
Supplementary Information  

Conditional strategies as threshold traits 

The environmental threshold model 1-3  is the most commonly used quantitative genetic 

model for understanding conditional strategies 4. The model forms the basis of our expectation 

that the probability of double ovulation increases with age as an increasing cumulative normal 

function.  The assumption of the model is that when the expression of dichotomous alternative 

phenotypes (single versus double ovulation in this case) are non-randomly influenced by one or 

more environmental cues, an individual’s response to any of those cues can be quantified by the 

value of that environmental cue at which an individual switches phenotype (e.g. age at which an 

individual switches from single to double ovulation) (Fig. S1a). Variation at the population level 

in response to age is modelled as a normal distribution of switching ages, where in a cohort of 

individuals of the same age the normal distribution is split by a threshold between those 

individuals single ovulating (because their switching age is greater than the age of the cohort) 

and those double ovulating (because their switching age is less that the switching age of the 

cohort) (Fig. S1b).  Increasing age increases the fraction of the population double ovulating by 

shifting the position of the threshold to the right.  As age increases, the switching age of 

increasing numbers of individuals is exceed by the age of the cohort, the incidence of double 

ovulation increases as a cumulative normal function when plotted against age (Fig. S1c). 

According to the model, the sources of variation in switching age can include genetic variation 

and variation in other factors that non-randomly influence ovulation, such as parity, height, 

nutrition, and body mass index, as well as random environmental variation.  Consequently, 

differences in ovulation state (single or double) between successive ovulations in the same 

individual. Differences in twinning rates between populations could reflect differences in any to 



these factors, as well as differences in prenatal survival 5. However, if some fraction of variation 

in switching age is heritable, then past differences in selection on single versus double ovulation 

could theoretically be responsible for switch point differences among populations. We chose to 

model double ovulation in response to maternal age because changes in twinning rate in response 

to maternal age have been well documented in multiple human populations and maternal age has 

clear connections to fitness via age effects on live birth rate 6.  

Statistical independence and the probability of live birth in double ovulations 

The twinning rate formula (T = F p / (1 + F (1-p))), shows the relationship between 

twinning rate, live birth rate and double ovulation rate, where Ft is the double ovulation rate and 

pt is the probability of survival from fertilization to birth. The derivation is as follows.  If F and p 

are independent, then for a cohort of females, 

(1-F) p is the probability of singleton live births from single ovulation; 

F (2p (1-p)) is the probability of singleton live births from double ovulation;  

F p2 is the probability of twin live births; and twinning rate, T, is, 

T = F p2/ (F p2 + F (2p (1-p)) + (1-F) p), which with rearrangement gives 

T = F p / (1 + F (1-p))7. We also employed the assumption that the probabilities of live birth 

for each zygote are independent in our simulations and modeling in calculating the probabilities 

of two, one and zero zygotes surviving each developmental stage from conception to age 15.   

Changes in probability of prenatal mortality with maternal age  

We used a data set compiled from Danish Heath Registries8, which include only 

pregnancy outcomes that required admission to a hospital.  These outcomes were categorized by 

maternal age as spontaneous abortion, ectopic pregnancy, hydatidiform mole, stillbirth and 

livebirth.   We included only spontaneous abortions, stillbirths and livebirths in our analysis.  



Stillbirths were defined as a fetus lacking any sign of life at a gestational age of 28 weeks or 

more. The gestational age for spontaneous abortions was set at 9 weeks. For our analyses we 

relabeled stillbirths as late pregnancy losses.  Because the Danish Registry data were compiled 

from hospital admissions, we assumed that early/cryptic pregnancy losses, for example due to 

implantation failure that did not require hospitalization were not included. By assuming that the 

probability of livebirth per conception on maternal age in the Danish Registry was the global 

average that we estimated from our analysis of twinning rates (Fig. 1, Table 1, Fig. S2d) we were 

able to estimate the incidence of these early losses from the ratios of abortion to live births and 

late losses to live birth for five maternal ages (Table S3).  We used least squares regression to fit 

functions to these ages (Tables S1 and S2, Fig. S2) and used the predicted probabilities from the 

functions for early losses, abortions and late losses for different aged women as inputs in our 

simulations and probabilistic modeling (Table S1). 

Modelling the fitness of single, double and conditional ovulation strategies  

If the fitness of an individual at age x is the number of offspring conceived between age x 

and age M (age of menopause) that survive to age 15, then  

 

fitness at age x  =
=
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where C(k) = number of children conceived when the woman is age k that survive to age 15. 

We compare the expected values of these expressions for women utilizing a strategy of 

single ovulation with women utilizing a strategy of double ovulation and assume for both single 

and double ovulators that each egg ovulated is fertilized (i.e. conception occurs). 

We estimate these expected values with the function 
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where  

 N(k)  = average number of offspring conceived to women age k that survive to age 15 

 S(k | x) = probability that a woman alive at age x has not died before age k. 

Determining )(kN  

Many variables introduced here are identical to or closely related to the variables listed in 

Table S1 where the variables used in the simulations are defined.  If the reader is interested in the 

equivalences please refer to Table S3. 

At age k, let )(kTT =  denote the expected time between ovulations (in months), and 

)(kVV =  denote the expected number of offspring per ovulation that survive to age 15.  Then 
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We first determine  T  for single and double ovulators, and will need the following variables: 

)(kpp =   =  probability zygote implants and survives to term  

)(11 k =   =  probability zygote fails to implant or is lost in first month  

)(22 k =   =  probability zygote implants but is aborted in early pregnancy  

)(33 k =   =  probability zygote implants but is aborted in late pregnancy  

)(44 k =   =  probability singleton that survived birth dies within first month 

)(55 k =   =  probability singleton dies between first month and first year 

)(66 k =   =  probability singleton dies between first year and weaning 

)(77 k =   =  probability twin that survived birth dies within first month 



)(88 k =   =  probability twin dies between first month and first year 

)(99 k =   =  probability twin dies between first year and weaning 

ssb   =  probability singleton fetus is not stillborn given that it reached term 

tsb   =  probability twin fetuses are not stillborn given that they reached term 

1    =  average delay (in months) in next ovulation due to implant failure  

2    =  average delay (in months) in next ovulation due to early pregnancy loss  

3    =  average delay (in months) in next ovulation due to late pregnancy loss  

4    =  average delay (in months) in next ovulation due to still birth or loss of infant in  

            first month  

5    =  average delay (in months) in next ovulation due to loss of infant between first 

            month and first year 

6    =  average delay (in months) in next ovulation due to loss of infant between first 

            year and weaning 

7    =  average delay (in months) in next ovulation due to infant surviving to weaning 

Note that 1321 =+++ p .    

Then for single ovulators we have the following delays and probabilities: 

 1 , failure to implant with probability 
1  

 
2 , early pregnancy loss with probability 

2  

 3 , late pregnancy loss with probability 3  

4 , stillbirth or loss of infant in first month with probability 

44 )1( −+ ssbpssbp  



 5 , loss of infant between 1 and 12 months with probability 
54 )1()1(  −− ssbp  

 6 , loss of infant between 1 and 2 years with probability  

   654 )1()1()1(  −−− ssbp  

7 , infant survives to 2 years with probability  )1()1()1()1( 654  −−−− ssbp  

Summing the products of the delays and their respective probabilities gives us 
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where the first line results from delays due to prenatal loss and stillbirth, while the second line is 

from delays due to postnatal loss and weaning. 

The situation for double ovulators is more complicated.  We assume the survival to term 

of the two zygotes are independent events.  We also assume that if twins survive to term then 

either both are stillborn or both experience live birth.  After live birth, survival of twins going 

forth are independent events, but with different survival probabilities than singletons have.   

To the seven delays 71 ,...,   we assign probabilities 
71 ,..., PP  as follows. 

1  occurs when both zygotes fail to implant.  
2

11 =P . 

2  occurs when both zygotes implant and early abort, or only one zygote implants and then 

early aborts.  21

2

22 2  +=P . 

3  occurs when both zygotes implant and late abort, or both zygotes implant and one early 

aborts while the other late aborts, or only one zygote implants and then late aborts.  

3132

2

33 22  ++=P . 

Without enumerating the separate events explicitly we note that there are eight events which 

contribute to a delay of 
4 , and the sum of their probabilities is  
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where the first line is sums of probabilities associated with stillbirth, while the second line is 

sums of probabilities associated with loss of infant(s) in first month. 

Five events contribute to 5 , with 
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where the first line are results from a singleton birth and the second line from a twin birth. 

Six events contribute to 6 , with 
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where again the first line are results from a singleton birth and the second line from a twin birth. 

Seven events contribute to 7 , with 
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and again the first line are results from a singleton birth, the second and third lines from a twin 

birth. 

We finally obtain our expected interovulation interval for double ovulators as 
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The second expectation we must determine is V, the number of offspring surviving to age 

15 per ovulation.  We need to introduce four more variables now, related to mothers surviving 

birth and offspring surviving to age 15.  So we let 



 mss = probability mother survives singleton birth 

 mst = probability mother survives twin birth 

 ss15 = probability singleton survives to age 15 

ts15 = probability twin survives to age 15 

Then for single ovulators we have 

 15ssmssssbpV =  

since it is assumed that if the mother does not survive the birth, the child will not survive either. 

For double ovulators we have 

 ))151(152152(15)1(2 22 tststsmsttsbpssmssssbppV −++−=  

and our calculation of )(kN  for both strategies is complete. 

Determining )|( xkS  

We continue to utilize the variables defined in the previous section.  For comparison of 

the two strategies we assume that there is at most only one birth event at age x, and we first 

determine 

 )(kR = probability a woman age k does not die in childbirth. 

For a single ovulator we define  

)(kBS = births per ovulation for a woman age k.   

Since we know interovulation intervals )(kT  for xk  , we note that 
)(

)(12

kT

kBS
 gives us births 

per year for a woman age k, and that this ratio serves as the probability a woman gives birth at 

age k.  (Recall that the calculation of T differs for single and double ovulators.)  For single 



ovulators we have )()( kpkBS = , so the probability a woman age k dies in childbirth is 
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For double ovulators we consider the possibilities of twin and singleton births so we define 

)(kBT
= twin births per ovulation for a woman age k  

 )(kBS
= singleton births per ovulation for a woman age k . 

Then  
)(
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kBT  gives us twin births per year at age k and  
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year at age k.  We know 2))(()( kpkBT =  and ))(1()(2)( kpkpkBS −= , so the probability a woman 

age k dies in childbirth is 
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The last variable we introduce is  

 asr = annual survival rate of the adult population. 

So now we have, for both strategies (single and double ovulation) 

 1)|( =xxS   
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and our calculation of )|( xkS  for both strategies is complete. 

Numerical results 

Parameter values coincide with those used in the simulations.  Values are assigned to 

,, 2p  and 3  as follows (recall that 1321 =+++ p ): 

 )18(89.055.0)( −= kkp  

 2

2 000153.0010243.018555.0)( kkk +−=  

 916.2

3 849.11)( −= kk  

In the formula for p it is assumed that at age 18 a zygote has probability 0.55 of 

implanting and surviving to term, and that ova quality in the next year is 89% that of the current 

year based on our analysis of age- dependent twinning rates (Table S1).  The formulas for 
2  

and 
3  were obtained by least squares curve fitting of data in Table S2 (see Fig. S2). 

In the simulation 94 ,...,   are constants that do not change with age.  The values of 

these and the remaining parameter values used in the simulation are as follows: 

07.0)(4 =k  

14.0)(5 =k  

122.0)(6 =k    

43.0)(7 =k  

302.0)(8 =k  

204.0)(9 =k  

  



ssb = 0.962 

tsb  =  0.889 

 mss = 0.992 

 mst = 0.967 

 ss15 = 0.45975 

ts15 = 0.17 

asr = 0.993 

5.11 =     

5.22 =    

5.73 =    

3.114 =    

155 =    

276 =   

357 =    

The result with these values is that the double ovulation strategy have greater fitness than the 

single ovulation strategy at every age (Fig. 3b).  

Switch point analysis 

The fitness functions constructed thus far assume that a female utilizes a strategy (single 

or double ovulation) for her entire reproductive life. Numerical results from the previous section 

showed that (for the parameter values listed) if a woman age x must choose a strategy which will 

be used for the remainder of her life, it is always better to be double ovulating.  We now consider 

the possibility that a woman might utilize one strategy at the beginning of her reproductive life, 



then switch to the other strategy for the later part of her reproductive life.  Does it make sense to 

do this, and if so is there an optimal age to switch from one strategy to the other?  The following 

results utilize parameter values from the beginning of the previous section. 

We first note that the function N(k) (average number of offspring conceived to women 

age k that survive to age 15) is giving us the expected contribution to lifetime fitness made 

during age k (Fig. 3D). Note that initially in a female’s reproductive life the function is larger for 

single ovulators, but that this changes around age 22.   

This suggests it is better to single ovulate when early in one’s reproductive life, then 

switch to double ovulating later in life.  To investigate this define the variable sp = age at which 

the female stops single ovulating and begins double ovulating.  So a female single ovulates from 

age 18 to age sp – 1, then double ovulates from age sp to age 40.  Then the lifetime fitness of 

such a female is  
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where )(kN  is constructed for a single ovulator for 1,...,19,18 −= spk  and constructed for a 

double ovulator for 40,...,1, += spspk .  )18|(kS is constructed using )( jR  for single 

ovulators when 1,...,19,18 −= spj  and then using )( jR  for double ovulators when 

1,...,1, −+= kspspj . 

We evaluated this function for values of sp from 18 to 40 (Fig.3A).  This result suggests 

that that switching from single to double ovulation at age 25 yields the highest fitness return. 

 

 



 

Limitations of available data  

For the Gambia natural fertility population the sample size consisted of 99 twins and 2819 

singletons9.  For the Bangladesh population the sample size consisted of 494 subjects and 329 

pregnancies10.  For our analysis of the fitness of the different ovulatory strategies we assumed 

that the age-dependent prenatal survival rates for early losses, spontaneous abortions, and late 

losses that we derived from the Danish Hospital Registry8 are representative of such losses in a 

natural fertility population.  



 

 

Fig. S1. Double ovulation as a threshold trait. a, Three conditional (age-dependent) ovulatory 

strategies that differ in age of switching from single (dashed line) to double ovulation (solid 

line). b, Threshold trait depiction of a population with normally distributed variation in age at 

switching (mean age at switching from single to double ovulation is 30 yrs., SD of 3 yrs.). At age 

27, the threshold (vertical line positioned at age 27) divides the population into individuals that 



double ovulate (those with switching ages less than 27) and single ovulate (those with switching 

ages greater than 27). C, As age increases, the fraction of double ovulators increases as a 

cumulative normal distribution (mean of 30 yrs., SD of 3 yrs.) as the threshold shifts with age, 

increasing fraction of individuals whose switching age is less than the threshold. 

Fig. S2. Age-dependent probabilities of live birth and prenatal deaths from early losses, 

spontaneous abortion and miscarriage.  a-c, points from Table S2; lines are best fitting curves 

from least squared regression. a, Early loss of pregnancy (variable r in Table S2); b. Spontaneous 

abortion (variable s in Table S2); c, Late loss of pregnancy (variable t in Table S2); d, Live birth 

(line from average of results in Fig. 1f; variable u in Table S2). 

A B 

C D 



Fig. S3. Simulation of the outcomes for single ovulations. Solid lines represent outcomes for 

zygotes and offspring, and dashed lines outcomes and events for women. Women start ovulating 

at 18 years*. Parameters r, s, t, and u vary with maternal age. Grey boxes denote times (months) 

added following particular outcomes, and white boxes show the probabilities of certain 

outcomes. For example, when ovulation results in early loss, 1.5 months are added to female age. 

Offspring survive after term, only if their mother survives at the annual survival rate associated 

with the 9 months of pregnancy (asr9 months = (0.9930.75), and the mother survives childbirth (scbs) 

and the child survives the possibility of being stillborn (stills). The child survives further time 



intervals subject to the probabilities in the white boxes. Continued offspring survival up to two 

years old accumulates time out of reproduction for the mother, before precipitating the 

resumption of ovulatory cycling. Women are subject to an annual survival rate (asr) during all 

time intervals (cycling and failed conceptions, and pregnancy), and therefore only females that 

survive for the time periods specified continue to cycle. When women die in childbirth (1-scbs), 

the child being born also dies; however, the death of mothers after successful childbirth (1-asr) 

does not affect the subsequent survival of the offspring, even those less than 2 years old.  Before 

a new ovulation (single or double) occurs, the age of the female (agecyc; i.e. age at the beginning 

of ovulation plus accumulated time based on zygote/child survival) is checked against the 

specified age of menopause (meno) to ensure that agecyc < meno, in which case the female 

ovulates again, otherwise she ceases ovulatory cycling. The probability of single (p) or double 

(q) ovulation is dependent on age and the user defined switchpoint mean (spm) and standard 

deviation (spSD).  The simulation allows standard deviations to be fitted around age and time 

intervals, but these were set as zero in this study. 



Fig. S4. Simulation of the outcomes for double ovulations. See Fig. S3 legend for description of 

the graphical representation of the model. The parameters scbs and scbt are the probabilities of 

maternal survival during single and twin childbirth respectively. For double ovulations, when 

ovulation results in early loss of both embryos, 1.5 months* is added to female age. However if 

one embryo is lost earlier and the other later (e.g. one early loss r and one late loss t, that occurs 



with the probability 2rt), the time until ovulation is resumed is dependent on the survival of the 

longer surviving embryo (i.e. late loss = +7.5 months in the example of rt). Twin offspring that 

survive to term, survive childbirth each with a probability of stillt and survive further time 

intervals subject to the probabilities in the white boxes (illustrated in Fig. S3). As with the 

prenatal outcomes, continued survival of the longest living offspring up to 2 years at weaning 

accumulates increasing time before precipitating the resumption of ovulatory cycling. A 

woman’s survival is applied according to asrtime. Only if agecyc < meno do females ovulate 

again. The simulation allows standard deviations to be fitted around age and time intervals, but 

these were set as zero in this study.  



 

 

Fig. S5. Twin and singleton (and single twin) outcome details. a, Three outcomes when twins are 

present. The probability stillt is used to calculate the probabilities (green boxes) of 1) both twins 

a 

b 



dying during the period under consideration. 2) one twin dying and one surviving, or 3) both 

twins surviving. In the example shown the period under consideration is birth and shows the 

outcomes for stillt, but the pattern of 0, 1, or 2 surviving, applies to the right most cascade where 

white boxes joined by the horizontal, vertical and diagonal arrows. B, Two outcomes when 

singletons or single twins are present. The probability tb1 is used to calculate the probabilities 

(green boxes) of 4) the single twin dying during the period under consideration or 5) the single 

twin surviving. In the example shown the period under consideration is from birth to one month. 

  



 

  

 

Fig. S6. Age-dependent probability of twin live births in double ovulators.  Probability of twin 

births was calculated using formula 1 in supplementary material, assuming declining probability 

of live birth depicted in Fig. S2d.  



Table S1. 

Simulation and modeling variables  

 

Variable Value Definition 

agefmm  18 Age in years at first parous ovulation (4) 

meno 40 Age at last reproductive cycle 

q Varies with age Proportion of double ovulations. 0 or 1 depending on age at 

ovulation relative to spm.  If age is greater than spm, women double 

ovulate, if less than spm they single ovulate 

spm Based on input Age at which women switch from single to double ovulation. (If 

spm is less that agefmm, women always double ovulate.  If spm is 

greater than meno, women always single ovulate.) 

r Varies with age Probability of early (1-2 months) loss (r = 1- (u+ s + t)) 

s Varies with age Probability of abortion (2-3 months) (s = 0.185559 - 0.010243*age 

+ 0.000153*age2) 

t Varies with age Probability of late (6-9 months) loss (t = 11.849*age-2.916) 

u Varies with age Probability of live birth (u=  0.55*0.89(age-18)).  

vm  1.5  Mean months to next cycle after early pregnancy brood loss.  

wm  2.5  Mean months to next cycle after brood loss from spontaneous 

abortion  

xm  7.5 Mean months to next cycle after brood loss from late loss 

asr  0.993  Annual adult survival rate (4) 

scbs  0.992  Probability of surviving singleton childbirth (4) 



 

  

scbt  0.967  Probability of surviving twin childbirth (4)  

stills  0.962 Probability of not being still born: singleton (4) 

stillt  0.889  Probability of not being still born: twins (4) 

sb1  0.930  Singleton: survival rate birth to one month (4) 

s112  0.860  Singleton: survival rate one month to 12 months (4) 

s12  0.878  Singleton: survival rate one year to two years (weaning) (4) 

s215  0.662  Singleton: survival rate two years to 15 years (4) 

tb1  0.570  Twin: survival rate birth to one month (4) 

t112  0.698  Twin: survival rate one month to 12 months (4) 

t12  0.796  Twin: survival rate one year to two years (weaning) (4) 

t215  0.537  Twin: survival rate two years to 15 years (4) 

jm  2.3  Months added to 9 for brood loss before 1 month 

k1m  6   Months added to 9 for brood loss after 1 month but before 1 year 

k2m  18  Months added to 9 for brood loss after 1 year but before 2 year 

mm  26   Months added to 9 for having offspring reaching 2 years (weaning) 



Table S2. 

Estimating the age-dependent probabilities of prenatal losses based on data from the 

Danish Hospital Registry (26) 

 

Age 

(yrs) 

Number 

of live 

births 

(L) 

Number 

of 

abortions 

(A) 

Number 

of late 

losses 

(S) 

A/L S/L  Live 

birth 

rate 

(u) 

Abortion 

rate         

(s = 

Au/L) 

Late 

loss 

rate            

(t = 

Su/L) 

Early loss 

rate   

 (r = 1-(u+ 

s+ t)) 

22 246038 24465 1046 0.099 0.004 0.345 0.034 0.001 0.619 

27 312904 33728 1270 0.108 0.004 0.193 0.021 0.001 0.786 

32 157457 22391 699 0.142 0.004 0.108 0.015 0.000 0.877 

37 43471 11369 226 0.262 0.005 0.060 0.016 0.000 0.924 

42 5101 3962 34 0.777 0.007 0.034 0.026 0.000 0.940 

 

  



Table S3.   

Equating variables used in mathematical model and simulations 

 

 

Mathematical  Model 

 

Simulation       

p  u 

1  r 

2  s 

3  t 

4  1 ‒ sb1 

5   1 ‒  s112 

6    1 ‒ s12 

7   1 ‒ tb1 

8   1 ‒ t112 

9   1 ‒ t12 

ssb stills 

tsb stillt 

mss scbs 



mst scbt 

ss15 sb1‧s112‧s12‧s215 

ts15 tb1‧t112‧t12‧t215 

asr asr 

1    vm 

2  wm 

3  xm 

4  jm + 9 

5  k1m + 9 

6  k2m + 9 

7    mm + 9 
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