barbumbrosus 0 16 1 14 3 3 0 22 0 0 2 61 (28.8)

An. donaldi# 3 16 0 2 0 0 0 0 0 1 1 23 (10.9)

An. maculatus# 0 0 0 8 3 29 0 10 0 29 1 80 (37.7)

An. tesselatus 0 0 0 0 0 0 2 0 0 0 0 2 (0.9)

Total Anopheles sp. 3 34 1 34 8 33 2 43 19 31 4 212

� vector of P. knowlesi
# vector of P. falciparum/ P. vivax

https://doi.org/10.1371/journal.pntd.0008617.t001

Table 2. Measures of diversity in Anopheles species across different habitat types sampled in eleven villages in Sabah from March to June 2016.

Habitat Anopheles abundance Species richness Rarefied species richness Shannon index Simpson’s index Simpson’s index ± 95% confidence

intervals

Peri-

domestic

22 4 2.380 0.969 0.5 0.52 ± 0.22

Farm 85 4 2.858 1.276 0.694 0.73 ± 0.05

Forest 98 5 3.139 1.477 0.750 0.79 ± 0.04

https://doi.org/10.1371/journal.pntd.0008617.t002
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Plasmodium infection rates

Of the 144 female mosquitoes that were potential Plasmodium vector species (An. Leuco-

sphyrus gp, An. donaldi and An. maculatus), only one tested positive for Plasmodium. This

was an An. balabacensis collected in a forest patch in Sinangip village, Pitas, which was infected

with P. knowlesi. This represents an infection rate of ~3% (n = 1/32) in An. balabacensis.

Association between Plasmodium vector density and human P. knowlesi
exposure

Seroprevalence rates of P. knowlesi in people across the study area were provided by the Mon-

keybar large cross-sectional survey [8]. Within the subset of 11 villages where entomological

surveillance was conducted, sero-positivity rates ranged from 0% (Sib and Sun) to 13.9% (in

Sor). In these villages, the probability of trapping An. balabacensis per night in an HLC ranged

from 0.11–0.42 (Fig 4A), and 0.11–0.50 for the Leucosphyrus group overall (Fig 4B). No signif-

icant relationship was detected between human P. knowlesi sero-positivity rates and the proba-

bility of detecting An. balabacensis or Leucosphyrus group Anopheles (P> 0.05, S5 Table). No

significant relationship was detected between human P. knowlesi sero-positivity rates and the

density of An. balabacensis as measured 6 months afterwards (Fig 4C) or Leucosphyrus group

Anopheles (Fig 4D) (P> 0.05, S5 Table). However, post hoc power analysis indicated that the

study had limited power to detect an association between seropositivity rates and vector abun-

dance given the lower than anticipated densities of primary vector species. With the low vector

densities observed here, and based on the GLM described above, 142 and 390 villages respec-

tively would need to be sampled to detect a positive significant relationship (P = 0.05) between

the presence of An. balabacensis and An. Leucosphyrus gp. and human P. knowlesi seropositiv-

ity rates with 80% power (S5 Table). The sample sizes required to detect a positive significant

relationship (P = 0.05) between the density of An. balabacensis and An. Leucosphyrus gp. and

human P. knowlesi seropositivity rates with 80% power would be derived from sampling 159

and 113 villages respectively (S5 Table).

Discussion

Here we describe the density and diversity of P. knowlesi vectors across 4 districts in Malaysian

Borneo where this parasite is a significant public health problem. This entomological surveil-

lance covered a wider geographical region than has been investigated before. We found that

An. balabacensis, the P. knowlesi vector, is widely distributed across 4 districts of Sabah,

Fig 3. Predicted A) Probability of catching Leucosphyrus group Anopheles B) Mean density of An. balabacensis and

C) Mean density of Leucosphyrus group Anopheles in farm, forest and peri-domestic habitats. Error bars represent

95% confidence intervals.

https://doi.org/10.1371/journal.pntd.0008617.g003
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Malaysian Borneo; but at a lower relative abundance (within the Anopheline community) than

has been previously reported near the epicentre of human cases in Kudat. There was substan-

tial heterogeneity in the density and diversity of vector populations both within and between

districts. Vector surveillance over this wider geographic area indicated a different pattern of

vector-habitat relationships than hypothesized from single site studies in Kudat; with vector

abundance being higher in forest and farm habitats than in peri-domestic environments.

Using human P. knowlesi sero-positivity data gathered from a large cross-sectional survey, no

significant correlation was detected between village-level human infection exposure and vector

density. However, power to detect such an association was limited by low vector density

throughout the study area and resultant small sample sizes. Larger-scale and longer-term stud-

ies thus may be required for robust investigation of entomological indicators of P. knowlesi
infection.

Anopheles balabacensis, the primary vector incriminated in P. knowlesi transmission in

Sabah, was found throughout the study area but at considerably lower density than previously

estimated in focal studies around Kudat. Based on surveillance at a few sites in Kudat, this vec-

tor was previously reported to be the dominant Anopheline biting humans (e.g. 95.1% of

Anophelines, [2,3]). However, An. balabacensis accounted for only 15.1% of the human-biting

Anophelines in this study. We note that during the study there were droughts across Sabah

due to the El Nino; which could have had impact on vector densities. However it is difficult to

assess the potential effects on vectors from available data (collated in [8]) because there were

no sites consistently sampled before, during and after the El Nino. Another factor that could

Fig 4. Association between the proportion of individuals in a village sero-positive for P. knowlesi antigens and the A)

detection of An. balabacensis B) detection of Leucosphyrus group Anopheles C) density of An. balabacensis and D)

density of Leucosphyrus group Anopheles caught in the village per night.

https://doi.org/10.1371/journal.pntd.0008617.g004
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account for the lower estimates of An. balabacensis density observed in this study compared to

previous ones in Kudat is the duration and selection of sampling sites. In a previous study in

Kudat, the farm, forest and village site were selected based on having high An. balabacensis
density, as required to generate sufficient sample sizes for parasite screening [2]. Here mosqui-

toes were sampled for only 3–4 nights per site over a 3-month period (in 2016), whereas previ-

ous work sampled mosquitoes over 12 months (3 nights/month, 2013–2014). If vector

population dynamics are highly seasonal, this shorter-term sampling could substantially over

or underestimate average annual densities. However, previous studies indicate there is little

seasonality in An. balabacensis abundance with vector numbers staying relatively constant

across months in this area [2,30]. Given the potentially minor role of seasonality in these vector

populations, the shorter period of sampling used here may be sufficient to reflect general dif-

ferences in vector abundance between villages and sites. However, a more detailed understand-

ing of temporal variation in these vector populations would be of great value for refining

estimates of spatial variation.

Habitat type was a major predictor of Anopheles presence and density in this study. Both

An. balabacensis and the Leucosphyrus group were more abundant in farm and forest than

peri-domestic habitats. Similar vector-habitat associations have previously been reported in

Kapit, Sarawak [9], and in Peninsular Malaysia [12], but a previous study conducted in a single

farm, forest and peri-domestic site in Kudat found An. balabacensis to be most abundant in

the village [2]. A further study conducted in Kudat found similar densities of An. balabacensis
at all habitat types sampled (peri-domestic, farm and forest edge) [7]. Differences reported in

Wong et al [2] and in Chua et al [7] may have been due to site specific factors rather than habi-

tat, highlighting the need for replicated sampling over wide geographical areas for robust habi-

tat prediction [51]. The sampling period applied here (11 villages, 3–4 nights per village) was

shorter than the longer period used previously in Kudat (3 sites, 2–3 nights per month for 12

months) [2]. These differences in sampling design limit direct comparison of vector densities

between these studies, however it does provide an opportunity to make qualitative compari-

sons of vector density between sites, even if more precise quantification is limited by the

shorter collection period. Future studies investigating vector habitat associations over wider

geographic regions in Sabah would require substantial depth (time and resources) to rigor-

ously assess differences with previous studies conducted in the Kudat district.

Recent epidemiological studies have identified forest and agricultural-related work activi-

ties as risk factors for P. knowlesi infection in Sabah [29,52]. Forest cover and historical forest

loss have also been significantly associated with the occurrence of human cases of P. knowlesi
in this area [53] and that increasing distance from the forest reduces the chance of being bitten

by an infected mosquito [8]. Additionally, investigations into human movement patterns in

rural villages in Sabah indicate that during mosquito biting hours (18:00–06:00), people are

less likely to use areas further away from the home indicating that people are at highest risk of

exposure if their houses are in closer proximity to forested areas [8]. Therefore whilst our

study found highest densities of P. knowlesi vectors in forest and farm sites, people are less

likely to use these areas throughout the night, and so it is the proximity of the home to these

habitats that is the key risk for human exposure.

Only one Plasmodium infected mosquito was found across the study area, an An. balaba-
censis infected with P. knowlesi caught in a forest patch, corresponding to a total infection rate

of ~3% (1 out of 32 tested). Whilst this is in line with the expectation that P. knowlesi infection

rates are highest in An. balabacensis found in forests [2], the sample size of infected mosquitoes

was too low to draw any significant conclusions about habitat-dependent mosquito infection

rates. In previous studies in Kudat, the P. knowlesi infection rate of An. balabacensis ranged

from 0–0.88% [2–4,7], with overall infection rates (all Plasmodium species) ranging from
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1.45–3% [2–4,7]. No P. knowlesi infections were detected in An. balabacensis caught in Kudat

here, which may be due to the low number of samples tested. However, we note that the

absence of P. knowlesi in the An. balabacensis tested from Kudat here coincides with a recent

reduction in the number of human P. knowlesi cases in this district [54]. The sample size of

An. balabacensis obtained in this study was too low to draw conclusions on infection rates

across different habitats or districts. Given the low vector densities and sporozoite rates in the

study area, quantification of spatial variation in mosquito infection rates would likely require

years of continual sampling in a large number of sites. Such high-resolution intensive sampling

was not possible within the scope of this project. This highlights the trade-offs between spatial

breadth and temporal depth that must be considered in designing surveillance programmes

for zoonotic vectors. Given the difficulty of achieving both depth and breadth, the best solution

may be a mixed approach combining short-term sampling at a wide range of sites coupled

with intensive long-term sampling at a smaller number of fixed sentinel sites. A further factor

influencing vector infection (and density) could be the presence and abundance of the

macaque reservoir in the study area. Collecting this type of data is labour intensive and was

outwith the scope of this study however is an important part of this malaria system that future

studies should consider.

Altitude has long been recognized as a significant predictor of malaria transmission [55–

60], however it was not a significant predictor of Anopheles presence and density across the

wide gradient investigated here (13–1125). Across villages investigated here, there is substan-

tial variation in climate and local tree species as well as elevation thus the significant additional

environmental heterogeneity introduced by sampling over such a wide geographical range

which may have swamped the more modest impact of elevation. All sites sampled may also

have been within the altitudinal/temperature range suitable for An. balabacensis.
No significant association between the density of mosquito vectors (An. balabacensis and

all An. Leucosphyrus group mosquitoes) and human sero-positivity for P. knowlesi at the vil-

lage-level was detected. A notable limitation of our study design was that entomological sam-

pling was performed six months after human data was collected. Thus, there was a temporal

mismatch in the timing of human and entomological sampling which could have limited the

strength of any association. The entomological data was only collected for a few days and may

not have been an accurate representation of vector conditions at the time of human sampling.

Alternatively, even if sampling was conducted concurrently there may be no link between vec-

tor density and human infection. Malaria vector densities do not always correlate with human

risk [24–27]; with a lack of synchrony perhaps being more likely with zoonotic malaria due to

the additional complexity introduced by the macaque reservoir. However, our ability to test

these hypotheses was limited by a lack of statistical power; which post hoc analysis indicated

that considerably larger sample sizes (approximately x 14) would have been required to

robustly detect an association between An. balabacensis vector density and human sero-posi-

tivity with (80%) power. Thus although data collected here was not sufficient for robust analy-

sis of entomological indicators, it can provide a useful guide for the design of future studies

into the epidemiology of this complex malaria system.
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