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Abstract: Numerous studies have demonstrated the relationship between summer temperatures and
increased heat-related deaths. Epidemiological analyses of the health effects of climate exposures
usually rely on observations from the nearest weather station to assess exposure-response associations
for geographically diverse populations. Urban climate models provide high-resolution spatial data
that may potentially improve exposure estimates, but to date, they have not been extensively applied
in epidemiological research. We investigated temperature-mortality relationships in the city of
Barcelona, and whether estimates vary among districts. We considered georeferenced individual
(natural) mortality data during the summer months (June–September) for the period 1992–2015.
We extracted daily summer mean temperatures from a 100-m resolution simulation of the urban
climate model (UrbClim). Summer hot days (above percentile 70) and reference (below percentile 30)
temperatures were compared by using a conditional logistic regression model in a case crossover
study design applied to all districts of Barcelona. Relative Risks (RR), and 95% Confidence Intervals
(CI), of all-cause (natural) mortality and summer temperature were calculated for several population
subgroups (age, sex and education level by districts). Hot days were associated with an increased risk
of death (RR = 1.13; 95% CI = 1.10–1.16) and were significant in all population subgroups compared
to the non-hot days. The risk ratio was higher among women (RR = 1.16; 95% CI= 1.12–1.21)
and the elderly (RR = 1.18; 95% CI = 1.13–1.22). Individuals with primary education had similar
risk (RR = 1.13; 95% CI = 1.08–1.18) than those without education (RR = 1.10; 95% CI= 1.05–1.15).
Moreover, 6 out of 10 districts showed statistically significant associations, varying the risk ratio
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between 1.12 (95% CI = 1.03–1.21) in Sants-Montjuïc and 1.25 (95% CI = 1.14–1.38) in Sant Andreu.
Findings identified vulnerable districts and suggested new insights to public health policy makers on
how to develop district-specific strategies to reduce risks.

Keywords: heat-related mortality; UrbClim; spatial analysis; urban heat island effect; summer
extreme heat

1. Introduction

Global temperatures and heat wave frequency increases are projected to become more frequent and
intense over the 21st century [1–3]. Epidemiological studies have analyzed the link between exposure
to high temperature with adverse effects on mortality and morbidity [4]. The research on extreme
temperature and mortality suggests that a wide range of individual and area level characteristics may
affect susceptibility to heat, such as income, poverty, education level, greenspace, age and sex [5,6].
Elderly men and women are the most vulnerable groups; therefore, age and sex play a very important
role; furthermore, there are other factors that modify the temperature related mortality relation, e.g.,
race, access to air conditioning, level of urbanization or cost of living and socio-economic status [7].
The urban heat island (UHI) is a well-known phenomenon in which temperature of an urban area
is higher than the surrounding areas. The factors that cause UHI includes greenspace, impermeable
space, surface roughness, albedo and emissivity [8].

Over roughly the past two to three decades, researchers have started examining the spatial
distribution of heat-related mortality within urban areas. At the local scale, locations with higher
morbidity and mortality rates during heat events have been associated with low socio-economic
areas [9–11]. The majority of the heat-health research studies use the meteorological data from one or
very few outdoor weather stations to estimate personal exposure, as these data are easily accessible,
while indoor temperature data or personal exposure data are hard to find. However, exposure risk
assessment requires consideration of all microenvironments where humans spend most of the time [12].
The weather-related mortality associations in a city using exposure variables from one local weather
station or the average from a network of sites could induces exposure measurement error or biases in
the estimates [13]. More recently, satellite-measured land surface temperature (LST) has been used to
identify the temperature variations at a high spatial resolution [14]. However, LST cannot serve as
a proper proxy for the daily mean temperature mainly due to their sparse temporal coverage (one
measurement per day) [15]. Numerous studies have spatially interpolated temperature data from
multiple measurement sites, but this is often limited by the sparse distribution of weather stations that
cannot accurately measure temperature variations within a study area [13].

Recently, an urban climate model (UrbClim) was designed to model the urban influence on
large-scale meteorological conditions at a resolution of a 100 m [16,17]. Epidemiological research
assessments of climatic exposures could potentially benefit from using spatially explicit UrbClim
model data, particularly in urban areas with few weather observation stations or in cities where the
weather reported at the observation station is not actual representative of the local weather conditions
experienced by the population.

Previous research in Barcelona metropolitan areas found that individual and neighborhood level
factors were associated with high mortality during summer periods. These factors include old buildings,
manual workers and perception of surrounding greenness, which were strongly associated with
heat-related mortality [18]. In order to design spatially targeted interventions, a better understanding
of heat risk is important for effective decision support [19,20]. Therefore, the present study aims to
determine the spatial variability at district level in heat related mortality and to characterize the heat
island effect by age, sex and education level in Barcelona in the years 1992–2015.
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2. Materials and Methods

2.1. Study Population and Characteristics

Barcelona, the second largest city in Spain (1,650,358 inhabitants in January 2019 by Municipal
Population Register of Barcelona City Council), is located on the northeastern coast of the Iberian
Peninsula. Barcelona has 10 districts, and a map of the 10 districts is provided in the Supplementary
Materials. Barcelona’s climate is Coastal Mediterranean. Winters are short and mild, while summers
are long and hot. The average annual temperature is between 15 ◦C and 18 ◦C.

The mortality data were collected from the mortality registry of Barcelona, which collects
information from the mortality registry of the Department of Health of Catalonia and from the
municipal population registry. The dataset includes individual all-cause (natural) mortality records
for the residents in the city of Barcelona. The individual mortality data were collected for the period
of 1 January 1992 to 31 December 2015. Only the summer months’ deaths were considered in the
analysis (1 June–30 September). The detailed information of each individual death includes date of
death (day, month and year), age (through date of birth) and sex (men and women). Then, as a measure
of socio-economic position, we used education level and grouped them into two categories (without
studies and with primary education or higher), the data for which were obtained from the population
register of the city, after excluding the deaths from the youngest age groups (<13 years old). Also,
residence of deaths was georeferenced, both address (latitude and longitude) and district of residence.
Residents of Barcelona who died outside the city were excluded from the analysis.

2.2. Urban Climate Model (UrbClim)

The UrbClim model was designed to simulate temperature and heat-stress at the city scale with
a minimum amount of computation power [21]. This model is composed of a simple urban physics,
coupled with a 3-D atmospheric boundary layer module. In the land surface scheme, urban terrain is
represented as an impermeable slab with appropriate parameter values for albedo, emissivity and
aerodynamic and thermal roughness length, and also accounting for anthropogenic heat fluxes [16].
UrbClim combines information about the urban structure (vegetation, soil sealing, typology, land use
and land cover) through a simplified physics approach relevant at urban scales, and generates local
climate data at very high spatial resolution of 100 m. The location and time were considered when
climate data were extracted from the UrbClim model in order to merge with the georeferenced mortality
dataset. The model has been previously validated in several validation campaigns, among which
one has focused on the agglomeration of Barcelona [16,21,22]. Using the UrbClim model, daily urban
climate data have been composed for all summer periods (1 June–30 September) of the years 1992–2015
(Figure 1a). The UrbClim model provided gridded daily climate data with a 100 m spatial resolution
with a horizontal grid included in an area of 40 × 40 km, which covers the entire geographical area of
the Barcelona metropolitan area, including the neighboring highly populated cities. This raw output
is subsequently converted to daily minimum, mean and maximum temperature values along with
location specific 5th to 95th percentile for the daily mean summer temperature. The yearly summer
mean temperature trend is increasing as expected in recent years.
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Figure 1. (a) Map of summer mean (1 June–30 September) temperature in (◦C) and (b) relative risk
map of all-cause mortality related to summer extreme temperatures by district during the study period
1992–2015 in Barcelona.

2.3. Exposure Definition and Lags Structures

The exposure data were extracted using time and location information (geographical coordinates
of residence address of the deceased and date of death) and calculated daily mean summer temperature
percentiles (5th to 95th) for each death case and its controls. The exposure variable group was defined
based on the 70th–100th percentile (preliminary analysis results showed adverse health effects at
70th percentile and above) of summer mean temperature and reference group was 0–30th percentile
(minimum mortality percentile) of summer mean temperature. We categorized days in the 70th
percentile and above as hot days and the days between the 0 to 30th percentile as a non-hot day.
We have used the daily mean temperature because it is a better predictor of temperature-mortality
relationships when compared with either maximum or minimum temperature [23]. We fitted models
of the average of daily mean summer temperature over the same day and three days before the day of
death (lags 0–3 days) in order to identify heat effects that are mainly immediate and generally more
delayed up to three days.

2.4. Statistical Method/Analysis

We used a time-stratified case-crossover design, commonly used for analyzing the effects of
short-term exposures [24]. Daily summer mean temperature on the day of death (case day) and,
as relevant, on the preceding days, is compared with the temperature on control days on which the death
did not occur. The case-crossover methods naturally control for potential confounding factors that are
time-invariant or that vary slowly over time, for example, ethnicity, socio-economic status, smoking and
healthcare. We used control days on the same day of the week as the case day, to automatically adjust
for day of the week, and in the same calendar month to avoid the so-called overlap bias [25]. In the
case-crossover study design, each death is a ‘case’ and each individual act as his or her own control.
This method was initially developed to avoid selection bias in controls, and has since then been applied
to the study of mortality risks, mainly related to air pollution and temperature. Exposure to ambient
temperatures for a given case (i.e., date of death) is compared with the exposure at several control cases
(i.e., reference days before or after the event) [24,25]. Using the conditional logistic regression model,
the relative risk (RR) of all-cause mortality related to summer extreme temperatures was estimated with
spatially referenced temperature and mortality data. Firstly, the RR by sex, age and education groups
for the citywide; secondly, the RR by district and finally, the analysis of RR by district was conducted
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separately for population sub-groups by age, sex and education. The map of study area (10 district of
Barcelona) with respective names is given in the Supplementary Materials.

3. Results

We collected mortality data by age, sex and education for the periods of 1 June–30 September.
The dataset included 105,559 all-cause mortality (48.84% among men and 51.16% among women) given
in Table 1. The characteristics of the temperature data of the UrbClim model presented in Table 2 and
the 70th percentile of mean temperature (>27 ◦C) and 30th percentile (<24 ◦C) of mean temperature
are compared.

Table 1. Characteristics of deaths in summer (1 June–30 September) during the study period 1992–2015
in Barcelona.

Variables n %

Sex
Men 51,556 48.84
Women 54,003 51.16
Total 105,559 100

Age
<79 48,788 46.22
≥80 56,771 53.78
Total 105,559 100

Education *
No Education 32,894 46.92
With Education 37,216 53.08
Total 70,110 100

* In this category, the individuals aged 13 years and older were excluded.

Table 2. Characteristics of temperature, in ◦C, in summer (1 June–30 September) estimated by UrbClim
Model data during the study period 1992–2015 in Barcelona.

Temperature Variables Mean Std. Dev. Minimum Maximum

Mean Temperature 25.25 2.90 13.24 34.05
Maximum Temperature 28.39 3.23 14.51 40.52
Minimum Temperature 22.05 2.99 10.00 30.71

Percentile 70th of mean temperature 26.90 4.44 22.63 27.63
Percentile 30th of mean temperature 23.78 0.452 19.57 24.54

Std. Dev. —standard deviation.

3.1. Heat-Related Mortality in Barcelona

Citywide all-cause (natural) mortality related to summer extreme temperatures is significantly
higher on short cumulative lags of 0 to 3 days (Table 3). For all-cause mortality, the relative risk
increases by 13% (RR = 1.13; 95% CI = 1.10–1.16) on hot days compared to non-hot days, and was
higher among women (RR = 1.16; 95% CI = 1.12–1.21), the elderly (RR = 1.18; 95% CI = 1.13–1.22) and
in a residence with primary education or higher (RR = 1.13; 95% CI = 1.08–1.18).
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Table 3. Citywide relative risk of all-cause mortality related to summer extreme temperatures by sex,
age and education during the study period 1992–2015 in Barcelona.

Characteristics
Lag 0–3 days

Relative Risk 95% CI

All-cause mortality 1.13 1.10–1.16
Sex

Men 1.10 1.06–1.14
Women 1.16 1.12–1.21

Age
<79 1.08 1.04–1.12
≥80 1.18 1.13–1.22

Education *
No Education 1.10 1.05–1.15
With Education 1.13 1.08–1.18

* In this category, the individuals aged 13 years and older were excluded. CI—confidence interval.

3.2. The Spatial Distribution of Heat-Related Mortality by District

The heat-mortality association results by districts shows 6 out 10 are at higher risk during the
summer temperature (Figure 1b). We found a significantly high risk of mortality on hot days with
25% increase risk in Sant Adreu and 20% increase risk in Horta-Guinardó (Figure 1b). We did not find
significant risk in the Les Corts district (RR = 0.94; 95% CI = 0.83–1.08) and found a low risk in three
districts (Nou-Barris, Cuitat Vella and Sarrià-Sant Gervasi) (Table 4 and Figure 1b), respectively.

Table 4. Relative risk of all-cause mortality related to summer extreme temperatures by district during
the study period 1992–2015 in Barcelona.

District Name
Lag 0–3 days

Relative Risk 95% CI

Cuitat Vella 1.09 0.99 1.21
Eixample 1.17 1.10 1.24

Sants-Montjuïc 1.12 1.03 1.21
Les Corts 0.95 0.83 1.08

Sarrià-Sant Gervasi 1.04 0.95 1.15
Gràcia 1.14 1.04 1.26

Horta-Guinardó 1.20 1.10 1.31
Nou-Barris 1.08 0.99 1.18

Sant Andreu 1.25 1.14 1.38
Sant Martí 1.14 1.06 1.23

3.3. The Spatial Distribution of Heat-Related Mortality Results Stratified by Age, Sex and Education

The results for districts stratified by age, sex and education are presented in the Supplementary
Material (Tables S1, S2 and S3). In Figure 2, the relative risk maps by district shows non-significant
results in the age group <79 years (Figure 2a), except the districts Sant Andreu (RR = 1.19; 95% CI
= 1.04–1.37) and Horta-Guinardó (RR = 1.17; 95% CI = 1.04–1.32). The elderly ≥80 years shows
(Figure 2b) significant relative risk in all the districts, excluding Les Corts (RR = 1.01; 95% CI =

0.85–1.20). The highest relative risks among elderly (≥80 years) were observed in district Sant Andreu
(RR = 1.32; 95% CI = 1.15–1.52), Horta-Guinardó (RR = 1.23; 95% CI = 1.10–1.38) and Sant Martí (RR =

1.23; 95% CI = 1.10–1.37).
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Figure 3 presents the relative risk by districts in men (Figure 3a) and women (Figure 3b).
The relative risk among men was statistically significant in the district Eixample (RR = 1.15; 95% CI =

1.05–1.26), Horta-Guinardó (RR = 1.17; 95% CI = 1.04–1.31) and even higher in Sant Andreu (RR = 1.28;
95% CI = 1.12–1.47). The relative risks among women was higher in all district except Les Corts, Cuitat
Vella and Sarrià-Sant Gervasi. The district Gràcia, Horta-Guinardó, Sant Marti and Sant Andreu are
the most vulnerable districts for women.
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The relative risk maps stratified by education level were obtained (Figure 4a,b). The population
group with studies were more at risk in the districts Eixample, Sants-Montjuïc, Horta-Guinardó and
Sant Andreu (RR = 1.21; 95% CI = 1.04–1.41). Similarly, the group with primary or higher education
was statistically significant and particularly high in 3 districts (Eixample, Sant Andreu and Sant Martí)
(detailed results presented in Supplementary Table S3).



Int. J. Environ. Res. Public Health 2020, 17, 2553 8 of 13

Int. J. Environ. Res. Public Health 2020, 17, x 7 of 12 

 

Figure 3 presents the relative risk by districts in men (Figure 3a) and women (Figure 3b). The relative 

risk among men was statistically significant in the district Eixample (RR = 1.15; 95% CI = 1.05–1.26), 

Horta-Guinardó (RR = 1.17; 95% CI = 1.04–1.31) and even higher in Sant Andreu (RR = 1.28; 95% CI = 

1.12–1.47). The relative risks among women was higher in all district except Les Corts, Cuitat Vella 

and Sarrià-Sant Gervasi. The district Gràcia, Horta-Guinardó, Sant Marti and Sant Andreu are the 

most vulnerable districts for women. 

 

                               (a)                                (b) 

Figure 3. Relative risk of all-cause mortality related to summer extreme temperatures by district 

during the study period 1992–2015 in Barcelona in (a) men and (b) women. 

The relative risk maps stratified by education level were obtained (Figures 4a,b). The 

population group with studies were more at risk in the districts Eixample, Sants-Montjuïc, 

Horta-Guinardó and Sant Andreu (RR = 1.21; 95% CI = 1.04–1.41). Similarly, the group with primary 

or higher education was statistically significant and particularly high in 3 districts (Eixample, Sant 

Andreu and Sant Martí) (detailed results presented in Supplementary Table S3). 

 

 

                 (a)                                   (b) 

Figure 4. Relative risk of all-cause mortality related to summer extreme temperatures by district 

during the study period 1992–2015 in Barcelona with (a) no education and (b) with primary 

education. 

Figure 4. Relative risk of all-cause mortality related to summer extreme temperatures by district during
the study period 1992–2015 in Barcelona with (a) no education and (b) with primary education.

4. Discussion

4.1. Summary of Main Results

To our knowledge, this is the first study conducted using spatially referenced climate-mortality
data and high-resolution urban climate data in Barcelona, Spain. We studied the heterogeneity of the
effect of three consecutive hot days (during summer months 1 June to 30 September) on mortality in the
Barcelona and identified several subpopulations vulnerable to heat. The thresholds for hot days during
summer periods were in the 70th–100th percentile (showed in our preliminary analysis the adverse
health effects at 70th percentile and above). The overall results of the analysis suggest that the elderly
and women have a higher risk of mortality on hot days during summer periods. This is consistent
with the other studies that were conducted in Barcelona and elsewhere [5–7,23,26–28]. The spatial
analysis revealed significant spatial variation in the heat-related mortality at a district level. In our
analysis, the spatial variability of heat-related mortality shows more than 50% of the districts are at
higher risk. The northern part of city especially has shown a significantly higher risk of mortality
during the summer high temperature. This result support our hypothesis that heat-related mortality is
spatially variable within urban areas. The citywide and district-wise heat-related mortality risks by
age and sex showed clearly that the elderly and women were more vulnerable groups, which supports
previous findings in Barcelona and elsewhere [5,6,29,30].

4.2. Spatial Differences by Age, Sex and Education

The spatial distribution of the relative risk by age demonstrated that there is a 32% higher risk in
the Sant Andreu district, and the highest risk is among all of the districts for the elderly population
(Figure 2b). Additionally, the districts Sant Martí, Horta-Guinardó and Eixample also shows the
strongest risk for the elderly. We found that Sant Andreu, Horta-Guinardó and Gràcia are at lower risk
(19%, 17% and 10%) for the age group of <79 years compared to the elderly group; this suggests that
younger individuals are potentially healthier and less sensitive to heat. Another reason could be the
thermoregulatory mechanism in the elderly, combined with a diminished ability to detect changes in
their body temperature, which may partially explain their increased susceptibility [27].

The spatial differences in risk by sex was higher among women in all districts except Les Corts
(Figure 3b). The most vulnerable area for men was the central north parts of the city, whereas Sant
Andreu district shows the highest risk at 28%. The differences in age and sex might be a result of



Int. J. Environ. Res. Public Health 2020, 17, 2553 9 of 13

differences in socioeconomic, cultural and health-related factors. The relative risk by education level
demonstrated that both groups with education and no education are at higher risk and contrast other
findings; however, similar findings have shown this in previous studies in Barcelona [5]. The research
in Barcelona found that excess mortality during the summer of 2003 was observed in all educational
groups, and risk was higher for women with low education or with less than primary education [6].
However, we have not stratified education group by sex due to the limited number of cases.

4.3. Socio-Economic and Built Environmental Factors

It is well known that the socio-demographic characteristics of heat vulnerability such as race,
income and education are mediated by more downstream mechanisms of heat vulnerability, such as
cultural and social isolation, poor housing or poverty [5,31]. We have run meta-regressions to explore the
effects of modification of the heat-mortality association by socio-economic and built environmental factors
at a neighborhood level, including air pollution, family income index, unemployment, housing thermal
demand and green space. We did not identify any of these indicators as a key factor in the heat-related
deaths in the meta regression analysis (method and results are not shown here). This does not show that
green space is not favorable; however, it may be that there are many other variables that confound the
signal, especially at city scale. We are continuing to investigate the relationship at a small area level analysis
using a Bayesian statistical model framework. Previous findings in Barcelona show that heat-mortality
association was greater at the census level and it was higher among the residents living in older buildings,
manual workers and the individual’s perception of green space [18]. The sociodemographic predictors,
in contrast, are more relevant to risk perceptions at very small scales [2]. Previous research studies
in the US and Europe have identified sociodemographic indicators that have shown different relative
vulnerabilities to high temperatures [32,33], although this has been found not to be the case for the UK or
Europe [26,34], and similarly with our results. Another case-crossover study design in Massachusetts
evaluated individual and area-level effect modifiers of the warm temperature-mortality association and
found modification by low income area and population density, but not by green space [35].

5. Strengths and Limitations

Our analysis has several strengths. The UrbClim model provides spatially resolved climate
data that may offer improved exposure estimates, but is has not been systematically evaluated
for use in epidemiologic evaluations. Here, we attempt to examine the high precision spatially
referenced mortality and UrbClim model data. Recent research, for example, shows that static (airport)
location temperature data may underestimate the effect of temperature on mortality when compared
with a higher resolution, satellite-derived, spatially continuous estimate of the same variables [36].
Future epidemiological research on assessments of climatic exposures could potentially benefit from
using spatially explicit weather data, particularly in places with few weather observation stations
or in cities where the weather reported at the observatory is not actually representative of the
weather experienced by the people [37]. The data collected from one single weather station cannot
represent the spatial differentiation and, hence, could lead to substantial exposure measurement
errors. Most of the epidemiological studies on heat and health rely on climate observations from
the nearest meteorological station to assess exposures for geographically diverse populations [37,38].
The meteorological observations from a sparse station network do not adequately represent the range
of conditions experienced by the human population. The meteorological observations are influenced
by surrounding land cover (e.g., forest, urban areas) [37] and may be drawn from instruments deployed
for reasons other than estimating heat-health effects (e.g., at airport to support flights for landing and
takeoff). In urban areas, the built environment and land use heterogeneity modifies the exchange of
energy and moisture between the surface and atmosphere, creating local climate variability and the
urban heat island [8].

There are a few limitations we faced in modelling the risk that merit discussion. Previous validation
exercises have shown that UrbClim, coupled to reanalysis data, can sometimes show a little warm
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bias in the modeled air temperatures Therefore, it is important to recognize the specific limitations
both in the analysis and the interpretation of results obtained by using model data [21,39]. The socio-
demographic variables were derived from data available at a fixed point in time (the year 2012 until
2016). However, the underlying demographics data ordinances both changed over time, a process
we were unable to capture using meta-regression approach. This introduces some uncertainty into
the results, and future research should explore local-scale mortality patterns over both space and
time using the Bayesian statistical approach. Another limitation should be acknowledging that when
we mapped the vulnerability of the population groups at the neighborhood level at very small scale,
we did not find any significant differences among the geographical areas, and therefore, the unit of
the analysis has been changed to the (bigger) district level in order to increase the statistical power of
the analyses. The reason could be the Modifiable Areal Unit Problem (MAUP), which is known to
be a potential source of error that can affect results. Therefore, the areas were aggregated at bigger
scale; however, it may hide or bias the true spatial pattern [40]. Recently, Barcelona has changed a lot
and there has been an especially large immigration of young population since 2000. The migration
in Barcelona is an additional factor influencing the mortality trend [41]. We did not incorporate air
quality data into this study but encourage future study of the interactive effects of heat and air quality
on summertime mortality as well as the potential for differential mortality over space as a result of
local-scale air quality variability.

6. Conclusions

In this research, we identified small scale spatial variability in heat-related mortality within
Barcelona, Spain, over the period of 24 years. UrbClim model offers spatially explicit meteorological
assessments by providing continuous weather data across space and time, which is not possible with
a finite number of point-based weather stations. Furthermore, research is needed, and the evidence
suggested that the spatially referenced meteorological data could possibly reduce exposure measurement
error in epidemiological studies on heat and health [37]. In cities where high summer temperatures lead
to elevated mortality rates, there is statistically significant spatial variability in the sensitivity to heat.
Mortality records from 1992 to 2015 spanning 24 years show that residents of certain districts in the city
have been at greater risk of dying when extreme heat occurs. To the best of our knowledge, this study
is one of the first to document such district level variability in risk using long-term health records.
The identified areas can be targeted to develop and improve strategies to create a better understanding
of where people have higher risk and to design and evaluate interventions, and to target community
engagement and outreach activities to reduce the health burden of heat.
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