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Malaria is a vector-borne disease of significant public health concern. Despite
widespread success of many elimination initiatives, elimination efforts in some regions
of the world have stalled. Barriers to malaria elimination include climate and land use
changes, such as warming temperatures and urbanization, which can alter mosquito
habitats. Socioeconomic factors, such as political instability and regional migration,
also threaten elimination goals. This is particularly relevant in areas where local
elimination has been achieved and consequently surveillance and control efforts are
dwindling and are no longer a priority. Understanding how environmental change,
impacts malaria elimination has important practical implications for vector control
and disease surveillance strategies. It is important to consider climate change when
monitoring the threat of malaria resurgence due to socioeconomic influences. However,
there is limited assessment of how the combination of climate variation, interventions
and socioeconomic pressures influence long-term trends in malaria transmission and
elimination efforts. In this study, we used Bayesian hierarchical mixed models and
malaria case data for a 29-year period to disentangle the impacts of climate variation
and malaria control efforts on malaria risk in the Ecuadorian province of El Oro, which
achieved local elimination in 2011. We found shifting patterns of malaria between
rural and urban areas, with a relative increase of Plasmodium vivax in urbanized
areas. Minimum temperature was an important driver of malaria seasonality and the
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association between warmer minimum temperatures and malaria incidence was greater
for Plasmodium falciparum compared to P. vivax malaria. There was considerable
heterogeneity in the impact of three chemical vector control measures on both
P. falciparum and P. vivax malaria. We found statistically significant associations between
two of the three measures [indoor residual spraying (IRS) and space spraying] and
a reduction in malaria incidence, which varied between malaria type. We also found
environmental suitability for malaria transmission is increasing in El Oro, which could
limit future elimination efforts if malaria is allowed to re-establish. Our findings have
important implications for understanding environmental obstacles to malaria elimination
and highlights the importance of designing and sustaining elimination efforts in areas
that remain vulnerable to resurgence.

Keywords: malaria, environmental change, elimination, vector control, climate, spatio-temporal model

INTRODUCTION

Malaria is the most important vector-borne disease worldwide,
with 228 million cases reported in 2018 (WHO, 2019). Despite
global elimination and eradication efforts, progress toward
elimination is stalling in some endemic countries. In particular,
increases in malaria incidence have been observed in some
South American countries since 2014 including Venezuela, Peru,
Colombia, and Ecuador, where movement of infected individuals
between neighboring countries in the region can result in a
resurgence of cases in local populations, threatening progress
toward malaria reduction for other countries (Grillet et al.,
2019; WHO, 2019). Malaria is highly sensitive to environmental
conditions, including climate variability and land use practices
(Moreno, 2006; Caminade et al., 2014), which along with
socioeconomic influences can act as significant barriers to
elimination. In addition, the lapse in control and surveillance
efforts combined with global environmental changes also poses
a threat to malaria elimination efforts in South America (Alimi
et al., 2015; Conn et al., 2018).

Variation in meteorological conditions, particularly
temperature, and rainfall, determines the spatiotemporal
patterns of malaria through their effects on both the Plasmodium
parasite and the Anopheles vector. Warmer temperatures can
decrease the extrinsic incubation period (EIP), the time taken
for the malaria parasite to complete its development inside the
mosquito. A shorter EIP increases the transmission intensity
of malaria by allowing mosquitoes to become infectious more
quickly. The EIP for the Plasmodium falciparum parasite is
longer (∼10 days) than that for Plasmodium vivax (∼8 days)
and P. vivax can also develop at relatively cooler temperatures
(minimum 15◦C), compared to P. falciparum (minimum 18◦C)
(Patz and Olson, 2006). Temperature also impacts the mosquito
vector, by affecting both larval and adult survival and longevity
(Beck-Johnson et al., 2013), mosquito development (Bayoh and
Lindsay, 2003), and vector population dynamics (Beck-Johnson
et al., 2013). However, the effect of temperature on malaria
transmission is non-linear, with the optimal temperature for
malaria transmission estimated to be 25◦C with transmission
declining above 30◦C (Paaijmans et al., 2009; Mordecai et al.,

2013). Rainfall is also important for malaria transmission as it
determines the availability of mosquito breeding habitat and thus
mosquito abundance, although heavy and persistent rainfall can
wash out larval habitats (Galardo et al., 2009; Olson et al., 2009;
Prussing et al., 2019; Wolfarth-Couto et al., 2019).

Anthropogenic activities, such as urbanization and
agricultural land use can also change malaria transmission
patterns over longer time scales by creating more or less
favorable microclimatic conditions and habitats for malaria
vectors, depending on the species (Conn et al., 2002; Wayant
et al., 2010; Tucker Lima et al., 2017). For example, urban
development can eliminate mosquito habitat subsequently
decreasing malaria incidence or in some cases increases in
peri-urban malaria can occur as a result of economic migration
and the creation of novel breeding habitats (Padilla et al., 2015).
In addition, deforestation can facilitate malaria transmission
due to the creation of new mosquito habitats on forest fringes
(Vittor et al., 2006; Stefani et al., 2013). Increasing environmental
suitability of malaria transmission, associated with climatic
change and land use modifications, has important implications
for malaria elimination efforts in South America, as these changes
could compromise elimination efforts (Recht et al., 2017).

Previous studies have identified several environmental risk
factors for malaria transmission that may impede elimination
efforts in South America. For example, large-scale climate
patterns such as the El Niño Southern Oscillation have been
associated with large outbreaks of malaria in Peru, due to flooding
conditions and in Colombia and Venezuela due to drought
conditions (Gagnon et al., 2002). In highland areas of Colombia,
warmer years were associated with an increased number of
malaria cases occurring at higher altitudes (Siraj et al., 2014).
Studies assessing spatial heterogeneity in malaria risk in South
America have found deforestation and agricultural development
have altered anopheline vector ecology in the Amazon region
through creation of new Anopheles habitats and increased
human-mosquito interactions (Moreno et al., 2007; Vittor et al.,
2009; Hahn et al., 2014; Burkett-Cadena and Vittor, 2017).

When assessing the role of environmental factors on malaria
incidence it is important to simultaneously consider the
relative impact of control interventions, especially in elimination
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settings. Studies that evaluate the effectiveness of malaria
control programs often consider environmental factors, most
commonly rainfall and vegetation indices. Some studies used
geostatistical modeling and after adjusting for climate conditions
estimate the contribution and effectiveness of malaria control
measures, including indoor residual spraying (IRS) in sub-
Saharan Africa, relative to the impacts of climate variability
(Graves et al., 2008; Giardina et al., 2014). Other studies
often treat climate and environmental variables as confounders
and do not apportion variation in malaria incidence due to
climate (Aregawi et al., 2011; Bennett et al., 2014). There
has been a limited assessment of how the combination of
environmental factors, elimination efforts and socioeconomic
pressures influences long-term trends in malaria and the route
toward elimination. Understanding how malaria elimination
efforts might be hindered by environmental changes has
implications for targeting of vector control and disease
surveillance, and is important especially given the possibility of
shifting vector distributions and increasing climate suitability in
South America (Pinault and Hunter, 2012).

According to the Pan-American Health Organization
(PAHO), Ecuador is in the malaria pre-elimination phase, but
has fallen short of its target to achieve elimination by 2020
(WHO, 2018). Since 2016 malaria has increased significantly
in the country, mainly in the Amazon region, with more cases
being detected than expected for a country on the verge of
malaria elimination (PAHO, 2017; Sáenz et al., 2017). Recent
surges of malaria in other South American countries, primarily
Venezuela, are threatening current elimination efforts in
Ecuador due to regional migration (Daniels, 2018; Grillet et al.,
2019). This study focuses on Ecuador’s southern province, El
Oro, a high-risk region, which previously eliminated malaria
but recently recorded indigenous cases, in addition to being
vulnerable to the introduction of infections via imported cases
due to high rates of human movement associated with its
location on a strategic migration route (Jaramillo-Ochoa et al.,
2019). Here we seek to identify threats to malaria elimination,
with a view to prevent lapses in control efforts and the re-
establishment of malaria in an area currently considered
malaria-free but historically endemic for malaria. We advance
the existing knowledge of the malaria elimination success in
El Oro (Krisher et al., 2016) by quantifying the associations
between malaria, climate and control interventions in a region
vulnerable to resurgence.

MATERIALS AND METHODS

Study Area
El Oro province (latitude: 3◦5′45.20′′S-4◦11′3.06′′S, longitude:-
79◦43′10.92′′W-80◦50′37.96′′W) is located in southern Ecuador
on the Pacific Coast and shares a border with the Tumbes region
of northern Peru (Figure 1A). El Oro covers 5,870 km2 and is
divided into 14 cantons, which range in size from approximately
70 km2 up to 900 km2. Population densities per canton range
from 7 people per km2 in rural areas and up to 760 people per
km2 in the province capital, Machala.

Plasmodium vivax and P. falciparum are the malaria-causing
parasites in the region (WHO, 2019) and the primary mosquito
vectors transmitting malaria in El Oro are Anopheles albimanus
and Anopheles punctimacula (Ryan et al., 2017).

During the mid-1990s public health authorities in El Oro and
neighboring Tumbes unified to implement an effective binational
collaboration to tackle the surge in malaria transmission in the
region (Krisher et al., 2016). El Oro has been free of locally
acquired malaria infections since 2011 although malaria has been
increasing elsewhere in Ecuador (WHO, 2019). In 2018 seven
malaria cases were recorded in El Oro (6/7 were imported cases)
during a period of elevated migration of Venezuelan citizens
associated with the social and economic crisis in their country
(Jaramillo-Ochoa et al., 2019). El Oro’s border location, along the
Pan American highway, a route used by many migrants, makes
it particularly vulnerable to malaria resurgence. In addition, El
Oro is one of the most hazardous coastal zones in Latin America
and the Caribbean (Calil et al., 2017). Vulnerable populations
are susceptible to the effects of the El Niño Southern Oscillation,
which intensifies annual flooding events during the rainy season
(Lowe et al., 2017; Tauzer et al., 2019). Lapses in surveillance
and control efforts and reductions in funding following local
elimination also means malaria resurgence is likely (PAHO, 2017;
Sáenz et al., 2017).

Data Sources
Monthly counts of blood smear confirmed cases of P. falciparum
and P. vivax malaria for each canton in El Oro, January 1990–
December 2018, were provided by the Ecuadorian Ministry of
Health, where malaria is a mandatory notifiable disease. Cases
were recorded at local clinics across El Oro and collated by the
Ministry of Health. Population data, available for each canton,
were sourced from the national census in Ecuador, from the
Instituto Nacional de Estadística y Censos (INEC1) for 1990,
2001, and 2010. Data for 2011–2018 were provided by INEC as
annual population projections. Population values between census
years 1990, 2001, and 2010 were estimated by interpolating
assuming linear growth, to provide annual population estimates
for each canton. To estimate the proportion of the population in
poverty per canton in El Oro, we used Unmet Basic Needs (UBN)
sourced from the 2010 census, an indicator based on measures
including housing quality, education and access to water and
sanitation. We used UBN data from 2010 as a socioeconomic
covariate in all our models.

Between 2001 and 2015 an intensive period of vector control
was carried out across El Oro following a resurgence of
malaria cases and monthly canton-level data for three control
measures were available from the Ministry of Health. Monthly
estimates per canton of the number of households treated by
IRS with insecticides (deltamethrin 5% concentrated suspension,
deltamethrin 2.5%, malathion 50%, alphacypermethrin 10%
concentrated suspension, and betacypermethrin 2.5%) were
available for January 2001–September 2013. The number of
neighborhoods that were treated with insecticide via ultra-low
volume (ULV) fumigation, which is performed by spraying

1http://www.ecuadorencifras.gob.ec/institucional/home/
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FIGURE 1 | Malaria cases in El Oro 1990–2018. (A) Location of El Oro province (red), Ecuador in relation to neighboring countries in South American; Colombia,
Peru, and Venezuela. (B) Total number of malaria cases (gray), cases of P. falciparum (pink), and P. vivax malaria (blue) recorded in El Oro 1990–2018.

entire neighborhoods with 96% malathion from trucks were
available between January 2004 and May 2015. Finally, the
number of households space-sprayed with 2.5% deltamethrin
concentrated emulsion, using a backpack fogger that creates
a fog insecticide to treat both inside and outside the
home, were available between January 2004 and May 2015
(Supplementary Figure S1). For each control measure we
tested for lagged relationships, up to 3 months, in order
to account for delays between implementation and impact
on measurable malaria cases (Supplementary Table S1).

Other malaria control interventions including fumigation
with DDT (until banned in 1996), elimination of larval
habitats, and bed net provision occurred during the study
period, but no detailed data for control measures were
available prior to 2001.

Monthly climate data, for temperature and precipitation,
between January 1990 and December 2018 were sourced from
TerraClimate, a high-spatial resolution (∼4 km) dataset that uses
climatically aided interpolation to produce monthly estimates
(Abatzoglou et al., 2018). To obtain climate estimates for each
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canton in El Oro, TerraClimate variables were aggregated by
taking mean grid cell values using the raster package in R.

Annual land cover maps at a 300 m spatial resolution
generated by the European Space Agency (ESA) Climate Change
Initiative (CCI) were compiled for 1990–20182 (European Space
Agency, 2019). For each annual map, the number of grid
cells in each canton that were classified in the urban category
were extracted, and from this the proportion of urban grid
cells per canton were calculated to give a continuous variable
of urbanization (Supplementary Figure S3). All continuous
variables were scaled by subtracting the variable mean from
each value and dividing this by the standard deviation.
This transformation allowed for the direct comparison of
continuous variables and enabled their relative importance to be
determined in the model.

Statistical Analysis
Bayesian hierarchical mixed models are powerful statistical
models that can be used to estimate the marginal posterior
distributions of multiple covariates whilst simultaneously
accounting for multiple sources of uncertainty that can arise
from disease count data. Here, spatiotemporal models were
constructed, for each malaria parasite, P. falciparum and P. vivax,
to explore the contributions of climate and control interventions
to variations in monthly malaria incidence in El Oro between
January 1990 and December 2018 (348 months).

We fitted zero-inflated negative binomial models that take
into account excess zeros that cannot be explained by a standard
negative binomial distribution (Supplementary Appendix S1.1).
Where µst is the mean number of malaria cases in each canton
(s = 1,. . .,14) for each timestep (t = 1,. . .,348), the hierarchical
spatiotemporal model is defined as:

log (µst) = log(Pst) + log(ρst)

Annual population estimates per 1,000 inhabitants for each
canton in El Oro, log(Pst), were included as an offset in the
model to account for canton-level differences in the annual
parasite incidence (API). The estimated API, log(ρst) is then
made up of a combination of climate covariates, including
mean monthly minimum temperature and precipitation for
each canton. Other explanatory variables considered included
socioeconomic factors (poverty rates), level of urbanization
and vector control interventions (IRS, ULV fumigation and
space-spraying).

To account for the seasonality in malaria incidence, a monthly
random effect was introduced using a first order autoregressive
prior (mt), which allows malaria in 1 month to depend on
incidence in the previous month. Independent random effects for
each year (yt), 1990–2018, were included to allow for additional
sources of variation due to unobserved confounding factors such
as variations in healthcare access, case reporting and diagnostics.

Spatially structured random effects, υs, were introduced into
the model to allow for correlated heterogeneity in malaria
incidence across cantons in El Oro. This spatial dependency

2https://www.esa-landcover-cci.org/

structure was accounted for by assuming a conditional intrinsic
Gaussian autoregressive (CAR) model prior distribution for
the spatial effects, which takes into account the neighborhood
structure of the area (Besag et al., 1991). We also included
spatially unstructured random effects in the model to allow
for additional uncorrelated spatial variation across cantons, νs,
which were assigned independent diffuse Gaussian exchangeable
prior distributions (Lowe et al., 2016). Separate models were
constructed for both P. falciparum and P. vivax malaria
due to their intrinsic differences, which include diagnostic
potential, development time inside the mosquito vector (extrinsic
incubation period, EIP), the differential impact of vector control
on transmission, infection reservoirs of P. vivax hypnozoites and
the presence of asymptomatic cases.

Detailed data on interventions was only available for the
period January 2001–December 2015. Therefore, we formulated
separate sub-models for each malaria type to investigate the
relative impact of the control measures implemented between
2001 and 2015 (see Supplementary Appendix S2), herein
referred to as “intervention models.” The intervention models,
fitted to data for the period 2001–2015 included the same
explanatory variables and random effects as the “full” models
(fitted to data for the period 1990–2018) with the addition of
the three control measures. We examined differences between
the random effects structures for the full models and the
intervention models, to see how much variation in malaria due
to interventions could be accounted for by random effects in the
absence of intervention data for the entire time period.

Posterior distributions of model parameters were estimated
using Integrated Nested Laplace approximations (INLA) (Rue
et al., 2009). INLA provides a computationally more efficient
alternative to Markov Chain Monte Carlo (MCMC) methods,
by using numerical approximations of model parameters (see
Supplementary Appendix S1.2). Covariate time lags and the
most parsimonious models were selected using the deviance
information criterion (DIC) (Spiegelhalter et al., 2002) and the
Watanabe–Akaike information criterion (WAIC) (Watanabe,
2010), which are Bayesian methods of model comparison that
trade off model adequacy against model complexity. Models
with lower DIC and WAIC indicate a more parsimonious
model. We also used the logarithmic score to assess model
fit, which is based on the conditional predictive ordinate
(CPO) leave-one-out cross-validation score, where a smaller
value indicates a greater predictive power of the model
(Gneiting and Raftery, 2007).

Covariates were added iteratively to the models starting with
a baseline model, which included spatial and temporal structured
and unstructured random effects and retained if model fit was
improved, assessed through a decrease in DIC and WAIC. The
most appropriate temperature variable, maximum or minimum
temperature was selected using DIC and WAIC (Supplementary
Table S2). We tested different time lags (from 0 to 3 months) to
take into account the lagged effect of climate factors on malaria
transmission, including development time of mosquitoes and
parasites as well as the time between malaria diagnosis and case
recording (Supplementary Table S2). We also tested non-linear
functions of temperature and precipitation (Supplementary
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Table S3). We used the root mean square error (RMSE) to
assess the extent to which models of malaria incidence for 2001–
2015 were improved by the inclusion of each control measure
in turn. RMSE is a measure of the standard deviation of the
model residuals, with smaller values indicating better model fit
to the observed data.

RESULTS

Urban and Rural Malaria Incidence in El
Oro
Between 1990 and 2018, 62,120 cases of malaria were recorded
in El Oro, with 54% of infections resulting from P. falciparum
malaria and 46% from P. vivax. Malaria transmission in El Oro
was historically high, reaching up to 2,000 total annual cases in
1999 and an API of 61 cases of P. falciparum and 35 P. vivax
cases per 1,000 people recorded in Huaquillas canton along
the Peruvian border. Between 1998 and 2002 large outbreaks,
particularly of P. falciparum malaria occurred across the province
before declining to low levels of incidence after the period of
more intensive vector control (Figure 1B). A small outbreak
of P. vivax malaria occurred between 2007 and 2009 before
malaria incidence was dramatically reduced and remained at a
low and stable level (Figure 1B). The highest malaria incidence
was concentrated in the western part of the province, along the
Peru-Ecuador border (Supplementary Figure S4).

Between 1990 and 2018, outbreaks of both P. falciparum
and P. vivax malaria occurred roughly at the same time. Prior
to the decline in cases in 2001–2015 there was a greater
difference between P. falciparum and P. vivax incidence in rural
areas, compared to urbanized areas (Supplementary Figure S5).
During the elimination phase (2001–2010) the incidence of
P. falciparum and P. vivax malaria in rural areas was reduced
much more than malaria in urbanized areas, where outbreaks
of P. vivax were still observed. There was also a greater overall
reduction of P. falciparum malaria in rural and urbanized areas.

In the models of malaria incidence in El Oro between 1990
and 2018, we found that areas that were more urbanized were
associated with greater incidences of P. falciparum malaria
(Figure 2A). To examine how the epidemiology of malaria in El
Oro had changed with the three vector control interventions, we
tested whether there was a difference in the relationship between
malaria and level of urbanization in El Oro, before and after
the interventions were implemented. We found a statistically
significant interaction between level of urbanization in El Oro
and the period the control measures were implemented (2001–
2015) for P. vivax malaria and no significant interaction for
P. falciparum malaria (Supplementary Figure S6). Prior to 2001,
more urbanized areas of El Oro were associated with decreased
P. vivax malaria and after 2001 this relationship reversed with
urbanized areas associated with more P. vivax malaria.

During the period of malaria decline (post 2001) there was
also a reduction in the seasonal pattern of both P. falciparum
and P. vivax malaria in El Oro especially for P. vivax
malaria incidence, which ceased to peak between June and July
(Supplementary Figure S7). For P. falciparum a seasonal peak in

incidence during this period was evident between June and July,
but less distinct than before 2001.

Climate Variability and Malaria Incidence
in El Oro 1990–2018
Minimum temperature was the best temperature variable in the
full models (Supplementary Table S2) and in the 3 months
prior to case reporting was an important predictor of the spatio-
temporal distribution of P. falciparum and P. vivax malaria in El
Oro (Figure 2A). Warmer temperatures in El Oro between 1990
and 2018 were associated with increases in malaria incidence and
greater increases in P. falciparum malaria than P. vivax malaria
(Figure 2A). Precipitation lagged by 3 months for P. falciparum
and 1 month for P. vivax were selected as the best time lags
although when included in the full model, precipitation was not
significant in driving malaria incidence in El Oro (Figure 2A).
Introducing a non-linear relationship between malaria and
climatic variables improved model fit by decreasing model DIC
and RMSE for P. vivax but not P. falciparum malaria incidence
(Table 1 and Supplementary Figure S8). We also found that
higher temperatures were associated with larger increases in
malaria incidence (Figure 2B).

We also investigated the influence of minimum temperature
on the unexplained variation in P. falciparum and P. vivax
incidence in El Oro between 1990 and 2018. We compared
the monthly and interannual random effects of models with
and without temperature to determine the extent to which
temperature accounted for the seasonal pattern of malaria
incidence. The monthly random effects of the model for
P. falciparum incidence that included minimum temperature
were near zero, showing that temperature accounted for all of
the seasonal variation in P. falciparum malaria in El Oro 1990–
2018 (Figure 3A). In contrast there was minimal reduction
in the random effects for the P. vivax model with minimum
temperature, indicating the seasonal pattern was driven by other
factors (Figure 3B). The proportion of the variation accounted
for by the yearly random effects in a model without minimum
temperature was greater than the proportion of the variation
accounted for by the monthly random effects in a model
without minimum temperature. This suggests that temperature
is the main driver of malaria seasonality and other interannual
signatures as well as temperature contribute to the interannual
variability of malaria in El Oro. For example, for some years
the proportion of variation accounted for by the yearly random
effects decreased when minimum temperature was included
into models of malaria incidence 1990–2018. A reduction in
the value of the random effects can be seen for 1998, when
a strong El Niño event occurred (Supplementary Figure S9).
Reductions were also particularly apparent for P. falciparum
malaria between 2001–2004 and 2009–2011, suggesting that some
additional variation was explained by minimum temperature. In
contrast for some years there was no reduction for example in
2008, when an outbreak of P. vivax malaria occurred suggesting
the outbreak was not driven by a climate event.

We explored how climate suitability for malaria transmission
had changed over the time period 1990–2018 in El Oro,
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FIGURE 2 | Parameter estimates for explanatory variables of P. falciparum and P. vivax malaria in El Oro 1990–2018. (A) Posterior mean and 95% credible intervals
for minimum temperature and precipitation, included as linear terms, level of urbanization and poverty covariates for P. falciparum (pink) and P. vivax (blue) malaria.
(B) Relationships between P. falciparum and P. vivax relative risk, on the log scale defined as the annual parasite incidence (API), log(ρst), and minimum temperature,
lagged by 3 months, included in the model as a function to allow for non-linearities.

TABLE 1 | Adequacy results, deviance information criterion (DIC), Watanabe–Akaike Information Criterion (WAIC) and cross-validated log score for full models of
P. falciparum and P. vivax malaria in El Oro 1990–2018.

Model Parasite DIC WAIC Log score

Baseline spatial seasonal
log (ρst) = υs + νs + mt

P. falciparum 12640.97 12646.73 1.38

P. vivax 18745.44 18743.44 2.05

Unstructured yearly random effects
log (ρst) = υs + νs + mt + yt

P. falciparum 11947.63 11970.4 1.31

P. vivax 17887.75 17894.17 1.96

Socioeconomic effects
log (ρst) = υs + νs + mt + yt + x1s

P. falciparum 11946.75 11970.10 1.31

P. vivax 17887.61 17893.23 1.96

Urban effects
log (ρst) = υs + νs + mt + yt + x1s + x2stzi

P. falciparum 11935.89 11958.12 1.31

P. vivax 17823.38 17831.99 1.95

Temperature effects

log (ρst) = υs + νs + mt + yt + x1s + x2stzi + x3st (linear) P. falciparum 11926.14 11941.98 1.31

log (ρst) = υs + νs + mt + yt + x1s + x2stzi + f(x3st) (non-linear) P. vivax 17797.49 17806.2 1.95

Precipitation effects

log (ρst) = υs + νs + mt + yt + x1s + x2stzi + x3st + x4st (linear) P. falciparum 11924.91 11941.77 1.31

log (ρst) = υs + νs + mt + yt + x1s + x2stzi + f(x3st) + f(x4st) (non-linear) P. vivax 17795.36 17804.2 1.95

Covariates were added iteratively, starting with a baseline model that included structured and unstructured spatial random effects, and a seasonal term. The level of
urbanization was interacted with a categorical variable indicating a decline in malaria incidence post 2001. The most parsimonious models included climate (temperature
and precipitation) as linear terms for P. falciparum and as non-linear functions for P. vivax malaria.

specifically for minimum temperature since it was an important
predictor. To do this, we calculated the number of months that
had suitable temperature conditions for transmission of each
malaria parasite. We used the lower temperature limits of the
range for which the development of the malaria parasites inside

the mosquito vector is considered most suitable for transmission,
as an indicator of this suitability.

For P. falciparum a lower temperature limit of 18◦C was
used and for P. vivax 15◦C (Gilles, 1999; Watts et al.,
2019). Between 1990 and 2018, the number of months with
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FIGURE 3 | Effect of minimum temperature (Tmin) on the annual cycle of malaria in El Oro 1990–2018. Difference in the monthly random effect marginal posterior
distributions for models of (A) P. falciparum and (B) P. vivax malaria that include minimum temperature (orange), lagged by 3 months and exclude minimum
temperature (gray). Relative risk, on the log scale, is defined as the annual parasite incidence (API), log(ρst).

FIGURE 4 | Suitable temperature conditions for malaria transmission in El Oro 1990–2018. Mean (solid curve) number of months per year where minimum
temperature exceeds 18◦C (i.e., considered suitable for P. falciparum malaria transmission; pink) and where minimum temperature exceeds 15◦C (i.e., considered
suitable for P. vivax malaria transmission; blue), logistic regression line (dashed curve) and 95% confidence intervals (gray shading).

suitable temperatures for P. falciparum transmission showed
an increasing trend (Figure 4), with noticeable peaks of
around 8 months of suitable temperature conditions occurring
between 1997 and 1998 and between 2014 and 2016. This
trend of increasing temperatures for P. falciparum transmission
coincides with warmer temperatures throughout the year
in El Oro and increasing temperatures between 1990 and

2018 (Supplementary Figure S10). In contrast, temperature
conditions for P. vivax malaria transmission showed no
increasing trend in El Oro between 1990 and 2018 (Figure 4),
although similar peaks in suitability were observed in 1997–1998
and in 2015–2016.

The most parsimonious models of malaria in El Oro 1990–
2018 included minimum temperature and precipitation as
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FIGURE 5 | Model posterior distributions with and without climate information for P. falciparum and P. vivax malaria in El Oro 1990–2018. Observed (gray solid line),
posterior mean (blue dashed line) and 95% credible intervals (blue shading) for annual parasite incidence (API) for (A) models that include minimum temperature,
lagged by 3 months and precipitation, lagged by 3 months for P. falciparum models and 1 month for P. vivax models and (B) without climate information. For models
of P. falciparum malaria minimum temperature and precipitation were included as linear terms. For P. vivax malaria models, model fit improved when including
non-linear functions of minimum temperature and precipitation.

linear terms for P. falciparum and as non-linear functions for
P. vivax malaria, poverty rates, level of urbanization including
an interaction with the period when the vector control measures
were implemented, and spatial and temporal random effects
(Table 1). Although in these models the credible intervals for
precipitation and poverty rates contained zero, the addition
of these covariates to the models decreased DIC values and
increased model fit for P. falciparum and P. vivax malaria
incidence in El Oro between 1990 and 2018. Accounting
for poverty rates (socioeconomic effects) across El Oro also
decreased DIC and WAIC for models of P. falciparum and
P. vivax malaria. Including meteorological variables (as linear
terms for P. falciparum and as non-linear functions for
P. vivax malaria) decreased the uncertainty of the model
posterior distributions, in comparison to distributions from
models that excluded meteorological variables (Figure 5). In
particular, model uncertainty was reduced more for P. falciparum
malaria, especially during the large outbreaks that occurred in
1992–1994 and 1998–2002. Interestingly during the later years
of the study period, model posterior distributions show an
upsurge in malaria incidence, particularly for P. vivax incidence

between 2015 and 2018 although this upsurge was not observed
in case reports.

Control Interventions and Malaria
Incidence in El Oro 2001–2015
We fitted separate sub-models for incidence of P. falciparum
and P. vivax malaria in El Oro between 2001 and 2015, to
evaluate the impact of the three vector control measures (IRS,
space spraying and ULV fumigation) that were implemented
during this period. These intervention models included the same
covariates as the full models (linear and non-linear climate
information and socioeconomic effects) and random effects but
with the addition of the intervention data that were available
for 2001–2015.

By comparing the differences in the covariate parameter
estimates from the full models for the entire time series 1990–
2018 and the intervention models for the period 2001–2015,
we found that posterior mean estimates were roughly similar
across the different models (Figure 6 and Supplementary
Tables S4, S5). However, there was more uncertainty in the
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FIGURE 6 | Posterior mean estimates for environmental, socioeconomic and malaria vector control covariates for models of (A) P. falciparum and (B) P. vivax malaria
from full models (dark blue) and intervention models (green). All interventions were lagged by 3 months, apart from space spraying in the P. falciparum model, which
was lagged by 2 months.

estimates for the environmental covariates in the intervention
models compared to the 1990–2018 models, particularly for
minimum temperature. We also found that between 2001 and
2015 areas in El Oro with greater levels of poverty were
associated with higher incidences of P. vivax malaria. In the
intervention models, IRS implemented in El Oro 2001–2015,
3 months prior to case detection was associated with decreased
incidence of P. falciparum malaria but was not associated
with significant decreases in incidence of P. vivax malaria.
Space spraying was associated with decreased P. vivax malaria
incidence in the following 3 months but not P. falciparum
malaria in the following 2 months. ULV fumigation, also lagged
by 3 months was not statistically significant (i.e., the credible
intervals contained zero).

We also assessed which vector control measure implemented
in El Oro between 2001 and 2015 provided more valuable
information to the intervention models in explaining malaria
incidence across the province. We found there was considerable
heterogeneity in the model improvement for each control
measure, as measured by RMSE difference (Figure 7). IRS
improved the model for P. falciparum malaria in the coastal
northwest of El Oro and in cantons along the Ecuador-Peru
border, improving the model by up to 14%. In contrast,
there was little improvement in model fit for P. vivax. Space
spraying improved models of both P. falciparum and P. vivax
in the province capital, Machala, with a greater improvement
for P. vivax. ULV fumigation provided minimal or no model
improvement for either parasite.

Finally, we explored if the variation in malaria incidence in El
Oro attributed to the vector control measures in the intervention
model could be captured in the random effects structure of the

full models. We compared the yearly random effects of the full
models (fitted to data from 1990 to 2018), which did not include
intervention data, to the yearly random effects of the intervention
models (fitted to data from 2001 to 2015. We found that for
some years (2001–2008) there was a reduction in the magnitude
of the random effects for the 2001–2015 models, suggesting
the control measures accounted for some of the unexplained
variation in malaria incidence in the model for 1990–2018 during
those years. However, a considerable portion of the random
variation was likely due to other unmeasured factors. Between
2012 and 2015 the random effects of the P. falciparum models are
close to zero, indicating that variation in malaria incidence for
those years was well captured by factors included in the model
(Figure 8). We found a similar pattern for P. vivax malaria, with
a reduction in the value of the random effects for the intervention
model, compared to the full model during the early years of
the interventions 2001–2009. This reduction indicates that the
control measures influenced the interannual variation of malaria
risk during these years.

DISCUSSION

For regions approaching malaria elimination and where funding
and disease surveillance are limited, it is important to understand
the drivers of malaria incidence in order to prevent disease re-
establishment and to ensure that elimination efforts are sustained.
In this study, we developed a statistical modeling framework
to disentangle the relative role of multiple explanatory variables
in driving variation in malaria incidence, while accounting for
unobserved heterogeneity. We found that minimum temperature
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FIGURE 7 | Model improvement for each vector control measure in El Oro 2001–2015. Model improvement, calculated as percentage change in root mean square
error (RMSE) between models of P. falciparum and P. vivax malaria excluding each control measure, indoor residual spraying, ULV fumigation, and space spraying,
and models including each measure. Positive values (green) show where the addition of the control measure reduces RMSE and negative values (purple) show
where including the intervention does not improve the model. Gray areas show missing data.

FIGURE 8 | Interannual random effects for malaria risk in El Oro 1990–2018. Difference in the interannual random effect marginal posterior distributions for
(A) P. falciparum malaria models and (B) P. vivax malaria models. Distributions from the intervention model are shown in green, which include intervention data.
Distributions from the full model are shown in gray, which does not include intervention data. Relative risk, on the log scale, is defined as the annual parasite
incidence (API), log(ρst).

was an important driver of malaria incidence in El Oro. We also
found that control measures had a differential impact on the
two types of malaria. After the intensive period of vector control
in El Oro between 2001 and 2015 malaria incidence in rural
areas declined more than malaria in urbanized areas and P. vivax

malaria became more dominant. Incidence of P. falciparum
malaria was also reduced more than P. vivax malaria and
relatively more P. vivax cases were reported in urbanized areas
during this time period. The greater reduction in P. falciparum
malaria is expected given that malaria control measures deployed
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during this time, are primarily designed for use in rural settings
and target mosquito vectors that are exophagic such as An.
albimanus, a dominant malaria vector in El Oro.

Indoor residual spraying has largely been shown to be effective
in reducing malaria transmission in settings with high prevalence
and when applied on a large scale, especially in African countries
(Pluess et al., 2010). In this study we found that IRS was effective
at reducing the incidence of P. falciparum malaria in El Oro
between 2001 and 2015, but not P. vivax malaria. Conventional
control methods are less effective in reducing transmission of
P. vivax compared to P. falciparum malaria because of the
ability of P. vivax to cause multiple relapsing malaria episodes
after the initial infection, from the activation of dormant liver
stages (hypnozoites). In addition the P. vivax parasite develops
more rapidly in the mosquito than P. falciparum and so control
methods such as IRS deployed in El Oro, which aim to shorten
the mosquito lifespan are less effective (Mendis et al., 2001; Bassat
et al., 2016). The rapid development of P. vivax and hypnozoite
stage also means that drug treatments, which are often of
a longer duration are less effective in reducing transmission
as mosquitoes can become infected during a pre-symptomatic
period, allowing for onward transmission before drug treatment
is initiated (White, 2008; McCarthy et al., 2013).

We found that IRS only reduced the incidence of P. falciparum
malaria and in the west of the province. IRS is most effective
against endophilic mosquitoes, which rest indoors following
a blood meal. The two main malaria in vectors in El Oro,
A. albimanus and A. punctimacula, are most commonly observed
biting outdoors and mainly rest outdoors (Ryan et al., 2017). As
a result, IRS and other conventional control methods may not be
suitable for reducing malaria transmitted by these mosquitoes.

In contrast we found that space spraying was effective in
reducing incidence of P. vivax in El Oro, especially in the
capital, Machala and by a larger amount than IRS. Evidence
for the success of space spraying is limited and it is currently
only recommended during outbreaks. In our study, space-
spraying is possibly targeting outdoor resting mosquitoes, such
as A. albimanus, especially in peri-urban areas where housing
conditions are poor and outdoor exposure is higher. There
is evidence of a positive effect of space-spraying on malaria
incidence in India, but the current evidence base is limited
(Pryce et al., 2018).

The P. vivax malaria parasite is able to develop at lower
temperatures than P. falciparum (Nikolaev, 1935; Moshkovsky,
1946; Olliaro et al., 2016; Ohm et al., 2018), enabling its
persistence in less favorable environmental conditions (Mendis
et al., 2001). We found a stronger association between minimum
temperature and P. falciparum malaria than P. vivax, and
all of the seasonality in P. falciparum malaria was explained
by temperature. A greater association between minimum
temperature and P. falciparum malaria compared to P. vivax
has been previously identified in China (Bi et al., 2013), but
to our knowledge this difference has not been previously
quantified in South America. The stronger effect of temperature
on P. falciparum malaria is due to the greater dependence of
P. falciparum transmission on the mosquito vector, which is
sensitive to climate conditions such as temperature. In contrast

P. vivax transmission is less influenced by the mosquito vector
and can be sustained by unpredictable relapsing infections, which
have been suggested to be explained by other factors such as
systemic illness in humans (White, 2011). Similarly, between
2001 and 2015 we found that areas in El Oro with higher levels
of poverty were associated with increased incidences of P. vivax
malaria, which suggests that socioeconomic conditions, such
as limited access to healthcare, may have influenced relapsing
P. vivax infections during this time.

Warmer minimum temperatures in El Oro were associated
with increases in P. falciparum and P. vivax malaria incidence
3 months later. This finding is in agreement with other studies
in South America that have found a similar relationship between
higher temperatures and malaria incidence (Poveda et al., 2000;
Basurko et al., 2011; Laneri et al., 2019). This relationship can
be attributed to the physiological effects of temperature on both
the mosquito vector and parasite that increases transmission. For
example warmer temperatures shorten the development time of
the parasite inside the mosquito, the EIP and increase mosquito
larval reproduction thus increasing disease transmission (Bayoh
and Lindsay, 2003; Blanford et al., 2013; Mordecai et al.,
2013). We also found a trend of rising minimum temperatures
in El Oro between 1990 and 2018, with an increase in the
number of months that have suitable minimum temperature
conditions for P. falciparummalaria transmission, which suggests
a lengthening of the malaria transmission season. Large peaks in
the transmission suitability of both P. falciparum and P. vivax
malaria are evident between 1997–1998 and 2014–2016, when
major El Niño events occurred. El Niño conditions bring warmer
and wetter conditions to southern Ecuador, conditions that are
favorable for malaria transmission and have previously been
suggested to have caused a peak in cases observed during this
time (Krisher et al., 2016). Increasingly suitable temperature
conditions and large-scale climate events such as El Niño pose
a real threat for the re-establishment of malaria in El Oro
if cases are allowed to return, surveillance is not maintained,
and interventions are not deployed appropriately. Our model
posterior distributions for 2012–2018 show increases in malaria
incidence despite zero or few cases being reported, which is
possibly due to warmer temperatures and the large El Niño
event that occurred during this time. This highlights how
incidence could rise if risks, such as relaxing control efforts
are not mitigated.

Rainfall is essential for providing suitable habitats for
mosquito breeding (Thomson et al., 2005; Parham and Michael,
2010) and is thus considered to be a dominant factor in driving
malaria transmission. Studies in the Amazon and Argentina
have found that rainfall was important in determining malaria
incidence (Dantur Juri et al., 2009; Olson et al., 2009). In
this study, rainfall was not a statistically significant explanatory
variable for malaria incidence in El Oro, possibly because ample
larval habitat was already available. Two to three months prior
to the peak malaria season (March–June), monthly rainfall
accumulation reaches 80 mm across El Oro, which is considered
to be suitable conditions for malaria transmission (Watts et al.,
2019), and up to 530 mm rainfall in the southeast of the province.
In addition, much of El Oro is rural with extensive mangroves
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in the northwest coastal regions, which provide habitat suited to
A. albimanus mosquitoes (Pinault and Hunter, 2012). Therefore,
our results suggest that rainfall is not a limiting factor for malaria
transmission in El Oro.

The addition of temporal random effects for each year in the
full models for 1990–2018 accounted for some of the variation
in malaria incidence due to the control measures that were
explicitly accounted for in the intervention model for 2001–
2015, particularly for P. falciparummalaria, which appeared more
sensitive to interventions. The use of temporal random effects
also allowed us to pick up variation in malaria in El Oro due
to other unobserved factors. For example, the large El Niño
events mentioned previously likely caused an increased number
of cases and a reduction in the unexplained yearly variation
during 1997–1998 and between 2014 and 2016. However, we
expect that the temperature and precipitation variables included
in the models to pick up some variation to due climatic anomalies
from El Niño events. The Cenepa War, a period of political
instability across the Ecuador-Peru border (Krisher et al., 2016)
likely hindered malaria control efforts and case reporting during
1995, and there is evidence of reduced malaria risk during
this time in the interannual random effects, which is likely
explained by reduced reporting. In addition we found that the
outbreak of P. vivax in 2008 was not driven by a climatic event
and may instead be driven by a political event or lapse in
control efforts.

Despite the considerable length of the dataset, there are
some limitations to consider. In Ecuador a high number of
malaria cases are asymptomatic. Low levels of parasitemia,
which act as a reservoir of transmission, are difficult to
diagnose (Sáenz et al., 2017). It is likely that many cases
of P. vivax malaria were missed and not reported during
the study period. In addition, many P. vivax cases reported
between 1990 and 2018 are likely to be relapses from the
same initial infection, which could mask the true climate-
malaria relationship. We also found that urban malaria was
approximately 70% higher than incidence of malaria in rural
areas. However, this may be a product of migration from
neighboring countries and cases being imported from rural
areas and subsequently recorded as originating in urban areas,
as was found in Colombia (Molina Gómez et al., 2017). We
could not quantify the amount of malaria variation explained
by migration owing to the lack of detailed migration data
for the whole time period. Due to El Oro’s location on a
key migratory route, including for Venezuelan refugees, it is
likely that human movements are influential in driving case
reporting and malaria incidence. In addition, outbreaks in
northern Peru can increase the risk of malaria transmission
in El Oro due to cross border human movement. Other
factors that likely contributed to the spatiotemporal variation
in malaria incidence in El Oro that were accounted for
through the use of random effects include variations in
case reporting and surveillance, as well as health seeking
behavior in El Oro.

The incompleteness of the intervention data for the study
period is also a limiting factor in this study. We were only able
to evaluate the role of the three control measures implemented

between 2001 and 2015 although there were other important
elimination efforts that were carried out in El Oro between 1990
and 2018. For example, the use of DDT was widely used until
1996 and a campaign to distribute insecticide-treated bed nets
(ITNs) was initiated in 2004, although no detailed data exist
for this in El Oro, or for other forms of personal protection
that would have contributed to local elimination. However, by
examining the interannual random effects of our models we
observe a reduction in P. falciparum malaria risk between 2004
and 2006, which could be attributed to the use of ITNs. In 2005,
the Ministry of Health suspended the use of chloroquine for
treatment of P. falciparum malaria, adopting the recommended
change to artemisinin-based combination therapy (ACT) amid
reports of drug resistance, which local partners reported led
to a major decline in transmission (Krisher et al., 2016). The
introduction of ACT in Colombia and Peru at similar times
contributed to significant reductions in malaria case numbers
(Rodríguez et al., 2011; Quispe et al., 2016). ACT introduction
is also likely to have contributed to local malaria elimination El
Oro as we observed declining malaria risk from this time through
the use of interannual random effects in our models. At the same
time in El Oro, a new shorter treatment regime for P. vivax
malaria was adopted to ensure patients completed their treatment
course, which was also reported to have contributed to declining
transmission (Krisher et al., 2016).

In summary, we have developed a modeling framework
for exploring the barriers to malaria elimination in a low-
transmission setting. Accounting for unobserved interannual
variation via yearly random effects is useful for investigating
malaria variation in many different contexts where detailed
data, such as intervention information, may not be available.
Here, we used available intervention data to explore the relative
impact of three vector control measures on P. falciparum and
P. vivax malaria in El Oro. We also provide an assessment
of where control measures improved models of P. falciparum
and P. vivax incidence, which will prove useful for targeting
future malaria control efforts in the region. We have shown that
warmer temperatures increase incidence of P. falciparummalaria,
which is important to consider in light of global environmental
change and increasing climate suitability for malaria transmission
(Laporta et al., 2015; Watts et al., 2019). In addition, with
a global warming of 1.5◦C above pre-industrial levels it is
predicted that the western coast of South America, including
southern Ecuador, will experience temperatures between 2 and
3◦C warmer and precipitation could increase by up to 20%
(IPCC, 2018), providing climate conditions that are highly
suitable for malaria transmission. In contrast, we show that
P. vivax malaria is less sensitive to temperature variations
and shows more complex transmission patterns, making it
particularly challenging to eliminate (Feachem et al., 2010). An
assessment of the environmental obstacles to elimination efforts
in Ecuador is timely and important. Lapses in control efforts
should be avoided, especially as it becomes harder to prevent and
detect cases due to limited funding for surveillance and control.
Recently, indigenous cases of malaria have been detected in El
Oro and re-introduction of malaria parasites along with warming
temperatures threaten current elimination progress.
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